Code Stylometry

CS463/ECE424
University of lllinois

Stylometry and authorship attribution background

Code stylometry methods

- Source code stylometry
- Executable binary stylometry

Motivating Examples

* There has been debate over who wrote:
— Shakespeare’s works
— Bible passages
— The Federalist Papers

| FEDERALIST PAPERS
l Il]I ‘\. ‘{ "OLLECTION OF
BIBLL *

B STISTARLY S

NEW CONSTITUTION

Motivating Examples

* Linguistic work was pivotal in capture of Unabomber (Ted
Kaczynski)

* The Unabomber’s Manifesto

weeks after yecairin
But T wonT To respen
Sor ouv yaeeting Soom
My head lw‘c)'().wmezk
hI!Y\(fy
oyoet ““71: s
: J’flsﬁ you ave a rery: preed
/ T To lose \/ae
L T never went 7o
et hip in any way.
our J}r;zn)sfnp n ¢ i/
devout f?rnzin‘f.mer of o
a
y¢\.‘n¢u‘tsh his wode of 5&15'—
T we mest, And T dowt <okt

voyeur werems o o - \ wih T Ry
,Jym\ also make plans ™ fou becaise There ds mobod, else {,
ol fukandl el poitieklds who weuld accepr

in

.
b4 IMnocen e«
with 1deal

am et ﬁ,ﬁ L‘Mnbo».é-ek ‘/,u

o v Vs T avaarloner

ental £reak and £ hawvs —

n —5”&56:)141'@0{ l:y +he

Fosmabl =xplosus clevices

A F.\:)— iy sarvval T ot
M-calibre rigle, But

520

Ll
Lyaay

. Mg ho £
st o\

2 Bh o despaiy, Nemambey
A T = J ht'l. préxen g’dtli’)’ skl

lieve yae,

. Pleage dont WorrY “b::i
2.
tates Go0d or=oF 170

do The Sawy See N U ~ y Fondly,
(b s phing |4 ;
Thiy €0 v ™ 5 =17\

Yo% woye than <ve)
P

Authorship Attribution

* Authorship attribution aims to infer the identity of an
author of a document by examining it

* Stylometry: inferring properties of the author by
examination
— This idea is over a century old
— Stylome/fingerprint: differences in how individuals write

Linguistic Stylometry

Use different features of written text to fingerprint authors

— Vocabulary
PR culture
— Average word length Ianguage G
....... 1O
— Frequency of specific words | ana|ys|sspeec;: L 'ff;ﬁgua’ge ;gn E*ds
[l Rt = Ea
— Many others !ﬂgglitules FES St

Machine learning is generally used to classify works based on
these features

Examples of Linguistic Stylometry

* [Narayanan12] used stylometry to identify anonymous
bloggers in large datasets
— This is a privacy issue

* Adversarial stylometry [Brennan12]
— Authorship attribution based on linguistics can be evaded

— Defenses:
o Obfuscate writing style
o Imitate someone else’s writing style

Code Stylometry

* We want to determine who wrote some code
e Goal: programmer de-anonymization

e Can you think of reasons why we would want to determine code
authorship?

Code Stylometry

* We want to determine who wrote some code
* Goal: programmer de-anonymization

e Can you think of reasons why we would want to determine code
authorship?
— Company wants to determine which employee wrote harmful code
— Government wants to determine who is engaging in cyber warfare
— A professor wants to determine if students are plagiarizing assignments
— ldentify Satoshi Nakomoto
— ldentify cyber criminals
— Determine source of malware
— Reveal creators of anti-censorship tools

Types of Code Stylometry

* Source code stylometry
Executable binary stylometry
Malware attribution

AT) 2

)b “J[target),)f(d”(l-(' .attr(“d
("Mide. b5 tab" {relatadTargit: bfe]}
I hea{d);tNIS .activate(b, clos
“shonnr. bs, tab” relatadTanget: o[O]}J
resoveClass{ “active”).ond(). find(
NJ.M(AIFJ.affmwm,a.w:m "4
’“ e"tab")") ottr("arda.
fade"). 10"?7') g Inr

i Cefiry ol “{b
(\Ntkslﬂm this))
Wﬂs",‘; 1, thds

\'0(4\{ T Puth §
Ifﬂw,\v'u.n nulil.
i !«auj.

f‘ﬁpl“c(’ .-\ 3[\S

'.hw bs.tad ,{ro]atodrar
{<.activate(h,h.parent(),

.activatesfunction(b,d,
"]17).attr{ “aria-expande

lass(“fade®), b.parent(”

active™)
Py /J

).emulateTransiti

ot !(c+g<
Uffsetef,

INng f_in“

Source Code Stylometry

* We can study source code for authorship attribution

* Examples of features used for source code stylometry:
— Simple byte-level and word-level n-grams

