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Random Variables

A random variable x is a variable that can take on different values
randomly

E.g., Pr(x = x1) = 0.1, Pr(x = x2) = 0.3, etc.
Technically, x is a function that maps events to a real values

Must be coupled with a probability distribution P that specifies how
likely each value is

x ⇠ P(q) means “x has distribution P parametrized by q ”
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Probability Mass and Density Functions

If x is discrete, P(x = x) denotes a probability mass function

Px(x) = Pr(x = x)
E.g., the output of a fair dice has discrete uniform distribution with
P(x) = 1/6

If x is continuous, P(x = x) denotes a probability density function

px(x)
Is px(x) a probability? No, it is “rate of increase in probability at x”

Pr(a  x  b) =
Z

[a,b]
p(x)dx

px(x) can be greater than 1
E.g., a continuous uniform distribution within [a,b] has p(x) = 1/b�a if
x 2 [a,b]; 0 otherwise
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Marginal Probability

Consider a probability distribution over a set of variables, e.g., P(x,y)

The probability distribution over the subset of random variables called
the marginal probability distribution:

P(x = x) = Â
y

P(x,y) or
Z

p(x,y)dy

Also called the sum rule of probability
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Conditional Probability

Conditional density function:

P(x = x |y = y) =
P(x = x,y = y)

P(y = y)

Defined only when P(y = y)> 0

Product rule of probability:

P(x(1), · · · ,x(n)) = P(x(1))Pn

i=2P(x(i) |x(1), · · · ,x(i�1))

E.g., P(a,b,c) = P(a |b,c)P(b |c)P(c)
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Independence and Conditional Independence

We say random variables x is independent with y iff

P(x |y) = P(x)

Implies P(x,y) = P(x)P(y)
Denoted by x ? y

We say random variables x is conditionally independent with y
given z iff

P(x |y,z) = P(x |z)

Implies P(x,y |z) = P(x |z)P(y |z)
Denoted by x ? y |z
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Expectation

The expectation (or expected value or mean) of some function f

with respect to x is the “average” value that f takes on:1

Ex⇠P[f(x)] = Â
x

Px(x)f (x) or
Z

px(x)f (x)dx = µf(x)

Expectation is linear: E[af(x)+b] = aE[f(x)]+b for deterministic a

and b

E[E[f(x)]] = E[f(x)], as E[f(x)] is deterministic

1
The bracket [·] here is used to distinguish the parentheses inside and has nothing to

do with functionals.
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Expectation over Multiple Variables

Defined over the join probability distribution, e.g.,

E[f(x,y)] = Â
x,y

Px,y(x,y)f (x,y) or
Z

x,y
px,y(x,y)f (x,y)dxdy

E[f(x) |y = y] =
R

px |y(x |y)f (x)dx is called the conditional

expectation

E[f(x)g(y)] = E[f(x)]E[g(y)] if x and y are independent [Proof]
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Variance

The variance measures how much the values of f deviate from its
expected value when seeing different values of x:

Var[f(x)] = E
⇥
(f(x)�E[f(x)])2⇤= s2

f(x)

sf(x) is called the standard deviation

Var[af (x)+b] = a

2Var[f(x)] for deterministic a and b [Proof]
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Covariance I

Covariance gives some sense of how much two values are linearly

related to each other

Cov[f(x),g(y)] = E [(f(x)�E[f(x)])(g(y)�E[g(y)])]

If sign positive, both variables tend to take on high values
simultaneously
If sign negative, one variable tend to take on high value while the other
taking on low one

If x and y are independent, then Cov(x,y) = 0 [Proof]
The converse is not true as X and Y may be related in a nonlinear way
E.g., y = sin(x) and x ⇠ Uniform(�p,p)
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Covariance II

Var(ax+by) = a

2Var(x)+b

2Var(y)+2abCov(x,y) [Proof]

Var(x+y) = Var(x)+Var(y) if x and y are independent

Cov(ax+b,cy+d) = acCov(x,y) [Proof]
Cov(ax+by,cw+dv) =
acCov(x,w)+adCov(x,v)+bcCov(y,w)+bdCov(y,v) [Proof]
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Multivariate Random Variables I

