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(1 Random Variables & Probability Distributions
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Random Variables

o A random variable x is a variable that can take on different values
randomly

o Eg., Pr(x=x1)=0.1, Pr(x =x) = 0.3, etc.
o Technically, x is a function that maps events to a real values

o Must be coupled with a probability distribution P that specifies how
likely each value is

o x ~P(6) means “x has distribution P parametrized by 6"
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Probability Mass and Density Functions

o If x is discrete, P(x = x) denotes a probability mass function
Py(x) =Pr(x =x)
o E.g., the output of a fair dice has discrete uniform distribution with
P(x) =1/s
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Py(x) =Pr(x =x)
o E.g., the output of a fair dice has discrete uniform distribution with
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Probability Mass and Density Functions

o If x is discrete, P(x = x) denotes a probability mass function
Py(x) =Pr(x =x)
o E.g., the output of a fair dice has discrete uniform distribution with

P(x)=1/s
o If x is continuous, P(x = x) denotes a probability density function
px(x)

o Is px(x) a probability? No, it is "rate of increase in probability at x"

Pra <x<b)= /[ ]p(x)dx
a,b
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Probability Mass and Density Functions

o If x is discrete, P(x = x) denotes a probability mass function
Py(x) =Pr(x =x)
o E.g., the output of a fair dice has discrete uniform distribution with

P(x)=1/s
o If x is continuous, P(x = x) denotes a probability density function
px(x)

o Is px(x) a probability? No, it is "rate of increase in probability at x"

Pra <x<b)= /[ ]p(x)dx
a,b

o px(x) can be greater than 1

o E.g., a continuous uniform distribution within [a,b] has p(x) = /b—a if
x € [a,b]; 0 otherwise
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Marginal Probability

o Consider a probability distribution over a set of variables, e.g., P(x,y)

o The probability distribution over the subset of random variables called
the marginal probability distribution:

Plx=2) =Y P(xy) o [plry)dy

o Also called the sum rule of probability
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Conditional Probability

o Conditional density function:
P(x=x[y=y)=

o Defined only when P(y =y) >0
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Conditional Probability

o Conditional density function:
P(x=x[y=y)=

o Defined only when P(y =y) >0
o Product rule of probability:

P x() = POILP () [V, x60)

PR )

o E.g., P(a,b,c) =P(a|b,c)P(b|c)P(c)
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Independence and Conditional Independence

o We say random variables x is independent with y iff
P(x|y) =P(x)

o Implies P(x,y) = P(x)P(y)
o Denoted by x Ly
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Independence and Conditional Independence

o We say random variables x is independent with y iff
P(x|y) =P(x)

o Implies P(x,y) =P(x)P(y)
o Denoted by x Ly

o We say random variables x is conditionally independent with y
given z iff
P(x[y,z) = P(x|z)

o Implies P(x,y|z) = P(x|z)P(y|z)
o Denoted by x L y|z
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Expectation

o The expectation (or expected value or mean) of some function f
with respect to x is the “average” value that f takes on:!

Ever 0] = L) or [ prelf (e =

1The bracket [-] here is used to distinguish the parentheses inside and has nothing to
do with functionals.
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o Expectation is linear: Elaf(x)+ b] = aE[f(x)] + b for deterministic a
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Expectation

o The expectation (or expected value or mean) of some function f
with respect to x is the “average” value that f takes on:!

Ever 0] = L) or [ prelf (e =

o Expectation is linear: Elaf(x)+ b] = aE[f(x)] + b for deterministic a
and b

o E[E[f(x)]] = E[f(x)], as E[f(x)] is deterministic

1The bracket [-] here is used to distinguish the parentheses inside and has nothing to

do with functionals.
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Expectation over Multiple Variables

o Defined over the join probability distribution, e.g.,

Bl y)] = L Payls s (63) or [ puy(ef(xy)dsay

x.y *
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Expectation over Multiple Variables

o Defined over the join probability distribution, e.g.,

Bl y)] = L Payls s (63) or [ puy(ef(xy)dsay

X,y x
o E[f(x) |y =y] = [px|y(x|y)f(x)dx is called the conditional

expectation
o E[f(x)g(y)] = E[f(x)]E[g(y)] if x and y are independent [Proof]
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Variance

o The variance measures how much the values of f deviate from its
expected value when seeing different values of x:

Var[f(x)] = E[(f(x) — E[f(x)])?] = o2,

o Oy is called the standard deviation
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Variance

o The variance measures how much the values of f deviate from its
expected value when seeing different values of x:

Var[f(x)] = E[(f(x) — E[f(x)])?] = o2,

o Oy is called the standard deviation

o Var[af(x) + b] = a*Var[f(x)] for deterministic a and b [Proof]
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Covariance |

o Covariance gives some sense of how much two values are linearly
related to each other

Covlf(x),g(y)] = E[(f(x) —E[f(x)])(g(y) — E[2(y)])]

o If sign positive, both variables tend to take on high values

simultaneously
o If sign negative, one variable tend to take on high value while the other

taking on low one
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Covariance |

o Covariance gives some sense of how much two values are linearly
related to each other

Covlf(x),g(y)] = E[(f(x) —E[f(x)])(g(y) — E[2(y)])]

o If sign positive, both variables tend to take on high values

simultaneously
o If sign negative, one variable tend to take on high value while the other

taking on low one
o If x and y are independent, then Cov(x,y) =0 [Proof]

o The converse is not true as X and Y may be related in a nonlinear way
o E.g., y=sin(x) and x ~ Uniform(—x, )
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Covariance |l

o Var(ax +by) = a>Var(x) + b*Var(y) + 2abCov(x,y) [Proof]
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Covariance |l

o Var(ax +by) = a>Var(x) + b*Var(y) + 2abCov(x,y) [Proof]
o Var(x+y) = Var(x) + Var(y) if x and y are independent

o Cov(ax+b,cy+d) = acCov(x,y) [Proof]
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Covariance |l

