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Side Channel Attacks: Two Case Studit

— Keyboard spy via acoustic side channels
— Information leakage via hardware side channels |




Extracting Information from Side Channels

* Inferring words typed on the keyboard by analyzing the sound

d |

Keyboard Acoustic Emanations Revisited, Li Zhuang, Feng Zhou, J. D. Tygar, CCS 2005



Intuition: Why could this possibly work?

* Different keystrokes make different sounds
— Locations

— Underlying hardware




Threat Model and Challenges

 Attacker has a microphone recording the victim’s typing
— Assumptions: typing English text, no labeled input
— Goals: recovering the English text, inferring random text (e.g.,
password)
* Challenges
— Hard to obtain labeled training data --- no cooperation from the victim
— Typing patterns can be keyboard specific
— Typing patterns can be user specific



Threat Model and Challenges

* Attacker has a microphone recording the victim’s typing
— Assumptions: typing English text, no labeled input

— Goals: recovering the English text, inferring random text (e.g.,
password)

* Challenges

Key Intuition: the typed text is often not random.

e English words limits the possible temporal combinations of keys
e English grammar limits the word combinations.




How The Attack Works

* Key idea: generating training data automatically
— Labelling the audio of a key stroke with the actual key

! |
Gkl bbb bl |
PR R

* Spectrum feature
> extraction —>| * Language models ‘

* Clustering

Audio i Push Peak Release Peak Match classes with keys
Group keystrokes 1

Keystroke detection into classes

>| * Re-train on original audio

Supervised learning to train I
new keystroke classifier




A Combination of Different Learning

Methods
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Stepl: Unsupervised Learning

* Unsupervised clustering + Spectrum feature

extraction

— Feature generation « Clustering

o Cepstrum features

. . Group keystrokes into classes
— Clustering into K classes P

o K> N (actual number of keys used)

this is the best pizza in town
* Output Hwis is@he beﬂpizza in@own

— K unlabeled classes



Step 2: Context-based Language Model

* Need to label the clusters: which key they represent?

* Assume the victim is typing English text
— Characters follow certain frequency
— Actual content follows English spelling and grammar

* Advantages:

— Use 2-character combination frequency to match classes to keys
— Use language model (spelling, grammar) to correct mistakes



Details: Context-based Language Model

* Character-level mapping: Keys
— Hidden Markov Model ™ (‘% A {%1 A B A L%
— Produce a probability of keys " n n 7
assigned to classes. . y y y
0 1 2 - T

— Example: “th” vs. “tj”

* Word-level correction:

1. Spellcheck —

2. Grammar l
. 1 ] ’ Ut

o Tri-gram O O O O

“fur” “examplf” “tbe”



Details: Context-based Language Model
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A Combination of Different Learning
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* Re-train on

Feedback based Training original audio

* A keystroke classifier (for inferring random text)
— Given a keystroke, produce the label of the key

* Training
— Input: noisy training data
o Only a subset of labeled data from the language models
o Choose those with fewer corrections by the language model (quality indicator)

— QOutput: a not so accurate keystroke classifier

* Testing
— Use the trained classifier to classify the training data again
— Use the language model to correct the classification result
— Use the corrected label for re-training



Feedback based Training (Con’t)

Not 100% accurately labeled
‘Training audio |——>‘ Standard Training ‘—>‘ Classifier

Not so accurate

Training

Testing

More accurate

Classifier Labels

Old training audio

Language correction




Evaluation

Se{ 1 Set 2 Set 3 Set 4
words | chars | words | chars || words | chars | words | chars
unsupervised | keystrokes || 34.72 | 76.17 | 38.50 | 79.60 || 31.61 | 7299 | 2322 | 67.67
learning language 74.57 | 87.19 | 71.30 | 87.05 || 56.57 | 80.37 | 51.23 | 75.07
Ist supervised | keystrokes || 58.19 | 89.02 | 58.20 | 89.86 || 51.53 | 87.37 | 37.84 | 82.02
feedback language || 89.73 | 9594 | 88.10 | 95.64 || 78.75 | 92.55 | 73.22 | 88.60
2nd supervised | keystrokes || 6528 | 91.81 ) 6280 | 91.07 || 61.75 | 90.76 | 45.36 | 85.98
feedback language || 9095 | 9646 | 88.70 | 9593 || 82.74 | 9448 | 7842 | 91.49
3rd supervised | keystrokes || 66.01 | 92.04 | 62.70 | 91.20 || 63.35 | 91.21 | 48.22 | 86.58
feedback language || 90.46 | 96.34 ] 89.30 | 96.09 || 83.13 | 94.72 | 7951 | 92.49

Table 2: Text recovery rate at each step. All numbers are percentages.




