
CS463/ECE424

University of Illinois

Machine Learning in Security

Definitions
Spam Classification using Logistic Regression
Anomaly Detection through Deep Learning
Challenges for Machine Learning in Security

Traditional Programming

Computer
Output

Computer
Data

Program
Output

Data
Program

Credit to David Meyer

Machine Learning

What is Machine LearningWhat is Machine Learning?

3

When you know “what” to do
(by showing examples)

int addition (int a, int b)
{

int r;
r = a + b;
return r;

}

When we know
how to do things

Traditional Programming

Computer
Output

Computer
Data

Program
Output

Data Program

Credit to David Meyer

Machine Learning

What is Machine LearningWhat is Machine Learning?

When we don’t know
how to do it, but we
have some examples

“Cat”

Cat??

A computer program is said to learn from experience E

with respect to some class of tasks T and performance measure P,

if its performance at tasks in T, as measured by P, improves with
experience E.

-- Tom Mitchell, Machine Learning

What is Machine Learning?

Mitchell, T. (1997). Machine Learning, McGraw Hill. ISBN 0-07-042807-7, p.2.

https://en.wikipedia.org/wiki/Special:BookSources/0070428077

• Step 1: Choosing the Training Experience (i.e., training dataset)

• Step 2: Modeling the Transformation

• Step 3: Choosing the Input & Output Representations

• Step 4: Choosing a Transformation Function Approximation

• Step 5: Evaluation

Steps towards Designing a ML System

When To Use Machine Learning?

• When patterns exist in the data

– Even if we don’t know what they are

• When we cannot pin down the functional
relationships mathematically (in-closed form)

– Else we would just code up the algorithm

• When we have lots of data

– Labeled training sets are harder to come by than
unlabeled data

– Data is of high-dimension

• When we want to discover lower-dimension
representations

• Task T: classifying emails into two

categories (spam, ham)

• Performance measure P: percent of emails

correctly classified

• Training Experience E: a database of emails

Example: Spam Filtering

• Training Dataset:
– A database of emails

• What feedback can be provided to the learner?
– A database of labeled emails

• How well does the training dataset represent the distribution of
examples over which the final system performance P must be
measured?
– A database of labeled emails that represent the distribution of all the emails

Step 1: Choosing the Training Dataset

Step 1: Choosing the Training Experience

Cats v.s. Dogs

• Task T: classifying emails into 2 categories (Spam, Ham)

• Transformation (target) function 𝑉: 𝐴 → 𝐵
– What’s in the training examples?

o A: Email contents (a collection of words)

– What should be the output?

o B: {Spam (1) , Ham (0)}

Step 2: Modeling the Transformation

Step 3: Choosing the Input & Output Representations

• How do we represent the model inputs and outputs?

– Inputs could be categorical, numerical, binary, sequential …

– We use code + math; they need “numbers“

• Feature generation

– Abstract V: Email contents → {0,1}

– Realized V’: 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑛 ↦ 𝑦 ∈ {0,1}

o 𝑥𝑖 ∈ 0,1 represents whether a word 𝑤𝑖 is in the email

• Feature selection
– To simplify the model (save time, avoid overfitting…)

Step 4: Choosing the Transformation Function
Approximation

V’ {0,1}

Function Class
(e.g., Logistic Regression, SVM,

Neural Networks…)

𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛)

Logistic Regression (1)

• V’: 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑛 ↦ 𝑦 ∈ {0,1}

• How to design V’?
– Step 1: Combine 𝑥1, 𝑥2, … , 𝑥𝑛 to get a “spaminess” value

– Step 2: Convert the “spaminess” value into a probability P(Spam)

o Conversion enables the classification use-case; else it is useful for regression

– Step 3: Make predictions on 𝑦 based on P(Spam)

o e.g., 𝑦 = 1 when P(Spam) > 0.5

Logistic Regression (2)

• Step 1: Combine 𝑥1, 𝑥2, … , 𝑥𝑛 to get a “spaminess” value

– Assume the existence of a weight vector 𝛉 = (𝜃1, 𝜃2, … , 𝜃𝑛)

– We define spaminess as the linear transformation 𝛉𝐓 ∙ 𝐱

“Spaminess”

• Step 2: Convert the “spaminess” value into a probability P(Spam)

o Logistic function

Logistic Regression (3)

Plot of logistic function 𝑔

Logistic Regression (4)

𝛉𝐓 ∙ 𝐱

• Step 3: Make predictions on y based on P(Spam)

Logistic Regression: Training

• How do we determine the “best” value of 𝛉?