o Var(ax +by) = a>Var(x) + b*Var(y) + 2abCov(x,y) [Proof]
o Var(x+y) = Var(x) + Var(y) if x and y are independent

o Cov(ax+b,cy+d) = acCov(x,y) [Proof]

o Cov(ax+by,cw+dv) =
acCov(x,w) +adCov(x, V) + bcCov(y,w) 4+ bdCov(y,v) [Proof]
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(@ Multivariate & Derived Random Variables
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Multivariate Random Variables |
o A multivariate random variable is denoted by x = [xy,---,x4] "

o Normally, x;'s (attributes or variables or features) are dependent
with each other
o P(x) is a joint distribution of xj,-+ x4
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Multivariate Random Variables |

o A multivariate random variable is denoted by x = [xy,---,x4] "

o Normally, x;'s (attributes or variables or features) are dependent
with each other

o P(x) is a joint distribution of xj,-+ x4
o The mean of x is defined as p, = E(x) = [ty,,* , lx,] "

o The covariance matrix of x is defined as:

2
Oy, Oxixa " Oxyxy
Ox, x O-xz 0 Oxyxy
X =
G G cee 62
Xd ;X1 Xd X2 Xd

° GX,'.,X]' = COV(Xi7Xj) [( — Hx; )( uxj)} - (X Xj) .ux,'.uij
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Multivariate Random Variables |

o A multivariate random variable is denoted by x = [xy,---,x4] "

o Normally, x;'s (attributes or variables or features) are dependent
with each other
o P(x) is a joint distribution of xj,-+ x4

o The mean of x is defined as p, = E(x) = [ty,,* , lx,] "

o The covariance matrix of x is defined as:

2
le lez,xz 0 Oxyxy
Ox, x O-xz 0 Oxyxy
z‘4x = . . .
G G cee 62
Xd:X1 Xd X2 Xd

o Guyny = Cov(x1, %) = El(xi — ix,) (5 — k)] = E(xi%) — s b
° Ex=COV(X>=E[(x—ux)(x—ux) ] =E(xx") —pypy
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Multivariate Random Variables |l

o Xy is always symmetric
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Multivariate Random Variables |l

o Xy is always symmetric
o Xy is always positive semidefinite [Homework]
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Multivariate Random Variables |l

o Xy is always symmetric
o Xy is always positive semidefinite [Homework]
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Multivariate Random Variables |l

Y« is always symmetric
Xy is always positive semidefinite [Homework]

Y« is nonsingular iff it is positive definite

© ©6 0 o

Y, is singular implies that x has either:

o Deterministic/independent/non-linearly dependent attributes causing
Z€ero rows, or
o Redundant attributes causing linear dependency between rows
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Derived Random Variables

Tx a random variable transformed from x

o Lety=1f(x;w)=w
o uy=Ew'x)=w'E(x)=wpu,

° Gy2 =w'Zw [Homework]
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(3 Bayes’ Rule & Statistics
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What Does Pr(x =x) Mean?

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Large-Scale ML, Fall 2016 19 / 76



What Does Pr(x =x) Mean?

@ Bayesian probability: it's a degree of belief or qualitative levels of
certainty
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What Does Pr(x =x) Mean?

@ Bayesian probability: it's a degree of belief or qualitative levels of
certainty

@ Frequentist probability: if we can draw samples of x, then the
proportion of frequency of samples having the value x is equal to
Pr(x =x)
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Bayes' Rule

_ PX|y)P(y) P(x|y)P(y)
Plylx) = P(x)  LP(x|y=y)P(y=y)

o Bayes' Rule is so important in statistics (and ML as well) such that
each term has a name:

(likelihood of y) X (priorof'y)
evidence

posteriorof y =
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Bayes' Rule

P(x|y)P(y) _ P(x|y)P(y)
P(x) LP(x|y =y)P(y =)

P(y[x) =

o Bayes' Rule is so important in statistics (and ML as well) such that
each term has a name:

(likelihood of y) X (priorof'y)
evidence

posteriorof y =

o Why is it so important?
o E.g., a doctor diagnoses you as having a disease by letting x be
“symptom” and y be “disease”
o P(x|y) and P(y) may be estimated from sample frequencies more easily
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Point Estimation

o Point estimation is the attempt to estimate some fixed but unknown
quantity 6 of a random variable by using sample data
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Point Estimation

o Point estimation is the attempt to estimate some fixed but unknown
quantity 6 of a random variable by using sample data

o Let {x(1),-.. x(} be a set of n independent and identically
distributed (i.i.d.) samples of a random variable x, a point estimator
or statistic is a function of the data:

o 0, is called the estimate of 6
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Sample Mean and Covariance

o Given X = [x(1) ... x(W]T € R"™* the i.i.d samples, what are the
estimates of the mean and covariance of x?
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Sample Mean and Covariance

o Given X = [x(1) ... x(W]T € R"™* the i.i.d samples, what are the
estimates of the mean and covariance of x?

o A sample mean:
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Sample Mean and Covariance

o Given X = [x(1) ... x(W]T € R"™* the i.i.d samples, what are the
estimates of the mean and covariance of x?

o A sample mean:
1 n
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Sample Mean and Covariance

o Given X = [x(1) ... x(W]T € R"™* the i.i.d samples, what are the
estimates of the mean and covariance of x?

