Code Stylometry

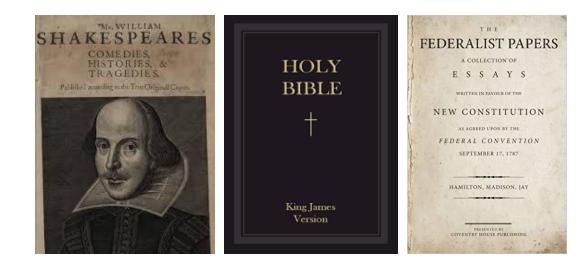
CS463/ECE424 University of Illinois

Stylometry and authorship attribution background Code stylometry methods

- Source code stylometry
- Executable binary stylometry

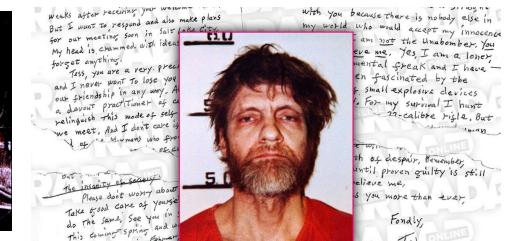
Motivating Examples

- There has been debate over who wrote:
 - Shakespeare's works
 - Bible passages
 - The Federalist Papers



Motivating Examples

- Linguistic work was pivotal in capture of Unabomber (Ted Kaczynski)
- The Unabomber's Manifesto



Authorship Attribution

• Authorship attribution aims to infer the identity of an author of a document by examining it

- Stylometry: inferring properties of the author by examination
 - This idea is over a century old
 - Stylome/fingerprint: differences in how individuals write

Linguistic Stylometry

- Use different features of written text to fingerprint authors
 - Vocabulary
 - Average word length
 - Frequency of specific words
 - Many others

 Machine learning is generally used to classify works based on these features

Examples of Linguistic Stylometry

 [Narayanan12] used stylometry to identify anonymous bloggers in large datasets

- This is a privacy issue

- Adversarial stylometry [Brennan12]
 - Authorship attribution based on linguistics can be evaded
 - Defenses:
 - Obfuscate writing style
 - Imitate someone else's writing style

Code Stylometry

- We want to determine who wrote some code
- Goal: programmer de-anonymization
- Can you think of reasons why we would want to determine code authorship?

Code Stylometry

- We want to determine who wrote some code
- Goal: programmer de-anonymization
- Can you think of reasons why we would want to determine code authorship?
 - Company wants to determine which employee wrote harmful code
 - Government wants to determine who is engaging in cyber warfare
 - A professor wants to determine if students are plagiarizing assignments
 - Identify Satoshi Nakomoto
 - Identify cyber criminals
 - Determine source of malware
 - Reveal creators of anti-censorship tools

Types of Code Stylometry

- Source code stylometry
- Executable binary stylometry
- Malware attribution

Source Code Stylometry

- We can study source code for authorship attribution
- Examples of features used for source code stylometry:
 - Simple byte-level and word-level n-grams
 - Abstract syntax trees
 - Lexical markers such as line length
 - Layout

• Techniques usually include classification by ML

Executable Binary Stylometry

- We want to study executable binaries for authorship attribution
- Binaries are typically produced by compiling or assembling source code
- Goal: perform stylometry on executable binaries

Executable Binary Stylometry

- Harder than source code stylometry
- During compilation,
 - Variable names, function names, and other symbols and metadata about the source code can be removed
 - The structure of the code can be changed through optimization
- This removes information that may suggest authorship

Executable Binary Stylometry

- What information can we use about binary code to reveal authorship information?
 - Use tools to parse executable binaries
 - Reconstruct instruction sequences and control flow graphs
 - Use this information as features to determine a code author's stylometric fingerprint

When Coding Style Survives Compilation: Deanonymizing Programmers from Executable Binaries

• Goal: executable binary stylometry using automatic tools

- Main idea:
 - Use machine learning to classify sample executable binaries from a set of known authors
 - Determine a good set of features for executable binary stylometry

