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Predictions based on Probability

N

o Supervised learning, we are given a training set X = {(x() y())}V |

o Model F: a collection of functions parametrized by ®

o Goal: to train a function f such that, given a new data point x/, the
output value

y=f"0)
is closest to the correct label y’

o Examples in X are usually assumed to be i.i.d. sampled from random
variables (x,y) following some data generating distribution P(x,y)

o In probabilistic models, f is replaced by P(y =y|x=x') and a
prediction is made by:

§=argmaxP(y =y|x =x";0)
y

o How to find ®7
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o Mapped from the training set X

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 5/25



Function (®) as Point Estimate

o Regard O (f) as an estimate of the “true” ®* (f*)
o Mapped from the training set X

o Maximum a posteriori (MAP) estimation:

argmax P(O|X) = arg max P(X|®)P(®)

o By Bayes’ rule (P(X) is irrelevant)

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning

5 /25



Function (®) as Point Estimate

o Regard O (f) as an estimate of the “true” ®* (f*)
o Mapped from the training set X

o Maximum a posteriori (MAP) estimation:

argmax P(O|X) = arg max P(X|®)P(®)

o By Bayes’ rule (P(X) is irrelevant)
o Solves O first, then uses it as a constant in P(y

x;0) to get y

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning

5 /25



Function (®) as Point Estimate

o Regard O (f) as an estimate of the “true” ®* (f*)
o Mapped from the training set X

o Maximum a posteriori (MAP) estimation:

argmax P(O|X) = arg max P(X|®)P(®)

o By Bayes’ rule (P(X) is irrelevant)
o Solves O first, then uses it as a constant in P(y

x;0) to get y

o Maximum likelihood (ML) estimation:

argm(gxP(X |®)

o Assumes uniform P(®) and does not prefer particular ®
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Probability Interpretation

o Assumption: y=f*(x)+¢&, e~ .4 (0,71
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Probability Interpretation

o Assumption: y=f*(x)+¢&, e~ .4 (0,71

o The unknown deterministic function is defined as
lew') = w*x
o All variables are z-normalized, so no bias term (b)

o We have (y|x) ~ A (w*Tx, 1)

o So, out goal is to find w as close to w* as possible such that:

§ =argmaxP(y|x =x;w) =w'x
y

o Note that 9 is irrelevant to , so we don't need to solve 3
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Probability Interpretation

o Assumption: y=f*(x)+¢&, e~ .4 (0,71

o The unknown deterministic function is defined as
f*(x;w*) — w*Tx
o All variables are z-normalized, so no bias term (b)

We have (y|x) ~ A4 (w*Tx, 1)
So, out goal is to find w as close to w* as possible such that:

()

©

§ =argmaxP(y|x =x;w) =w'x
y

o Note that 9 is irrelevant to , so we don't need to solve 3

ML estimation:

©

argmax P(X|w)
w
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ML Estimation |

o Problem:
argmax P(X|w)
w

o Since we assume i.i.d. samples, we have

P(X |w) = ITL, Py [w) =TT, PO [x, w)P (x| w)
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ML Estimation Il
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o lIgnoring terms irrelevant to w, we have

i (D) _ T2
argn}vmzit(y w' x\")

o In other words, we seek for w by minimizing the SSE (sum of square
errors), as we have done before

o By, e.g., the stochastic gradient descent algorithm
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o In other words, we seek for w by minimizing the SSE (sum of square
errors), as we have done before
o By, e.g., the stochastic gradient descent algorithm
o This new perspective explains our ad hoc choice of SSE for empirical
risk minimization
o Checking assumptions helps understand when model works the best
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ML Estimation Il

B By T2 (i)
argmua;lxN E_E;(y —w'x )+Zi'P(x )

o lIgnoring terms irrelevant to w, we have

i (D) _ T2
argn}vmzit(y w' x\")

o In other words, we seek for w by minimizing the SSE (sum of square
errors), as we have done before
o By, e.g., the stochastic gradient descent algorithm
o This new perspective explains our ad hoc choice of SSE for empirical
risk minimization
o Checking assumptions helps understand when model works the best

o Also motivates new models. Probabilistic model for classification?
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Probabilistic Models for Binary Classification

o Probabilistic models:

y =argmaxP(y|x;®)
y
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Probabilistic Models for Binary Classification

o Probabilistic models:

$ = argmaxP(y|x;0)
y

©

In regression, we assume (y|x) ~ .4 (based on y =f*(x)+¢)
However, Gaussian distribution is not applicable to binary
classification

o The values of y should concentrate in either 1 or —1

©

Which distribution to assume?