Other Key Results

 Works for random text

— Inferring passwords that contain English letters only
— 90% of 5-character random passwords: < 20 attempts
— 80% of 10-character random passwords: <75 attempts

* Works for multiple types of keyboards

* Even “low-quality” microphones can do the job



Possible Defenses

* Introduce noise into the system

— Add (random) background noise to keystrokes
o Remove the unique pattern for each key

— Use quieter keyboards

* Other defenses
— Two factor authentication (not just typing a password)
— No microphone in your room?



Microarchitectural covert and side
channels (how to share a secret)

Credit: Chris Fletcher (UIUC)



Process isolation + OS (CS 233)

... OS paging ... ...0OS services...
0x00000000

Communication to other processes via
e.g., #include <sockets.h>, send(), recv()

Virtual memory Process

Memory

Threading, etc

OxXFFFFFFFF



Programs run on processors

Core

OS swaps work on/off

Cache = on-chip memory, faster to access than DRAM

* Processor that OS would have you see ... * Real processors (CS 433)
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Programs run on processors

Cache = on-chip memory, faster to access than DRAM

* Processor that OS would have you see ... * Real processors (CS 433)
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Covert Channels 101: Through the cache

* Cache fill for line A may cause another line B to be evicted
* Various mechanisms for owner of B to detect a hit or miss
* We like the cache: easy to measure, many types of sharing
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Processor caches

* Motivation
— Programs have locality
— Memory access cost X memory size
* Block placement/replacement policies
# ways

tell us where blocks can live and when L1 cache
Eill/Evict

L2 cache

Read/Write

Core

. Read(addr)
Core-facing APl \rite(addr, word)

Backend AP|;  Evict(addr)
Fill(addr, line)

#t sets




Why is cache design relevant?

* Two processes can agree on “dead drops” on the processor
hardware, to pass information under the OS’s nose

If (t2 - t1 > THRESH) read ‘1’
Else read ‘0’

Cache:
Repeatedly
accesses
lines in set t1 = rdtsc()
¢ i Repeatedly accesses lines in set i
A O &l t2 = rdtsc()
N







send(msg) recv()

l Channel l
O— —O
Normal communication Covert Channel communication
include <socket.h> void send(bit msg) {

// pressure on cache

void send(bit msg) { }
socket.send(msg);
} bit recv() {
st = time();
bit recv() { // pressure on cache
return socket.recv(msg); return time() - st > THRESH;




Fun! How else can | do this?

if (send ‘1’)
Use

resource
else
idle

Hardware

resource
> C

Receiver

t1 = rdtsc()
Use resource
t2 = rdtsc()

if (t2—1t1 > THRESH) read ‘1’
else read ‘0’



Many potential

Speculative execution [Spectre’18] | Co

Shared L3 Cache;

a 2 a a ] O
rhannels Port contention [CBHGT’18] \a'g,\’(o
Arithmetic timing [AKMJLS’15] e @\‘f
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L11Cache T 111D ke | ||| ' &°
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che banking [YGH’16] R
L2 Cache |
ﬁ Inclusive LLC [LYGHL'15]
Non-inclusive LLC [YSGFCT’19]

_ 13 Cache
RAND unit [EP’16]
DRAM [PGMSM’16] ﬂi

DRAM (and/or: stacked DRAM, HMC,
NVMs)




Bandwidth

Error-free bitrate of send() = recv()

send(msg) recv()

‘ Channel

Depends on what hardware structure is used to build the channel.
*  RDRAND unit: 7-200 Kbps [EP’16]
* Ld/st performance counters: ~75-150 Kbps [HKRVDT‘15]
*  MemBus/AES-NI contention: ~550-650 Kbps [HKRVDT‘15]
* LLC: 1.2 Mbps [MNHF'15]
* Various structures on GPGPU: up to 4 Mbps [NKG’17]



Practical uses

* Talk to your friends for fun
* Malware can inter-communicate w/o OS realizing it

 Different VMs sharing the same box on (e.g.) Amazon AWS can
talk

e Side channel attacks

— Learn private information about co-resident processes



From covert = side channels

=

Hardware

resou rce<

if (send ‘1)
Covert channel: Use resource

else
idle

if (secret)

Use resource

else
idle

Side channel:

t1 = rdtsc()
Use resource
t2 = rdtsc()

if (t2—t1 >THRESH) read ‘1’
else read ‘0’



Side channel attacks

» Shared resource pressure can also lead to side channel attacks
* E.g., RSA encryption  msg = Decrypt,, (Encrypt,,, (msg))

SquareMult(z, e, N):
let €,,...,e; be the bits of e
y+—1
fori=ndownto1l {
y + Square(y) (S)
y +— ModReduce(y, N) (
iffe; = 1]then {
y +— Mult(y, z) (M)
y + ModReduce(y, N) (R)

}
}

return y

040 10000001 010100104 1.19.01001. 1.1




Discussion

* Any other examples of side channels you can think of to infer
user information / steal data?

* What'’s your thoughts on the future development of
microarchitecture side channels (try to also think from the
defender’s side of view)?
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