A multivariate random variable is denoted by x = [x1, · · · ,xd

]>

Normally, x
i

’s (attributes or variables or features) are dependent
with each other
P(x) is a joint distribution of x1, · · · ,xd

The mean of x is defined as µ
x

= E(x) = [µx1 , · · · ,µx
d

]>

The covariance matrix of x is defined as:

S
x

=

2

6664

s2
x1

sx1,x2 · · · sx1,xd

sx2,x1 s2
x2

· · · sx2,xd

...
... . . . ...

sx
d

,x1 sx
d

,x2 · · · s2
x

d

3

7775

sx
i

,x
j

= Cov(x
i

,x
j

) = E[(x
i

�µx
i

)(x
j

�µx
j

)] = E(x
i

x
j

)�µx
i

µx
j

S
x

= Cov(x) = E
⇥
(x�µ

x

)(x�µ
x

)>
⇤
= E(xx

>)�µ
x

µ>
x
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Multivariate Random Variables II

S
x

is always symmetric

S
x

is always positive semidefinite [Homework]
S

x

is nonsingular iff it is positive definite
S

x

is singular implies that x has either:
Deterministic/independent/non-linearly dependent attributes causing
zero rows, or
Redundant attributes causing linear dependency between rows
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Derived Random Variables

Let y = f(x;w) = w

>
x a random variable transformed from x

µy = E(w>
x) = w

>E(x) = w

>µ
x

s2
y = w

>S
x

w [Homework]
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What Does Pr(x = x) Mean?

1
Bayesian probability: it’s a degree of belief or qualitative levels of
certainty

2
Frequentist probability: if we can draw samples of x, then the
proportion of frequency of samples having the value x is equal to
Pr(x = x)
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Bayes’ Rule

P(y |x) = P(x |y)P(y)
P(x)

=
P(x |y)P(y)

S
y

P(x |y = y)P(y = y)

Bayes’ Rule is so important in statistics (and ML as well) such that
each term has a name:

posteriorof y =
(likelihood of y)⇥ (priorof y)

evidence

Why is it so important?
E.g., a doctor diagnoses you as having a disease by letting x be
“symptom” and y be “disease”

P(x |y) and P(y) may be estimated from sample frequencies more easily
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Point Estimation

Point estimation is the attempt to estimate some fixed but unknown
quantity q of a random variable by using sample data

Let {x

(1), · · · ,x(n)} be a set of n independent and identically
distributed (i.i.d.) samples of a random variable x, a point estimator

or statistic is a function of the data:

q̂
n

= g(x(1), · · · ,x(n))

q̂
n

is called the estimate of q
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(1), · · · ,x(n)} be a set of n independent and identically
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Sample Mean and Covariance

Given X = [x(1), · · · ,x(n)]> 2 Rn⇥d the i.i.d samples, what are the
estimates of the mean and covariance of x?

A sample mean:

µ̂
x

=
1
n

n

Â
i=1

x

(i)

A sample covariance matrix:

Ŝ
x

=
1
n

n

Â
i=1

(x(i)� µ̂
x

)(x(i)� µ̂
x

)>

ŝ2
x

i

,x
j

= 1
n

Ân

s=1(x
(s)
i

� µ̂x
i

)(x(s)
j

� µ̂x
j

)

If each x

(i) is centered (by subtracting µ̂
x

first), then Ŝ
x

= 1
n

X

>
X
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Principal Components Analysis (PCA) I

Give a collection of data points X= {x

(i)}N

i=1, where x

(i) 2 RD

Suppose we want to lossily compress X, i.e., to find a function f such
that f (x(i)) = z

(i) 2 RK , where K < D

How to keep the maximum info in X?
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Principal Components Analysis (PCA) II

Let x

(i)’s be i.i.d. samples of a random variable x

Let f be linear, i.e., f (x) = W

>
x for some W 2 RD⇥K

Principal Component Analysis (PCA) finds K orthonormal vectors
W =

⇥
w

(1), · · · ,w(K)
⇤

such that the transformed variable z = W

>
x has

the most “spread out” attributes, i.e., each attribute z
j

= w

(j)>
x has

the maximum variance Var(z
j

)

w

(1), · · · ,w(K) are called the principle components

Why w

(1), · · · ,w(K) need to be orthogonal with each other?
Each w

(j) keeps information that cannot be explained by others, so
together they preserve the most info

Why kw

(j)k= 1 for all j?
Only directions matter—we don’t want to maximize Var(z

j

) by finding
a long w

(j)
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Solving W I

For simplicity, let’s consider K = 1 first
How to evaluate Var(z1)?

