Side-Channel Attack

CS463/ECE424
University of lllinois

Side Channel Attacks: Two Case Studit

— Keyboard spy via acoustic side channels
— Information leakage via hardware side channels |

Extracting Information from Side Channels

* Inferring words typed on the keyboard by analyzing the sound

d |

Keyboard Acoustic Emanations Revisited, Li Zhuang, Feng Zhou, J. D. Tygar, CCS 2005

Intuition: Why could this possibly work?

* Different keystrokes make different sounds
— Locations

— Underlying hardware

Threat Model and Challenges

 Attacker has a microphone recording the victim’s typing
— Assumptions: typing English text, no labeled input
— Goals: recovering the English text, inferring random text (e.g.,
password)
* Challenges
— Hard to obtain labeled training data --- no cooperation from the victim
— Typing patterns can be keyboard specific
— Typing patterns can be user specific

Threat Model and Challenges

* Attacker has a microphone recording the victim’s typing
— Assumptions: typing English text, no labeled input

— Goals: recovering the English text, inferring random text (e.g.,
password)

* Challenges

Key Intuition: the typed text is often not random.

e English words limits the possible temporal combinations of keys
e English grammar limits the word combinations.

How The Attack Works

* Key idea: generating training data automatically
— Labelling the audio of a key stroke with the actual key

! |
Gkl bbb bl |
PR R

* Spectrum feature
> extraction —>| * Language models ‘

* Clustering

Audio i Push Peak Release Peak Match classes with keys
Group keystrokes 1

Keystroke detection into classes

>| * Re-train on original audio

Supervised learning to train I
new keystroke classifier

A Combination of Different Learning

Methods

Unsupervised Learning _
e N Data Labelling

()

* Spectrum feature

- > extraction * Language models
* Clustering

ﬁqu—; p»rﬁw m}\hf—ﬂ»}

Puoh Peak Fioloase Peak Match classes with keys
Group keystrokes

Keystroke detection \ into classes) l

Audio

* Re-train on original audio

Supervised learning to train l |
new keystroke classifier I

Supervised Learning

Stepl: Unsupervised Learning

* Unsupervised clustering + Spectrum feature

extraction

— Feature generation « Clustering

o Cepstrum features

. . Group keystrokes into classes
— Clustering into K classes P

o K> N (actual number of keys used)

this is the best pizza in town
* Output Hwis is@he beﬂpizza in@own

— K unlabeled classes

Step 2: Context-based Language Model

* Need to label the clusters: which key they represent?

* Assume the victim is typing English text
— Characters follow certain frequency
— Actual content follows English spelling and grammar

* Advantages:

— Use 2-character combination frequency to match classes to keys
— Use language model (spelling, grammar) to correct mistakes

Details: Context-based Language Model

* Character-level mapping: Keys
— Hidden Markov Model ™ (‘% A {%1 A B A L%
— Produce a probability of keys " n n 7
assigned to classes. . y y y
0 1 2 - T

— Example: “th” vs. “tj”

* Word-level correction:

1. Spellcheck —

2. Grammar l
. 1] ’ Ut

o Tri-gram O O O O

“fur” “examplf” “tbe”

Details: Context-based Language Model

the big money fight has drawn the shoporo

od dosens of companies in the entertaipmagt
Before industry as well as attorneys nneral
Spemng and states, who fear the fild¢shading e
grammar will encourage illegal acyTwéets—srem the
correction grosth of small arrists and lead to lost

cobs and dimished sales tas revenue.

the big money fight has drawn the support
AﬂerspeMng of dozens of companies in the entertainment

andgwannnar industry as well as attorneys generals
correction tates, who fear the oftware
encourage illegal activity, Stem the

growth of small artists and lead to lost
jobs and finished sales tax revenue.

A Combination of Different Learning

Methods

Unsupervised Learning _
e N Data Labelling

()

* Spectrum feature

" > extraction * Language models
* Clustering

%H»ﬁ ~TH +Hrﬂ'+

Puoh Peak Fioloase Peak Match classes with keys
Group keystrokes

Keystroke detection \ into classes) l

Audio

* Re-train on original audio

Supervised learning to train a l |
keystroke classifier I

Supervised Learning
(Feedback-based training)

* Re-train on

Feedback based Training original audio

* A keystroke classifier (for inferring random text)
— Given a keystroke, produce the label of the key

* Training
— Input: noisy training data
o Only a subset of labeled data from the language models
o Choose those with fewer corrections by the language model (quality indicator)

