Crypto Constructs

CS463/ECE424
University of lllinois

Crypto Constructs

Homomorphic Encryption
Private Set Intersection
Searchable Encryption

Pure
Theory

& | Foundations for
' Applicable
Techniques

Recap: Basic Crypto Concepts

* Symmetric key cryptography
— Same key is used to encrypt and decrypt
— Block ciphers, stream ciphers

* Public key cryptography
— Public key for encryption, private key for decryption

— E.g., RSA

* Collision-resistant hash functions

Background: Threat Model (1)

Attack Goal: get target plaintext
* Ciphertext-only attacks

— Attacker only has access to the ciphertext
— Most realistic

* Known-plaintext attacks

— Attacker has access to a set of (plaintext, ciphertext) pairs
* Chosen-plaintext attacks

— Attacker can pick arbitrary plaintext and obtain corresponding ciphertext
* Chosen-ciphertext attacks

— Attacker can pick arbitrary ciphertext and obtain corresponding plaintext
— Strongest attacker

Background: Threat Model (2)

Indistinguishability under Chosen Plaintext Attack (IND-CPA)

— Adversary can’t distinguish pairs of ciphertexts with respect to their
plaintexts
o l.e., Give the attacker C1 = Enc(P1), C2 = Enc(P2) and P1, P2, and ask the
attacker to create the mapping b/w Pi and Cj
— Requires nondeterministic encryption scheme
(Ec(m) is really E,(m, r) for some random r)

Why do we need randomized encryption?

1)

IND-CPA Game:

* First the challenger generates an encryption keypair and sends the public key pk to
the adversary. (It keeps the secret key.)

* Next, the adversary selects a pair of messages M_0, M_1 (of equal length) and
sends them to the challenger.

* The challenger picks a random bit b €{0,1} and encrypts one of the two messages
as C* « Enc(M_b, pk). It sends back C* to the adversary.

* Finally, the adversary outputs a guess b'. We say the adversary “wins” if it guesses
correctly: that is, if b’ = b.

https://blog.cryptographyengineering.com/why-ind-cpa-implies-randomized-encryption/

Why do we need randomized encryption?

IV

First the challenger generates an encryption keypair and sends the public key pk to the adversary. (It keeps the secret key.)
Next, the adversary selects a pair of messages M_0, M_1 (of equal length) and sends them to the challenger.

The challenger picks a random bit b €{0,1} and encrypts one of the two messages as C* « Enc(M_b, pk). It sends back C* to
the adversary.

Finally, the adversary outputs a guess b'. We say the adversary “wins” if it guesses correctly: that is, if b’ = b.

If encryption is not randomized..

The adversary picks two messages M_0, M_1 and then encrypts both of them using the
public key.

When the adversary receives the ciphertext C*, he just compares that ciphertext to the
two he generated himself.

Voila, the adversary can always figure out which message was encrypted i.e., encryption
fails!!

https://blog.cryptographyengineering.com/why-ind-cpa-implies-randomized-encryption/

Homomorphic Encryption

What if we could...

1. Encrypt data
2. Send it to the cloud

3. Ask the cloud to perform operations

— Compute, search, sort

Keeping data encrypted throughout the operation!

Client

E(x), f

E(f(x))

Who would be interested
in such technique?

Cloud

f*

F(E()) = E(f(x))

Privacy Homomorphisms

* [RAD78] Originally idea introduced by Rivest, Adleman, and Dertouzos

* Proposed several privacy homomorphisms, but none of them were
secure against chosen-plaintext attacks
— Mostly because the encryption scheme is not randomized

X y ' E(x) E(y)
\o/ \o/

E(x)oE(y)

y

Xoy

Privacy homomorphism: Operators (o, o) such that E(x)cE(y) = E(xay)

Homomorphic Encryption

* Fully Homomorphic Encryption (FHE)
— Two operations: e.g., addition and multiplication
— E(x (y +2z)) = E(x) A (E(y) © E(2))
— [Gentry09] First scheme
— Not efficient
 Partially Homomorphic Encryption (PHE)
— Only one operation: e.g., only multiplication
— E(xy) = E(x) A E(y)
— Many public-key cryptosystems are partially homomorphic
— e.g., RSA - Fairly efficient

Plain RSA

Setup:

* p and g large primes, N = pq, z =(p-1)(9-1),

« Take e co-prime with z, and calculate d = e mod z,
« K' = (N, d)is the private key

« K =(N, e)is the public key

Alice Bob
K<« (N, e)
p o ™
: < c «— me mod N &
Decryption Message m

m =cd mod N

[RSA76]

RSA Setup:

 p and g large primes, N = pq, z =(p-1)(9-1),
» Take e coprime with z, d = el mod z
« K=(N,d)

Alice Bob

ﬂ K<« (N, e) > ~™

&

Messages m,, m, c, — m;emod N, ¢, «— m,® mod N

>

C <« C;'C;, mod N

m,;'m, < cimod N <

Plain RSA is a privacy homomorphism with respect to multiplication: Ex(xy) = Ex(X)-Ex(y).