• For a given 𝛉 and some labeled examples, how do we know whether 𝛉 is
good enough? i.e., is the best predictor of spam vs. ham?

• Define a loss function (e.g., log loss)

Logistic Regression: Training

• How do we determine the “best” value of 𝛉?

• For a given 𝛉 and some labeled examples, how do we know whether 𝛉 is
good enough? i.e., is the best predictor of spam vs. ham?

• Define a loss function (e.g., log loss)
– Wrong predictions -> large loss

– Correct predictions -> small loss

• Run optimization algorithms to find 𝛉, minimize the loss
– e.g., Stochastic Gradient Descent (SGD)

• Ground Truth

– V: Email contents → {0,1}

• Hold out Method

– Randomly partitioned data into two independent sets: a test set, a training set

– Use test set instead of training set when assessing accuracy

• Cross-validation (k-fold)

– Randomly partition the data into k mutually exclusive subsets, each
approximately equal size

– At i-th iteration, use Di as test set and others as training set

Step 5: Evaluation

Test Set Training Set

• Overfitting:

Step 5: Evaluation

Training Duration

Error Rate

Test Set

Training Set

Step 5: Evaluation

Cats v.s. Dogs

• Overfitting:

• Confusion Matrix:

Step 5: Evaluation

Predicted Spam Predicted Ham

Spam True Positive (TP) False Negative (FN)

Ham False Positive (FP) True Negative (TN)

Training Duration

Error Rate

Test Set

Training Set

• Step 1: Choosing the Training Experience (i.e., training dataset)

• Step 2: Modeling the Transformation

• Step 3: Choosing the Input & Output Representations

• Step 4: Choosing a Transformation Function Approximation

• Step 5: Evaluation

Summary: Designing a ML System

DeepLog: Anomaly Detection through Deep Learning

• Anomaly Detection from System Logs

– Identify abnormal system behavior from large volume of system logs

• Challenges

– Large volume of data

– Sequential data

– Unstructured data

• Why deep learning?

– Widely used for natural language processing (NLP)

– Log can be viewed as a structured language!

• What data do we have?

– Large volume of log entries from normal system execution path

– A few log entries of known attacks

Step 1: Choosing the Training Data (1)

• What data should we use?

– Training: normal logs

– Testing: normal logs and attack logs

• Advantages:

– Prevent overfitting

– Test the system’s behavior on unseen attacks

• Disadvantages:

– May classify any unseen behaviors as attacks (i.e., false positives)

Step 1: Choosing the Training Data (2)

• Outputs: normal (-) v.s. abnormal (+)

• Inputs: Log entries from OpenStack VM deletion task
(unstructured)

– t1 Deletion of file1 complete

– t2 Took 0.61 seconds to deallocate network …

– t3 VM Stopped (Lifecycle Event)

• Structured representation:

– Log key

– Parameter value (e.g., t1, file1)

Step 2: Modeling the Transformation

Step 3: Choosing the Input & Output Representations (1)

• The total number of distinct log keys is constant.

– Log keys: 𝐾 = {𝑘1, 𝑘2, … , 𝑘𝑛}

– Parameter value vectors: (time interval, other parameter values)

Step 3: Choosing the Input & Output Representations (2)

• Representation of Inputs:

– Log Keys: structured, sequential, nominal

– Parameter Values: structured, sequential, numerical (e.g., time,
duration) or nominal (e.g., process id)

– Different log keys have different structures for parameter values

• How to combine the inputs of different structures?