o A sample mean:
1 n

A2 __ 1 () A () A
© Oxx; = o1 (X; 7“Xi)(xj *.ij)

o If each x) is centered (by subtracting fi, first), then £y = 1IxTx

Prob. & Info. Theory Large-Scale ML, Fall 2016
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(@ Application: Principal Components Analysis
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Principal Components Analysis (PCA) |

o Give a collection of data points X = {x(i)}f.\lzl, where x() € RP

o Suppose we want to lossily compress X, i.e., to find a function f such
that f(x()) =z() ¢ RX, where K < D

o How to keep the maximum info in X7
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Principal Components Analysis (PCA) Il

o Let x(0's be i.i.d. samples of a random variable x
o Let f be linear, i.e., f(x) = W'x for some W € RP*K
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Principal Components Analysis (PCA) Il

o Let x('s be i.i.d. samples of a random variable x

o Let f be linear, i.e., f(x) = W'x for some W € RP*K

o Principal Component Analysis (PCA) finds K orthonormal vectors
W= [wD), ... . wK)] such that the transformed variable z=W'x has

the most “spread out” attributes, i.e., each attribute z; = w)Tx has
the maximum variance Var(z;)

o wh ... w&) are called the principle components
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o Principal Component Analysis (PCA) finds K orthonormal vectors
W= [wD), ... . wK)] such that the transformed variable z=W'x has
the most “spread out” attributes, i.e., each attribute z; = w)Tx has
the maximum variance Var(z;)
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Principal Components Analysis (PCA) Il

o Let x('s be i.i.d. samples of a random variable x

o Let f be linear, i.e., f(x) = W'x for some W € RP*K

o Principal Component Analysis (PCA) finds K orthonormal vectors
W= [wD), ... . wK)] such that the transformed variable z=W'x has
the most “spread out” attributes, i.e., each attribute z; = w)Tx has
the maximum variance Var(z;)

o wh ... w&) are called the principle components
o Why w) ... .w&) need to be orthogonal with each other?

o Each w) keeps information that cannot be explained by others, so
together they preserve the most info

o Why [[w)|| =1 for all j?
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Principal Components Analysis (PCA) Il

o Let x('s be i.i.d. samples of a random variable x

o Let f be linear, i.e., f(x) = W'x for some W € RP*K

o Principal Component Analysis (PCA) finds K orthonormal vectors
W= [wD), ... . wK)] such that the transformed variable z=W'x has
the most “spread out” attributes, i.e., each attribute z; = w)Tx has
the maximum variance Var(z;)

o wh ... w&) are called the principle components
o Why w) ... .w&) need to be orthogonal with each other?

o Each w) keeps information that cannot be explained by others, so
together they preserve the most info

o Why [[w)|| =1 for all j?
o Only directions matter—we don’t want to maximize Var(z;) by finding
a long w\)
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Solving W |

o For simplicity, let's consider K =1 first
o How to evaluate Var(z;)?
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Solving W |

o For simplicity, let's consider K =1 first

o How to evaluate Var(z;)?
o Recall that z; =w)T

o How to get X7

x implies 67 = w1 Z,w(D) [Homework]
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Solving W |

o For simplicity, let's consider K =1 first

o How to evaluate Var(z;)?
o Recall that z; =w)T
o How to get X7
|

o An estimate: £y = LX'X (assuming x()'s are centered first)

x implies 67 = w1 Z,w(D) [Homework]
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Solving W |

o For simplicity, let's consider K =1 first

o How to evaluate Var(z;)?

mT 2

o Recall that z; = w(!)"x implies 62, = w()TE,w()) [Homework]

o How to get X7
o An estimate: £y = LX'X (assuming x()'s are centered first)

o Optimization problem to solve:

arg max wTXTXw() subject to [[w()|| =1
w()eRP
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o Recall that z; = w(!)"x implies 62, = w()TE,w()) [Homework]

o How to get X7
o An estimate: £y = LX'X (assuming x()'s are centered first)
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w() eRD
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Solving W |

o For simplicity, let's consider K =1 first

o How to evaluate Var(z;)?

nT 2

o Recall that z; = w(!)"x implies 62, = w()TE,w()) [Homework]

o How to get X7
o An estimate: £y = LX'X (assuming x()'s are centered first)

o Optimization problem to solve:

arg max wTXTXw() subject to [[w()|| =1
w()eRP

o XX is symmetric thus can be eigendecomposed

o By Rayleigh's Quotient, the optimal w(!) is given by the eigenvector of
X"X corresponding to the largest eigenvalue
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Solving W 1I

o Optimization problem for w(?)

arg max w?TXTXw® subject to |[w| =1 and w?Twl) =0
w@ eRP
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Solving W II

o Optimization problem for w(?)

arg max w?TXTXw® subject to |[w| =1 and w?Twl) =0
w@ eRP

o By Rayleigh's Quotient again, w®) is the eigenvector corresponding to
the 2-nd largest eigenvalue
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Solving W II

2).

o Optimization problem for w!

arg max w?TXTXw® subject to |[w| =1 and w?Twl) =0
w@ eRP

o By Rayleigh's Quotient again, w®) is the eigenvector corresponding to
the 2-nd largest eigenvalue

o For general case where K > 1, the w(!) ... .w(&) are eigenvectors of
X"X corresponding to the largest K eigenvalues
o Proof by induction [Proof]
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Visualization
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Figure: PCA learns a linear projection that aligns the direction of greatest

variance with the axes of the new space. With these new axes, the estimated
covariance matrix 3, = W' £, W € RK*K s always diagonal.
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Outline

(8 Technical Details of Random Variables
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Sure and Almost Sure Events

o Given a continuous random variable x, we have Pr(x =x) =0 for any
value x

o Will the event x = x occur?
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Sure and Almost Sure Events

o Given a continuous random variable x, we have Pr(x =x) =0 for any
value x
o Will the event x =x occur? Yes!

An event A happens surely if always occurs

©

An event A happens almost surely if Pr(A) =1 (e.g., Pr(x #x) =1)

(]
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Equality of Random Variables |

Definition (Equality in Distribution)

Two random variables x and y are equal in distribution iff
Pr(x <a)="Pr(y <a) for all a.