But it does not provide ciphertext indistinguishability (i.e., encryption is not randomized)

Additive Homomorphic Encryption

* Addition
Bonus”™ operation

* Multiplication (by a constant ¢) « derived from addition
— E(m)¢=Eg(m) e ... e Ex(m) = Ex(c - m)

Applications of PHE

* e-Voting
— Calculate the total the votes without seeing plaintext votes
— Protect the anonymity of the voters

* Digital cash

— Ensure anonymity over financial transactions

United g
* Private Matching / Private Set Intersection <—A1r11nes g}iﬁ

— Search for members of a watch list in an air flight passenger list

Threat Model (think about cloud
computing)
1. Model in the status quo: Trusted

— Ask the cloud to do computation / search in plaintext

2. Honest-but-curious (aka semi-honest)
— Cloud cannot deviate from the protocol (i.e., honest)

— Cloud can try to learn more information; perform statistical inferences,
or try to break the crypto (i.e., curious)

— Captures threats by curious system admins

3. Malicious

— Cloud can deviate arbitrarily from protocol

Private Set Intersection

Private Set Intersection Cardinality (PSI-CA)

Server Client

S ={sq,.,Sm} C ={cq, .., Cn}

Private Set Intersection
Cardinality (PSI-CA)

A S¢

Private Set Intersection

* Client has a set C of n items
e Server has a set S of m items

* We want to compute C NS (or |C NS |) without revealing
anything more about Cand S

Approach:
1. Express C as a polynomial P(X)

2. Server evaluates P(X) at each s € S using additive homomorphic
encryption

Private Set Intersection

Client Server
Public key: K . .
a Secret key: K’ Public key: K a
C = {C]_; ey Cn} S = {Sll ’Sm}
n n
P(X) = 1_[(X —c) =Z a X'
= =0 For eachs; € S:
Ex(ay), -, Ex(a,) * Pickarandom r;
> * Homomorphically

evaluate P(s))
° EK(rj P(Sj) + Sj)

Recall: Additive Homomorphic Encryption

* Addition
— Eg(my) © E((m,) = Ee(my +my)

* Multiplication (by a constant c)
— E(m)¢=Eg(m) e ... e Ex(m) = Ex(c - m)

Client Server

Private Set Intersection
C={c,...cn} S={sq,...

How does the server compute E K(rjP(s]-) + s]-)?

* Recall: For each Sj, pick a random 1

* Evaluate P(Sj) using Ex(agp), .. EK(an) received from client
— Recall that P(X) = [T, (X — cl) =Y a Xt
— Forl/=0,..,n
o) compute Sjl
o then homomorphically compute EK(al)Sfl = EK(alS]l)(muItipIication by a constant)

— Homomorphically sum the terms by computing: [[}%, EK(als]l) =
Normal EK[Z,l =0 d15j] - EK[P(SJ)]

addition — EK[P(S]-)] % [Sj] = EK(TjP(Sj) + Sj) Homomorphic addition

Private Set Intersection

Client Server
Public key: K . .
a Secret key: K’ Public key: K a
C = {C]_; ey Cn} S = {Sll ’Sm}
n n
P(X) = 1_[(X —c) =Z a X'
= =0 For eachs; € S:
Ex(ay), -, Ex(a,) * Pickarandom r;
> * Homomorphically

evaluate P(s)
EK(T1P(51) + 51), *ty EK(rmP(Sm) + Sm) d EK(f'j P(Sj) + Sj)
<

* Client: perform intersection on the encrypted values:
— If¢;=s,then P(s) = 0, and thus £, (r, P(s) +5) 7 Ex(s;) AE¢ (c)
— Otherwise Ey(r; P(s;) +s;) = Ex(r), for some random r

Searchable Encryption

Searchable Encryption

 Client wants to search for documents which contain a specific
keyword

* Can the search be outsourced to a server without revealing the
contents of the documents or the search keyword?
— Client encrypts the documents, sends them to server

— Client asks the server to return the (encrypted) documents containing a
particular keyword

