
CS463/ECE424

University of Illinois

Side-Channel Attack

Side Channel Attacks: Two Case Studies

– Keyboard spy via acoustic side channels
– Information leakage via hardware side channels

Extracting Information from Side Channels

• Inferring words typed on the keyboard by analyzing the sound

Keyboard Acoustic Emanations Revisited, Li Zhuang, Feng Zhou, J. D. Tygar, CCS 2005

Intuition: Why could this possibly work?

• Different keystrokes make different sounds

– Locations

– Underlying hardware

Threat Model and Challenges

• Attacker has a microphone recording the victim’s typing

– Assumptions: typing English text, no labeled input

– Goals: recovering the English text, inferring random text (e.g.,
password)

• Challenges
– Hard to obtain labeled training data --- no cooperation from the victim

– Typing patterns can be keyboard specific

– Typing patterns can be user specific

Threat Model and Challenges

• Attacker has a microphone recording the victim’s typing

– Assumptions: typing English text, no labeled input

– Goals: recovering the English text, inferring random text (e.g.,
password)

• Challenges
– Hard to obtain labeled training data --- no cooperation from the victim

– Typing patterns can be keyboard specific

– Typing patterns can be user specific

 Key Intuition: the typed text is often not random.
• English words limits the possible temporal combinations of keys
• English grammar limits the word combinations.

How The Attack Works

• Key idea: generating training data automatically

– Labelling the audio of a key stroke with the actual key

Audio

Keystroke detection

• Spectrum feature
extraction

• Clustering

Group keystrokes
into classes

• Language models

Match classes with keys

• Re-train on original audio

Supervised learning to train
new keystroke classifier

A Combination of Different Learning
Methods

Unsupervised Learning

Supervised Learning

Data Labelling

Audio

Keystroke detection

• Spectrum feature
extraction

• Clustering

Group keystrokes
into classes

• Language models

Match classes with keys

• Re-train on original audio

Supervised learning to train
new keystroke classifier

Step1: Unsupervised Learning

• Unsupervised clustering

– Feature generation

o Cepstrum features

– Clustering into K classes

o K > N (actual number of keys used)

• Output

– K unlabeled classes

• Spectrum feature
extraction

• Clustering

Group keystrokes into classes

this is the best pizza in town

this is the best pizza in town

Step 2: Context-based Language Model

• Need to label the clusters: which key they represent?

• Assume the victim is typing English text
– Characters follow certain frequency

– Actual content follows English spelling and grammar

• Advantages:
– Use 2-character combination frequency to match classes to keys

– Use language model (spelling, grammar) to correct mistakes

Unlabeled clusters

Keys

Details: Context-based Language Model

• Character-level mapping:
– Hidden Markov Model

– Produce a probability of keys
assigned to classes.

– Example: “th” vs. “tj”

• Word-level correction:
1. Spell check

2. Grammar

o Tri-gram

Details: Context-based Language Model

Before

spelling and
grammar

correction

After spelling

and grammar
correction

A Combination of Different Learning
Methods

Unsupervised Learning

Supervised Learning
(Feedback-based training)

Data Labelling

Audio

Keystroke detection

• Spectrum feature
extraction

• Clustering

Group keystrokes
into classes

• Language models

Match classes with keys

• Re-train on original audio

Supervised learning to train a
keystroke classifier

Feedback based Training

• A keystroke classifier (for inferring random text)
– Given a keystroke, produce the label of the key

• Training
– Input: noisy training data

o Only a subset of labeled data from the language models
o Choose those with fewer corrections by the language model (quality indicator)

– Output: a not so accurate keystroke classifier

• Testing
– Use the trained classifier to classify the training data again
– Use the language model to correct the classification result
– Use the corrected label for re-training

• Re-train on
original audio

Feedback based Training (Con’t)

Training audio

Not 100% accurately labeled

Standard Training

Classifier

Training

Testing

Classifier
Not so accurate

Old training audio text

Language correction

More accurate
Labels

Evaluation

Other Key Results

• Works for random text

– Inferring passwords that contain English letters only

– 90% of 5-character random passwords: < 20 attempts

– 80% of 10-character random passwords: <75 attempts

• Works for multiple types of keyboards

• Even “low-quality” microphones can do the job

Possible Defenses

• Introduce noise into the system

– Add (random) background noise to keystrokes

o Remove the unique pattern for each key

– Use quieter keyboards

• Other defenses

– Two factor authentication (not just typing a password)

– No microphone in your room?

Microarchitectural covert and side
channels (how to share a secret)

Credit: Chris Fletcher (UIUC)

Process isolation + OS (CS 233)

Process
Memory

0x00000000

0xffffffff

Communication to other processes via
e.g., #include <sockets.h>, send(), recv()

…OS services…… OS paging …

Virtual memory

Threading, etc

Programs run on processors

• Processor that OS would have you see … • Real processors (CS 433)

L1 I CacheMemory

Datapath

L1 D Cache

L2 Cache

L3 Cache

DRAM (and/or: stacked DRAM, HMC,
NVMs)

Core Core

Cache = on-chip memory, faster to access than DRAM

OS swaps work on/off

Programs run on processors

• Processor that OS would have you see … • Real processors (CS 433)

L1 I CacheMemory

Datapath

L1 D Cache

L2 Cache

L3 Cache

DRAM (and/or: stacked DRAM, HMC,
NVMs)

Core Core

Cache = on-chip memory, faster to access than DRAM

OS swaps work on/offGoal: create a send(), recv() abstraction using

Hardware contention (→ without using the

OS/other sanctioned interfaces)