©

Coin flipping: (y|x) ~ Bernoulli(p), where

()

y+1

x:p)=p” (1—p)1) where y = 5

P(y

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning

12 / 25



Probabilistic Models for Binary Classification

o Probabilistic models:

$ = argmaxP(y|x;0)
y

In regression, we assume (y|x) ~ .4 (based on y =f*(x)+¢)
However, Gaussian distribution is not applicable to binary
classification

o The values of y should concentrate in either 1 or —1

© ©

Which distribution to assume?

©

Coin flipping: (y|x) ~ Bernoulli(p), where

()

y+1

x:p)=p” (1—p)1) where y = 5

P(y
o How to relate x to p?
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Logistic Function

o Recall that the logistic function

exp(z 1
o(z) = piz) _
exp(z)+1 1+exp(—2) + S—
is commonly used as a parametrizing
function of the Bernoulli distribution 05
-6 -4 _‘2 UO 2‘ 4 6
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Logistic Function

o Recall that the logistic function

_exp(z) 1
o) = exp(z) +1  14exp(—2z)

is commonly used as a parametrizing
function of the Bernoulli distribution

o We have

0.5

P(y|x;2) = 0 (2)" (1-0(2)

o The larger z, the higher chance we get
a “positive flip”
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Logistic Regression

o In logistic regression, we let
z=w'x

o Basically, z is the projection of x along the direction w
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o Basically, z is the projection of x along the direction w

o We have
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o Prediction:
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Logistic Regression

o In logistic regression, we let

Z:WTx

o Basically, z is the projection of x along the direction w

We have

()

Piy|x;w)=o(w'x)"[1—c(w x))

o Prediction:

$ = argmaxP(y|x;w) = sign(w ' x)
y
o How to learn w from X?
o ML estimation:
argmax P(X|w)
w
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ML Estimation
o Log-likelihood:

logP(X|w) = log[TY_, P (x(),y |w)
= log[];P (y(i) |x(i>,w) P (x(i) \w)
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ML Estimation
o Log-likelihood:
logP(X|w) = logHﬁvzlp(x(i ’

— log[T;P (|1, w)
o< log[J;o(w x @ [1 — o (wTx(0)] 12

lav I
"L
=
S~—
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ML Estimation
o Log-likelihood:

logP(X|w) = logH P (x@ y@|w
e e e oy
logH G(w x(@)y o [1—o(w x®)]0=
=¥, vOwTxl) —1og(1 +eWTx('>) [Homework]

o Unlike in linear regression, we cannot solve w analytically in a closed
form via

())

Y —omw x)x® =0

M=

VylogP(X|w) =

N
Il
_
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o However, we can still evaluate V,,1ogP(X|w) and use the iterative
methods to solve w
o E.g., stochastic gradient descent
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ML Estimation
o Log-likelihood:

logP(X|w) = logH (x(’ |w
= log[;P (" [x", w) P ( ’\W)
logH G(w x ) a [1—o(w x®)]0= Y9
=¥, vOwTxl) —1og(1 +eWTx('>) [Homework]
o Unlike in linear regression, we cannot solve w analytically in a closed
form via

