
CS463/ECE424

University of Illinois

463.9 Information Flow

Information Flow
Formal Model (two classic papers)

2

[GoguenM82J Security Policies and Security Models, J. A. Goguen and J. Meseguer.
IEEE Security and Privacy 1982.
[DenningD77] Certification of Programs for Secure Information Flow, Dorothy E.
Denning and Peter J. Denning. CACM 20(7), 1977.

• Downloadable financial planner software:

Example: Financial Planner

3

▪ Access control insufficient

▪ Encryption necessary, but also insufficient

Accounting
Software

Network

Disk

Noninterference

4

Accounting
Software

▪ Private data does not interfere with network communication

▪ Baseline confidentiality policy

Network

Disk

• Downloadable financial planner software:

Model of Noninterference

• Represent noninterference as a relation
between groups of users and commands

• Users in group G do not interfere with those
in group G’ if the state seen by G’ is not
affected by the commands executed by
members of G

• Example: hotel rooms
– Infer people’s activities based on side channels

[GoguenM82
J

[GoguenM82J Security Policies and Security Models, J. A. Goguen and J. Meseguer. IEEE Security and Privacy 1982.

State Automaton

• U – Users

• S – States

• C – Commands

• Out – Outputs

• do : S × U × C → S – state transition function
– What does the user have to “do” to go from state 1 to state 2

• out : S × U → Out – output function
– What is the “output” the user sees at a particular state

• s0 – initial machine state

6

Capability System

• U, S, Out – users, states, commands, and outputs as before

• CapT – Capability tables (defines permissions available to users)
– Not all users are equal!

• SC – State commands

• CC – Capability commands

• out : S × (CapT × U) → Out
– (CapT × U) denotes a user with a particular permission level

• do : S × SC × (CapT × U) → S
– Earlier, we had -- do : S × C × U → S

7

Capability System: New function

• cdo : (CapT × U) × CC → CapT – Capability selection function
– Give users a new permission or update the users’ permissions

• s0 ∈ S and t0 ∈ CapT – Initial state and capability tables

8

Transition Function

• C = SC ⊎ CC - Commands
• csdo : S × (CapT × U) × C → S × CapT

– Combining do and cdo
– csdo(s,t,u,c) = (do(s,t,u,c),t) if c ∈ SC
– csdo(s,t,u,c) = (s,cdo(s,t,u,c)) if c ∈ CC

• csdo* : S × CapT × (U × C)* → S × CapT
– csdo*(s,t,nil) = (s,t)
– If w is a sequence of “n” (u,c) i.e.,(𝑢, 𝑐)𝑛 then

o csdo*(s,t,w. (u,c)) = csdo(csdo*(s,t,w),u,c)

• [[w]] = csdo*(s0,t0,w) = some (s,t)
• [[w]]u = out([[w]],u)

9

Chaining

Output the states
visible to user u

Projection

Let G ⊆ U (some users G in U)

and A ⊆ C (some commands in C)

and w ∈ (U × C)* (some sequence of user issued commands)

• PG(w) = subsequence of w obtained by eliminating pairs (u,c)
where u ∈ G

• PA(w) = subsequence of w obtained by eliminating pairs (u,c)
where c ∈ A

• PG,A(w) = subsequence of w obtained by eliminating pairs (u,c)
where u ∈ G and c ∈ A

10

Define Noninterference G :| G’
G does not interferer with G’

• M is a state machine and G, G’ ⊆ U and A ⊆ C

• G :| G’ iff ∀ w ∈ (U × C)*. ∀ u ∈ G’. [[w]]u = [[pG(w)]]u

• A :| G iff ∀ w ∈ (U × C)*. ∀ u ∈ G. [[w]]u = [[pA(w)]]u

• A,G :| G’ iff ∀ w ∈ (U × C)*. ∀ u ∈ G’. [[w]]u = [[pA,G(w)]]u

11

Security Policies

• Noninterference assertions have the forms

G :| G’

A :| G

A,G :| G’

• A security policy is a set of noninterference assertions

12

Example 1: Isolation around User

• A :| {u}

• The commands in A do not interfere with the state of user u

13

Example 2: Multilevel Security (MLS) and BLP
Model

• Define Level : U → L
– Assignment of security levels in L

• Above(λ) = { u ∈ U | λ ⊑ Level(u)}

• Below(λ) = { u ∈ U | Level(u) ⊑ λ}

• M is multi-level secure with respect to
L if, for all λ ⊏ λ’ in L, Above(λ’) :|
Below(λ)

14

Secret

Unclassified

Top Secret

Levels L ⊑

Less than or equal to

Recall: No write down!