Covert Channels 101: Through the cache

• Cache fill for line A may cause another line B to be evicted

• Various mechanisms for owner of B to detect a hit or miss

• We like the cache: easy to measure, many types of sharing

L1 I Cache

Datapath

L1 D Cache

L2 Cache

L3 Cache

DRAM

Core

LLC → inter-core channels

L1/L2 → Intra-core, inter-
thread channels

Directory → inter-core/inter-
socket channels

DRAM row buffer → “”

Processor caches

• Motivation
– Programs have locality

– Memory access cost ∝ memory size

• Block placement/replacement policies

 tell us where blocks can live and when

 Core-facing API:

 Backend API:

ways

#
 s

e
tsRead(addr)

Write(addr, word)

Read/Write

Core

Fill/Evict

Evict(addr)
Fill(addr, line)

L2 cache

L1 cache

Why is cache design relevant?

• Two processes can agree on “dead drops” on the processor
hardware, to pass information under the OS’s nose

Cache:

Process 1 Process 2

Repeatedly
accesses

lines in set
i

t1 = rdtsc()
Repeatedly accesses lines in set i
t2 = rdtsc()
If (t2 – t1 > THRESH) read ‘1’
Else read ‘0’

Demo

include <socket.h>

void send(bit msg) {

 socket.send(msg);

}

bit recv() {

 return socket.recv(msg);

}

void send(bit msg) {

 // pressure on cache

}

bit recv() {

 st = time();

 // pressure on cache

 return time() – st > THRESH;

}

Normal communication Covert Channel communication

send(msg) recv()
Channel

Fun! How else can I do this?

Hardware
resource

Sender Receiver

t1 = rdtsc()
Use resource
t2 = rdtsc()

if (t2 – t1 > THRESH) read ‘1’
else read ‘0’

if (send ‘1’)

 Use
resource
else
 idle

Many potential channels at our disposal

L1 I Cache

Datapath

L1 D Cache

L2 Cache

L3 Cache

DRAM (and/or: stacked DRAM, HMC,
NVMs)

CoreSpeculative execution [Spectre’18]

4K aliasing [MES’17]

Port contention [CBHGT’18]

Cache banking [YGH’16]

Inclusive LLC [LYGHL’15]
Non-inclusive LLC [YSGFCT’19]

DRAM [PGMSM’16]

Arithmetic timing [AKMJLS’15]

RAND unit [EP’16]

Bandwidth

Error-free bitrate of send() → recv()

Depends on what hardware structure is used to build the channel.
• RDRAND unit: 7-200 Kbps [EP’16]

• Ld/st performance counters: ~75-150 Kbps [HKRVDT‘15]

• MemBus/AES-NI contention: ~550-650 Kbps [HKRVDT‘15]

• LLC: 1.2 Mbps [MNHF’15]

• Various structures on GPGPU: up to 4 Mbps [NKG’17]

send(msg) recv()
Channel

Practical uses

• Talk to your friends for fun

• Malware can inter-communicate w/o OS realizing it

• Different VMs sharing the same box on (e.g.) Amazon AWS can
talk

• Side channel attacks
– Learn private information about co-resident processes

From covert → side channels

Hardware
resource

Victim Attacker

if (send ‘1’)

 Use resource
else
 idle

Covert channel:

if (secret)

 Use resource
else
 idle

Side channel:

t1 = rdtsc()
Use resource
t2 = rdtsc()

if (t2 – t1 > THRESH) read ‘1’
else read ‘0’

Side channel attacks

• Shared resource pressure can also lead to side channel attacks

• E.g., RSA encryption msg = Decryptkey(Encryptkey(msg))

Discussion

• Any other examples of side channels you can think of to infer
user information / steal data?

• What’s your thoughts on the future development of
microarchitecture side channels (try to also think from the
defender’s side of view)?

	Default Section
	Slide 1: Side-Channel Attack

	intro
	Slide 2: Side Channel Attacks: Two Case Studies – Keyboard spy via acoustic side channels – Information leakage via hardware side channels
	Slide 3: Extracting Information from Side Channels
	Slide 4: Intuition: Why could this possibly work?
	Slide 5: Threat Model and Challenges
	Slide 6: Threat Model and Challenges
	Slide 7: How The Attack Works
	Slide 8: A Combination of Different Learning Methods
	Slide 9: Step1: Unsupervised Learning
	Slide 10: Step 2: Context-based Language Model
	Slide 11: Details: Context-based Language Model
	Slide 12: Details: Context-based Language Model
	Slide 13: A Combination of Different Learning Methods
	Slide 14: Feedback based Training
	Slide 15: Feedback based Training (Con’t)
	Slide 16: Evaluation
	Slide 17: Other Key Results
	Slide 18: Possible Defenses
	Slide 19: Microarchitectural covert and side channels (how to share a secret)
	Slide 20: Process isolation + OS (CS 233)
	Slide 21: Programs run on processors
	Slide 22: Programs run on processors
	Slide 23: Covert Channels 101: Through the cache
	Slide 24: Processor caches
	Slide 25: Why is cache design relevant?
	Slide 26: Demo
	Slide 27
	Slide 29: Fun! How else can I do this?
	Slide 30: Many potential channels at our disposal
	Slide 31: Bandwidth
	Slide 32: Practical uses
	Slide 33: From covert  side channels
	Slide 34: Side channel attacks
	Slide 35: Discussion

