MAT315 (Summer 2022) Notes

Zhongmang Cheng

August 18, 2022

Fundamentals

Definition (divides): $a \mid b$ if and only if $b = k \cdot a$ for some integer k. $a \mid 0, a \mid a, a \mid -a, 1 \mid a$ for every a.

Definition (fully divides): $p^e \parallel a$ if $p^e \parallel a$ but $p^{e+1} \nmid a$. $p^{\alpha} \mid a$ and $p^{\beta} \mid b \implies p^{\alpha+\beta} \mid a b, p^{\alpha-\beta} \mid b \frac{a}{b}$

Division Algorithm: If $b \neq 0$, then there are unique integers k and r such that: $a = k \cdot b + r$ and $0 \leq r < |b|$.

Fundamental Theorem of Arithmetic: Every $n \geq 2$ has a prime factorization $n =$ $p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$ where p_i are distinct primes and a_i are positive integers. This factorization is unique up to re-ordering.

Dirichlet's Theorem: There are infinitely many primes of the form $ak + b$ if and only if $(a, b) = 1$.

Diophantine Equation: $ax + by = c$ has solution if and only if $(a, b) \mid c$. The set of all solution is:

> ${x \in \mathbb{Z} : x_0 + t \cdot \frac{m}{(m\omega)}}$ $\{\frac{m}{(m,a)}\}$ or $\{x \in \mathbb{Z} : x = x_0 \pmod{\frac{m}{(m,a)}}\}$

Modular Arithmetic's

If $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then:

- $a + b \equiv c + d \pmod{n}$
- $ab \equiv cd \pmod{n}$
- $a^k \equiv c^k \pmod{n}$ where $k \in \mathbb{N}$

Suppose $d \ge 1$ and $d \mid m$, then $a \equiv b \pmod{m} \implies a \equiv b \pmod{d}$ Suppose $c \geq 0$, then $a \equiv b \pmod{m} \implies ac \equiv bc \pmod{mc}$ $ax \equiv ay \pmod{m} \implies x \equiv y \pmod{\frac{m}{(m,a)}}$

CRT and related conclusions

Chinese Remainder Theorem: $x \equiv a_1 \pmod{m_1}$, $x \equiv a_2 \pmod{m_2 \cdots x} \equiv a_k \pmod{m_k}$ with $(m_i, m_j) = 1$ for all $i \neq j$ has a unique solution $x \equiv a \pmod{m_1 m_2 \cdots m_k}$ in $\mathbb{Z}_{m_1 m_2 \cdots m_k}$ for some a.

 $x \equiv a \pmod{m_1 m_2} \implies x \equiv a \pmod{m_1}, x \equiv a \pmod{m_2}$ $x \equiv a \pmod{m_1}, x \equiv a \pmod{m_2} \implies x \equiv a \pmod{m_1, m_2}$

 $x \equiv a_1 \pmod{m_1}$, $x \equiv a_2 \pmod{m_2} \implies x$ has 0 or 1 solution in $\mathbb{Z}_{[m_1,m_2]}$ $x \equiv a_1 \pmod{m_1}, x \equiv a_2 \pmod{m_2}, (m_1, m_2) = 1 \implies x$ has unique solution in $\mathbb{Z}_{m_1 m_2}$

x has n_1 possible values mod m_1 , n_2 possible values mod m_2 , $(m_1, m_2) = 1$ \implies x has n_1n_2 possible values in $\mathbb{Z}_{m_1m_2}$

FLT and related applications

Fermat Little Theorem: if a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$. $a^{p-1} \equiv 1 \pmod{p}$ for $(a, p) = 1$ where p is a prime. $a^p \equiv a \pmod{p}$ for all a where p is a prime.

Wilson's Theorem: $n \geq 2$ is a prime if and only if $(n-1)! \equiv -1 \pmod{n}$.

Primality Test: "*n* passes base *a* test" if $a^n \equiv a \pmod{n}$

Definition (pseudo-prime): a composite number n such that $2^n \equiv 2 \pmod{n}$. If p is an odd prime, then $x^2 + 1 \equiv 0 \pmod{p}$ has a solution if and only if $p \equiv 1 \pmod{4}$.

