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Predictions based on Probability

Supervised learning, we are given a training set X= {(x(i),y(i))}N
i=1

Model F: a collection of functions parametrized by Q
Goal: to train a function f such that, given a new data point x

0, the
output value

ˆy = f (x0;Q)

is closest to the correct label y

0

Examples in X are usually assumed to be i.i.d. sampled from random
variables (x,y) following some data generating distribution P(x,y)

In probabilistic models, f is replaced by P(y = y |x = x

0) and a
prediction is made by:

ˆy = argmax

y

P(y = y |x = x

0
;Q)

How to find Q?
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Function (Q) as Point Estimate

Regard Q (f ) as an estimate of the “true” Q⇤ (f ⇤)
Mapped from the training set X

Maximum a posteriori (MAP) estimation:

argmax

Q
P(Q |X) = argmax

Q
P(X |Q)P(Q)

By Bayes’ rule (P(X) is irrelevant)
Solves Q first, then uses it as a constant in P(y |x;Q) to get ˆy

Maximum likelihood (ML) estimation:

argmax

Q
P(X |Q)

Assumes uniform P(Q) and does not prefer particular Q
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Probability Interpretation

Assumption: y = f ⇤(x)+ e , e ⇠ N (0,b�1)

The unknown deterministic function is defined as

f ⇤(x;w

⇤) = w

⇤>
x

All variables are z-normalized, so no bias term (b)

We have (y |x)⇠ N (w⇤>
x,b�1)

So, out goal is to find w as close to w

⇤ as possible such that:

ˆy = argmax

y

P(y |x = x;w) = w

>
x

Note that ŷ is irrelevant to b , so we don’t need to solve b

ML estimation:
argmax

w

P(X |w)
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ML Estimation I
Problem:

argmax

w

P(X |w)

Since we assume i.i.d. samples, we have

P(X |w) = ’N
i=1

P(x(i),y(i) |w) = ’N
i=1

P(y(i) |x(i),w)P(x(i) |w)

= ’N
i=1

P(y(i) |x(i),w)P(x(i)) = ’i N (y(i);w

>
x

(i),s2)P(x(i))

= ’i

q
b
2p exp

⇣
�b

2

(y(i)�w

>
x

(i))2

⌘
P(x(i))

To make the problem tractable, we prefer “sums” over “products”
We can instead maximize the log likelihood

argmax

w

logP(X |w)

= argmax

w

log


’i

q
b
2p exp

⇣
�b

2

(y(i)�w

>
x

(i))2

⌘
P(x(i))

�

= argmax

w

N
q

b
2p � b

2

Âi(y(i)�w

>
x

(i))2 +Âi P(x(i))

The optimal point does not change since log is monotone increasing
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ML Estimation II

argmax

w

N

r
b
2p

� b
2

Â
i
(y(i)�w

>
x

(i))2 +Â
i

P(x(i))

Ignoring terms irrelevant to w, we have

argmin

w

Â
i
(y(i)�w

>
x

(i))2

In other words, we seek for w by minimizing the SSE (sum of square
errors), as we have done before

By, e.g., the stochastic gradient descent algorithm
This new perspective explains our ad hoc choice of SSE for empirical
risk minimization

Checking assumptions helps understand when model works the best

Also motivates new models. Probabilistic model for classification?
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Probabilistic Models for Binary Classification

Probabilistic models:

ŷ = argmax

y
P(y |x;Q)

In regression, we assume (y |x)⇠ N (based on y = f ⇤(x)+ e)
However, Gaussian distribution is not applicable to binary
classification

The values of y should concentrate in either 1 or �1

Which distribution to assume?
Coin flipping: (y |x)⇠ Bernoulli(r), where

P(y |x;r) = ry0(1�r)(1�y0), where y0 =
y+1

2

How to relate x to r?
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Coin flipping: (y |x)⇠ Bernoulli(r), where

P(y |x;r) = ry0(1�r)(1�y0), where y0 =
y+1

2

How to relate x to r?

