
CS463/ECE424

University of Illinois

Crypto Constructs

Crypto Constructs
Homomorphic Encryption
Private Set Intersection
Searchable Encryption

2

Pure
Theory

Foundations for
Applicable
Techniques

Recap: Basic Crypto Concepts

• Symmetric key cryptography

– Same key is used to encrypt and decrypt

– Block ciphers, stream ciphers

• Public key cryptography

– Public key for encryption, private key for decryption

– E.g., RSA

• Collision-resistant hash functions
3

Background: Threat Model (1)

Attack Goal: get target plaintext
• Ciphertext-only attacks

– Attacker only has access to the ciphertext

– Most realistic

• Known-plaintext attacks
– Attacker has access to a set of (plaintext, ciphertext) pairs

• Chosen-plaintext attacks
– Attacker can pick arbitrary plaintext and obtain corresponding ciphertext

• Chosen-ciphertext attacks
– Attacker can pick arbitrary ciphertext and obtain corresponding plaintext

– Strongest attacker

4

Background: Threat Model (2)

5

Indistinguishability under Chosen Plaintext Attack (IND-CPA)

– Adversary can’t distinguish pairs of ciphertexts with respect to their
plaintexts

o I.e., Give the attacker C1 = Enc(P1), C2 = Enc(P2) and P1, P2, and ask the
attacker to create the mapping b/w Pi and Cj

– Requires nondeterministic encryption scheme
(EK(m) is really EK(m, r) for some random r)

Why do we need randomized encryption?
(1)
IND-CPA Game:

• First the challenger generates an encryption keypair and sends the public key pk to
the adversary. (It keeps the secret key.)

• Next, the adversary selects a pair of messages M_0, M_1 (of equal length) and
sends them to the challenger.

• The challenger picks a random bit b ∈{0,1} and encrypts one of the two messages
as 𝐶∗ ← Enc(M_b, pk). It sends back 𝐶∗ to the adversary.

• Finally, the adversary outputs a guess b'. We say the adversary “wins” if it guesses
correctly: that is, if b' = b.

https://blog.cryptographyengineering.com/why-ind-cpa-implies-randomized-encryption/

Why do we need randomized encryption?
(2)
• First the challenger generates an encryption keypair and sends the public key pk to the adversary. (It keeps the secret key.)
• Next, the adversary selects a pair of messages M_0, M_1 (of equal length) and sends them to the challenger.
• The challenger picks a random bit b ∈{0,1} and encrypts one of the two messages as 𝐶∗ ← Enc(M_b, pk). It sends back 𝐶∗ to

the adversary.

• Finally, the adversary outputs a guess b'. We say the adversary “wins” if it guesses correctly: that is, if b' = b.

If encryption is not randomized..

• The adversary picks two messages M_0, M_1 and then encrypts both of them using the
public key.

• When the adversary receives the ciphertext 𝐶∗, he just compares that ciphertext to the
two he generated himself.

• Voila, the adversary can always figure out which message was encrypted i.e., encryption
fails!!

https://blog.cryptographyengineering.com/why-ind-cpa-implies-randomized-encryption/

Homomorphic Encryption

What if we could…

1. Encrypt data

2. Send it to the cloud

3. Ask the cloud to perform operations

– Compute, search, sort

Keeping data encrypted throughout the operation!

Client Cloud
E(x), f

E(f(x))

f*

f*(E(x)) = E(f(x))

x

Who would be interested
in such technique?

Privacy Homomorphisms

• [RAD78] Originally idea introduced by Rivest, Adleman, and Dertouzos

• Proposed several privacy homomorphisms, but none of them were
secure against chosen-plaintext attacks
– Mostly because the encryption scheme is not randomized

□

x y

x□y

○

E(x) E(y)

E(x)○E(y)

Privacy homomorphism: Operators (□, ○) such that E(x)○E(y) = E(x□y)

Homomorphic Encryption

• Fully Homomorphic Encryption (FHE)

– Two operations: e.g., addition and multiplication

– E(x (y + z)) = E(x) Δ (E(y) ◦ E(z))

– [Gentry09] First scheme

– Not efficient

• Partially Homomorphic Encryption (PHE)
– Only one operation: e.g., only multiplication

– E(x y) = E(x) Δ E(y)

– Many public-key cryptosystems are partially homomorphic

– e.g., RSA - Fairly efficient

11

Plain RSA

12

[RSA76]

Alice Bob

Setup:

• p and q large primes, N = pq, z =(p-1)(q-1),

• Take e co-prime with z, and calculate d = e-1 mod z,

• K’ = (N, d) is the private key

• K = (N, e) is the public key

c ← me mod N

K ← (N, e)

Message mDecryption
m = cd mod N

RSA

13

Alice Bob

Setup:

• p and q large primes, N = pq, z =(p-1)(q-1),

• Take e coprime with z, d = e-1 mod z

• K’ = (N, d)

c1 ← m1
e mod N, c2 ← m2

e mod N
Messages m1, m2

m1∙m2 ← cd mod N
c ← c1∙c2 mod N

Plain RSA is a privacy homomorphism with respect to multiplication: EK(xy) = EK(x)∙EK(y).