Attack Model

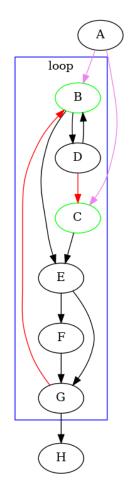
- Consider an analyst interested in determining the author of an executable binary purely based on its style (not content)
- Assume that the analyst only has access to executable binary samples each assigned to one of a set of candidate programmers
- The analyst:
 - Obtains labeled executable binaries from each candidate programmer (training set)
 - Converts each labeled sample into numerical feature vector, using low-level features from disassemblers and decompilers
 - Derives a classifier from these vectors using machine learning
 - Uses this classifier to attribute the anonymous executable binary (test set) to the most likely programmer

Background: Disassemblers and Decompilers

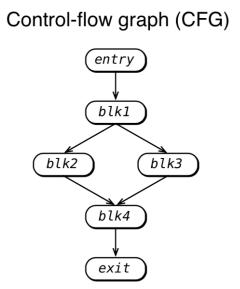
- Disassemblers
 - Programs that translate executable binary code into assembly code
 - The inverse of an assembler
- Decompilers
 - Programs that translate executable binary into high level source code
 - The inverse of a compiler
- These tools do not perfectly reconstruct the original source or assembly code

Background: Control Flow Graphs

- A control flow graph is a graph of all paths that might be traversed through a program during execution
- Each node represents a basic block in the code
 - A basic block is a piece of code with no jumps
- Directed edges represent jumps in the control flow

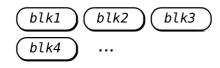


Background: CFG examples

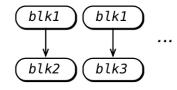


Control-flow features

CFG unigrams:



CFG bigrams:

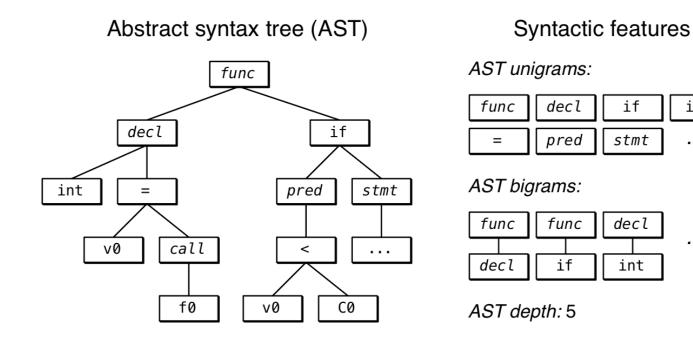


Background: Abstract Syntax Trees

- Tree representation of the abstract syntactic structure of source code written in a programming language
 - A structure containing only the meaning of a program, but no language details (ex. semicolons, spaces, formatting)
- Each node of the tree denotes a construct that occurs in the source code

• These trees abstract away certain parts of the high-level language such as: parentheses, if statements, etc

Background: AST examples



if

int

int

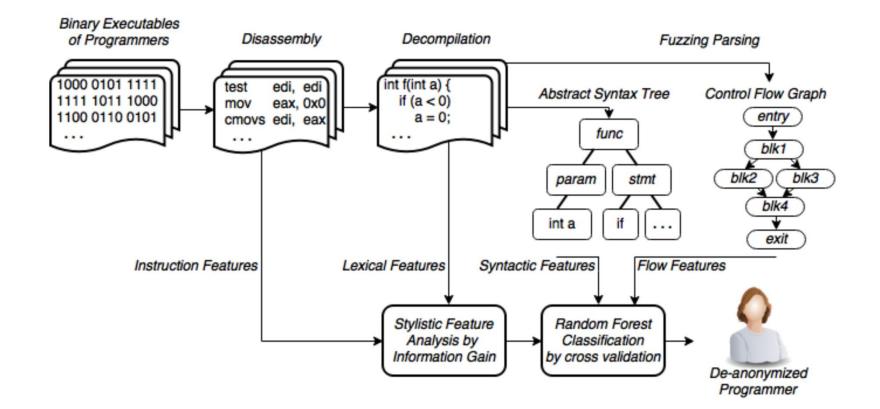
...

...