Definition (Almost Sure Equality)

Two random variables x and y are equal almost surely iff Pr(x =y) = 1.

v

Definition (Equality)
Two random variables x and y are equal iff they maps the same events to
same values.
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Equality of Random Variables |l

o What's the difference between the “equality in distribution” and
“almost sure equality?”
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Equality of Random Variables |l

o What's the difference between the “equality in distribution” and
“almost sure equality?”

o Almost sure equality implies equality in distribution, but converse not
true

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Large-Scale ML, Fall 2016 32/ 76



Equality of Random Variables |l

o What's the difference between the “equality in distribution” and
“almost sure equality?”
o Almost sure equality implies equality in distribution, but converse not
true
o E.g., let x and y be binary random variables and
Px(0) = Px(1) = Py(0) = Py(1) = 0.5
o They are equal in distribution
o But Pr(x=y)=05#1
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Convergence of Random Variables |

Definition (Convergence in Distribution)

A sequence of random variables {x"),x(?) ...} converges in distribution

to x iff lim, e P (x =x) =P(x =x)

Definition (Convergence in Probability)

A sequence of random variables {x"),x(?) ...} converges in probability
to x iff for any &€ > 0, lim, . Pr (]x" —x| < &) = 1.

Definition (Almost Sure Convergence)

A sequence of random variables {x(1),x?) ...} converges almost surely
to x iff Pr (limn_m x(n) = x) =1.
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Convergence of Random Variables Il

o What's the difference between the convergence “in probability” and
“almost surely?”
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Convergence of Random Variables Il

o What's the difference between the convergence “in probability” and
“almost surely?”

o Almost sure convergence implies convergence in probability, but
converse not true
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Convergence of Random Variables Il

o What's the difference between the convergence “in probability” and
“almost surely?”

o Almost sure convergence implies convergence in probability, but
converse not true

o lim, . Pr(|x —x| < &) = 1 leaves open the possibility that
|x(") —x| > & happens an infinite number of times

o Pr (limnﬁwx(”) =x) =1 guarantees that |x(") —x| > & almost surely
will not occur
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Distribution of Derived Variables |

o Suppose y = f(x) and f~! exists, does P(y =y) =P(x =f"1(y))
always hold?
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Distribution of Derived Variables |

(]

Suppose y = f(x) and f~! exists, does P(y =y) =P(x =f"1(y))
always hold? No, when x and y are continuous

©

Suppose x ~ Uniform(0, 1) is continuous and p(x) = ¢ for x € (0,1)
Let y = x/2 ~ Uniform(0, 1/2)
If py(y) = px(2y), then
/2 /2 1
/y py(y)dyz/ cody=5F#1

y=0 2

©

©

o Violates the axiom of probability
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Distribution of Derived Variables I
o Recall that Pr(y =y) = py(y)dy and Pr(x = x) = px(x)dx
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Distribution of Derived Variables I
o Recall that Pr(y =y) = py(y)dy and Pr(x = x) = px(x)dx

o Since f may distort space, we need to ensure that
[Py (f (x))dy| = |px(x)dx|
o We have

p0) =00 252 o o) =t | 252

)

o In previous example: py(y) =2-px(2y)

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Large-Scale ML, Fall 2016 36 / 76



Distribution of Derived Variables I
o Recall that Pr(y =y) = py(y)dy and Pr(x = x) = px(x)dx

o Since f may distort space, we need to ensure that
[Py (f (x))dy| = |px(x)dx|
o We have

or pu(e) =1 () |25

)

-1
py) =P (1)) \afay(”\ (

o In previous example: py(y) =2-px(2y)

o In multivariate case, we have

py() =px(f~' ) |det (J(FH) ()

where J(f~!)(v) is the Jacobian matrix of f~! at input y
o J(F) ()i = %' 0)/oy,
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Outline

(6 Common Probability Distributions
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Random Experiments

o The value of a random variable x can be think of as the outcome of an
random experiment

o Helps us define P(x)
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Bernoulli Distribution (Discrete)

o Let x € {0,1} be the outcome of tossing a coin, we have:

X

Bernoulli(x =x;p) = { p; fr=1 or p*(1—p)'-

1—p, otherwise
o Properties: [Proof]

o E(x)=p
o Var(x) =p(1-p)
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Categorical Distribution (Discrete)

o Let x € {l1,--- ,k} be the outcome of rolling a k-sided dice, we have:

k )
Categorical(x = x;p) = Hpil(x;x:’), where 17p =1
i=1
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Categorical Distribution (Discrete)

o Let x € {l1,--- ,k} be the outcome of rolling a k-sided dice, we have:

k )
Categorical(x = x;p) = Hpil(x;x:’), where 17p =1
i=1

o An extension of the Bernoulli distribution for k states
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Multinomial Distribution (Discrete)

o Let x € R¥ be a random vector where x; the number of the outcome i
after rolling a k-sided dice n times:

Multinomial(x =x;n,p) = Hp where 1"p=1and 1'x=n
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Multinomial Distribution (Discrete)

o Let x € R¥ be a random vector where x; the number of the outcome i
after rolling a k-sided dice n times:

Multinomial(x =x;n,p) = Hp where 1"p=1and 1'x=n

o Properties: [Proof]

o E(x)=np
o Var(x) = n (diag(p) —pp ")
(i.e., Var(x;) = np;(1 —p;) and Var(x;,x;) = —np;p;)
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Normal/Gaussian Distribution (Continuous)
Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately
normally/Gaussian distributed:

1 1
N (x=x;14,0%) = 3762 CXP (—w(x—,u)z> .
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Normal/Gaussian Distribution (Continuous)
Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately
normally/Gaussian distributed:

1 1
N (x=x;14,0%) = 3762 CXP (—w(x—,u)z> .

o Holds regardless of the original distributions of individual variables

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Large-Scale ML, Fall 2016

42 /76




Normal/Gaussian Distribution (Continuous)
Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately
normally/Gaussian distributed:

1 1
N (x=x;14,0%) = 3762 CXP (—w(x—,u)z> .

o Holds regardless of the original distributions of individual variables
o Uy = and 62 = o2
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Normal/Gaussian Distribution (Continuous)

Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately
normally/Gaussian distributed:

1 1
N (x=x;14,0%) = 3762 CXP (—w(x—,u)z> .

o Holds regardless of the original distributions of individual variables
o Uy = and 62 = o2

o To avoid inverting 6%, we can parametrize the distribution using the
precision f3:

N (x=xu,B7") = \/Zexp <_§ (x—u)2>
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Confidence Intervals

34.1% 34.1%

-30 —-20 -1lo K lo 20 30

Figure: Graph of .4 (u,c?).
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Confidence Intervals

34.1% 34.1%

-30 —-20 -1lo K lo 20 30

Figure: Graph of .4 (u,c?).

o We say the interval [u — 20,1 +20] has about the 95% confidence
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Why Is Gaussian Distribution So Common?
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Why Is Gaussian Distribution So Common?