_create_map_velm

— Abstract syntax trees

et(empty,”,

— Lexical markers such as line length i G
tmp = percen(‘. /

— Layout Y

for(Li =7} 2% ¥ ¥

* Techniques usually include classification by ML

Executable Binary Stylometry

* We want to study executable binaries for authorship attribution
* Binaries are typically produced by compiling or assembling source code
* Goal: perform stylometry on executable binaries

Executable Binary Stylometry

* Harder than source code stylometry
* During compilation,

— Variable names, function names, and other symbols and metadata
about the source code can be removed

— The structure of the code can be changed through optimization

* This removes information that may suggest authorship

Executable Binary Stylometry

* What information can we use about
binary code to reveal authorship
information? ==
— Use tools to parse executable binaries oo

— Reconstruct instruction sequences and

110101010101330010

{
\ 01010010101001010)
control flow graphs \>} 4
— Use this information as features to determine {
/

a code author’s stylometric fingerprint

When Coding Style Survives Compilation: De-
anonymizing Programmers from Executable Binaries

* Goal: executable binary stylometry using automatic tools

* Main idea:

— Use machine learning to classify sample executable binaries from a set
of known authors

— Determine a good set of features for executable binary stylometry

Attack Model

* Consider an analyst interested in determining the author of an executable binary
purely based on its style (not content)

e Assume that the analyst only has access to executable binary samples each
assigned to one of a set of candidate programmers

* The analyst:

— Obtains labeled executable binaries from each candidate programmer (training set)

— Converts each labeled sample into numerical feature vector, using low-level features from
disassemblers and decompilers

— Derives a classifier from these vectors using machine learning

— Uses this classifier to attribute the anonymous executable binary (test set) to the most
likely programmer

Background: Disassemblers and
Decompilers
* Disassemblers
— Programs that translate executable binary code into assembly code
— The inverse of an assembler
* Decompilers

— Programs that translate executable binary into high level source code
— The inverse of a compiler

* These tools do not perfectly reconstruct the original source or
assembly code

Background: Control Flow Graphs

loop

* A control flow graph is a graph of all paths that might be
traversed through a program during execution

* Each node represents a basic block in the code
— A basic block is a piece of code with no jumps

* Directed edges represent jumps in the control flow

Background: CFG examples

Control-flow graph (CFG)

(entry)

(exit)

Control-flow features

CFG unigrams:

(btk1)(bik2)(blk3)

CFG bigrams:

(btk1)(blkl)
(bik2)Cbl‘;d)

Background: Abstract Syntax Trees

* Tree representation of the abstract syntactic structure of
source code written in a programming language

— A structure containing only the meaning of a program, but no language details
(ex. semicolons, spaces, formatting)

 Each node of the tree denotes a construct that occurs in the
source code

* These trees abstract away certain parts of the high-level
language such as: parentheses, if statements, etc

Background: AST examples

Abstract syntax tree (AST) Syntactic features
func AST unigrams:
/\ func decl if int
/dECI /1f\ = pred || stmt
int = pred stmt AST bigrams:
/\ func || func || decl
1 call < cen | | |
/\ decl if int

o vo Co AST depth: 5

When Coding Style Survives Compilation: De-anonymizing
Programmers from Executable Binaries, Continued

* Executable Binary Stylometry [Caliskan18] [Foo TN N

,"5.-: C:BOE% (¢

. R0 o ar

* Extract features of executable binary code for stylometry: e X5
— Use automated decompilation of binaries “

— Generate abstract syntax trees of decompiled source code
— Use multiple tools for disassembly and decompilation in parallel

ML framework
— Feature reduction
— Predict code authorship using a random forest classifier

[Caliskan18] Overview

Binary Executables
of Programmers Disassembly Decompilation Fuzzing Parsing
1000 0101 1111 test edi, edi intf(int a) { *
1111 1011 1000 mov eex, Ox0 if (a <0) Abstract Syntax Tree Control Flow Graph
11000110 0101 cmovs edi, eax a=0,
ﬂ
[param stmt
| inta | | | l l
Instruction Features Lexical Features Syntactic Features Flow Features

Y
Stylistic Feature Random Forest
Analysis by Classification
Information Gain by cross validation
De-anonymtzed

Programmer

Stylistic Features

* Representations of the program from binary code

— Disassembler

o Obtain low level features in assembly code

o Based on machine code instructions, referenced strings, symbol information, etc.
— Decompiler

o Translate the program into C-like pseudo code

o Pass this code to a fuzzy parser for C

o Generate control flow graph to capture the flow of the program

o Convert the low-level instructions to high level decompiled source code in order to

obtain abstract syntax trees
* Use these three data formats to numerically represent the stylistic

properties embedded in binary code

Dimensionality Reduction

* Analyst determines the set of stylistic features through
dimensionality reduction

* Two steps of feature selection:
— Information gain based dimensionality reduction
— Correlation based feature selection

