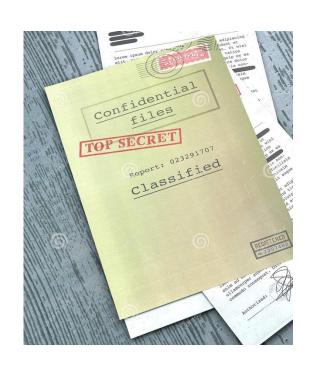
Trusted Computing (Cnt.): Access Control Models

CS463/ECE424

University of Illinois

Outline


Bell-LaPadula (BLP) Biba Clark-Wilson Chinese Wall

Multilevel Security (MLS)

An MLS system

- Has system resources (data, files) at more than one security level (i.e., public and proprietary)
- Permits concurrent access by users who differ in "security clearance and need-to-know"
- Prevents each user from accessing resources for which the user lacks authorization

IETF RFC 2828

Bell-LaPadula (BLP) Model

- Formal model for access control
 - Developed in 1970s

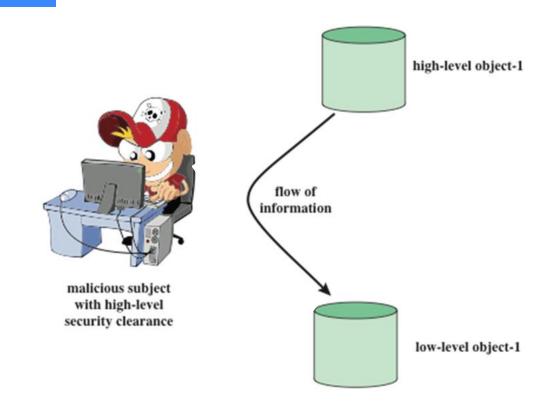
- A subject (user) has a security clearance
- An object (file) has a security classification
- Form a hierarchy and are referred to as security levels
 - o top secret > secret > confidential > restricted > unclassified
- Security classes control how a subject may access an object

BLP Model Access Modes

- READ
 - The subject is allowed only read access to the object
- APPEND
 - The subject is allowed only write access to the object
- WRITE
 - The subject is allowed both read and write access to the object
- EXECUTE
 - The subject is allowed neither read nor write access to the object but may invoke the object for execution

No Read Up and No Write Down

No read up


- Subject can only read an object of less or equal security level
- Referred to as the simple security property (ss-property)

No write down

- A subject can only write into an object of greater or equal security level
- Referred to as the *-property

Threat Intuition:

protect the confidentiality of information at

Discretionary Control

- An individual (or role) may grant to another individual (or role) access to a document
 - Based on the owner's discretion, but
 - These are constrained by the MAC (mandatory access control) rules
- Site policy overrides any discretionary access controls
- This is called the ds-property

A user cannot overwrite the BLP model to give away information to unauthorized persons

BLP Formal Description

- Current state of system: (b, M, f, H)
 - current access set b: triples of (s, o, a)
 - subject s has current access to object o in access mode a
 - o access mode: read, append, write, execute
 - access matrix M: matrix of M_{ii}
 - access modes of subject S_i to access object O_i
 - level function f: security level of subjects and objects
 - f_o (O_i) is the classification level of object O_i
 - of_s (S_i) is the security clearance (i.e., maximum security level) of subject S_i
 - f_c (S_i) is the current security level of subject S_i
 - hierarchy H: a directed rooted tree of objects

BLP Formal Description

- The three BLP properties:
 - **ss-property**: every $(S_i, O_i, read)$ has $f_c(S_i) \ge f_o(O_i)$
 - *-property: every $(S_i, O_i, append)$ has $f_c(S_i) \le f_o(O_i)$ and
 - every $(S_i, O_j, write)$ has $f_c(S_i) = f_o(O_i)$ [WHY??]
 - **ds-property**: every (S_i, O_i, A_x) has $A_x \in M_{ii}$
- These are used to define the concepts of secure state and secure system.

BLP Secure System

- The state (b, M, f, H) is **secure** if every element of b satisfies the three properties.
- A **system** defines a set of transitions that allow changes to the four components of the system, (b, M, f, H).
- A system is secure if system transitions on secure states result only in secure states.