@ It can model complicate systems
o E.g., Gaussian white noise
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Why Is Gaussian Distribution So Common?

@ It can model complicate systems
o E.g., Gaussian white noise

@ Out of all possible probability distributions (over real numbers) with
the same variance, it encodes the maximum amount of uncertainty

o So, we insert the least amount of prior knowledge into a model
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Why Is Gaussian Distribution So Common?

@ It can model complicate systems
o E.g., Gaussian white noise

@ Out of all possible probability distributions (over real numbers) with
the same variance, it encodes the maximum amount of uncertainty

o So, we insert the least amount of prior knowledge into a model
@ It is numerical friendly
o E.g., continuous, differentiable, etc.
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Properties

o If x ~ A (,0?), then ax +b ~ A (ap + b,a*c?) for any deterministic
a,b [Proof]

o z="ZE ~ #(0,1) the z-normalization or standardization of x
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Properties

o If x ~ A (,0?), then ax +b ~ A (ap + b,a*c?) for any deterministic

a,b [Proof]
°oz="Fn~ ( ) the z-normalization or standardization of x
o If x(U ~ </V( ,62(M) |s |ndependent with x? ~ 4 (u®, 62(2)),
then x(V) + A (u ()+G())

[Homework Py (X) = fpx 1)(x ¥)Px (y)dy the convolution]
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Properties

o If x ~ A (,0?), then ax +b ~ A (ap + b,a*c?) for any deterministic
a,b [Proof]
o z="ZE ~ #(0,1) the z-normalization or standardization of x
o If x ~ 4 (uM) 62D is independent with x(?) ~ 4 (u®?,62(2)),
then x( +x@ ~ 4 (uM) +u®@, 620 4 52(2))
[Homework: p, 1)+x(2 1 (x) = [ pyoy (x —y)py2 (v)dy the convolution]
o Not true if x(!) and x@ are dependent
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Multivariate Gaussian Distribution

o When x is sum of many random vectors:

)T )

1
A x=x B = | Gides) &P [ 2

o Uy =M and Ly =X (must be nonsingular)
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Multivariate Gaussian Distribution

o When x is sum of many random vectors:

)T )

1
A x=x B = | Gides) &P [ 2

o Uy =M and Ly =X (must be nonsingular)

o If x~ A4 (u,X), then each attribute x; is univariate normal
o Converse not true
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Multivariate Gaussian Distribution

o When x is sum of many random vectors:

(271,')diiet(2)eXp [—;(x ) = - p)

N (x=x;4,%) =
o Uy =M and Ly =X (must be nonsingular)

o If x~ A4 (u,X), then each attribute x; is univariate normal

o Converse not true
o However, if x;,---,x4 are i.i.d. and x; ~ A (W, 67), then x ~ A (u, %),
where u= [“17"' 7."Ld]T and Z’:d'iag(clzv"' 10-3)
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Multivariate Gaussian Distribution

o When x is sum of many random vectors:

(271,')diiet(2)eXp [—;(x ) = - p)

N (x=x;4,%) =
o Uy =M and Ly =X (must be nonsingular)

o If x~ A4 (u,X), then each attribute x; is univariate normal

o Converse not true
o However, if x;,---,x4 are i.i.d. and x; ~ A (W, 67), then x ~ A (u, %),
where u= [“17"' 7."Ld]T and Z’:d'iag(clzv"' 10-3)

o What does the graph of 4 (u,X) look like?
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Bivariate Example |

o Consider the Mahalanobis distance first

N = | ey 0 [0 )

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Large-Scale ML, Fall 2016 47 |/ 76



Bivariate Example |

o Consider the Mahalanobis distance first

1 1
N (W,Z) =4 =—————exp|—=(x—pu) T (x—n
Cov(x‘ ,xz):o, Var(x‘):Var(xz) Cov(xw,xz):o, Var(x1)>Var(x2)
o The level sets closer to the
< center U, are lower
Cov(x, x,)>0 Cov(x, x,)<0

@) ©
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Bivariate Example |

o Consider the Mahalanobis distance first

N (X)) =

Cov(x‘ ,xz):o, Var(x‘ ):Var(xz)

e

il

Cov(x, x,)>0

@)

Shan-Hung Wu (CS, NTHU)

1
(27)4det(x)

exp [—;(x—u)TZ‘(x—u)

Cov(xw,xz):o, Var(x1)>Var(x2)

o The level sets closer to the
center U, are lower
o Increasing Cov[xy,X2]
stretches the level sets along

the 45° axis

o Decreasing Cov[x;,X2]

stretches the level sets along
@ the —45° axis

Cov(x, x,)<0
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Bivariate Example ||

o The hight of A (u,X) = WT()exp[ Tae—p) "= x—p)] in
its graph is inversely proportional to the Mahalanobis distance
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Bivariate Example ||

o The hight of A (u,X) = WT()exp[ Tae—p) "= x—p)] in
its graph is inversely proportional to the Mahalanobis distance

o A multivariate Gaussian distribution is isotropic iff £ = ol
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Properties

o If x~ .4 (u,X), then w'x ~ 4 (w'u,w'Zw) for any deterministic
w € RY
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Properties

o If x~ .4 (u,X), then w'x ~ 4 (w'u,w'Zw) for any deterministic
w € RY

o More generally, given W € R4k k< d, we have
W'~ A (W' u, W W) that is k-variate normal
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Properties

o If x~ .4 (u,X), then w'x ~ 4 (w'u,w'Zw) for any deterministic
w € RY

o More generally, given W € R4k k< d, we have
W'~ A (W' u, W W) that is k-variate normal

o The projection of x onto a k-dimensional space is still normal
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Exponential Distribution (Continuous)

o In deep learning, we often want to have a probability distribution with
a sharp point at x =0
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Exponential Distribution (Continuous)

o In deep learning, we often want to have a probability distribution with
a sharp point at x =0

o To accomplish this, we can use the exponential distribution:

Exponential(x = x;4) = A1(x;x > 0) exp(—Ax)

16 : : :
1.47 A:0.5 a
1.2} — A=l
Lo A=15 |

X0}

0.6}

0.4f

0.2 \

0.05 1 2 3 4 5
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Laplace Distribution (Continuous)

o Laplace distribution can be think of as a “two-sided” exponential

distribution centered at u:

1 _
Laplace(x = x;u,b) = 25 XP <— x bm)

05

TET5
hooo
oOoTOoTUOT
ononon
A AN
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Dirac Distribution (Continuous)

o In some cases, we wish to specify that all of the mass in a probability
distribution clusters around a single data point u

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Large-Scale ML, Fall 2016 52 / 76



Dirac Distribution (Continuous)

o In some cases, we wish to specify that all of the mass in a probability
distribution clusters around a single data point u

o This can be accomplished by using the Dirac distribution:
Dirac(x =x;u) = d(x — ),

where 6(-) is the Dirac delta function that
@ |Is zero-valued everywhere except at input 0
@ Integrals to 1
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Empirical Distribution (Continuous)

o Given a dataset X = {x(}¥ | where x('s are i.i.d. samples of x

o What is the distribution P(0) that maximizes the likelihood P(8|X) of
X?
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Empirical Distribution (Continuous)

o Given a dataset X = {x(}¥ | where x('s are i.i.d. samples of x
o What is the distribution P(0) that maximizes the likelihood P(8|X) of

X?
o If x is discrete, the distribution simply reflects the empirical frequency
of values:
1 N
Empirical(x = x;X) = 1(x;x = xU

1 1
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Empirical Distribution (Continuous)

(]

Given a dataset X = {x(}¥ where x()'s are i.i.d. samples of x
What is the distribution P(6) that maximizes the likelihood P(6|X) of
X?

If x is discrete, the distribution simply reflects the empirical frequency
of values:

©

(]

lxx pad
1

1 N
Empirical(x = x;X) =

l

©

If x is continuous, we have the empirical distribution:

1

v, 8(x —x)

™=

Empirical(x = x; X) =

I
—

i
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Mixtures of Distributions

o We may define a probability distribution by combining other simpler
probability distributions {P()(8())};

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Large-Scale ML, Fall 2016 54 / 76



Mixtures of Distributions

o We may define a probability distribution by combining other simpler
probability distributions {P()(8())};

o E.g., the mixture model-

Mixture(x =x;p,{67},) = ZP(i) (x = x|c = i; ) Categorical (c = i; p)
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Mixtures of Distributions

o We may define a probability distribution by combining other simpler
probability distributions {P()(8())};

o E.g., the mixture model-

Mixture(x =x;p,{67},) = ZP(i) (x = x|c = i; ) Categorical (c = i; p)

o The empirical distribution is a mixture distribution (where p; = 1/n)
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Mixtures of Distributions

o We may define a probability distribution by combining other simpler
probability distributions {P()(8())};

o E.g., the mixture model-

Mixture(x =x;p,{67},) = ZP(i) (x = x|c = i; ) Categorical (c = i; p)

o The empirical distribution is a mixture distribution (where p; = 1/n)
o The component identity variable c is a latent variable
o Whose values are not observed
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Gaussian Mixture Model

o A mixture model is called the Gaussian mixture model iff
PO(x=x|c=i;0") = /D (x=x|c=i;u® x0) vi
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Gaussian Mixture Model

o A mixture model is called the Gaussian mixture model iff
PO(x=x|c=i;0") = /D (x=x|c=i;u® x0) vi
o Variants: ) =% or £() = diag(c) or =) = oI
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Gaussian Mixture Model

o A mixture model is called the Gaussian mixture model iff
PO(x=x|c=i;0") = /D (x=x|c=i;u® x0) vi
o Variants: ) =% or £() = diag(c) or =) = oI
o Any smooth density can be approximated by a Gaussian mixture
model with enough components
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Outline

(@ Common Parametrizing Functions
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Parametrizing Functions

o A probability distribution P(0) is parametrized by 6
o In ML, 6 may be the output value of a deterministic function
o Called parametrizing function
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Logistic Function

o The logistic function (a special case of sigmoid functions) is
defined as:

B exp(x) B 1
o) = exp(x)+1  1+exp(—x)

1+ E—
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Logistic Function

o The logistic function (a special case of sigmoid functions) is
defined as:

B exp(x) B 1
ox) = exp(x)+1  1+exp(—x)

1+ E—

o Always takes on values between (0,1)
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Logistic Function

o The logistic function (a special case of sigmoid functions) is
defined as:

B exp(x) B 1
ox) = exp(x)+1  1+exp(—x)

1+ R

o Always takes on values between (0,1)
o Commonly used to produce the p parameter of Bernoulli distribution
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Softplus Function
o The softplus function :

€ (x) = log(1 +exp(x))

101

10 5
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Softplus Function
o The softplus function :

£ (x) = log(1 +exp(x))
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o A “softened” version of x* = max(0,x)
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Softplus Function
o The softplus function :

£ (x) = log(1 +exp(x))

101

10 5

o A “softened” version of x* = max(0,x)
o Range: (0,)

o Useful for producing the B or 6 parameter of Gaussian distribution
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Properties [Homework]

o l-0o(x)=0(—x)

o Togo(x) = ~{(—)

o 460 = o()(1— o))

o Li(x)=0(x

o Vx € (0,1),07 " (x) =log (%)
o Vx>0, !(x) =log(exp(x) — 1)
o {(x)= [ o(y)dy

o L(x)=C(—x)=x

o §(—x) is the softened x~ = max(0, —x)

o x=x"—x"
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Outline

Information Theory
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What'’s Information Theory

o Probability theory allows us to make uncertain statements and reason
in the presence of uncertainty
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What'’s Information Theory

o Probability theory allows us to make uncertain statements and reason
in the presence of uncertainty

o Information theory allows us to quantify the amount of uncertainty
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Self-Information

o Given a random variable x, how much information you receive when
seeing an event X = x?
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Self-Information

o Given a random variable x, how much information you receive when
seeing an event X = x?