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 12 / 25



Probabilistic Models for Binary Classification

Probabilistic models:
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Logistic Function

Recall that the logistic function

s (z) =
exp(z)

exp(z)+1

=
1

1+ exp(�z)

is commonly used as a parametrizing
function of the Bernoulli distribution

We have

P(y |x;z) = s (z)y0 (1�s (z))(1�y0)

The larger z, the higher chance we get
a “positive flip”
How to relate x to z?
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Logistic Regression

In logistic regression, we let

z = w

>
x

Basically, z is the projection of x along the direction w

We have
P(y |x;w) = s(w>

x)y0 [1�s(w>
x)](1�y0)

Prediction:
ŷ = argmax

y
P(y |x;w) = sign(w>

x)

How to learn w from X?
ML estimation:

argmax

w

P(X |w)
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ML Estimation
Log-likelihood:

logP(X |w) = log’N
i=1

P

�
x

(i),y(i) |w
�

= log’i P

�
y(i) |x(i),w

�
P

�
x

(i) |w
�

µ log’i s(w>
x

(i))y0(i) [1�s(w>
x

(i))](1�y0(i))

= Âi y0(i)w>
x

(i)� log(1+ ew

>
x

(i)
) [Homework]

Unlike in linear regression, we cannot solve w analytically in a closed
form via

—
w

logP(X |w) =
N

Â
t=1

[y0(i)�s(w>
x

(i))]x(i) = 0

However, we can still evaluate —
w

logP(X |w) and use the iterative
methods to solve w

E.g., stochastic gradient descent
It can be shown that logP(X |w) is concave in terms of w [1]

So, iterative algorithms converges
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2
Maximum Likelihood Estimation

Linear Regression
Logistic Regression

3
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4
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MAP Estimation

So far, we solve w by ML estimation:

argmax

w

P(X |w)

In MAP estimation, we solve

argmax

w

P(w |X) = argmax

w

P(X |w)P(w)

P(w) models our preference or prior knowledge about w
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MAP Estimation for Linear Regression

MAP estimation in linear regression:

argmax

w

log[P(X |w)P(w)]

If we assume that w ⇠ N (0,b�1

I)

log[P(X |w)P(w)] = logP(X |w)+ logP(w) µ �Âi
�
y(i)�w

>
x

(i)�2

+ log

q
1

(2p)D
det(b�1

I)
exp

⇥
�1

2

(w�0)>(b�1

I)�1(w�0)
⇤

µ �Âi
�
y(i)�w

>
x

(i)�2�bw

>
w

P(w) corresponds to the weight decay term in Ridge regression
MAP estimation provides a way to design complicated yet
interpretable regularization terms

E.g., we have LASSO by letting P(w)⇠ Laplace(0,b) [Proof]
We can also let P(w) be a mixture of Gaussians
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Remarks on ML and MAP Estimation

Theorem (Consistency)

The ML estimator QML is consistent, i.e., limN!• QML
Pr�! Q⇤

as long as

the “true” P(y |x;Q⇤) lies within our model F.

Theorem (Cramér-Rao Lower Bound [2])

At a fixed (large) number N of examples, no consistent estimator of Q⇤
has

a lower expected MSE (mean square error) than the ML estimator QML.

That is, QML has a low sample complexity (or is statistic efficient)
ML estimation is popular due to its consistency and efficiency
When N is small that yields overfitting behavior, we can use MAP
estimation to introduce bias and reduce variance
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Bayesian Estimation

In ML/MAP estimation, we solve Q first, then uses it as a constant to
make prediction:

ˆy = argmax

y

P(y |x;Q)

Bayesian estimation threats Q as a random variable:

ˆy = argmax

y

P(y |x,X) = argmax

y

Z
P(y,Q |x,X)dQ

Makes prediction by considering all Q’s (weighted by their chances)

Bayesian estimation usually generalizes much better when the size N
of training set is small
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Bayesian vs. ML Estimation
Example: polynomial regression

Red line: predictions by Bayesian estimation regressor
Shaded area: predictions by ML/MAP estimation regressors
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Bayesian vs. MAP Estimation
MAP gains some benefit of Bayesian approach by incorporating prior
as bias(QMAP)

Reduces VarX(QMAP) when training set is small

However, does not work if QMAP is unrepresentative of the majority Q
in

R
P(y,Q |x,X)dQ

E.g. when P(Q |X) is a mixture of Gaussian
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Remarks

Bayesian estimation:

ˆy = argmax

y

P(y |x,X) = argmax

y

Z
P(y,Q |x,X)dQ

Usually generalizes much better given a small training set

Unfortunately, solution may not be tractable in many applications
Even tractable, incurs high computation cost

Not suitable for large-scale learning tasks
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