MLS Continued: Invisibility

• G is invisible if G :| Gc where Gc is the
complement of G in U

• Proposition 1: If M,L is multi-level secure, then
Above(λ) is invisible for every λ ∈ L.

15

Secret

Unclassified

Top Secret

Levels L ⊑

G

Gc

Example 4: Isolation (Stronger Invisibility)

• A group of users G is isolated if: G :| Gc and Gc :| G.

• A system is completely isolated if every user in U is isolated.

16

G

Gc

Example 5: Channel Control

• View a channel as a set of commands A

• We can assert that groups of users G and G’ can only
communicate through channel A with the following two
noninterference assertions:

Ac,G :| G’ : commands not in A can’t enable flow b/w G and G’

Ac,G’ :| G : commands not in A can’t enable flow b/w G’ and G

17

Example 6: Information Flow

18

u u’

u2

u1

A1

A

A2

u’,u1,u2 :| u

u1,u2 :| u’

u1 :| u2

u2 :| u1

Ac,u :| {u’,u1,u2}

A1
c,u’ :| {u1}

A2
c,u’ :| {u2}

Look backward!!

Example 7: Security Officer

• Let A be the set of commands that can change the security
policy

• seco ∈ U is the only individual permitted to use these
commands to make changes

• This is expressed by the following policy: A, {seco}c :| U

19

Entropy and Information Flow

• It is possible to analyze information flows in programs with an
information theory foundation

• Intuition: info flows from x to y as a result of a sequence of
commands c if
– you can deduce information about x before c

– from the value in y after c

20

[DenningD77] Certification of Programs for Secure Information Flow, Dorothy E. Denning and Peter J.

Denning. CACM 20(7), 1977. http://seclab.uiuc.edu/docs/DenningD77.pdf

x y
c

Example 1

• y := x (assign value x to variable y)

– If we learn y, then we know x

– Clearly information flows from x to y

21

Example 2

• Suppose we are given

r := x

r := r - r

y := 1 + r

• Does information flow from x to y?

• It does not, because r = 0 after the second command
– There is no information flowing from x to y

22

Example 3

• Consider this branching command:

if x = 1 then y := 0

else y := 1;

• If we find after this command that y is 0, then we know that x
was 1

• So information flowed from x to y

23

In class example

X = 25

IF SQRT(X) == 5:

 Y = 1

Y= 0

X = 30

IF SQRT(X) == 5:

 Y = 1

Y= 1

X = 30

IF SQRT(X) == 5:

 Y = 1

Else:

 Y= 1

NO NO NOLogic:

Comp: NO NO YES

Implicit Flow of Information

• Information flows from x to y without an explicit assignment of
the form y := f(x) where f(x) an arithmetic expression with
variable x

• Recall the example from previous slide:

if x = 1 then y := 0

else y := 1;

• So we must look for implicit flows of information to analyze
program

25

Conservative Automated Analysis of Flow

• Example 2 depends on an arithmetic property of subtraction

– “r – r = 0”

• It is impossible to take each such property into account when
doing an automated analysis

– Ultimately undecidable

• Hence an automated analysis will be a conservative
approximation of information flows

– All flows can be found (even if trivially!)

– Some non-flows (false positives) will be found

26

Compiler-Based Mechanisms

• Detect unauthorized information flows in a program during
compilation

• Analysis not precise (may have false positives), but secure

– If a flow could violate policy (but may not), it is unauthorized

– No unauthorized path along which information could flow remains
undetected

• Set of statements certified with respect to information flow
policy if flows in set of statements do not violate that policy

27
[DenningD77
]

If a variable contains high-security

information, does the information

leak to low-security variables?

Example

if x = 1 then y := a else y := b;

• Info flows from x and a to y, or from x and b to y

• Certified only if
– information from the security class x of x is allowed to flow into the security class y of

y and

– similar conditions hold for a and b relative to y.

