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De-Identification

• Suppose we have a dataset we would like to release

• The dataset contains sensitive information about a set of individuals

• We want to protect the privacy of those individuals

• What about just removing the names?

Name Sex Age Zip Diagnoses (ICD-9)

Alice Smith F 37 61821 037, 651

Bob Johnson M 41 61820 823, 042

Carol Williams F 24 61803 010, 650

Dan Jones M 46 61706 823, 460

Elisabeth Brown F 50 61824 945
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• Group Insurance Commission (Massachusetts)
– Release patient data of state employees (about 135,000 records)

– De-identification of the dataset by removing names

• [Sweeney02] re-identification of the governor 
– linking the dataset with the voter registration list

• Uniqueness of demographics
– (5-digit ZIP, birth date, sex) uniquely identifies over 87% of US population

GIC

Case Study 1: GIC incident

ZIP code
Birth date

Sex

Voter 
Registration

[Sweeney02]: Sweeney, Latanya. "k-anonymity: A model for protecting privacy." International Journal of Uncertainty, Fuzziness and 
Knowledge-Based Systems 10.05 (2002): 557-570. 4



Case Study 2: AOL search logs incident

• AOL released search logs of 650,000 users in Aug 2006
– De-identification of the dataset by using pseudonyms (a unique number for each 

customer) 

• [New York Times 2006] Re-identified Thelma Arnold (user 4417749) 
through some of her searches:
– "60 single men", "landscapers in Lilburn, Ga“

– Also searched the names of some of her relatives, last name Arnold

• Class action lawsuit in Sept 2006
– AOL’s CTO resigned, two employees were fired

– Search logs can still be downloaded from mirrors
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Case Study 3: Netflix Prize incident

• Dataset containing movie ratings of 500,000 users
– De-identification by removing identifiers, using a randomly assigned ID in place 

of the customer ID

– Also ”noised” other entries such as dates, ratings etc.

• [NS08] Proposed new class of attacks target high dimensionality sparse 
datasets
– Using 8 movie ratings (2 can be wrong) and dates (with up to 14 days error), 

99% of users are uniquely identifiable

– (Proof of concept) Re-identified 2 users by linking the Netflix dataset to IMDb 
using a sample of 50 IMDb users

[NS08]: Narayanan and Shmatikov. "Robust de-anonymization of large sparse datasets." IEEE S&P 2008. 6



Re-identification Vectors

• External Knowledge

– E.g., voter registration, marriage registries

• Un-redacted free text

– Can contain arbitrary data

• High dimensionality, sparsity
– More features

– Large distance between data points

– More likely to be unique
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Types of disclosure

• Identification disclosure

– Reveals the target individual’s record

• Attribute disclosure

– Reveals one or more (possibly sensitive) attributes about the target individual

– Can occur even 
o without identification disclosure

o if the target individual’s record is not in the dataset (e.g., “smoking causes cancer”)

• Membership disclosure

– Reveals whether the target individual’s record was included in the dataset
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k-anonymity: Hiding in a Crowd of K People

• [Sweeney02] k-anonymity
– Quasi-identifiers: attributes that can be used for linking with external 

information (e.g., ZIP code, sex, birth date)

– To satisfy k-anonymity: any sequence of quasi-identifiers must appear in at 
least k records

Name Sex Age Zip Diagnoses (ICD-9)

Alice Smith F 37 61821 037, 651

Bob Johnson M 41 61820 823, 042

Carol Williams F 24 61803 010, 650

Dan Jones M 46 61706 823, 460

Elisabeth Brown F 50 61824 945

Quasi-identifiers 9



Satisfying k-anonymity

• Generalization

– E.g., ZIP codes – 61802 -> 61XXX

– E.g., Age – 47 -> [40, 49]

• Suppression:
– E.g., names

• Is this 2-anonymous?
Sex Age Zip Diagnosis

* [30-39] 61XXX Broken Leg

* [40-49] 61XXX Cancer

* [40-49] 61XXX Cancer

* [30-39] 61XXX Tuberculosis

* [20-29] 61XXX Heart ConditionNo!
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Satisfying k-anonymity

• Generalization

– E.g., ZIP codes – 61802 -> 61XXX

– E.g., Age – 47 -> [40, 49]

• Suppression:
– E.g., names

• Is this 2-anonymous?
Sex Age Zip Diagnosis

* [30-39] 61XXX Broken Leg

* [40-49] 61XXX Cancer

* [40-49] 61XXX Cancer

* [30-39] 61XXX Tuberculosis

* [20-29] 61XXX Heart ConditionNo!