– Train multiple models

• Model 1: Log key anomaly detection model

– Log keys: 𝐾 = {𝑘1, 𝑘2, … , 𝑘𝑛}

– Input: A window 𝑤 of the ℎ most recent log keys 𝑤 =
{𝑚𝑡−ℎ, … , 𝑚𝑡−2, 𝑚𝑡−1}, where 𝑚𝑖 ∈ 𝐾

– Output: Pr[𝑚𝑡 = 𝑘𝑖 | 𝑤] for each 𝑘𝑖 ∈ 𝐾, 𝑖 = 1, … , 𝑛

Step 3: Choosing the Input & Output Representations (3)

• Model 2: Parameter value anomaly detection models
– View each parameter value vector sequence (for a log key) as a separate

time series

– Train a separate model for each distinct log key value to predict the next
parameter value

• Two steps of detecting anomaly
– Predict the the next log key and parameter values

– Compare the prediction against the observed log entry
o Mark as anomaly if the probability for the observed log entry is low (not in

the top 𝑔 candidates)

Step 3: Choosing the Input & Output Representations (4)

• Two steps of detecting anomaly
– Predict the the next log key and parameter values

– Compare the prediction against the observed log entry

o Mark as anomaly if the probability for the observed log entry is low (not in
the top 𝑔 candidates)

Step 3: Choosing the Input & Output Representations (5)

Step 3: Choosing the Input & Output Representations (6)

Step 4: Choosing a Transformation Function Approximation

• Long Short-Term Memory (LSTM) Network

– Has the capability of remembering previous inputs

– Suitable for sequential data

– A gentle walk through on LSTM networks (optional, 25 minutes):
https://www.youtube.com/watch?v=WCUNPb-5EYI

https://www.youtube.com/watch?v=WCUNPb-5EYI

Step 5: Evaluation – Log Key Model (1)

• Hadoop-Distributed File System (HDFS) Dataset

– System logs generated by map-reduce jobs on more than 200 Amazon’s
EC2 nodes

– Labeled by domain experts

– Log entries are grouped into sessions

• DeepLog does not use the abnormal training data

Step 5: Evaluation – Log Key Model (2)

• Precision = True Positive / (True Positive + False Positive) = 94.60%

• Recall = True Positive / (True Positive + False Negative) = 95.93%

Predicted as Normal Predicted as Abnormal

Normal 552,533 (True Negative) 833 (False Positive)

Abnormal 619 (False Negative) 14581 (True Positive)

Step 5: Evaluation – Parameter Value Model

Anomalies
• OpenStack Log Dataset

– Run VM-related tasks

– Inject anomalies at different
execution points

• Mean-squared error (MSE)
between the parameter value
vector and the prediction output
vector from DeepLog

Confidence Interval

Challenges for Machine Learning in Security

• Outlier Detection

• High Cost of Errors

• Semantic Gap

• Diversity with Data

• Difficulties with Evaluations

Sommer, Robin, and Vern Paxson. "Outside the closed world: On using machine learning for network intrusion
detection." Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 2010.

• ML needs large number of representatives for each class
– What happens when 𝑃(𝑆𝑝𝑎𝑚) is very small?

• Not good at finding previously unknown malicious activities

Case Study: Outlier Detection

• Example: suppose a system generates
– 1,000,000 audit records per day;

– 10 audit records per intrusion;

– Two intrusions per day.

• Intrusion: 𝐼, Alarm: 𝐴

• Detection rate: 𝑃 𝐴 𝐼 = 99.9%

• False alarm rate: 𝑃 𝐴 ¬𝐼 = 0.02%

• Given a detected record, what’s the probability that the record
represents a true intrusion?

High Cost of Errors

𝑃 𝐼 𝐴 =
𝑃 𝐴 𝐼 𝑃(𝐼)

𝑃 𝐴 𝐼 𝑃(𝐼) + 𝑃 𝐴 ¬𝐼 (1 − 𝑃 𝐼)
= 9%

S. Axelsson, “The Base-Rate Fallacy and Its
Implications for the Difficulty of Intrusion
Detection,” in Proc. ACM Conference on

Computer and Communications Security, 1999.