Searchable Encryption

Initialization

Server
F
L 3

Search S
Client erver
R
encrypted keyword E(w) =
Keyword w a ﬂ' g
= i
< =

Searchable Encryption

* Naive solution
— Encrypt keywords (with a deterministic scheme)

Server

Encrypted Document IDs
Keyword

Client E(w;) 1,7,16
E(w,) 3,5

g Search for E(w,)

keyword w, > Ewy) /

E(w,) 13,11,5,2,1

- Encrypted Ind
Cons: Index list will be HUGE! ncrypted index

Searchable Encryption

* Possible guarantees: the server learns only
1. Keyword access pattern (i.e., last time this keyword was searched)

2. Document access pattern (i.e., documents that are accessed for each keyword
search)

* Reveals more in practice due to updates
— e.g.,add a document, delete a document

Access Pattern Leaks

* With auxiliary information:

— Multi-user systems: correlate queries
— Information about users who send the query: e.g., EMR of a patient is

accessed by an oncologist
* |dentify 80% of search queries on encrypted emails using
access pattern alone
— E.g., based on word distribution in emails

[IKK12] Islam, M., Mehmet Kuzu, and Murat Kantarcioglu. "Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation." NDSS 2012.

[CGPR15] Cash, D., Grubbs, P.,, Perry, J. and Ristenpart, T. “Leakage-abuse attacks against searchable
encryption.” ACM CCS 2015.

How to Make Accesses Oblivious?

“Doesn’t look like anything to me.”

Software Protection and ORAM (Extra
Reading)

* [GO96] Oblivious RAM - Originally proposed for software protection by
Goldreich and Ostrovsky

* Traditional approach to software protection:
— Tamperproof CPU and encrypted program
— Decryption key embedded in ROM inside CPU
— For each instruction: fetch, decrypt, execute
— Protect RAM content from the rest of the system

* RAM content can be encrypted, but program execution reveals the
memory addresses accessed = motivation for Oblivious RAM

[GO96] Goldreich, and Ostrovsky. "Software protection and simulation on oblivious RAMs." Journal
of the ACM (JACM) 1996.

References

* [RAD78] Rivest, Adleman, and Dertouzos. "On data banks and privacy homomorphisms."
Foundations of secure computation 4.11 (1978).

e [CGPR15] Cash, D., Grubbs, P., Perry, J. and Ristenpart, T. “Leakage-abuse attacks against searchable
encryption.” ACM CCS 2015.

* [GO96] Goldreich, and Ostrovsky. "Software protection and simulation on oblivious RAMs." Journal
of the ACM (JACM) 1996.

e [FNPOA4]: Freedman, Nissim, Pinkas. "Efficient private matching and set intersection." EUROCRYPT
2004.

Discussion Questions

* Why not just trust the cloud provider?

* What other problems could be solved using Private Set
Intersection?

* Are there alternative architectures for searchable encryption?

— Keep the index on the client?
— Use two cloud providers?

	Default Section
	Slide 1: Crypto Constructs

	intro
	Slide 2: Crypto Constructs Homomorphic Encryption Private Set Intersection Searchable Encryption
	Slide 3: Recap: Basic Crypto Concepts
	Slide 4: Background: Threat Model (1)
	Slide 5: Background: Threat Model (2)
	Slide 6: Why do we need randomized encryption? (1)
	Slide 7: Why do we need randomized encryption? (2)
	Slide 8: Homomorphic Encryption
	Slide 9: What if we could…
	Slide 10: Privacy Homomorphisms
	Slide 11: Homomorphic Encryption
	Slide 12: Plain RSA
	Slide 13: RSA
	Slide 15: Additive Homomorphic Encryption
	Slide 16: Applications of PHE
	Slide 17: Threat Model (think about cloud computing)
	Slide 19: Private Set Intersection
	Slide 21: Private Set Intersection Cardinality (PSI-CA)
	Slide 22: Private Set Intersection
	Slide 23: Private Set Intersection
	Slide 24: Recall: Additive Homomorphic Encryption
	Slide 25: Private Set Intersection
	Slide 26: Private Set Intersection
	Slide 27: Searchable Encryption
	Slide 28: Searchable Encryption
	Slide 29: Searchable Encryption
	Slide 30: Searchable Encryption
	Slide 31: Searchable Encryption
	Slide 32: Access Pattern Leaks
	Slide 33: How to Make Accesses Oblivious?
	Slide 34: Software Protection and ORAM (Extra Reading)
	Slide 41: References
	Slide 42: Discussion Questions

