

Introduction

(ε, δ) -Differential Privacy

A randomized algorithm $\mathcal{M}: \mathcal{X}^n \times \mathcal{Y}^n \to \mathcal{Z}$ is (ε, δ) -differential private if, for any pair of neighboring datasets $\mathcal{D} \sim \mathcal{D}'$ that differ in one data point, and for any subset $\mathcal{S} \subseteq \mathcal{Z}$, we have

 $\Pr\left[\mathcal{M}(\mathcal{D}) \in \mathcal{S}\right] \le e^{\varepsilon} \cdot \Pr\left[\mathcal{M}(\mathcal{D}') \in \mathcal{S}\right] + \delta.$

Stochastic Convex Optimization (SCO) under a Quantile Loss

The goal is to output a high-quality estimator $\widehat{\theta} := \arg \min_{\theta} \widehat{\mathcal{L}}(\theta; \mathcal{D})$, where $\widehat{\mathcal{L}}(\boldsymbol{\theta}; \mathcal{D}) := \frac{1}{n} \cdot \sum_{i=1}^{n} c(y_i - \langle \boldsymbol{\theta}, \boldsymbol{x} \rangle)$ is the Empiricak Risk Minimization (ERM) problem under a quantile loss.

A quantile loss function allows imposing asymmetric weights on positive or negative values of u, and provides insights into distributional relationships between feature \boldsymbol{x} and dependent variable y.

Research Question & Challenges

We are interested in designing DP algorithms that have provable privacy and performance guarantees for DP-SCO under a quantile loss function. However, the quantile loss is nonsmooth, which will lead to an unstable estimator and prevent gradient-based optimization methods from being efficient.

Contributions

- We adopt **convolution smoothing** to address the nonsmoothness issue. For DP-SCO under a quantile loss, convolution smoothing **outperforms** existing methods such as Moreau Envelope.
- We find that with convolution-smoothed functions, both Gradient Perturbation and Objective Perturbation can, under mild assumptions, achieve optimal excess generalization risks

$$\mathcal{L}(\widehat{\boldsymbol{\theta}}_{h}^{\pi}; \mathbb{P}) - \min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}; \mathbb{P}) \leq \mathcal{O}\left(\frac{1}{\sqrt{n}} + \frac{\sqrt{d\ln(1/\delta)}}{n\varepsilon}\right), \quad \forall \mathbb{P}$$

We derive an upper bound on Objective Perturbation estimator's error:

$$\mathbb{E}_{\mathsf{OP}}\left[\left\|\widehat{\boldsymbol{\theta}}_{h}^{\mathsf{OP}} - \boldsymbol{\theta}^{*}\right\|_{2}\right] \lesssim \frac{1}{\rho_{1}\underline{f}} \cdot \left(\sqrt{\frac{d}{n}} + \sqrt{\frac{d\ln\left(1/\delta\right)}{n\varepsilon}}\right)$$

Differentially Private Stochastic Convex Optimization under a Quantile Loss Function

Du Chen¹, Geoffrey A. Chua¹

¹Nanyang Business School, Nanyang Technological University

DP Algorithms

Main Idea: Convolution Smoothing then Solve Private ERM

Our approach relies on convolution smoothing:

(convolution smoothing) $c_h(u) := (c * K_h)(u) = \int_{-\infty}^{\infty} c(v) K_h(u-v) dv$,

where $K_h(\cdot) := K(\cdot/h)/h$ is an adjusted kernel function parameterized by bandwidth h > 0, and $K(\cdot)$ is a kernel function. Intuitively, the value $c_h(u)$ is a weighted average over u's neighbors, and the weights are given by the adjusted kernel function $K_h(\cdot)$ so that a closer neighbor has a higher weight.