Recall that z1 = w

(1)>
x implies s2

z1
= w

(1)>S
x

w

(1) [Homework]
How to get S

x

?
An estimate: Ŝ

x

= 1
N

X

>
X (assuming x

(i)’s are centered first)

Optimization problem to solve:

arg max
w

(1)2RD

w

(1)>
X

>
Xw

(1), subject to kw

(1)k= 1

X

>
X is symmetric thus can be eigendecomposed

By Rayleigh’s Quotient, the optimal w

(1) is given by the eigenvector of
X

>
X corresponding to the largest eigenvalue
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Solving W II

Optimization problem for w

(2):

arg max
w

(2)2RD

w

(2)>
X

>
Xw

(2), subject to kw

(2)k= 1 and w

(2)>
w

(1) = 0

By Rayleigh’s Quotient again, w

(2) is the eigenvector corresponding to
the 2-nd largest eigenvalue
For general case where K > 1, the w

(1), · · · ,w(K) are eigenvectors of
X

>
X corresponding to the largest K eigenvalues

Proof by induction [Proof]
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Visualization

Figure: PCA learns a linear projection that aligns the direction of greatest
variance with the axes of the new space. With these new axes, the estimated
covariance matrix Ŝ

z

= W

>Ŝ
x

W 2 RK⇥K is always diagonal.
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Sure and Almost Sure Events

Given a continuous random variable x, we have Pr(x = x) = 0 for any
value x

Will the event x = x occur?

Yes!

An event A happens surely if always occurs
An event A happens almost surely if Pr(A) = 1 (e.g., Pr(x 6= x) = 1)
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Equality of Random Variables I

Definition (Equality in Distribution)

Two random variables x and y are equal in distribution iff
Pr(x  a) = Pr(y  a) for all a.

Definition (Almost Sure Equality)

Two random variables x and y are equal almost surely iff Pr(x = y) = 1.

Definition (Equality)

Two random variables x and y are equal iff they maps the same events to
same values.
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Equality of Random Variables II

What’s the difference between the “equality in distribution” and
“almost sure equality?”

Almost sure equality implies equality in distribution, but converse not
true
E.g., let x and y be binary random variables and
Px(0) = Px(1) = Py(0) = Py(1) = 0.5

They are equal in distribution
But Pr(x = y) = 0.5 6= 1
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Convergence of Random Variables I

Definition (Convergence in Distribution)

A sequence of random variables {x(1),x(2), · · ·} converges in distribution

to x iff lim
n!• P

�
x(n) = x

�
= P(x = x)

Definition (Convergence in Probability)

A sequence of random variables {x(1),x(2), · · ·} converges in probability

to x iff for any e > 0, lim
n!• Pr

�
|x(n)�x|< e

�
= 1.

Definition (Almost Sure Convergence)

A sequence of random variables {x(1),x(2), · · ·} converges almost surely

to x iff Pr
�
lim

n!• x(n) = x
�
= 1.
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Convergence of Random Variables II

What’s the difference between the convergence “in probability” and
“almost surely?”

Almost sure convergence implies convergence in probability, but
converse not true
lim

n!• Pr
�
|x(n)�x|< e

�
= 1 leaves open the possibility that

|x(n)�x|> e happens an infinite number of times
Pr

�
lim

n!• x(n) = x
�
= 1 guarantees that |x(n)�x|> e almost surely

will not occur
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Distribution of Derived Variables I

Suppose y = f (x) and f

�1 exists, does P(y = y) = P(x = f

�1(y))
always hold?