How about now? → YES!
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Other syntactic metrics

• k-anonymity does not prevent attribute disclosure

– E.g., if there is a quasi-identifier group among which all records contain an 
attribute that has a single value
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Other syntactic metrics

• K-anonymity does not prevent attribute disclosure

– E.g., if there is a quasi-identifier group among which all records contain an 
attribute that has a single value

• L-diversity

– Within each quasi-identifier group, there must be at least L distinct values for 
each attribute

• t-closeness
– The distance between the distribution of attributes within a quasi-identifier 

group and the overall distribution should not exceed t

• Many others

Sex Age Zip Diagnosis

* [30-39] 61XXX Cancer

* [30-39] 61XXX Cancer

* [30-39] 61XXX Cancer

* [30-39] 61XXX Broken Leg

* [30-39] 61XXX Cancer

5-anonymous
2-diverse
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Other syntactic metrics

• k-anonymity does not prevent attribute disclosure

– E.g., if there is a quasi-identifier group among which all records contain an 
attribute that has a single value

• l-diversity

– Within each quasi-identifier group, there must be at least l distinct values for 
each attribute

• t-closeness
– The distance between the distribution of attributes within a quasi-identifier 

group and the overall distribution should not exceed t
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Example

• For what values of 𝑘 and 𝑙 is the dataset 𝑘-anonymous and 𝑙-diverse?

Sex Age Diagnoses

M [40-49] Cancer

F [40-49] HIV

M [30-39] Asthma

F [30-39] Influenza

F [30-39] Cancer

M [30-39] Broken Leg

F [30-39] Tuberculosis

M [40-49] Tuberculosis

F [40-49] HIV
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Example

• For what values of 𝑘 and 𝑙 is the dataset 𝑘-anonymous and 𝑙-diverse?

Sex Age Diagnoses

M [40-49] Cancer

F [40-49] HIV

M [30-39] Asthma

F [30-39] Influenza

F [30-39] Cancer

M [30-39] Broken Leg

F [30-39] Tuberculosis

M [40-49] Tuberculosis

F [40-49] HIV

Quasi-identifier 
group

records sensitive 
values

(M, [30-39]) 2 2

(M, [40-49]) 2 2

(F, [30-39]) 3 3

(F, [40-49]) 2 1

16



Example

• For what values of 𝑘 and 𝑙 is the dataset 𝑘-anonymous and 𝑙-diverse?

Sex Age Diagnosis

M [40-49] Cancer

F [40-49] HIV

M [30-39] Asthma

F [30-39] Influenza

F [30-39] Cancer

M [30-39] Broken Leg

F [30-39] Tuberculosis

M [40-49] Tuberculosis

F [40-49] HIV

Quasi-identifier 
group

records sensitive 
values

(M, [30-39]) 2 2

(M, [40-49]) 2 2

(F, [30-39]) 3 3

(F, [40-49]) 2 1

2-anonymous
1-diverse
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What is differential privacy?
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Differential Privacy [Dwork06]

• Intuition: what can be learned from accessing the database is 
(roughly) the same regardless of whether an individual is in the 
database.

• For any two datasets D and D’ differing in a single record, a 
computation F is ϵ-differentially private for some ϵ > 0, if for all 
𝑆 ⊆ Range(𝐹), we have:
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Privacy budget

D’ includes the 
user’s record, D 

doesn’t



One way to think about it

Probability distribution over R should be “roughly” the same whether D* = D, or D* = D’.
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F

R = F(D*)

Name         Attributes

Alice
Bob

Carol

D

Name         Attributes

Alice
Bob

Carol

Vince

D’



Slightly More Formally

• The probability distribution is over the random coins of F.

• Note: eϵ ≈ 1+ϵ, for a small ϵ > 0
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R

R = F(D’)

R = F(D)



Privatization

• Idea: add noise

– What noise distribution should we use?

– How much noise to add?

• The key concept is sensitivity of f, the function we want to 
compute

• Generic way to get ϵ-differential privacy: Laplacian mechanism
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Sensitivity

• Sensitivity measures how much an individual record can 
change the output, i.e., f(D*), in the worst case

• E.g., count() function has sensitivity of 1 

• E.g., average() may have a high sensitivity.
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Laplacian Mechanism

• Add noise from Laplace distribution 

• That is, release:
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Laplace Distribution with mean 𝜇 = 0 and 
scale b=0

From Wikipedia.