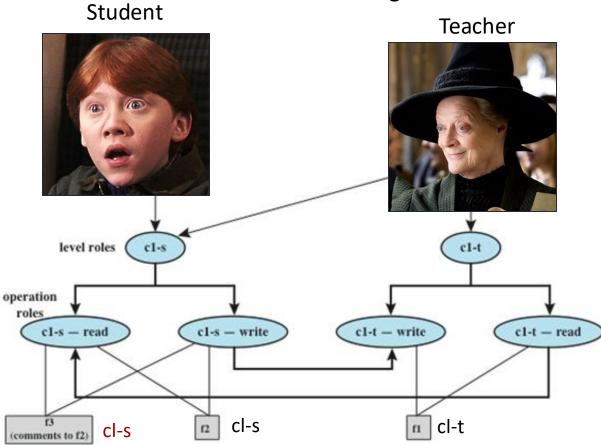
BLP Transition Rules

- Get access: Add a triple
 (subject, object, access-mode)
 to the current access set b.
- Release access: Remove a triple (subject, object, access-mode) from the current access set b.
- 3. Change object level: Change the value of $f_o(O_j)$ for some object O_i .
- 4. Change current level: Change the value of $f_c(S_i)$ for some subject S_i .

- 5. Give access permission: Add an access mode to some entry of the access permission matrix M.
- Rescind access permission: Delete an access mode from some entry of M.
- 7. Create an object: Attach an object to the current tree structure H as a leaf.
- 8. Delete a group of objects: Detach from H an object and all other objects beneath it in the hierarchy. This renders the group of objects inactive.

s: student Student Teacher t: teacher *-property level roles c1-t c1-s operation roles c1-t - write c1-s - read c1-s - write c1-t - read

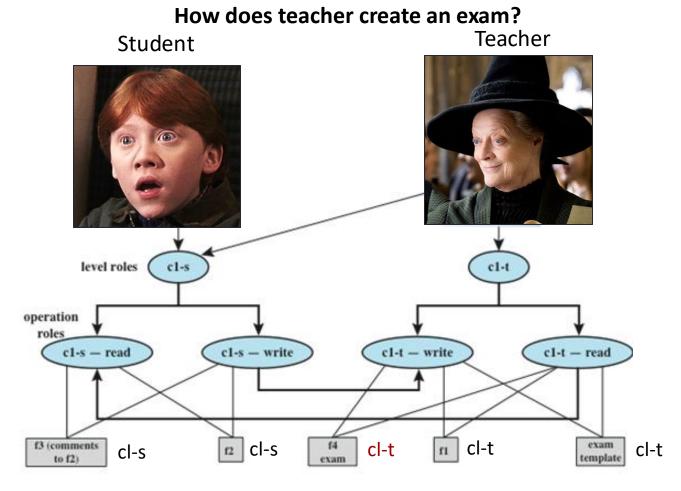
cl-s


Two files are created: f1: cl-t; f2: cl-s

cl-t

How does teacher give feedback via comments?