But it does not provide ciphertext indistinguishability (i.e., encryption is not randomized)

K ← (N, e)

Additive Homomorphic Encryption

• Addition

– EK(m1) ◦ EK(m2) = EK(m1 + m2)

• Multiplication (by a constant c)

– EK(m)c = EK(m) ◦ ... ◦ EK(m) = EK(c ∙ m)

15

“Bonus” operation
derived from addition

Applications of PHE

• e-Voting

– Calculate the total the votes without seeing plaintext votes

– Protect the anonymity of the voters

• Digital cash

– Ensure anonymity over financial transactions

• Private Matching / Private Set Intersection
– Search for members of a watch list in an air flight passenger list

16

Threat Model (think about cloud
computing)
1. Model in the status quo: Trusted

– Ask the cloud to do computation / search in plaintext

2. Honest-but-curious (aka semi-honest)

– Cloud cannot deviate from the protocol (i.e., honest)

– Cloud can try to learn more information; perform statistical inferences,
or try to break the crypto (i.e., curious)

– Captures threats by curious system admins

3. Malicious
– Cloud can deviate arbitrarily from protocol

Private Set Intersection

Private Set Intersection Cardinality (PSI-CA)

21

Server Client

Private Set Intersection
Cardinality (PSI-CA)

SÇC^

𝑆 = {𝑠1, … , 𝑠𝑚} 𝐶 = {𝑐1, … , 𝑐𝑛}

Private Set Intersection

• Client has a set C of n items

• Server has a set S of m items

• We want to compute C ∩S (or |C ∩S |) without revealing
anything more about C and S

Approach:
1. Express C as a polynomial P(X)

2. Server evaluates P(X) at each s ϵ S using additive homomorphic
encryption

22

Private Set Intersection

23

ServerClient

For each sj ϵ S:
• Pick a random rj

• Homomorphically
evaluate P(sj)

• EK(rj P(sj) + sj)

𝐸𝐾 𝑎0 , ⋯ , 𝐸𝐾 𝑎𝑛

Public key: K
Secret key: K’

Public key: K

𝑃 𝑋 =ෑ
𝑖=1

𝑛

𝑋 − 𝑐𝑖 =෍
𝑙=0

𝑛

𝑎𝑙𝑋
𝑙

𝑆 = {𝑠1, … , 𝑠𝑚}𝐶 = {𝑐1, … , 𝑐𝑛}

Recall: Additive Homomorphic Encryption

• Addition

– EK(m1) ◦ EK(m2) = EK(m1 + m2)

• Multiplication (by a constant c)

– EK(m)c = EK(m) ◦ ... ◦ EK(m) = EK(c ∙ m)

24

Private Set Intersection

How does the server compute 𝑬𝑲 𝒓𝒋𝑷 𝒔𝒋 + 𝒔𝒋 ?

• Recall: For each 𝑠𝑗, pick a random 𝑟𝑗

• Evaluate 𝑃 𝑠𝑗 using 𝐸𝐾 𝑎0 , … , 𝐸𝐾 𝑎𝑛 received from client
– Recall that 𝑃 𝑋 = ς𝑖=1

𝑛 𝑋 − 𝑐𝑖 = σ𝑙=0
𝑛 𝑎𝑙𝑋

𝑙

– For l = 0 , … , n:

o compute 𝑠𝑗
𝑙

o then homomorphically compute 𝐸𝐾 𝑎𝑙
𝑠𝑗
𝑙
= 𝐸𝐾 𝑎𝑙𝑠𝑗

𝑙 (multiplication by a constant)

– Homomorphically sum the terms by computing: ς𝑙=0
𝑛 𝐸𝐾 𝑎𝑙𝑠𝑗

𝑙 =
𝐸𝐾 σ𝑙=0

𝑛 𝑎𝑙𝑠𝑗
𝑙 = 𝐸𝐾 𝑃 𝑠𝑗

– 𝐸𝐾 𝑃 𝑠𝑗
𝑟𝑗

◦ 𝐸𝐾 𝑠𝑗 = 𝐸𝐾 𝑟𝑗𝑃 𝑠𝑗 + 𝑠𝑗

ServerClient

𝑆 = {𝑠1, … , 𝑠𝑚}𝐶 = {𝑐1, … , 𝑐𝑛}

Homomorphic addition

Normal
addition

Private Set Intersection

• Client: perform intersection on the encrypted values:
– If ci = sj, then 𝑃 sj = 0, and thus EK (rj P(sj) + sj) = EK (sj) = EK (ci)

– Otherwise EK (rj P(sj) + sj) = EK (r), for some random r

26

ServerClient

For each sj ϵ S:
• Pick a random rj

• Homomorphically
evaluate P(sj)

• EK(rj P(sj) + sj)

𝐸𝐾 𝑎0 , ⋯ , 𝐸𝐾 𝑎𝑛

𝐸𝐾 𝑟1𝑃 𝑠1 + 𝑠1 , ⋯ , 𝐸𝐾 𝑟𝑚𝑃 𝑠𝑚 + 𝑠𝑚

Public key: K
Secret key: K’

