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What is Machine LearningWhat is Machine Learning?
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When you know “what” to do 
(by showing examples) 

int addition (int a, int b) 
{ 

int r; 
r = a + b; 
return r; 

}

When we know
how to do things
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What is Machine LearningWhat is Machine Learning?

When we don’t know 
how to do it, but we 
have some examples

“Cat”

Cat??



A computer program is said to learn from experience E 

with respect to some class of tasks T and performance measure P, 

if its performance at tasks in T, as measured by P, improves with 
experience E.  

-- Tom Mitchell, Machine Learning

What is Machine Learning?

Mitchell, T. (1997). Machine Learning, McGraw Hill. ISBN 0-07-042807-7, p.2.

https://en.wikipedia.org/wiki/Special:BookSources/0070428077


• Step 1: Choosing the Training Experience (i.e., training dataset)

• Step 2: Modeling the Transformation 

• Step 3: Choosing the Input & Output Representations

• Step 4: Choosing a Transformation Function Approximation

• Step 5: Evaluation

Steps towards Designing a ML System



When To Use Machine Learning? 

• When patterns exist in the data

– Even if we don’t know what they are

• When we cannot pin down the functional 
relationships mathematically (in-closed form) 

– Else we would just code up the algorithm

• When we have lots of data

– Labeled training sets are harder to come by than 
unlabeled data

– Data is of high-dimension 

• When we want to discover lower-dimension 
representations



• Task T: classifying emails into two 

categories (spam, ham) 

• Performance measure P: percent of emails 

correctly classified

• Training Experience E: a database of emails

Example: Spam Filtering



• Training Dataset: 
– A database of emails 

• What feedback can be provided to the learner?
– A database of labeled emails

• How well does the training dataset represent the distribution of 
examples over which the final system performance P must be 
measured? 
– A database of labeled emails that represent the distribution of all the emails 

Step 1: Choosing the Training Dataset



Step 1: Choosing the Training Experience 

Cats v.s. Dogs



• Task T: classifying emails into 2 categories (Spam, Ham)

• Transformation (target) function 𝑉: 𝐴 → 𝐵
– What’s in the training examples?

o A: Email contents (a collection of words)

– What should be the output? 

o B: {Spam (1) , Ham (0)}

Step 2: Modeling the Transformation



Step 3: Choosing the Input & Output Representations

• How do we represent the model inputs and outputs?

– Inputs could be categorical, numerical, binary, sequential …

– We use code + math; they need “numbers“

• Feature generation

– Abstract V: Email contents → {0,1}

– Realized V’: 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑛  ↦ 𝑦 ∈ {0,1}

o 𝑥𝑖 ∈ 0,1 represents whether a word 𝑤𝑖 is in the email

• Feature selection
– To simplify the model (save time, avoid overfitting…)



Step 4: Choosing the Transformation Function
Approximation

V’ {0,1}

Function Class
(e.g., Logistic Regression, SVM,

Neural Networks…)

𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛)



Logistic Regression (1)

• V’: 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑛  ↦ 𝑦 ∈ {0,1}

• How to design V’?
– Step 1: Combine 𝑥1, 𝑥2, … , 𝑥𝑛 to get a “spaminess” value

– Step 2: Convert the “spaminess” value into a probability P(Spam)

o Conversion enables the classification use-case; else it is useful for regression

– Step 3: Make predictions on 𝑦 based on P(Spam)

o e.g., 𝑦 = 1 when P(Spam) > 0.5



Logistic Regression (2)

• Step 1: Combine 𝑥1, 𝑥2, … , 𝑥𝑛 to get a “spaminess” value

– Assume the existence of a weight vector 𝛉 = (𝜃1, 𝜃2, … , 𝜃𝑛)

– We define spaminess as the linear transformation 𝛉𝐓 ∙ 𝐱

“Spaminess”



• Step 2: Convert the “spaminess” value into a probability P(Spam)

o Logistic function

Logistic Regression (3)

Plot of logistic function 𝑔



Logistic Regression (4)

𝛉𝐓 ∙ 𝐱

• Step 3: Make predictions on y based on P(Spam)



Logistic Regression: Training

• How do we determine the “best” value of 𝛉?

• For a given 𝛉 and some labeled examples, how do we know whether 𝛉 is
good enough? i.e., is the best predictor of spam vs. ham?

• Define a loss function (e.g., log loss)



Logistic Regression: Training

• How do we determine the “best” value of 𝛉?