@ Likely events should have low information
o E.g., we are less surprised when tossing a biased coins
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Self-Information

o Given a random variable x, how much information you receive when
seeing an event X = x?

@ Likely events should have low information
o E.g., we are less surprised when tossing a biased coins
@ Independent events should have additive information
o E.g, "two heads" should have twice as much info as “one head”
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Self-Information

o Given a random variable x, how much information you receive when

seeing an event X = x?

@ Likely events should have low information
o E.g., we are less surprised when tossing a biased coins
@ Independent events should have additive information
o E.g, "two heads" should have twice as much info as “one head”

o The self-information:
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Self-Information

o Given a random variable x, how much information you receive when

seeing an event X = x?

@ Likely events should have low information
o E.g., we are less surprised when tossing a biased coins
@ Independent events should have additive information
o E.g, "two heads" should have twice as much info as “one head”

o The self-information:

I(x =x) = —logP(x =x)

o Called bit if base-2 logarithm is used
o Called nat if base-e
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Entropy

o Self-information deals with a particular outcome
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Entropy

o Self-information deals with a particular outcome
o We can quantify the amount of uncertainty in an entire probability
distribution using the entropy:

H(x ~ P) = Ey-p(1(x)] =~ ¥ P(x) logP(x) or — [ p(x)logp(x)ds

o Let Olog0 = lim,_pxlogx =0
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Entropy

o Self-information deals with a particular outcome
o We can quantify the amount of uncertainty in an entire probability
distribution using the entropy:

H(x ~ P) = Ey-p(1(x)] =~ ¥ P(x) logP(x) or — [ p(x)logp(x)ds
o Let 0log0 = lim,_,gxlogx =0

o Called Shannon entropy when x is discrete; differential entropy
when x is continuous
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Entropy

o Self-information deals with a particular outcome
o We can quantify the amount of uncertainty in an entire probability
distribution using the entropy:

H(x ~ P) = Ey-p(1(x)] =~ ¥ P(x) logP(x) or — [ p(x)logp(x)ds

o Let 0log0 = lim,_,gxlogx =0
o Called Shannon entropy when x is discrete; differential entropy
when x is continuous

Shannon entropy of a binary random variable
0.7 . : 2 :

0.6

0.5

0.4

0.3

Shannon entropy in nats

!
0.0 .2 0.4 0.6

Figure: Shannon entropy H(x) over Bernoulli distributions with different p.
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Average Code Length

o Shannon entropy gives a lower bound on the number of “bits” needed
on average to encode values drawn from a distribution P
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Average Code Length

o Shannon entropy gives a lower bound on the number of “bits” needed
on average to encode values drawn from a distribution P
o Consider a random variable x ~ Uniform having 8 equally likely states

o To send a value x to receiver, we would encode it into 3 bits
o Shannon entropy: H(x ~ Uniform) = —8 x %logzé =3
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Average Code Length

o Shannon entropy gives a lower bound on the number of “bits” needed
on average to encode values drawn from a distribution P
o Consider a random variable x ~ Uniform having 8 equally likely states
o To send a value x to receiver, we would encode it into 3 bits
o Shannon entropy: H(x ~ Uniform) = —8 x %logzé =3

o If the probabilities of the 8 states are (%, %,é, %7%4’ 6—14, (%4, (%4) instead
o H(x)=2

o The encoding 0,10,110,1110,111100,111101,111110,111111 gives the
average code length 2
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Kullback-Leibler (KL) Divergence

o How many extra “bits’ needed in average to transmit a value drawn
from distribution P when we use a code that was designed for another
distribution Q?
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Kullback-Leibler (KL) Divergence

o How many extra “bits’ needed in average to transmit a value drawn
from distribution P when we use a code that was designed for another
distribution Q?

o Kullback-Leibler (KL) Divergence or (relative entropy) from
distribution Q to P:

et (PIQ) = Excr [log 0 ) | = ~Excr logQ)] - H(x~ P

o The term —Exp [logQ(x)] is called the cross entropy
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Kullback-Leibler (KL) Divergence

o How many extra “bits’ needed in average to transmit a value drawn
from distribution P when we use a code that was designed for another
distribution Q?

o Kullback-Leibler (KL) Divergence or (relative entropy) from
distribution Q to P:

P(x)
Q(x)

Die.(PQ) = Exp [1og ]z Ey-p[logQ(x)] — H(x ~ P)

o The term —Exp [logQ(x)] is called the cross entropy

o If P and Q are independent, we can solve

arg innDKL (P|Q)

by
arg rrgn —Ex~p [logQ(x)]
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Properties

o Dk(P[|Q) =0, VP,Q
o Dk(P||Q) =0 iff P and Q are equal almost surely
o KL divergence is asymmetric, i.e., Dgy.(P||Q) # Dkr(Q||P)

b

Figure: KL divergence for two normal distributions.
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Minimizer of KL Divergence

o Given P, we want to find Q* that minimizes the KL divergence
o Q*(from) — arg ming Dy (P||Q) or Q*(*) = argming Dxy.(Q||P)?
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Minimizer of KL Divergence

o Given P, we want to find Q* that minimizes the KL divergence
o Q*(from) — arg ming Dy (P||Q) or Q*(*) = argming Dxy.(Q||P)?
o Q*frrm) places high probability where P has high probability
o Q*(*) places low probability where P has low probability
q" = argmin Dxw(pl|q) q" = argmin Dxw(q|[p)
= || | [ @
- d@ A

Probability Density
Probability Density

Figure: Approximating a mixture P of two Gaussians using a single Gaussian Q.
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Outline

(@ Application: Decision Trees & Random Forest
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Decision Trees