When Coding Style Survives Compilation: De-anonymizing Programmers from Executable Binaries, Continued

- Executable Binary Stylometry [Caliskan18]
- Extract features of executable binary code for stylometry:
 - Use automated decompilation of binaries
 - Generate abstract syntax trees of decompiled source code
 - Use multiple tools for disassembly and decompilation in parallel
- ML framework
 - Feature reduction
 - Predict code authorship using a random forest classifier

[Caliskan18] Overview



Stylistic Features

- Representations of the program from binary code
 - Disassembler
 - Obtain low level features in assembly code
 - Based on machine code instructions, referenced strings, symbol information, etc.
 - Decompiler
 - Translate the program into C-like pseudo code
 - $\,\circ\,$ Pass this code to a fuzzy parser for C
 - Generate control flow graph to capture the flow of the program
 - Convert the low-level instructions to high level decompiled source code in order to obtain abstract syntax trees
- Use these three data formats to numerically represent the stylistic properties embedded in binary code

Dimensionality Reduction

- Analyst determines the set of stylistic features through dimensionality reduction
- Two steps of feature selection:
 - Information gain based dimensionality reduction
 - Correlation based feature selection
- Select features particularly useful for classification
- 53 features are identified to represent programmer style
 - Out of 705,000 representations of code properties

Machine Learning Task

- Closed world problem
 - The set of potential code authors is known
- Supervised learning task
 - The training data is labeled
- Multi-class problem
 - Classifier calculates the most likely author for the anonymous executable binary sample among multiple code authors

Experimental Setup

- [Caliskan18] performs experiments with data from the Google Code Jam
 - GCJ is an annual programming competition
 - Contestants implement solutions for the **same tasks**
- Focused on C++ code
- Compiled with gcc or g++
 - Experimented with no optimizations, and optimization levels-1,2,3

Results

Related Work	Number of Programmers	Number of Training Samples	Accuracy	Classifier
Rosenblum [39]	20	8-16	77%	SVM
This work	20	8	90%	SVM
This work	20	8	99%	RF
Rosenblum [39]	100	8-16	61%	SVM
This work	100	8	84%	SVM
This work	100	8	96%	RF
Rosenblum [39]	191	8-16	51%	SVM
This work	191	8	81%	SVM
This work	191	8	92%	RF
This work	600	8	71%	SVM
This work	600	8	83%	RF

TABLE II: Comparison to Previous Results

Results

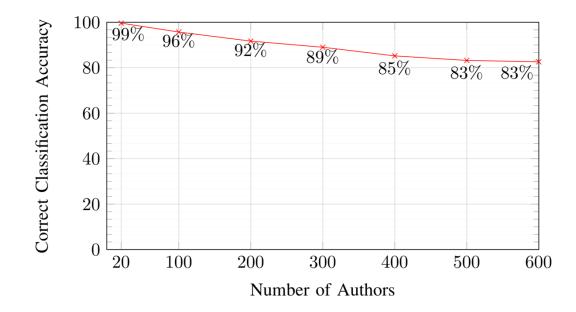


Fig. 5: Large Scale Programmer De-anonymization

Findings

- Even a single training sample per programmer is sufficient for deanonymization
- Accuracy can be improved by finding the top-n most likely authors
- This work can de-anonymize 600 programmers from their executable binaries
- Removing symbol information does not anonymize binaries
- Programmers can be de-anonymized from obfuscated binaries*

*This experiment is quite brief, not very conclusive

Practical Implications of this Work

- Coding style survives compilation!
- Why?
 - Decompiled source code is not necessarily similar to the original source code in terms of the features used in this work
 - The feature vector obtained from disassembly and decompilation can be used to predict the features in the original source code
- More skilled programmers are more fingerprintable
 - Programmers gradually acquire their own unique style as they gain experience

References

- [Narayanan12] On the Feasibility of Internet-Scale Author Identification. Arivind Narayanan, Hristo Paskov, Neil Zhenqiang Gong, John Bethencourt, Emil Stefanov, Eui Chul Richard Shin, Dawn Song. IEEE Symposium on Security and Privacy 2012.
- [Brennan12] Adversarial Stylometry: Circumventing Authorship Recognition to Preserve Privacy and Anonymity. Michael Brennan, Sadia Afroz, Rachel Greenstadt. ACM Transactions on Information and System Security (TISSEC) 2012.
- [Caliskan18] When Coding Style Survives Compilation: De-anonymizing Programmers from Executable Binaries. Aylin Caliskan, Fabian Yamaguchi, Edwin Dauber, Richard Harang, Konrad Rieck, Rachel Greenstadt, Arvind Narayanan. NDSS 2018.

Discussion

• Can you think of some countermeasures that might be possible to preserve privacy against code stylometry analysis?

- What are the pros and cons of authorship attribution?
 - Natural language
 - Code