• For a given 𝛉 and some labeled examples, how do we know whether 𝛉 is
good enough? i.e., is the best predictor of spam vs. ham?

• Define a loss function (e.g., log loss)
– Wrong predictions -> large loss

– Correct predictions -> small loss

• Run optimization algorithms to find 𝛉, minimize the loss
– e.g., Stochastic Gradient Descent (SGD)



• Ground Truth

– V: Email contents → {0,1} 

• Hold out Method

– Randomly partitioned data into two independent sets: a test set, a training set

– Use test set instead of training set when assessing accuracy

• Cross-validation (k-fold)

– Randomly partition the data into k mutually exclusive subsets, each 
approximately equal size

– At i-th iteration, use Di as test set and others as training set

Step 5: Evaluation

Test Set Training Set



• Overfitting:

Step 5: Evaluation

Training Duration

Error Rate

Test Set

Training Set



Step 5: Evaluation

Cats v.s. Dogs



• Overfitting:

• Confusion Matrix:

Step 5: Evaluation

Predicted Spam Predicted Ham

Spam True Positive (TP) False Negative (FN)

Ham False Positive (FP) True Negative (TN)

Training Duration

Error Rate

Test Set

Training Set



• Step 1: Choosing the Training Experience (i.e., training dataset)

• Step 2: Modeling the Transformation 

• Step 3: Choosing the Input & Output Representations

• Step 4: Choosing a Transformation Function Approximation

• Step 5: Evaluation

Summary: Designing a ML System



DeepLog: Anomaly Detection through Deep Learning

• Anomaly Detection from System Logs

– Identify abnormal system behavior from large volume of system logs

• Challenges

– Large volume of data

– Sequential data

– Unstructured data

• Why deep learning?

– Widely used for natural language processing (NLP)

– Log can be viewed as a structured language!



• What data do we have?

– Large volume of log entries from normal system execution path

– A few log entries of known attacks

Step 1: Choosing the Training Data (1)



• What data should we use?

– Training: normal logs

– Testing: normal logs and attack logs

• Advantages:

– Prevent overfitting

– Test the system’s behavior on unseen attacks

• Disadvantages:

– May classify any unseen behaviors as attacks (i.e., false positives)

Step 1: Choosing the Training Data (2)



• Outputs: normal (-) v.s. abnormal (+)

• Inputs: Log entries from OpenStack VM deletion task
(unstructured)

– t1 Deletion of file1 complete

– t2 Took 0.61 seconds to deallocate network …

– t3 VM Stopped (Lifecycle Event)

• Structured representation:

– Log key

– Parameter value (e.g., t1, file1)

Step 2: Modeling the Transformation



Step 3: Choosing the Input & Output Representations (1)

• The total number of distinct log keys is constant.

– Log keys: 𝐾 = {𝑘1, 𝑘2, … , 𝑘𝑛}

– Parameter value vectors: (time interval, other parameter values)



Step 3: Choosing the Input & Output Representations (2)

• Representation of Inputs:

– Log Keys: structured, sequential, nominal

– Parameter Values: structured, sequential, numerical (e.g., time,
duration) or nominal (e.g., process id)

– Different log keys have different structures for parameter values

• How to combine the inputs of different structures?

– Train multiple models



• Model 1: Log key anomaly detection model

– Log keys: 𝐾 = {𝑘1, 𝑘2, … , 𝑘𝑛}

– Input: A window 𝑤 of the ℎ most recent log keys 𝑤 =
{𝑚𝑡−ℎ, … , 𝑚𝑡−2, 𝑚𝑡−1}, where 𝑚𝑖 ∈ 𝐾

– Output: Pr[𝑚𝑡 = 𝑘𝑖 | 𝑤] for each 𝑘𝑖 ∈ 𝐾, 𝑖 = 1, … , 𝑛

Step 3: Choosing the Input & Output Representations (3)



• Model 2: Parameter value anomaly detection models
– View each parameter value vector sequence (for a log key) as a separate

time series

– Train a separate model for each distinct log key value to predict the next
parameter value

• Two steps of detecting anomaly
– Predict the the next log key and parameter values

– Compare the prediction against the observed log entry
o Mark as anomaly if the probability for the observed log entry is low (not in

the top 𝑔 candidates)

Step 3: Choosing the Input & Output Representations (4)



• Two steps of detecting anomaly
– Predict the the next log key and parameter values

– Compare the prediction against the observed log entry

o Mark as anomaly if the probability for the observed log entry is low (not in
the top 𝑔 candidates)