Polynomials

Let $p(x)$ be a polynomial with integer coefficients, then: $a \equiv b \pmod{n} \implies p(a) \equiv p(b) \pmod{n}$

Lagrange Theorem: $f(x) = a_d x^d + a_{d-1} x^{d-1} \cdots a_1 x + a_0$ is a polynomial with integer coefficients such that $a_i \not\equiv 0 \pmod{p}$ for at least one *i*. Then, $f(x) \equiv 0 \pmod{p}$ has at most d solutions mod p. (If $f(x) = a_d x^d + a_{d-1} x^{d-1} \cdots a_1 x + a_0$ has more than d solutions mod p, then $a_i \equiv 0 \pmod{p}$ for all *i*.)

Remark: $f(a) \equiv 0 \pmod{p} \implies f(x) \equiv (x-a)g(x) \pmod{p}$

 $x^a - 1 = (x - 1)(x^{a-1} + x^{a-2} \cdots + x + 1)$ $x^{2a+1} + 1 = (x+1)(x^{2a} - x^{2a-1} + x^{2a-2} \cdots - x + 1)$ If $2^m + 1$ is prime, then $m = 2^n$ for some n If $2^m - 1$ is prime, then m must be prime

Hensel's Lemma: Suppose $f(a) = 0 \pmod{p}$, then:

- if $f'(a) \neq 0 \pmod{p}$, then a can be lifted uniquely to p^2 .
- if $f'(a) \equiv 0 \pmod{p}$ and $\frac{f(a)}{p} \neq 0 \pmod{p}$, then a cannot be lifted uniquely to p^2 .
- if $f'(a) \equiv 0 \pmod{p}$ and $\frac{f(a)}{p} \equiv 0 \pmod{p}$, then a can be lifted to p solutions in p^2 .

Euler Function and Primitive Roots

Definition (unit): u is a unit mod n if it has an inverse. u has an inverse u^{-1} such that $u \cdot u^{-1} \equiv 1 \pmod{n}$ only if $(u, n) = 1$.

Definition (Euler Function): $\phi(n)$ represent the number of units in \mathbb{Z}_n .

Euler's Theorem: Suppose $(a, n) = 1$, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

 $\phi(p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}) = \phi(p_1^{a_1})\phi(p_2^{a_2})\cdots\phi(p_k^{a_k})$ and $\phi(p^k) = p^k \cdot (1 - \frac{1}{p})$ $(\frac{1}{p})$ for p prime, $k \geq 1$. $\phi(mn) = \phi(m)\phi(n)$ for $(m, n) = 1$.

Definition (primitive root):

g is a primitive root if $\{1, 2 \cdots, p-1\} \equiv \{g, g^2 \cdots, g^{p-1}\}\$ in \mathbb{Z}_p (generator for $(\mathbb{Z}_n)^{\times}$).

Definition (order):

The smallest postive integer k such that $u^k \equiv 1 \pmod{n}$, denoted by $ord_n(u)$.

Remark: $u^k \equiv 1 \pmod{n} \iff \text{ord}_n(u) \mid k$

A unit u is a primitive root (generates the complete set of $(\mathbb{Z}_p)^{\times}$) $\iff ord_n(u) = \phi(p)$. If g is a primitive root modulo p, then $g^k \equiv 1 \pmod{p} \iff p-1 \mid \phi(p)$. If g is a primitive root modulo p, then $ord_n(g^a) = \frac{\phi(n)}{\phi(n),a}$

Let $d | p - 1$ be positive, then there are exactly $\phi(d)$ units mod p of order d. The sum of all $\phi(m)$ such that m | n equals to n

There are $\phi(d)$ units of order d mod p when $d | p - 1$.

Existence and related lemmas: Z_n has a primitive root if and only if $n = 1, 2, 4$ or $n = p^m$ or $n = 2 \cdot p^m$ where $p \neq 2$ is prime.

- Let $m \geq 2$, if g is a primitive root mod p^m , then g is a primitive root mod p^{m+1} .
- Let n be odd, if q is a primitive root mod n and q is odd, then q is a primitive root mod 2n.
- If $n = a \cdot b$ with $(a, b) = 1$ and $a, b > 2$, then \mathbb{Z}_n has no primitive root.

Theorem: $ord_{2^n}(5) = 2^{n-2}$ **Theorem:** Units of \mathbb{Z}_{2^n} can be generated by two units: 5 and -1.

Applications in Cryptography

In the following context, we assume that x is the message we would like to encode, and m is the message we would like to decode. Also, we assume that finding the modulo inverse is an easy computation using Euclidean Algorithm.