— QOutput: a not so accurate keystroke classifier

* Testing
— Use the trained classifier to classify the training data again
— Use the language model to correct the classification result
— Use the corrected label for re-training

Feedback based Training (Con’t)

Not 100% accurately labeled
‘Training audio |——>‘ Standard Training ‘—>‘ Classifier

Not so accurate

Training

Testing

More accurate

Classifier Labels

Old training audio

Language correction

Evaluation

Se{ 1 Set 2 Set 3 Set 4
words | chars | words | chars || words | chars | words | chars
unsupervised | keystrokes || 34.72 | 76.17 | 38.50 | 79.60 || 31.61 | 7299 | 2322 | 67.67
learning language 74.57 | 87.19 | 71.30 | 87.05 || 56.57 | 80.37 | 51.23 | 75.07
Ist supervised | keystrokes || 58.19 | 89.02 | 58.20 | 89.86 || 51.53 | 87.37 | 37.84 | 82.02
feedback language || 89.73 | 9594 | 88.10 | 95.64 || 78.75 | 92.55 | 73.22 | 88.60
2nd supervised | keystrokes || 6528 | 91.81) 6280 | 91.07 || 61.75 | 90.76 | 45.36 | 85.98
feedback language || 9095 | 9646 | 88.70 | 9593 || 82.74 | 9448 | 7842 | 91.49
3rd supervised | keystrokes || 66.01 | 92.04 | 62.70 | 91.20 || 63.35 | 91.21 | 48.22 | 86.58
feedback language || 90.46 | 96.34] 89.30 | 96.09 || 83.13 | 94.72 | 7951 | 92.49

Table 2: Text recovery rate at each step. All numbers are percentages.

Other Key Results

 Works for random text

— Inferring passwords that contain English letters only
— 90% of 5-character random passwords: < 20 attempts
— 80% of 10-character random passwords: <75 attempts

* Works for multiple types of keyboards

* Even “low-quality” microphones can do the job

Possible Defenses

* Introduce noise into the system

— Add (random) background noise to keystrokes
o Remove the unique pattern for each key

— Use quieter keyboards

* Other defenses
— Two factor authentication (not just typing a password)
— No microphone in your room?

Microarchitectural covert and side
channels (how to share a secret)

Credit: Chris Fletcher (UIUC)

Process isolation + OS (CS 233)

... OS paging0OS services...
0x00000000

Communication to other processes via
e.g., #include <sockets.h>, send(), recv()

Virtual memory Process

Memory

Threading, etc

OxXFFFFFFFF

Programs run on processors

Core

OS swaps work on/off

Cache = on-chip memory, faster to access than DRAM

* Processor that OS would have you see ... * Real processors (CS 433)

X,
Q
&
9
["
N4
m KRN
O
X
Core Datapath X o
N\ ,'00
N
L1 | Cache L1 D Cache RS
&
D
L2 Cache J

L3 Cache

DRAM (and/or: stacked DRAM, HMC,
NVMs)

Programs run on processors

Cache = on-chip memory, faster to access than DRAM

* Processor that OS would have you see ... * Real processors (CS 433)

I We)

X
W
)

|I ,é 11!

Goal: create a send(), recv() abstraction using

Q
O
e
g
N4
X
S

Hardware contention (= without using the

OS/other sanctioned interfaces)

= Core Core 1 core Core d J:;
OF e ik e B L3 Cache
B DRAM (and/or: stacked DRAM, HMC,
NVMs)

Covert Channels 101: Through the cache

* Cache fill for line A may cause another line B to be evicted
* Various mechanisms for owner of B to detect a hit or miss
* We like the cache: easy to measure, many types of sharing

- N
L1/L2 - Intra-core, inter- . &
C &
thread channels — §<,o .
\xfz?“
. h h
LLC = inter-core channels

L2 Cache

Directory = inter-core/inter-
socket channels L3 Cache

DRAM row buffer 2 ”

Processor caches

* Motivation
— Programs have locality
— Memory access cost X memory size
* Block placement/replacement policies
ways

tell us where blocks can live and when L1 cache
Eill/Evict

L2 cache

Read/Write

Core

. Read(addr)
Core-facing APl \rite(addr, word)

Backend AP|; Evict(addr)
Fill(addr, line)

#t sets

Why is cache design relevant?

