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Stylometry and authorship attribution background
Code stylometry methods
- Source code stylometry
- Executable binary stylometry



Motivating Examples

• There has been debate over who wrote:

– Shakespeare’s works

– Bible passages

– The Federalist Papers



Motivating Examples

• Linguistic work was pivotal in capture of Unabomber (Ted 
Kaczynski)

• The Unabomber’s Manifesto



Authorship Attribution

• Authorship attribution aims to infer the identity of an 
author of a document by examining it

• Stylometry: inferring properties of the author by 
examination
– This idea is over a century old

– Stylome/fingerprint: differences in how individuals write



Linguistic Stylometry

• Use different features of written text to fingerprint authors

– Vocabulary

– Average word length

– Frequency of specific words

– Many others

• Machine learning is generally used to classify works based on 
these features



Examples of Linguistic Stylometry

• [Narayanan12] used stylometry to identify anonymous 
bloggers in large datasets
– This is a privacy issue

• Adversarial stylometry [Brennan12]

– Authorship attribution based on linguistics can be evaded

– Defenses:

o Obfuscate writing style

o Imitate someone else’s writing style





Code Stylometry

• We want to determine who wrote some code

• Goal: programmer de-anonymization

• Can you think of reasons why we would want to determine code 
authorship?



Code Stylometry

• We want to determine who wrote some code

• Goal: programmer de-anonymization

• Can you think of reasons why we would want to determine code 
authorship?
– Company wants to determine which employee wrote harmful code

– Government wants to determine who is engaging in cyber warfare

– A professor wants to determine if students are plagiarizing assignments

– Identify Satoshi Nakomoto

– Identify cyber criminals

– Determine source of malware

– Reveal creators of anti-censorship tools



Types of Code Stylometry

• Source code stylometry

• Executable binary stylometry

• Malware attribution



Source Code Stylometry

• We can study source code for authorship attribution

• Examples of features used for source code stylometry:
– Simple byte-level and word-level n-grams

– Abstract syntax trees

– Lexical markers such as line length

– Layout

• Techniques usually include classification by ML



Executable Binary Stylometry

• We want to study executable binaries for authorship attribution

• Binaries are typically produced by compiling or assembling source code

• Goal: perform stylometry on executable binaries



Executable Binary Stylometry

• Harder than source code stylometry

• During compilation,
– Variable names, function names, and other symbols and metadata 

about the source code can be removed

– The structure of the code can be changed through optimization

• This removes information that may suggest authorship



Executable Binary Stylometry

• What information can we use about 
binary code to reveal authorship 
information?
– Use tools to parse executable binaries

– Reconstruct instruction sequences and 
control flow graphs

– Use this information as features to determine 
a code author’s stylometric fingerprint



When Coding Style Survives Compilation: De-
anonymizing Programmers from Executable Binaries

• Goal: executable binary stylometry using automatic tools

• Main idea:
– Use machine learning to classify sample executable binaries from a set 

of known authors

– Determine a good set of features for executable binary stylometry

[Caliskan18]



Attack Model

• Consider an analyst interested in determining the author of an executable binary 
purely based on its style (not content)

• Assume that the analyst only has access to executable binary samples each 
assigned to one of a set of candidate programmers

• The analyst:

– Obtains labeled executable binaries from each candidate programmer (training set)

– Converts each labeled sample into numerical feature vector, using low-level features from 
disassemblers and decompilers

– Derives a classifier from these vectors using machine learning 

– Uses this classifier to attribute the anonymous executable binary (test set) to the most 
likely programmer



Background: Disassemblers and 
Decompilers
• Disassemblers

– Programs that translate executable binary code into assembly code

– The inverse of an assembler

• Decompilers

– Programs that translate executable binary into high level source code

– The inverse of a compiler

• These tools do not perfectly reconstruct the original source or 
assembly code



Background: Control Flow Graphs

• A control flow graph is a graph of all paths that might be 
traversed through a program during execution

• Each node represents a basic block in the code

– A basic block is a piece of code with no jumps

• Directed edges represent jumps in the control flow



Background: CFG examples



Background: Abstract Syntax Trees

• Tree representation of the abstract syntactic structure of 
source code written in a programming language
– A structure containing only the meaning of a program, but no language details 

(ex. semicolons, spaces, formatting)

• Each node of the tree denotes a construct that occurs in the 
source code

• These trees abstract away certain parts of the high-level 
language such as: parentheses, if statements, etc



Background: AST examples



When Coding Style Survives Compilation: De-anonymizing 
Programmers from Executable Binaries, Continued

• Executable Binary Stylometry [Caliskan18]

• Extract features of executable binary code for stylometry:

– Use automated decompilation of binaries 

– Generate abstract syntax trees of decompiled source code

– Use multiple tools for disassembly and decompilation in parallel

• ML framework
– Feature reduction

– Predict code authorship using a random forest classifier

[Caliskan18]



[Caliskan18] Overview



Stylistic Features

• Representations of the program from binary code
– Disassembler

o Obtain low level features in assembly code

o Based on machine code instructions, referenced strings, symbol information, etc.

– Decompiler
o Translate the program into C-like pseudo code

o Pass this code to a fuzzy parser for C

o Generate control flow graph to capture the flow of the program

o Convert the low-level instructions to high level decompiled source code in order to 
obtain abstract syntax trees

• Use these three data formats to numerically represent the stylistic 
properties embedded in binary code



Dimensionality Reduction

• Analyst determines the set of stylistic features through 
dimensionality reduction

• Two steps of feature selection:
– Information gain based dimensionality reduction

– Correlation based feature selection

• Select features particularly useful for classification

• 53 features are identified to represent programmer style
– Out of 705,000 representations of code properties



Machine Learning Task

• Closed world problem
– The set of potential code authors is known

• Supervised learning task
– The training data is labeled

• Multi-class problem
– Classifier calculates the most likely author for the anonymous executable binary 

sample among multiple code authors



Experimental Setup

• [Caliskan18] performs experiments with data from the Google 
Code Jam
– GCJ is an annual programming competition

– Contestants implement solutions for the same tasks

• Focused on C++ code

• Compiled with gcc or g++
– Experimented with no optimizations, and optimization levels-1,2,3



Results



Results



Findings

• Even a single training sample per programmer is sufficient for de-

anonymization

• Accuracy can be improved by finding the top-n most likely authors

• This work can de-anonymize 600 programmers from their 

executable binaries

• Removing symbol information does not anonymize binaries

• Programmers can be de-anonymized from obfuscated binaries*

*This experiment is quite brief, not very conclusive



Practical Implications of this Work

• Coding style survives compilation!

• Why?
– Decompiled source code is not necessarily similar to the original source code in 

terms of the features used in this work

– The feature vector obtained from disassembly and decompilation can be used to 
predict the features in the original source code

• More skilled programmers are more fingerprintable

– Programmers gradually acquire their own unique style as they gain 
experience
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Discussion

• Can you think of some countermeasures that might be 
possible to preserve privacy against code stylometry analysis?

• What are the pros and cons of authorship attribution?
– Natural language

– Code
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