» Select features particularly useful for classification

* 53 features are identified to represent programmer style
— Out of 705,000 representations of code properties

Machine Learning Task

* Closed world problem

— The set of potential code authors is known

e Supervised learning task
— The training data is labeled

* Multi-class problem

— Classifier calculates the most likely author for the anonymous executable binary
sample among multiple code authors

Experimental Setup

 [Caliskan18] performs experiments with data from the Google
Code Jam

— GCJ is an annual programming competition Gﬂ Qle
— Contestants implement solutions for the same tasks -

* Focused on C++ code

* Compiled with gcc or g++
— Experimented with no optimizations, and optimization levels-1,2,3

Results

Related Work Number of Number of Accuracy | Classifier
Programmers | Training Samples

Rosenblum [39] | 20 8-16 77% SVM
This work 20 8 90% SVM
This work 20 8 99% RF
Rosenblum [39] | 100 8-16 61 % SVM
This work 100 8 84 % SVM
This work 100 8 96 % RF
Rosenblum [39] | 191 8-16 51% SVM
This work 191 8 81% SVM
This work 191 8 92 % RF
This work 600 8 71% SVM
This work 600 8 83% RF

TABLE II: Comparison to Previous Results

Results

100

e

=t 997 96%

5 927% 89%
g 80 85% 83% 83%
=

2 60

3

i=

Z 40

3

Q

s 20

(]

=

o

O 0

20 100 200 300 400 500 600
Number of Authors

Fig. 5: Large Scale Programmer De-anonymization

Findings

* Even a single training sample per programmer is sufficient for de-
anonymization

* Accuracy can be improved by finding the top-n most likely authors

* This work can de-anonymize 600 programmers from their
executable binaries

* Removing symbol information does not anonymize binaries

* Programmers can be de-anonymized from obfuscated binaries*

*This experiment is quite brief, not very conclusive

Practical Implications of this Work

* Coding style survives compilation!
* Why?
— Decompiled source code is not necessarily similar to the original source code in
terms of the features used in this work
— The feature vector obtained from disassembly and decompilation can be used to
predict the features in the original source code
* More skilled programmers are more fingerprintable

— Programmers gradually acquire their own unique style as they gain
experience

References

* [Narayanan12] On the Feasibility of Internet-Scale Author Identification.
Arivind Narayanan, Hristo Paskov, Neil Zhengiang Gong, John Bethencourt,
Emil Stefanov, Eui Chul Richard Shin, Dawn Song. IEEE Symposium on
Security and Privacy 2012.

* [Brennan12] Adversarial Stylometry: Circumventing Authorship Recognition
to Preserve Privacy and Anonymity. Michael Brennan, Sadia Afroz, Rachel
Greenstadt. ACM Transactions on Information and System Security (TISSEC)
2012.

* [Caliskan18] When Coding Style Survives Compilation: De-anonymizing
Programmers from Executable Binaries. Aylin Caliskan, Fabian Yamaguchi,
Edwin Dauber, Richard Harang, Konrad Rieck, Rachel Greenstadt, Arvind
Narayanan. NDSS 2018.

Discussion

* Can you think of some countermeasures that might be
possible to preserve privacy against code stylometry analysis?

* What are the pros and cons of authorship attribution?
— Natural language
— Code

	Default Section
	Slide 1: Code Stylometry

	intro
	Slide 2: Stylometry and authorship attribution background Code stylometry methods - Source code stylometry - Executable binary stylometry
	Slide 3: Motivating Examples
	Slide 4: Motivating Examples
	Slide 5: Authorship Attribution
	Slide 6: Linguistic Stylometry
	Slide 7: Examples of Linguistic Stylometry
	Slide 8
	Slide 9: Code Stylometry
	Slide 10: Code Stylometry
	Slide 11: Types of Code Stylometry
	Slide 12: Source Code Stylometry
	Slide 13: Executable Binary Stylometry
	Slide 14: Executable Binary Stylometry
	Slide 15: Executable Binary Stylometry
	Slide 16: When Coding Style Survives Compilation: De-anonymizing Programmers from Executable Binaries
	Slide 17: Attack Model
	Slide 18: Background: Disassemblers and Decompilers
	Slide 19: Background: Control Flow Graphs
	Slide 20: Background: CFG examples
	Slide 21: Background: Abstract Syntax Trees
	Slide 22: Background: AST examples
	Slide 23: When Coding Style Survives Compilation: De-anonymizing Programmers from Executable Binaries, Continued
	Slide 24: [Caliskan18] Overview
	Slide 25: Stylistic Features
	Slide 26: Dimensionality Reduction
	Slide 27: Machine Learning Task
	Slide 28: Experimental Setup
	Slide 29: Results
	Slide 30: Results
	Slide 31: Findings
	Slide 32: Practical Implications of this Work
	Slide 33
	Slide 34: References
	Slide 35: Discussion