The Laplace mechanism is (𝜖, 0)-
differentially private



Why does it work?

• Intuitively:
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Why does it work?

• Intuitively:
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Why does it work?

28
https://en.wikipedia.org/wiki/Additive_noise_differential_privacy_mechanisms

See Aaron Roth slides for more details: http://www.cis.upenn.edu/~aaroth/courses/slides/Lecture3.pdf



Composition

• What about multiple queries?

• Sequential composition theorem:
– Making 𝑡 ≥ 1 ϵ-differentially private queries gives us 𝑡𝜖-differential 

privacy

• In practice:
1. Set a privacy budget ϵ

2. Each query uses ϵ’ of the remaining budget

3. Once the privacy budget exceeded, stop answering
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Using Differential Privacy

• Advantages
– Differential Privacy is independent of the dataset; it is a property of the 

release mechanism

– Provides strong theoretical guarantees

– (Almost) no assumption on external knowledge

• Disadvantages
– Sometimes requires adding too much noise; 

o Destroys utility of the data

– Difficult to set the privacy budget ϵ
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Privacy in Practice

• k-anonymity and differential privacy are often not applicable 
to many scenarios 
– Adding noise or modify the dataset may not be acceptable from a utility 

point of view

• In practice:

– Legal considerations, e.g., HIPAA Privacy Rule

– Data Use Agreements (DUAs)
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HIPAA

• Health Insurance Portability and Accountability Act (HIPAA) 
1996
– In particular, it addresses security and privacy of health data

• HIPAA Privacy Rule
– Two options for de-identification

1. Safe Harbor: redaction of 18 sensitive attributes

2. Expert Determination: e.g., statistician certifies risk of re-identification is 
“small”
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HIPAA De-Identification

34

[hhs.gov]



Terminology

• Protected Health Information (PHI): identifying information about
– An individual’s physical or mental health

– An individual’s provision of health care

– E.g., laboratory report, medical bill

• Covered Entity:
1) Health care provider

2) Health care clearinghouse

3) Health plan

• Standard de-identification of PHI:
– Information is not individually identifiable

– There is no reasonable basis to believe that re-identification can occur
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Safe Harbor
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Safe Harbor
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Discussion Questions

• [Homer et al. 08] Genome-Wide Association Study (GWAS)

– Study looks at SNPs of a population - link those to a disease

– Two groups: control group, and disease group

– Privacy protection: release aggregate statistics for each group

Q1: What should be concerned about in terms of privacy?

– Attribute disclosure?

– Membership disclosure?

– Something else?

39
[Homer et al. 08]: N. Homer et. al "Resolving individuals contributing trace amounts of dna to highly complex mixtures using high-
density snp genotyping microarrays." PLoS Genet, 2008.



Discussion Questions

Q2: What techniques would you use to de-identify a dataset?

– Technical (e.g., k-anonymity, differential privacy)?

– Legal (e.g., DUAs)?

– Both?

40


	Default Section
	Slide 1: De-Identification

	intro
	Slide 2: Outline De-Identification Privacy metrics Privacy in practice
	Slide 3: De-Identification
	Slide 4: Case Study 1: GIC incident
	Slide 5: Case Study 2: AOL search logs incident
	Slide 6: Case Study 3: Netflix Prize incident
	Slide 7: Re-identification Vectors
	Slide 8: Types of disclosure
	Slide 9: k-anonymity: Hiding in a Crowd of K People
	Slide 10: Satisfying k-anonymity
	Slide 11: Satisfying k-anonymity
	Slide 12: Other syntactic metrics
	Slide 13: Other syntactic metrics
	Slide 14: Other syntactic metrics
	Slide 15: Example
	Slide 16: Example
	Slide 17: Example
	Slide 18
	Slide 19: Differential Privacy [Dwork06]
	Slide 20: One way to think about it
	Slide 21: Slightly More Formally
	Slide 22: Privatization
	Slide 23: Sensitivity
	Slide 24: Laplacian Mechanism
	Slide 25: Why does it work?
	Slide 26: Why does it work?
	Slide 28: Why does it work?
	Slide 30: Composition
	Slide 31: Using Differential Privacy
	Slide 32: Privacy in Practice
	Slide 33: HIPAA
	Slide 34: HIPAA De-Identification
	Slide 35: Terminology
	Slide 36: Safe Harbor
	Slide 37: Safe Harbor
	Slide 38: References
	Slide 39: Discussion Questions
	Slide 40: Discussion Questions