Semantic Gaps

• Difficult to transfer results into actionable report for the
network operator

• Difficult to find the difference between “abnormal activity”
and attacks

• Not interpretable! Unclear what the system learned
– What do false positives and false negatives mean?

– What features are used to produce correct results?

43

• Large variability in network traffic over short time intervals

Diversity with Data and Concept Drift

P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube Traffic Characterization: A View From the Edge,” in Proc. ACM

SIGCOMM Internet Measurement Conference, 2008.

• Lack of (reliable) “ground truth”

• Outdated datasets

• Highly sensitive information (e.g., network traffic can include
personal communications and business secrets)

• Difficulties with simulation and anonymization

Difficulties with Evaluations

• [1] Androutsopoulos, Ion, et al. "An evaluation of naive bayesian anti-spam
filtering." arXiv preprint cs/0006013 (2000).

• [2] Du, Min, et al. "DeepLog: Anomaly Detection and Diagnosis from System Logs
through Deep Learning." Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017.

• [3] Sommer, Robin, and Vern Paxson. "Outside the closed world: On using machine
learning for network intrusion detection." Security and Privacy (SP), 2010 IEEE
Symposium on. IEEE, 2010.

Reading

• How can you attack the spam filtering model we discussed?

– Can you get around the filtering and send a spam to a user’s inbox?

– Can you trick the algorithm to filter a ham email?

• Do you think ML will replace human analysts in detecting security
threats? Why or why not?

Discussion Questions

	Default Section
	Slide 1: Machine Learning in Security

	intro
	Slide 2: Definitions Spam Classification using Logistic Regression Anomaly Detection through Deep Learning Challenges for Machine Learning in Security
	Slide 3: What is Machine Learning?
	Slide 4: What is Machine Learning?
	Slide 5: What is Machine Learning?
	Slide 6: Steps towards Designing a ML System
	Slide 7: When To Use Machine Learning?
	Slide 8: Example: Spam Filtering
	Slide 9: Step 1: Choosing the Training Dataset
	Slide 10: Step 1: Choosing the Training Experience
	Slide 11: Step 2: Modeling the Transformation
	Slide 12: Step 3: Choosing the Input & Output Representations
	Slide 14: Step 4: Choosing the Transformation Function Approximation
	Slide 15: Logistic Regression (1)
	Slide 16: Logistic Regression (2)
	Slide 17: Logistic Regression (3)
	Slide 18: Logistic Regression (4)
	Slide 19: Logistic Regression: Training
	Slide 20: Logistic Regression: Training
	Slide 21: Step 5: Evaluation
	Slide 22: Step 5: Evaluation
	Slide 23: Step 5: Evaluation
	Slide 24: Step 5: Evaluation
	Slide 25: Summary: Designing a ML System
	Slide 26: DeepLog: Anomaly Detection through Deep Learning
	Slide 27: Step 1: Choosing the Training Data (1)
	Slide 28: Step 1: Choosing the Training Data (2)
	Slide 29: Step 2: Modeling the Transformation
	Slide 30: Step 3: Choosing the Input & Output Representations (1)
	Slide 31: Step 3: Choosing the Input & Output Representations (2)
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Step 4: Choosing a Transformation Function Approximation
	Slide 37: Step 5: Evaluation – Log Key Model (1)
	Slide 38: Step 5: Evaluation – Log Key Model (2)
	Slide 39: Step 5: Evaluation – Parameter Value Model
	Slide 40: Challenges for Machine Learning in Security
	Slide 41: Case Study: Outlier Detection
	Slide 42: High Cost of Errors
	Slide 43: Semantic Gaps
	Slide 44: Diversity with Data and Concept Drift
	Slide 45: Difficulties with Evaluations
	Slide 46: Reading
	Slide 47: Discussion Questions