No, when x and y are continuous
Suppose x ⇠ Uniform(0,1) is continuous and p(x) = c for x 2 (0,1)

Let y = x/2 ⇠ Uniform(0, 1/2)

If py(y) = px(2y), then

Z 1/2

y=0
py(y)dy =

Z 1/2

y=0
c ·dy =

1
2
6= 1

Violates the axiom of probability
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Distribution of Derived Variables II
Recall that Pr(y = y) = py(y)dy and Pr(x = x) = px(x)dx

Since f may distort space, we need to ensure that

|py(f (x))dy|= |px(x)dx|

We have

py(y) = px(f
�1(y))

����
∂ f

�1(y)

∂y

���� (or px(x) = py(f (x))

����
∂ f (x)

∂x

����)

In previous example: py(y) = 2 ·px(2y)

In multivariate case, we have

p

y

(y) = p

x

(f�1(y))
��det

�
J(f�1)(y)

��� ,

where J(f�1)(y) is the Jacobian matrix of f

�1 at input y

J(f�1)(y)
i,j = ∂ f

�1
i

(y)/∂y

j
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Outline

1
Random Variables & Probability Distributions

2
Multivariate & Derived Random Variables

3
Bayes’ Rule & Statistics

4
Application: Principal Components Analysis

5
Technical Details of Random Variables

6
Common Probability Distributions

7
Common Parametrizing Functions

8
Information Theory

9
Application: Decision Trees & Random Forest
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Random Experiments

The value of a random variable x can be think of as the outcome of an
random experiment
Helps us define P(x)
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Bernoulli Distribution (Discrete)

Let x 2 {0,1} be the outcome of tossing a coin, we have:

Bernoulli(x = x;r) =
⇢

r, if x = 1
1�r, otherwise or rx(1�r)1�x

Properties: [Proof]
E(x) = r
Var(x) = r(1�r)
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Categorical Distribution (Discrete)

Let x 2 {1, · · · ,k} be the outcome of rolling a k-sided dice, we have:

Categorical(x = x;r) =
k

’
i=1

r1(x;x=i)
i

, where 1

>r = 1

An extension of the Bernoulli distribution for k states
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Multinomial Distribution (Discrete)

Let x 2 Rk be a random vector where x
i

the number of the outcome i

after rolling a k-sided dice n times:

Multinomial(x= x;n,r)= n!
x1! · · ·x

k

!

k

’
i=1

rx

i

i

, where 1

>r = 1 and 1

>
x= n

Properties: [Proof]
E(x) = nr
Var(x) = n

�
diag(r)�rr>�

(i.e., Var(x
i

) = nr
i

(1�r
i

) and Var(x
i

,x
j

) =�nr
i

r
j

)
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Normal/Gaussian Distribution (Continuous)
Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately

normally/Gaussian distributed:

N (x = x; µ,s2) =

r
1

2ps2 exp
✓
� 1

2s2 (x�µ)2
◆
.

Holds regardless of the original distributions of individual variables
µx = µ and s2

x = s2

To avoid inverting s2, we can parametrize the distribution using the
precision b :

N (x = x; µ,b�1) =

r
b
2p

exp
✓
�b

2
(x�µ)2

◆
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Confidence Intervals

Figure: Graph of N (µ,s2).

We say the interval [µ �2s ,µ +2s ] has about the 95% confidence
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Why Is Gaussian Distribution So Common?

1 It can model complicate systems
E.g., Gaussian white noise

2 Out of all possible probability distributions (over real numbers) with
the same variance, it encodes the maximum amount of uncertainty

So, we insert the least amount of prior knowledge into a model
3 It is numerical friendly

E.g., continuous, differentiable, etc.
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Properties

If x ⇠ N (µ,s2), then ax+b ⇠ N (aµ +b,a2s2) for any deterministic
a,b [Proof]

z = x�µ
s ⇠ N (0,1) the z-normalization or standardization of x

If x(1) ⇠ N (µ(1),s2(1)) is independent with x(2) ⇠ N (µ(2),s2(2)),
then x(1) +x(2) ⇠ N (µ(1) +µ(2),s2(1) +s2(2))
[Homework: px(1)+x(2) (x) =

R
px(1) (x� y)px(2) (y)dy the convolution]

Not true if x(1) and x(2) are dependent
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Multivariate Gaussian Distribution

When x is sum of many random vectors:

N (x = x; µ,S) =

s
1

(2p)ddet(S)
exp


�1

2
(x�µ)>S�1(x�µ)

�

µ
x

= µ and S
x

= S (must be nonsingular)

If x ⇠ N (µ,S), then each attribute x
i

is univariate normal
Converse not true
However, if x1, · · · ,xd

are i.i.d. and x
i

⇠ N (µ
i

,s2
i

), then x ⇠ N (µ,S),
where µ = [µ1, · · · ,µd

]> and S = diag(s2
1 , · · · ,s2

d

)

What does the graph of N (µ,S) look like?
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Bivariate Example I
Consider the Mahalanobis distance first

N (µ,S) =

s
1

(2p)ddet(S)
exp


�1

2
(x�µ)>S�1(x�µ)

�

The level sets closer to the
center µ

x

are lower
Increasing Cov[x1,x2]
stretches the level sets along
the 45� axis
Decreasing Cov[x1,x2]
stretches the level sets along
the �45� axis
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Bivariate Example II
The hight of N (µ,S) =

q
1

(2p)ddet(S) exp
⇥
� 1

2(x�µ)>S�1(x�µ)
⇤

in
its graph is inversely proportional to the Mahalanobis distance
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A multivariate Gaussian distribution is isotropic iff S = sI
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Properties

If x ⇠ N (µ,S), then w

>
x ⇠ N (w>µ,w>Sw) for any deterministic

w 2 Rd

More generally, given W 2 Rd⇥k, k  d, we have
W

>
x ⇠ N (W>µ,W>SW) that is k-variate normal

The projection of x onto a k-dimensional space is still normal
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Exponential Distribution (Continuous)
In deep learning, we often want to have a probability distribution with
a sharp point at x = 0

To accomplish this, we can use the exponential distribution:

Exponential(x = x;l ) = l1(x;x � 0)exp(�lx)
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Laplace Distribution (Continuous)

Laplace distribution can be think of as a “two-sided” exponential
distribution centered at µ :

Laplace(x = x; µ,b) = 1
2b

exp
✓
� |x�µ|

b

◆
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Dirac Distribution (Continuous)

In some cases, we wish to specify that all of the mass in a probability
distribution clusters around a single data point µ

This can be accomplished by using the Dirac distribution:

Dirac(x = x; µ) = d (x�µ),

where d (·) is the Dirac delta function that
1 Is zero-valued everywhere except at input 0

2 Integrals to 1
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Empirical Distribution (Continuous)

Given a dataset X= {x

(i)}N

i=1 where x

(i)’s are i.i.d. samples of x

What is the distribution P(q) that maximizes the likelihood P(q |X) of
X?

If x is discrete, the distribution simply reflects the empirical frequency
of values:

Empirical(x = x;X) = 1
N

N

Â
i=1

1(x;x = x

(i))

If x is continuous, we have the empirical distribution:

Empirical(x = x;X) = 1
N

N

Â
i=1

d (x�x

(i))
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Mixtures of Distributions

We may define a probability distribution by combining other simpler
probability distributions {P(i)(q (i))}

i

E.g., the mixture model:

Mixture(x = x;r,{q (i)}
i

) =Â
i

P(i)(x = x|c = i;q (i))Categorical(c = i;r)

The empirical distribution is a mixture distribution (where r
i

= 1/N)
The component identity variable c is a latent variable

Whose values are not observed
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Gaussian Mixture Model
A mixture model is called the Gaussian mixture model iff
P(i)(x = x|c = i;q (i)) = N (i)(x = x|c = i; µ(i),S(i)), 8i

Variants: S(i) = S or S(i) = diag(s) or S(i) = sI

Any smooth density can be approximated by a Gaussian mixture
model with enough components
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Parametrizing Functions

A probability distribution P(q) is parametrized by q
In ML, q may be the output value of a deterministic function

Called parametrizing function
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Logistic Function
The logistic function (a special case of sigmoid functions) is
defined as:

s (x) =
exp(x)

exp(x)+1
=

1
1+ exp(�x)

Always takes on values between (0,1)
Commonly used to produce the r parameter of Bernoulli distribution
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Softplus Function