Public key: K

𝑃 𝑋 =ෑ
𝑖=1

𝑛

𝑋 − 𝑐𝑖 =෍
𝑙=0

𝑛

𝑎𝑙𝑋
𝑙

𝑆 = {𝑠1, … , 𝑠𝑚}𝐶 = {𝑐1, … , 𝑐𝑛}

Searchable Encryption

Searchable Encryption

• Client wants to search for documents which contain a specific
keyword

• Can the search be outsourced to a server without revealing the
contents of the documents or the search keyword?
– Client encrypts the documents, sends them to server

– Client asks the server to return the (encrypted) documents containing a
particular keyword

28

Searchable Encryption

29

ServerClient

Initialization

ServerClient
Search

Keyword w
encrypted keyword E(w)

Searchable Encryption

• Naive solution

– Encrypt keywords (with a deterministic scheme)

30

Encrypted
Keyword

Document IDs

E(w1) 1, 7, 16

E(w2) 3, 5

E(w3) 7

E(w4) 13, 11, 5, 2, 1

Encrypted Index

Server

Client

Search for
keyword w2

E(w2)

Cons: Index list will be HUGE!

Searchable Encryption

• Possible guarantees: the server learns only

1. Keyword access pattern (i.e., last time this keyword was searched)

2. Document access pattern (i.e., documents that are accessed for each keyword
search)

• Reveals more in practice due to updates
– e.g., add a document, delete a document

Access Pattern Leaks

• With auxiliary information:

– Multi-user systems: correlate queries

– Information about users who send the query: e.g., EMR of a patient is
accessed by an oncologist

• Identify 80% of search queries on encrypted emails using
access pattern alone

– E.g., based on word distribution in emails

32

[IKK12] Islam, M., Mehmet Kuzu, and Murat Kantarcioglu. "Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation." NDSS 2012.

[CGPR15] Cash, D., Grubbs, P., Perry, J. and Ristenpart, T. “Leakage-abuse attacks against searchable
encryption.” ACM CCS 2015.

How to Make Accesses Oblivious?

Software Protection and ORAM (Extra
Reading)
• [GO96] Oblivious RAM - Originally proposed for software protection by

Goldreich and Ostrovsky

• Traditional approach to software protection:

– Tamperproof CPU and encrypted program

– Decryption key embedded in ROM inside CPU

– For each instruction: fetch, decrypt, execute

– Protect RAM content from the rest of the system

• RAM content can be encrypted, but program execution reveals the
memory addresses accessed → motivation for Oblivious RAM

34

[GO96] Goldreich, and Ostrovsky. "Software protection and simulation on oblivious RAMs." Journal
of the ACM (JACM) 1996.

References

• [RAD78] Rivest, Adleman, and Dertouzos. "On data banks and privacy homomorphisms."
Foundations of secure computation 4.11 (1978).

• [CGPR15] Cash, D., Grubbs, P., Perry, J. and Ristenpart, T. “Leakage-abuse attacks against searchable
encryption.” ACM CCS 2015.

• [GO96] Goldreich, and Ostrovsky. "Software protection and simulation on oblivious RAMs." Journal
of the ACM (JACM) 1996.

• [FNP04]: Freedman, Nissim, Pinkas. "Efficient private matching and set intersection." EUROCRYPT
2004.

41

Discussion Questions

• Why not just trust the cloud provider?

• What other problems could be solved using Private Set
Intersection?

• Are there alternative architectures for searchable encryption?

– Keep the index on the client?

– Use two cloud providers?

42

	Default Section
	Slide 1: Crypto Constructs

	intro
	Slide 2: Crypto Constructs Homomorphic Encryption Private Set Intersection Searchable Encryption
	Slide 3: Recap: Basic Crypto Concepts
	Slide 4: Background: Threat Model (1)
	Slide 5: Background: Threat Model (2)
	Slide 6: Why do we need randomized encryption? (1)
	Slide 7: Why do we need randomized encryption? (2)
	Slide 8: Homomorphic Encryption
	Slide 9: What if we could…
	Slide 10: Privacy Homomorphisms
	Slide 11: Homomorphic Encryption
	Slide 12: Plain RSA
	Slide 13: RSA
	Slide 15: Additive Homomorphic Encryption
	Slide 16: Applications of PHE
	Slide 17: Threat Model (think about cloud computing)
	Slide 19: Private Set Intersection
	Slide 21: Private Set Intersection Cardinality (PSI-CA)
	Slide 22: Private Set Intersection
	Slide 23: Private Set Intersection
	Slide 24: Recall: Additive Homomorphic Encryption
	Slide 25: Private Set Intersection
	Slide 26: Private Set Intersection
	Slide 27: Searchable Encryption
	Slide 28: Searchable Encryption
	Slide 29: Searchable Encryption
	Slide 30: Searchable Encryption
	Slide 31: Searchable Encryption
	Slide 32: Access Pattern Leaks
	Slide 33: How to Make Accesses Oblivious?
	Slide 34: Software Protection and ORAM (Extra Reading)
	Slide 41: References
	Slide 42: Discussion Questions