Y —omw x)x® =0

M=

VylogP(X|w) =

N
Il
_

o However, we can still evaluate V,,1ogP(X|w) and use the iterative
methods to solve w
o E.g., stochastic gradient descent
o It can be shown that logP(X|w) is concave in terms of w [1]
o So, iterative algorithms converges
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(3 Maximum A Posteriori Estimation
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MAP Estimation

o So far, we solve w by ML estimation:

argmax P(X|w)
w
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MAP Estimation

o So far, we solve w by ML estimation:

argmax P(X|w)
w

o In MAP estimation, we solve
argmax P(w | X) = argmax P(X|w)P(w)
w w

o P(w) models our preference or prior knowledge about w
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MAP Estimation for Linear Regression

o MAP estimation in linear regression:

argmwa}xlog[P(X |w)P(w)]
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MAP Estimation for Linear Regression

o MAP estimation in linear regression:

argmwa}xlog[P(X |w)P(w)]

o If we assume that w ~ .4/ (0, ')

log[P(X|w)P(w)] = logP(X|w) +logP(w)
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MAP Estimation for Linear Regression

o MAP estimation in linear regression:

argmwa}xlog[P(X |w)P(w)]

o If we assume that w ~ .4/ (0, ')

1og[P(X | w)P(w)] = log P(X | w) + log P(w) o — ¥, () —w x())?
+10g1 / Wlt(ﬁm exXp [—%(W — O)T(B_II)_l (W — 0)]
o< _Zi (y(l) — wa(i))z —ﬁWTW
o P(w) corresponds to the weight decay term in Ridge regression

o MAP estimation provides a way to design complicated yet
interpretable regularization terms

o E.g., we have LASSO by letting P(w) ~ Laplace(0,b) [Proof]
o We can also let P(w) be a mixture of Gaussians
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Remarks on ML and MAP Estimation

Theorem (Consistency)

. . . . . P
The ML estimator @y is consistent, i.e., imy_... O — ©* as long as
the “true” P(y|x;®*) lies within our model F.
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Remarks on ML and MAP Estimation

Theorem (Consistency)

. . . . . P
The ML estimator @y is consistent, i.e., imy_... O — ©* as long as
the “true” P(y|x;®*) lies within our model F.

Theorem (Cramér-Rao Lower Bound [2])

At a fixed (large) number N of examples, no consistent estimator of ®* has
a lower expected MSE (mean square error) than the ML estimator ®y; .

o That is, Om has a low sample complexity (or is statistic efficient)
o ML estimation is popular due to its consistency and efficiency

o When N is small that yields overfitting behavior, we can use MAP
estimation to introduce bias and reduce variance
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Bayesian Estimation

o In ML/MAP estimation, we solve ® first, then uses it as a constant to
make prediction:
y =argmaxP(y|x;0)
y
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y =argmaxP(y|x;®)
y

o Bayesian estimation threats ® as a random variable:
y=argmaxP(y|x,X) = argmax/P(y,@ |x,X)d®
¥ ¥
o Makes prediction by considering all @'s (weighted by their chances)

o Bayesian estimation usually generalizes much better when the size N
of training set is small
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Bayesian vs. ML Estimation

o Example: polynomial regression
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Bayesian vs. ML Estimation

o Example: polynomial regression
o Red line: predictions by Bayesian estimation regressor
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Bayesian vs. ML Estimation

o Example: polynomial regression
o Red line: predictions by Bayesian estimation regressor

o Shaded area: predictions by ML/MAP estimation regressors
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Bayesian vs. MAP Estimation

o MAP gains some benefit of Bayesian approach by incorporating prior
as bias(@wap)
o Reduces Varg(®map) when training set is small
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Bayesian vs. MAP Estimation

o MAP gains some benefit of Bayesian approach by incorporating prior
as bias(@wap)
o Reduces Varg(®map) when training set is small

o However, does not work if ®yap is unrepresentative of the majority ©®
in [P(y,®|x,X)d®
o E.g. when P(®|X) is a mixture of Gaussian

A
P(OIX) Omap

5>
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Remarks

o Bayesian estimation:
y=argmaxP(y|x,X) = argmax/P(y,@ |x,X)d®
y y

o Usually generalizes much better given a small training set
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Remarks

©

Bayesian estimation:

y=argmaxP(y|x,X) = argmax/P(y,@ |x,X)d®
y y

©

Usually generalizes much better given a small training set

©

Unfortunately, solution may not be tractable in many applications

()

Even tractable, incurs high computation cost
o Not suitable for large-scale learning tasks
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