import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.impute import SimpleImputer diabetes_df = pd.read_csv("diabetes.csv") print("\n数据信息:") diabetes_df.info() X = diabetes_df.drop("Outcome", axis=1) y = diabetes_df["Outcome"] feature_names = X.columns.tolist() target_names = ["No Diabetes", "Diabetes"] # 这些列中的 0 值不合理,应视为缺失 cols_with_zeros_as_missing = [ "Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI", ] # 将这些列中的 0 替换为 NaN X[cols_with_zeros_as_missing] = X[cols_with_zeros_as_missing].replace(0, np.nan) print("\n替换 0 值为 NaN 后,每列的 NaN 数量:") print(X.isnull().sum()) # 使用中位数填充 NaN (因为这些特征可能偏态分布,中位数比均值更稳健) imputer = SimpleImputer(strategy="median") X_imputed = imputer.fit_transform(X) # 将填充后的数据转回 DataFrame,保留列名 X = pd.DataFrame(X_imputed, columns=feature_names) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=42, stratify=y ) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) k = 11 knn = KNeighborsClassifier(n_neighbors=k, weights="distance") # 尝试加权 knn.fit(X_train_scaled, y_train) y_pred = knn.predict(X_test_scaled) accuracy = accuracy_score(y_test, y_pred) conf_matrix = confusion_matrix(y_test, y_pred) class_report = classification_report(y_test, y_pred, target_names=target_names) print("\n") print(f"准确率: {accuracy:.4f}") print("\n混淆矩阵:") print(conf_matrix) print("\n分类报告:") print(class_report)