Modular Exponential Cipher

Public information: p large prime Secret information: e where $(e, p - 1) = 1$ (Here e is the key)

To encode: compute $m \equiv x^e \pmod{p}$, send m. To decode: find the inverse f such that $e \cdot f \equiv 1 \pmod{p-1}$, computes $m^f \pmod{p}$.

Remark: $m^f \equiv (x^e)^f \equiv x^{ef} \equiv x^{(p-1)k+1} \equiv x \pmod{p}$

Diffie-Hellman Key Exchange

Public information: p large prime, g such that $1 < g < p$, and g^a , g^b Secret information: a only known by A, b only known by B (Here g^{ab} is the key)

A computes g^a (mod p) and send it to B. B computes g^b (mod p) and send it to A. A and B compute $(g^b)^a$ (mod p) and $(g^a)^b$ (mod p), where g^{ab} is the key. Then encode and decode as the previous method using the key.

RSA Public Key

Public information: e such that $(e,(p-1)(q-1))=1, N=p\cdot q$ Secret information: p and q large prime

To encode: compute $m \equiv x^e \pmod{pq}$, send m. To decode: find the inverse f such that $e \cdot f \equiv 1 \pmod{(p-1)(q-1)}$, computes $m^f \pmod{pq}$.

Remark: $m^f \equiv (x^e)^f \equiv x^{ef} \equiv x^{(p-1)(q-1)k+1} \equiv x^{\phi(pq)k+1} \equiv x \pmod{p}$

Quadratic Residue

Definition (Quadratic Residue): *n* is a positive integer, *a* is a unit in \mathbb{Z}_n . If $x^2 \equiv a \pmod{n}$ has a solution, then it's a quadratic residue (QR). Otherwise, it's a quadratic non-residue (QNR).

Legendre Symbol and related properties

Let p be an odd prime. $(\frac{a}{p}) = 1$ if a is QR, $(\frac{a}{p}) = -1$ if a is NQR, $(\frac{a}{p}) = 0$ if $a = 0 \pmod{p}$.

- $\bullet \ \left(\frac{1}{n}\right)$ $\binom{1}{p} = 1, \, \left(\frac{a}{p}\right) = \left(\frac{a^{-1}}{p}\right), \, \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right)$ $\frac{b}{p}$
- If g is a primitive root, then $\left(\frac{g^k}{n}\right)$ $\frac{q^k}{p}) = (-1)^k.$
- If a is a unit, then $\left(\frac{a^2}{n}\right)$ $\binom{a^2}{p} = 1, \, \big(\frac{a^2b}{p}\big)$ $\frac{2b}{p}) = (\frac{b}{p}).$
- There are $\frac{p-1}{2}$ QR, and $\frac{p-1}{2}$ QNR.

 $p \equiv 1 \pmod{4} \implies -1$ is a QR $p \equiv 3 \pmod{4} \implies -1$ is a QNR

Euler's Criterion: $\left(\frac{a}{n}\right)$ $\frac{a}{p}$) $\equiv a^{\frac{p-1}{2}} \pmod{p}$

Gauss' Lemma and conclusions Suppose a is a unit mod p, write each of $a, 2a \cdots, \frac{p-1}{2}$ $\frac{-1}{2}a$ between $-\frac{p-1}{2}$ $\frac{-1}{2}$ and $\frac{p-1}{2}$ mod p. Let *n* be the number of negative signs. Then $(\frac{a}{p}) = (-1)^n$.

 $\left(\frac{2}{n}\right)$ $\binom{2}{p}$ = 1 if $p \equiv 1, 7 \pmod{8}$ $\left(\frac{2}{n}\right)$ $\binom{2}{p}$ = -1 if $p \equiv 3, 5 \pmod{8}$ $\left(\frac{3}{n}\right)$ $\binom{3}{p}$ = 1 if $p = 1, 11 \pmod{12}$ $\left(\frac{3}{n}\right)$ $\binom{3}{p}$ = -1 if $p = 5, 7 \pmod{12}$

Law of Quadratic Reciprocity: Suppose $p \neq q$ are odd primes, then:

$$
\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right) \cdot \left(-1\right)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.
$$

Let $k \geq 3$, then a is a QR mod 2^k if and only if $a \equiv 1 \pmod{8}$.