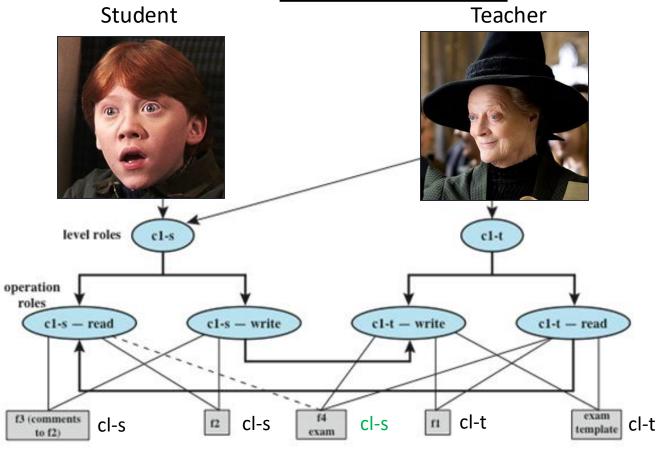
s: student t: teacher


*-property

A third file is added f3: cl-s

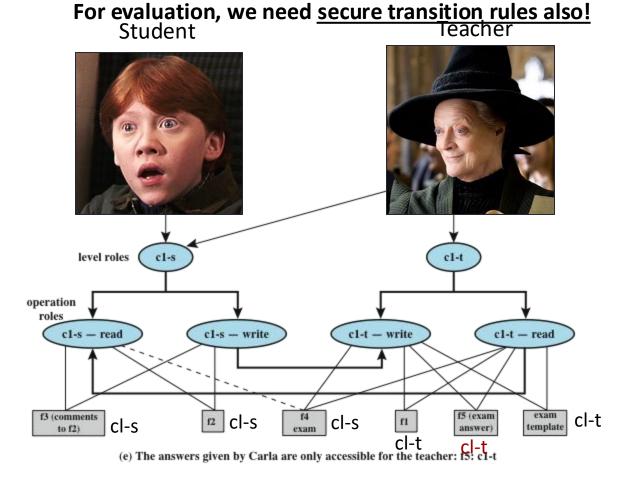
s: student t: teacher

ss-property and *-property



An exam is created based on an existing template f4: cl-t

We need secure transition rules!


s: student t: teacher

ss-property and *-property

The student is permitted to access to the exam f4: cl-s

s: student ss-property t: teacher and *-property

The answers submitted by the student is only accessible for the teacher f5: cl-t

Limitations to the BLP Model

BLP does not address integrity issues

- The *-property is difficult to implement
 - Inferences from ordinary actions of higher-level subjects (side channels)
 - Deliberate communications by higher-level subjects (covert channels)

The BLP formalism does not include de-classification protocols.

Biba Integrity Model: Actions

- Modify: To write or update information in an object
- Observe: To read information in an object
- **Execute**: To execute an object
- Invoke: Communication from one subject to another

No Write Up and No Read Down

No write up

A subject can only write into an object of lower or equal security level

No read down

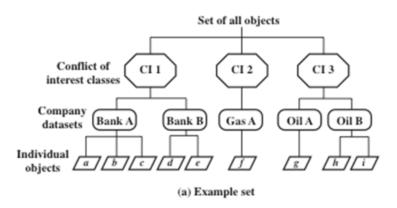
Subject can only read an object of higher or equal security level

Biba Integrity Model: Rules

- Simple integrity: A subject can modify an object only if the integrity level of the subject dominates the integrity level of the object: I(S) ≥ I(O).
- Integrity confinement: A subject can read an object only if the integrity level of the subject is dominated by the integrity level of the object: I(S)) ≤ I(O).
- Invocation property: A subject can invoke another subject only if the integrity level of the first subject dominates the integrity level of the second subject:
 - $I(S1) \ge I(S2)$.

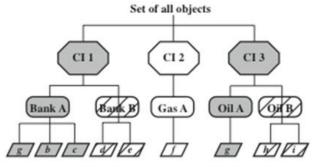
Clark-Wilson Integrity Model

- More practical than prior models
 - Developed mainly for banks!
- Model commercial operations
 - Well-formed transactions
 - A user should not manipulate data arbitrarily
 - Separation of duty among users
 - A person who creates or certifies a well-formed transaction <u>is not</u>
 <u>allowed</u> to execute it

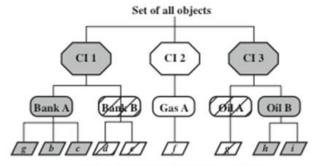

Clark-Wilson Concepts

- Constrained data items (CDIs)
 - Subject to strict integrity controls
- Unconstrained data items (UDIs)
 - Unchecked data items
- Integrity verification procedures (IVPs):
 - Intended to assure that all CDIs conform to some application-specific model of integrity and consistency
- Transformation procedures (TPs):
 - System transactions that change the set of CDIs from one consistent state to another

Chinese Wall Model


- Use discretionary and mandatory access to address integrity and confidentiality concerns
 - **Subjects**: Active entities that may wish to access protected objects
 - Information: Information organized into a hierarchy
 - Objects: Individual items of information, each concerning a single corporation
 - Dataset (DS): All objects that concern the same corporation
 - Conflict of interest (CI) class: All datasets whose corporations are in competition
 - Access rules: Rules for read and write access

Chinese Wall Model



Simple security rule: S can read O only if

- O is in the same DS as an object already accessed by S,
 OR
- O belongs to a CI from which S has not yet accessed any information
- *-property rule: S can write O only if
- S can read O according to the simple security rule,
 AND
- All objects that S can read are in the same DS as O.

(b) John has access to Bank A and Oil A

(c) Jane has access to Bank A and Oil B

sanitized data

Reading

Computer Security: Principles and Practice (2nd Edition), Stallings, Pearson HE, Inc. Chapter 13 Trusted Computing and Multilevel Security