N
i=1

o Given a supervised dataset X = {(x(),y(?))

o Can we find out a tree-like function f (i.e, a set of rules) such that

// - ) -.‘\
[ temp>70°F )
e /
YES

y ~
([ wind>2mph |
S i

Y‘ES/ T\ no

Ve ™~ Norain  Rain 7 ™~
[ pres>28 inHg ) [ pres>3tinHg )
- \‘_‘7 i

R

YES / '\ NO
/ N

Hain No rain
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Training a Decision Tree

o Start from root which corresponds to all data points
{(x®,y®) : Rules = 0)}

o Recursively split leaf nodes until data corresponding to children are
“pure” in labels
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Training a Decision Tree

o Start from root which corresponds to all data points
{(x®,y®) : Rules = 0)}

o Recursively split leaf nodes until data corresponding to children are
“pure” in labels

o How to split?
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Training a Decision Tree

o Start from root which corresponds to all data points
{(x®,y®) : Rules = 0)}

o Recursively split leaf nodes until data corresponding to children are
“pure” in labels

o How to split? Find a cutting point (j,v) among all unseen attributes
such that after partitioning the corresponding data points
xparent — {(x() () : Rules)} into two groups

xXleft — {(x(® y@)y RulesU{x]@ <v}}, and
L '
xright — {(x(i),y(i)) : RulesU {x](l) >v}},
- /<‘\ //7,\: -_ the “impurity” Of |abe|5 drOPS the most
/\Weak/\‘ @/

6yes/2no 3yes/3no
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Training a Decision Tree

o Start from root which corresponds to all data points
{(x®,y®) : Rules = 0)}

o Recursively split leaf nodes until data corresponding to children are
“pure” in labels

o How to split? Find a cutting point (j,v) among all unseen attributes
such that after partitioning the corresponding data points
xparent — {(x() () : Rules)} into two groups

xXleft — {(x(® y@)y RulesU{x]@ <v}}, and
i LG '
xright — {(x(i),y(i)) : RulesU {x](l) >v}},
. E /,>\ — the “impurity” of labels drops the most, i.e., solve
/\Weak/\‘ @/

6yes/2no 3yes/3no argmax (Impurity(Xparent) — Impurity(Xleft, Xright))
5V

)
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Impurity Measure

argmax (Impurity(Xpare"t) — Impurity (X'eft, Xright))
JV

o What's Impurity(-)?
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Impurity Measure

argmax (Impurity(Xpare"t) — Impurity (X'eft, Xright))
JV

o What's Impurity(-)?

o Entropy is a common choice:
Impurity (XP2"*") = H[y ~ Empirical(XP2re"")]

X

Xparent‘

Impul‘ity(Xleft ’ Xright) _
i=left,right |

H[y ~ Empirical(X®)]
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Impurity Measure

arg max (Irnpurity (XParent) _ Impurity (X'eft, Xright))
JV

o What's Impurity(-)?

o Entropy is a common choice:
Impurity (XP2"*") = H[y ~ Empirical(XP2re"")]

X

ImpuritY(Xlefta Xright) = |Xparent|

i=left,right

H[y ~ Empirical(X®)]

o In this case, Impurity (XP2re"t) — Impurity (X'¢t, X"&ht) is called the
information gain
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Random Forests

o A decision tree can be very deep
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Random Forests

o A decision tree can be very deep
o Deeper nodes give more specific rules

o Backed by less training data
o May not be applicable to testing data

o How to ensure the generalizability of a decision tree?
o l.e., to have high prediction accuracy on testing data
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Random Forests

o A decision tree can be very deep
o Deeper nodes give more specific rules

o Backed by less training data
o May not be applicable to testing data

o How to ensure the generalizability of a decision tree?
o l.e., to have high prediction accuracy on testing data

@ Pruning (e.g., limit the depth of the tree)
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Random Forests

o A decision tree can be very deep
o Deeper nodes give more specific rules

o Backed by less training data
o May not be applicable to testing data

o How to ensure the generalizability of a decision tree?
o l.e., to have high prediction accuracy on testing data

@ Pruning (e.g., limit the depth of the tree)
@ Random forest: an ensemble of many (deep) trees
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Training a Random Forest

@ Randomly pick M samples from the training set with replacement
o Called the bootstrap samples
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Training a Random Forest

@ Randomly pick M samples from the training set with replacement
o Called the bootstrap samples
@ Grow a decision tree from the bootstrap samples. At each node:

@ Randomly select K features without replacement
@ Find the best cutting point (j,v) and split the node
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Training a Random Forest

@ Randomly pick M samples from the training set with replacement
o Called the bootstrap samples

@ Grow a decision tree from the bootstrap samples. At each node:
@ Randomly select K features without replacement
@ Find the best cutting point (j,v) and split the node

@ Repeat the steps 1 and 2 for T times to get T trees
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Training a Random Forest

@ Randomly pick M samples from the training set with replacement
o Called the bootstrap samples

@ Grow a decision tree from the bootstrap samples. At each node:
@ Randomly select K features without replacement
@ Find the best cutting point (j,v) and split the node

@ Repeat the steps 1 and 2 for T times to get T trees

@ Aggregate the predictions made by different trees via the majority
vote
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Training a Random Forest

@ Randomly pick M samples from the training set with replacement
o Called the bootstrap samples
@ Grow a decision tree from the bootstrap samples. At each node:

@ Randomly select K features without replacement
@ Find the best cutting point (j,v) and split the node

@ Repeat the steps 1 and 2 for T times to get T trees

@ Aggregate the predictions made by different trees via the majority
vote

o Each tree is trained slightly differently because of Step 1 and 2(a)

o Provides different “perspectives’ when voting
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Decision Boundaries
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Decision Trees vs. Random Forests

o Cons of random forests:
o Less interpretable model
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Decision Trees vs. Random Forests

o Cons of random forests:
o Less interpretable model
o Pros:
o Less sensitive to the depth of trees
o The majority voting can “absorb” the noise from individual trees
o Can be parallelized
o Each tree can grow independently
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