Step 3: Choosing the Input & Output Representations (5)



Step 3: Choosing the Input & Output Representations (6)



Step 4: Choosing a Transformation Function Approximation

• Long Short-Term Memory (LSTM) Network

– Has the capability of remembering previous inputs

– Suitable for sequential data

– A gentle walk through on LSTM networks (optional, 25 minutes):
https://www.youtube.com/watch?v=WCUNPb-5EYI

https://www.youtube.com/watch?v=WCUNPb-5EYI


Step 5: Evaluation – Log Key Model (1)

• Hadoop-Distributed File System (HDFS) Dataset

– System logs generated by map-reduce jobs on more than 200 Amazon’s
EC2 nodes

– Labeled by domain experts

– Log entries are grouped into sessions

• DeepLog does not use the abnormal training data



Step 5: Evaluation – Log Key Model (2)

• Precision = True Positive / (True Positive + False Positive) = 94.60%

• Recall = True Positive / (True Positive + False Negative) = 95.93%

Predicted as Normal Predicted as Abnormal

Normal 552,533 (True Negative) 833 (False Positive)

Abnormal 619 (False Negative) 14581 (True Positive)



Step 5: Evaluation – Parameter Value Model

Anomalies
• OpenStack Log Dataset

– Run VM-related tasks 

– Inject anomalies at different
execution points

• Mean-squared error (MSE)
between the parameter value 
vector and the prediction output 
vector from DeepLog

Confidence Interval



Challenges for Machine Learning in Security

• Outlier Detection

• High Cost of Errors

• Semantic Gap

• Diversity with Data

• Difficulties with Evaluations

Sommer, Robin, and Vern Paxson. "Outside the closed world: On using machine learning for network intrusion 
detection." Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 2010.



• ML needs large number of representatives for each class
– What happens when 𝑃(𝑆𝑝𝑎𝑚) is very small?

• Not good at finding previously unknown malicious activities

Case Study: Outlier Detection



• Example: suppose a system generates
– 1,000,000 audit records per day;

– 10 audit records per intrusion;

– Two intrusions per day.

• Intrusion: 𝐼, Alarm: 𝐴

• Detection rate: 𝑃 𝐴 𝐼 = 99.9%

• False alarm rate: 𝑃 𝐴 ¬𝐼 = 0.02%

• Given a detected record, what’s the probability that the record
represents a true intrusion?

High Cost of Errors

𝑃 𝐼 𝐴 =
𝑃 𝐴 𝐼 𝑃(𝐼)

𝑃 𝐴 𝐼 𝑃(𝐼) + 𝑃 𝐴 ¬𝐼 (1 − 𝑃 𝐼 )
= 9%

S. Axelsson, “The Base-Rate Fallacy and Its 
Implications for the Difficulty of Intrusion 
Detection,” in Proc. ACM Conference on 

Computer and Communications Security, 1999. 



Semantic Gaps

• Difficult to transfer results into actionable report for the
network operator

• Difficult to find the difference between “abnormal activity”
and attacks

• Not interpretable! Unclear what the system learned
– What do false positives and false negatives mean?

– What features are used to produce correct results?

43



• Large variability in network traffic over short time intervals

Diversity with Data and Concept Drift

P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube Traffic Characterization: A View From the Edge,” in Proc. ACM 

SIGCOMM Internet Measurement Conference, 2008. 



• Lack of (reliable) “ground truth”

• Outdated datasets

• Highly sensitive information (e.g., network traffic can include
personal communications and business secrets)

• Difficulties with simulation and anonymization

Difficulties with Evaluations



• [1] Androutsopoulos, Ion, et al. "An evaluation of naive bayesian anti-spam 
filtering." arXiv preprint cs/0006013 (2000).

• [2] Du, Min, et al. "DeepLog: Anomaly Detection and Diagnosis from System Logs 
through Deep Learning." Proceedings of the 2017 ACM SIGSAC Conference on 
Computer and Communications Security. ACM, 2017.

• [3] Sommer, Robin, and Vern Paxson. "Outside the closed world: On using machine 
learning for network intrusion detection." Security and Privacy (SP), 2010 IEEE 
Symposium on. IEEE, 2010.

Reading



• How can you attack the spam filtering model we discussed? 

– Can you get around the filtering and send a spam to a user’s inbox?

– Can you trick the algorithm to filter a ham email?

• Do you think ML will replace human analysts in detecting security 
threats? Why or why not?

Discussion Questions
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