• Write: x ≤ y and a ≤ y and b ≤ y
– Note flows for both branches must be true unless compiler can determine that

one branch will never be taken

28

x is the security
class of x

Declarations

x: int class {A,B}

• Means x is an integer variable with security class at least lub{
A, B } so lub{ A, B } ≤ x.

• Basic case is two security classes, High and Low.

29

“lub”: least upper
bound

Assignment Statements

x := y + z;

• Information flows from y, z to x

• this requires lub{y, z } ≤ x

More generally:

y := f(x1, …, xn)

• Require lub{ x1, …, xn } ≤ y
30

Compound Statements

x := y + z;

a := b * c – x;

• First statement: lub{y, z } ≤ x

• Second statement: lub{b, c, x } ≤ a

• So, both must hold (i.e., be secure)

More generally:

S1; … Sn;

• Each individual Si must be secure
31

Iterative Statements

while i < n do

begin a[i] := b[i]; i := i + 1; end

• Same ideas as for “if”, but must terminate

More generally:
while f(x1, …, xn) do S;

• S must be secure

• lub{ x1, …, xn } ≤ glb{y | y target of an assignment in S }

• Loop must terminate

32

“glb”: greatest
lower bound

Conditional Statements

if x + y < z

then a := b

else d := b * c – x; end

• The statement executed reveals information about x, y, z, so lub{ x, y, z }
≤ glb{ a, d }

More generally:

if f(x1, …, xn) then S1 else S2; end

• S1, S2 must be secure

• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S1, S2 }

33

Need to Handle More

• Procedures

• Arrays

• Goto Statements

• Exceptions

• Infinite loops

• Concurrency

• Etc

35

Reading

• [Bishop03] Computer Security Art and Science, Matt Bishop, Addison Wesley, 2003.

– Chapter 8 up to the beginning of 8.2.1.

– Chapter 16 sections 16.1 and 16.3

• [GoguenM82J Security Policies and Security Models, J. A. Goguen and J. Meseguer.
IEEE Security and Privacy 1982.

• [DenningD77] Certification of Programs for Secure Information Flow, Dorothy E.
Denning and Peter J. Denning. CACM 20(7), 1977.

36

Case Studies

Consider the security officer in example 7:

seco ∈ U is the only individual permitted

to use these commands to make changes

Shouldn’t the officer see audit information

from the users who attempt to execute

security commands?

37

Audit Secret Communication

A general tells his army that if they see a
green flag they should attack from the left
but if they see a red flag they should attack
from the right.

The general raises the green flag and the
enemy forces see this.

Did the signal “interfere” with the enemy?

	Default Section
	Slide 1: 463.9 Information Flow

	intro
	Slide 2: Information Flow Formal Model (two classic papers)
	Slide 3: Example: Financial Planner
	Slide 4: Noninterference
	Slide 5: Model of Noninterference
	Slide 6: State Automaton
	Slide 7: Capability System
	Slide 8: Capability System: New function
	Slide 9: Transition Function
	Slide 10: Projection
	Slide 11: Define Noninterference G :| G’ G does not interferer with G’
	Slide 12: Security Policies
	Slide 13: Example 1: Isolation around User
	Slide 14: Example 2: Multilevel Security (MLS) and BLP Model
	Slide 15: MLS Continued: Invisibility
	Slide 16: Example 4: Isolation (Stronger Invisibility)
	Slide 17: Example 5: Channel Control
	Slide 18: Example 6: Information Flow
	Slide 19: Example 7: Security Officer
	Slide 20: Entropy and Information Flow
	Slide 21: Example 1
	Slide 22: Example 2
	Slide 23: Example 3
	Slide 24: In class example
	Slide 25: Implicit Flow of Information
	Slide 26: Conservative Automated Analysis of Flow
	Slide 27: Compiler-Based Mechanisms
	Slide 28: Example
	Slide 29: Declarations
	Slide 30: Assignment Statements
	Slide 31: Compound Statements
	Slide 32: Iterative Statements
	Slide 33: Conditional Statements
	Slide 34
	Slide 35: Need to Handle More
	Slide 36: Reading
	Slide 37: Case Studies