The softplus function :

z (x) = log(1+ exp(x))

A “softened” version of x

+ = max(0,x)

Range: (0,•)

Useful for producing the b or s parameter of Gaussian distribution
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Properties [Homework]

1�s(x) = s(�x)

logs(x) =�z (�x)
d

dx

s(x) = s(x)(1�s(x))
d

dx

z (x) = s(x)

8x 2 (0,1),s�1(x) = log
�

x

1�x

�

8x > 0,z�1(x) = log(exp(x)�1)

z (x) =
R

x

�• s(y)dy

z (x)�z (�x) = x

z (�x) is the softened x

� = max(0,�x)
x = x

+� x

�
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What’s Information Theory

Probability theory allows us to make uncertain statements and reason
in the presence of uncertainty

Information theory allows us to quantify the amount of uncertainty
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Self-Information

Given a random variable x, how much information you receive when
seeing an event x = x?

1 Likely events should have low information
E.g., we are less surprised when tossing a biased coins

2 Independent events should have additive information
E.g, “two heads” should have twice as much info as “one head”

The self-information:

I(x = x) =� logP(x = x)

Called bit if base-2 logarithm is used
Called nat if base-e
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Entropy
Self-information deals with a particular outcome

We can quantify the amount of uncertainty in an entire probability
distribution using the entropy:

H(x ⇠ P) = Ex⇠P[I(x)] =�Â
x

P(x) logP(x) or �
Z

p(x) logp(x)dx

Let 0log0 = lim
x!0 x logx = 0

Called Shannon entropy when x is discrete; differential entropy

when x is continuous

Figure: Shannon entropy H(x) over Bernoulli distributions with different r.
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Average Code Length

Shannon entropy gives a lower bound on the number of “bits” needed
on average to encode values drawn from a distribution P

Consider a random variable x ⇠ Uniform having 8 equally likely states
To send a value x to receiver, we would encode it into 3 bits
Shannon entropy: H(x ⇠ Uniform) =�8⇥ 1

8 log2
1
8 = 3

If the probabilities of the 8 states are ( 1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64) instead

H(x) = 2
The encoding 0,10,110,1110,111100,111101,111110,111111 gives the
average code length 2
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Kullback-Leibler (KL) Divergence
How many extra “bits” needed in average to transmit a value drawn
from distribution P when we use a code that was designed for another
distribution Q?

Kullback-Leibler (KL) Divergence or (relative entropy) from
distribution Q to P:

DKL(PkQ) = Ex⇠P


log

P(x)
Q(x)

�
=�Ex⇠P [logQ(x)]�H(x ⇠ P)

The term �Ex⇠P [logQ(x)] is called the cross entropy

If P and Q are independent, we can solve

argmin
Q

DKL(PkQ)

by
argmin

Q

�Ex⇠P [logQ(x)]
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Properties

DKL(PkQ)� 0, 8P,Q

DKL(PkQ) = 0 iff P and Q are equal almost surely
KL divergence is asymmetric, i.e., DKL(PkQ) 6= DKL(QkP)

Figure: KL divergence for two normal distributions.
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Minimizer of KL Divergence
Given P, we want to find Q⇤ that minimizes the KL divergence
Q⇤(from) = argminQ DKL(PkQ) or Q⇤(to) = argminQ DKL(QkP)?

Q⇤(from) places high probability where P has high probability
Q⇤(to) places low probability where P has low probability

Figure: Approximating a mixture P of two Gaussians using a single Gaussian Q.
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Decision Trees

Given a supervised dataset X= {(x(i),y(i))}N

i=1

Can we find out a tree-like function f (i.e, a set of rules) such that
f (x(i)) = y

(i)?
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Training a Decision Tree

Start from root which corresponds to all data points
{(x(i),y(i)) : Rules = /0)}
Recursively split leaf nodes until data corresponding to children are
“pure” in labels

How to split? Find a cutting point (j,v) among all unseen attributes
such that after partitioning the corresponding data points
Xparent = {(x(i),y(i) : Rules)} into two groups

Xleft = {(x(i),y(i)) : Rules[{x

(i)
j

< v}}, and

Xright = {(x(i),y(i)) : Rules[{x

(i)
j

� v}},

the “impurity” of labels drops the most, i.e., solve

argmax
j,v

⇣
Impurity(Xparent)� Impurity(Xleft,Xright)

⌘

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Large-Scale ML, Fall 2016 71 / 76



Training a Decision Tree

Start from root which corresponds to all data points
{(x(i),y(i)) : Rules = /0)}
Recursively split leaf nodes until data corresponding to children are
“pure” in labels
How to split?