Algo1: Gradient Perturbation (DP-SGD): We follow classic DP-SGD:

$$\widehat{\boldsymbol{\theta}}_{h,t+1} \leftarrow \widehat{\boldsymbol{\theta}}_{h,t} - \eta \cdot (\nabla \ell_h(\widehat{\boldsymbol{\theta}}_{h,t}; \boldsymbol{x}_{(t)}, y_{(t)}) + \boldsymbol{w}_t),$$

where $\boldsymbol{w}_t \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$ and $\sigma^2 \asymp \ln{(1/\delta)}/\varepsilon^2$

Algo2: Objective Perturbation (OP): let $\boldsymbol{b} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$ and $\sigma^2 \asymp (\ln(1/\delta) + 1)$ $\varepsilon)/\varepsilon^2$, then $(\boldsymbol{h} \boldsymbol{A})$

$$\widehat{\boldsymbol{\theta}}_{h}^{\mathsf{OP}} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^{d}} \widehat{\mathcal{L}}_{h}(\boldsymbol{\theta}; \mathcal{D}) + \lambda \, \|\boldsymbol{\theta}\|_{2}^{2} + \frac{\langle \boldsymbol{\theta}, \boldsymbol{\theta}}{n}$$

Comparison between Convolution Smoothing and Moreau Envelope:

(Moreau Envelope) $c_{\beta}(u) := \inf_{v} \{ c(v) + \frac{\beta}{2} \| u - v \|_{2}^{2} \}.$

	Convolution Smoothing (ours)	Moreau Envelope
Flexibility	kernel $K(\cdot)$ & bandwidth h	smoothness param β
Approx. from	above	below
Tolerate outliers?	\checkmark	×

Table 1. Comparison between Convolution Smoothing and Moreau Envelope

Theoretical Results

Both algorithms are (ε, δ) -DP.

Optimal Excess Generalization Risk

By setting proper algorithms' parameters, we can achieve optimal excess generalization risk:

$$\mathcal{L}(\widehat{\boldsymbol{\theta}}_{h}^{\pi}; \mathbb{P}) - \min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}; \mathbb{P}) \leq \mathcal{O}\left(\frac{1}{\sqrt{n}} + \frac{\sqrt{d\ln\left(1/\delta\right)}}{n\varepsilon}\right), \quad \forall \mathbb{P},$$

where π can be DP-SGD or OP. When running OP, DP parameter should satisfy $\varepsilon^4 + d \ln (1/\delta) \varepsilon^2 \ge \Omega(1/n)$ to ensure optimal rates.

Estimation Accuracy

Assume privacy parameter $\delta \simeq n^{-w}$ for some w > 0. Running OP with proper algorithm parameters yields

$$\mathbb{E}_{\mathsf{OP}}\left[\left\|\widehat{\boldsymbol{\theta}}_{h}^{\mathsf{OP}} - \boldsymbol{\theta}^{*}\right\|_{2}\right] \lesssim \frac{1}{\rho_{1}\underline{f}} \cdot \left(\sqrt{\frac{d + \ln\left(1/\gamma\right)}{n}} + \sqrt{\frac{d \ln\left(1/\delta\right)}{n\varepsilon}}\right),$$

with probability at least $1 - \gamma, \forall \gamma \in (0, 1)$ over the random draw of dataset \mathcal{D} , where $\rho_1 := \lambda_{\min}(\Sigma) > 0$ and f > 0 are parameters of the groundtruth data generating process.

Figure 4. (d=3) Excess generalization risks. Groundtruth $y = 10 + 5x_1 - 2x_2 + \epsilon$, where $(x_1, x_2) \sim \mathcal{N}(\mathbf{0}, \begin{pmatrix} 2^{2,0} \\ 0.3^2 \end{pmatrix})$, and $\epsilon \sim \mathcal{N}(0, 3^2)$. Quantile r = 0.7, privacy param $\delta = 10^{-2}$

Figure 5. (d=51) Excess generalization risks. Groundtruth $y = 10 + \langle \boldsymbol{\theta}, \boldsymbol{x} \rangle + \epsilon, \boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{x}}, \Sigma_{\boldsymbol{x}})$ with mean $\boldsymbol{\mu}_{\boldsymbol{x}} = [0, \dots, 0] \in \mathbb{R}^{50}$ and covariance matrix $\Sigma_{\boldsymbol{x}} = Diag([\frac{1}{\sqrt{50}}, \dots, \frac{1}{\sqrt{50}}]); \boldsymbol{\theta}_{[1:50]} \in \mathbb{R}^{50}$ take values ascendingly from [-2, 5] with even steps, and $\epsilon \sim \mathcal{N}(0, 3^2)$. Quantile r = 0.7, privacy param $\delta = 10^{-2}$

Experiments