* Two processes can agree on “dead drops” on the processor
hardware, to pass information under the OS’s nose

If (t2 - t1 > THRESH) read ‘1’
Else read ‘0’

Cache:
Repeatedly
accesses
lines in set t1 = rdtsc()
¢ i Repeatedly accesses lines in set i
A O &l t2 = rdtsc()
N

send(msg) recv()

l Channel l
O— —O
Normal communication Covert Channel communication
include <socket.h> void send(bit msg) {

// pressure on cache

void send(bit msg) { }
socket.send(msg);
} bit recv() {
st = time();
bit recv() { // pressure on cache
return socket.recv(msg); return time() - st > THRESH;

Fun! How else can | do this?

if (send ‘1’)
Use

resource
else
idle

Hardware

resource
> C

Receiver

t1 = rdtsc()
Use resource
t2 = rdtsc()

if (t2—1t1 > THRESH) read ‘1’
else read ‘0’

Many potential

Speculative execution [Spectre’18] | Co

Shared L3 Cache;

a 2 a a] O
rhannels Port contention [CBHGT’18] \a'g,\’(o
Arithmetic timing [AKMJLS’15] e @\‘f

<V
L11Cache T 111D ke | ||| ' &°
. O
che banking [YGH’16] R
L2 Cache |
ﬁ Inclusive LLC [LYGHL'15]
Non-inclusive LLC [YSGFCT’19]

_ 13 Cache
RAND unit [EP’16]
DRAM [PGMSM’16] ﬂi

DRAM (and/or: stacked DRAM, HMC,
NVMs)

Bandwidth

Error-free bitrate of send() = recv()

send(msg) recv()

‘ Channel

Depends on what hardware structure is used to build the channel.
* RDRAND unit: 7-200 Kbps [EP’16]
* Ld/st performance counters: ~75-150 Kbps [HKRVDT‘15]
* MemBus/AES-NI contention: ~550-650 Kbps [HKRVDT‘15]
* LLC: 1.2 Mbps [MNHF'15]
* Various structures on GPGPU: up to 4 Mbps [NKG’17]

Practical uses

* Talk to your friends for fun
* Malware can inter-communicate w/o OS realizing it

 Different VMs sharing the same box on (e.g.) Amazon AWS can
talk

e Side channel attacks

— Learn private information about co-resident processes

From covert = side channels

=

Hardware

resou rce<

if (send ‘1)
Covert channel: Use resource

else
idle

if (secret)

Use resource

else
idle

Side channel:

t1 = rdtsc()
Use resource
t2 = rdtsc()

if (t2—t1 >THRESH) read ‘1’
else read ‘0’

Side channel attacks

» Shared resource pressure can also lead to side channel attacks
* E.g., RSA encryption msg = Decrypt,, (Encrypt,,, (msg))

SquareMult(z, e, N):
let €,,...,e; be the bits of e
y+—1
fori=ndownto1l {
y + Square(y) (S)
y +— ModReduce(y, N) (
iffe; = 1]then {
y +— Mult(y, z) (M)
y + ModReduce(y, N) (R)

}
}

return y

040 10000001 010100104 1.19.01001. 1.1

Discussion

* Any other examples of side channels you can think of to infer
user information / steal data?

* What'’s your thoughts on the future development of
microarchitecture side channels (try to also think from the
defender’s side of view)?

	Default Section
	Slide 1: Side-Channel Attack

	intro
	Slide 2: Side Channel Attacks: Two Case Studies – Keyboard spy via acoustic side channels – Information leakage via hardware side channels
	Slide 3: Extracting Information from Side Channels
	Slide 4: Intuition: Why could this possibly work?
	Slide 5: Threat Model and Challenges
	Slide 6: Threat Model and Challenges
	Slide 7: How The Attack Works
	Slide 8: A Combination of Different Learning Methods
	Slide 9: Step1: Unsupervised Learning
	Slide 10: Step 2: Context-based Language Model
	Slide 11: Details: Context-based Language Model
	Slide 12: Details: Context-based Language Model
	Slide 13: A Combination of Different Learning Methods
	Slide 14: Feedback based Training
	Slide 15: Feedback based Training (Con’t)
	Slide 16: Evaluation
	Slide 17: Other Key Results
	Slide 18: Possible Defenses
	Slide 19: Microarchitectural covert and side channels (how to share a secret)
	Slide 20: Process isolation + OS (CS 233)
	Slide 21: Programs run on processors
	Slide 22: Programs run on processors
	Slide 23: Covert Channels 101: Through the cache
	Slide 24: Processor caches
	Slide 25: Why is cache design relevant?
	Slide 26: Demo
	Slide 27
	Slide 29: Fun! How else can I do this?
	Slide 30: Many potential channels at our disposal
	Slide 31: Bandwidth
	Slide 32: Practical uses
	Slide 33: From covert  side channels
	Slide 34: Side channel attacks
	Slide 35: Discussion

