import numpy as np class SimpleLinearRegression1: def __init__(self): """初始化Simple Linear Regression 模型""" self.a_ = None self.b_ = None #a和b不是用户送来的参数,是得出的结果 #x_train和y_train只用来提供训练,训练得出所需参数之后,数据就没用了 def fit(self, x_train, y_train): """根据训练数据集x_train,y_train训练Simple Linear Regression 模型""" assert x_train.ndim == 1, \ "Simple Linear Regressor can only solve simple feature training data" assert len(x_train) == len(y_train), \ "the size of x_train must be equal to the size of y_train" #算法实现代码 x_mean = np.mean(x_train) y_mean = np.mean(y_train) num = 0.0 d = 0.0 for x, y in zip(x_train, y_train): num += (x - x_mean) * (y - y_mean) d += (x - x_mean) ** 2 self.a_ = num / d self.b_ = y_mean - self.a_ * x_mean return self def predict(self, x_predict): """给定待预测数据集x_predict, 返回表示x_predict的结果向量""" assert x_predict.ndim == 1, \ "Simple Linear Regressor can only solve single feature training data" assert self.a_ is not None and self.b_ is not None, \ "must fit before predict" return np.array([self._predict(x) for x in x_predict]) def _predict(self, x_single): """给定单个待预测数据x_single, 返回x_single的预测结果值""" return self.a_ * x_single + self.b_ def __repr__(self): return "SimpleLinearRegression1()" class SimpleLinearRegression2: def __init__(self): """初始化Simple Linear Regression 模型""" self.a_ = None self.b_ = None #a和b不是用户送来的参数,是得出的结果 #x_train和y_train只用来提供训练,训练得出所需参数之后,数据就没用了 def fit(self, x_train, y_train): """根据训练数据集x_train,y_train训练Simple Linear Regression 模型""" assert x_train.ndim == 1, \ "Simple Linear Regressor can only solve simple feature training data" assert len(x_train) == len(y_train), \ "the size of x_train must be equal to the size of y_train" #算法实现代码 x_mean = np.mean(x_train) y_mean = np.mean(y_train) num = (x_train - x_mean).dot(y_train - y_mean) d = (x_train - x_mean).dot(x_train - x_mean) self.a_ = num / d self.b_ = y_mean - self.a_ * x_mean return self def predict(self, x_predict): """给定待预测数据集x_predict, 返回表示x_predict的结果向量""" assert x_predict.ndim == 1, \ "Simple Linear Regressor can only solve single feature training data" assert self.a_ is not None and self.b_ is not None, \ "must fit before predict" return np.array([self._predict(x) for x in x_predict]) def _predict(self, x_single): """给定单个待预测数据x_single, 返回x_single的预测结果值""" return self.a_ * x_single + self.b_ def __repr__(self): return "SimpleLinearRegression1()"