Find a cutting point (j,v) among all unseen attributes
such that after partitioning the corresponding data points
Xparent = {(x(i),y(i) : Rules)} into two groups

Xleft = {(x(i),y(i)) : Rules[{x

(i)
j

< v}}, and

Xright = {(x(i),y(i)) : Rules[{x

(i)
j

� v}},

the “impurity” of labels drops the most, i.e., solve

argmax
j,v

⇣
Impurity(Xparent)� Impurity(Xleft,Xright)

⌘

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Large-Scale ML, Fall 2016 71 / 76



Training a Decision Tree

Start from root which corresponds to all data points
{(x(i),y(i)) : Rules = /0)}
Recursively split leaf nodes until data corresponding to children are
“pure” in labels
How to split? Find a cutting point (j,v) among all unseen attributes
such that after partitioning the corresponding data points
Xparent = {(x(i),y(i) : Rules)} into two groups

Xleft = {(x(i),y(i)) : Rules[{x

(i)
j

< v}}, and

Xright = {(x(i),y(i)) : Rules[{x

(i)
j

� v}},

the “impurity” of labels drops the most

, i.e., solve

argmax
j,v

⇣
Impurity(Xparent)� Impurity(Xleft,Xright)

⌘

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Large-Scale ML, Fall 2016 71 / 76



Training a Decision Tree

Start from root which corresponds to all data points
{(x(i),y(i)) : Rules = /0)}
Recursively split leaf nodes until data corresponding to children are
“pure” in labels
How to split? Find a cutting point (j,v) among all unseen attributes
such that after partitioning the corresponding data points
Xparent = {(x(i),y(i) : Rules)} into two groups

Xleft = {(x(i),y(i)) : Rules[{x

(i)
j

< v}}, and

Xright = {(x(i),y(i)) : Rules[{x

(i)
j

� v}},

the “impurity” of labels drops the most, i.e., solve

argmax
j,v

⇣
Impurity(Xparent)� Impurity(Xleft,Xright)

⌘

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Large-Scale ML, Fall 2016 71 / 76



Impurity Measure

argmax
j,v

⇣
Impurity(Xparent)� Impurity(Xleft,Xright)

⌘

What’s Impurity(·)?

Entropy is a common choice:

Impurity(Xparent) = H[y ⇠ Empirical(Xparent)]

Impurity(Xleft,Xright) = Â
i=left,right

|X(i)|
|Xparent|H[y ⇠ Empirical(X(i))]

In this case, Impurity(Xparent)� Impurity(Xleft,Xright) is called the
information gain
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Random Forests

A decision tree can be very deep

Deeper nodes give more specific rules
Backed by less training data
May not be applicable to testing data

How to ensure the generalizability of a decision tree?
I.e., to have high prediction accuracy on testing data

1 Pruning (e.g., limit the depth of the tree)
2

Random forest: an ensemble of many (deep) trees
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Training a Random Forest

1 Randomly pick M samples from the training set with replacement
Called the bootstrap samples

2 Grow a decision tree from the bootstrap samples. At each node:
1

Randomly select K features without replacement
2 Find the best cutting point (j,v) and split the node

3 Repeat the steps 1 and 2 for T times to get T trees
4 Aggregate the predictions made by different trees via the majority

vote

Each tree is trained slightly differently because of Step 1 and 2(a)
Provides different “perspectives” when voting
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vote

Each tree is trained slightly differently because of Step 1 and 2(a)
Provides different “perspectives” when voting
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Decision Boundaries
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Decision Trees vs. Random Forests

Cons of random forests:
Less interpretable model

Pros:
Less sensitive to the depth of trees

The majority voting can “absorb” the noise from individual trees

Can be parallelized
Each tree can grow independently
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