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K-NN Methods |

o The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5/ 42



K-NN Methods |

o The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

@ Choose the number K and a distance metric

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5/ 42



K-NN Methods |

o The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

@ Choose the number K and a distance metric

@ Find the K nearest neighbors of a given point x

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5/ 42



K-NN Methods |

o The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

@ Choose the number K and a distance metric
@ Find the K nearest neighbors of a given point x

@ Predict the label of x by the majority vote (in classification) or average
(in regression) of NNs’ labels

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5/ 42



K-NN Methods |

o The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

@ Choose the number K and a distance metric
@ Find the K nearest neighbors of a given point x

@ Predict the label of x by the majority vote (in classification) or average
(in regression) of NNs’ labels

o Distance metric?

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5/ 42



K-NN Methods |

o The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

@ Choose the number K and a distance metric
@ Find the K nearest neighbors of a given point x

@ Predict the label of x by the majority vote (in classification) or average
(in regression) of NNs’ labels

o Distance metric? E.g., Euclidean distance d(x(),x) = |x®) —x||

o Training algorithm?

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5/ 42



K-NN Methods |

o The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

@ Choose the number K and a distance metric
@ Find the K nearest neighbors of a given point x

@ Predict the label of x by the majority vote (in classification) or average
(in regression) of NNs’ labels

o Distance metric? E.g., Euclidean distance d(x(),x) = |x®) —x||

o Training algorithm? Simply “remember” X in storage

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5/ 42



K-NN Methods Il

o Could be very complex

o K is a hyperparameter controlling the model complexity

Binary kNN Classification (k=1) Binary kNN Classification (k=5) Binary kNN Classification (k=25)

x2

x1 x1 x1

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 6 /42



Non-Parametric Methods

o K-NN method is a special case of non-parametric (or
memory-based) methods
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Non-Parametric Methods

o K-NN method is a special case of non-parametric (or
memory-based) methods
o Non-parametric in the sense that f are not described by only few
parameters
o Memory-based in that all data (rather than just parameters) need to be
memorized during the training process
o K-NN is also a lazy method since the prediction function f is obtained
only before the prediction
o Motivates the development of other local models
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Pros & Cons

o Pros:
o Almost no assumption on f other than smoothness
o High capacity/complexity
o High accuracy given a large training set
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Pros & Cons

o Pros:
o Almost no assumption on f other than smoothness
o High capacity/complexity
o High accuracy given a large training set
o Supports online training (by simply memorizing)
o Readily extensible to multi-class and regression problems
o Cons:
o Storage demanding
Sensitive to outliers
Sensitive to irrelevant data features (vs. decision trees)

(*]

Q

o Needs to deal with missing data (e.g., special distances)

o Computationally expensive: O(ND) time for making each prediction

o Can speed up with index and/or approximation
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Outline

(@ Non-Parametric Methods

o Parzen Windows
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Parzen Windows and Kernels

o Binary KNN classifier:

f(x) =sign (Zi:x“)eKNN(x)y(i))

o The "radius” of voter boundary depends on the input x
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Common RBF Kernels

o How to act like soft K-NN?
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Common RBF Kernels

How to act like soft K-NN?
Gaussian RBF kernel:

©

©

k(xD x) = A () —x;0,0%1)

©

Or simply
K x) = exp (—yx —x|?)

o ¥>0 (or 6?) is a hyperparameter controlling the smoothness of f
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Locally Weighted Linear Regression

o In addition to the majority voting and average, we can define local
models for lazy predictions
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Locally Weighted Linear Regression

o In addition to the majority voting and average, we can define local
models for lazy predictions

o E.g., in (eager) linear regression, we find w € RP*! that minimizes
SSE:
' () _ 3 Tx()2
argrr%vm;(y w x\")

o Local model: to find w minimizing SSE local to the point x we
want to predict:

argmin ) k(x?x) () —w T2

o k(-,-) € Ris an RBF kernel
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Outline

@ Support Vector Machines
SVC

Slacks

Nonlinear SVC

Dual Problem

Kernel Trick
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Kernel Machines

o Kernel machines:

o For example:
o Parzen windows: ¢; =y and ¢g =0

o Locally weighted linear regression: ¢; = (y/) —wTx())2 and ¢y =0
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Kernel Machines

o Kernel machines:

N
F@) =Y cik(x®,x) +co
i=1
o For example:
o Parzen windows: ¢; =y and ¢g =0

o Locally weighted linear regression: ¢; =

=D —wTx)2 and ¢y =0
o The variable ¢ € RY can be learned in either an eager or lazy manner

o Pros: complex, but highly accurate if regularized well

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM

Machine Learning 15 / 42



Sparse Kernel Machines

o To make a prediction, we need to store all examples
o May be infeasible due to

o Large dataset (N)
o Time limit
o Space limit
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Sparse Kernel Machines

©

To make a prediction, we need to store all examples

()

May be infeasible due to
o Large dataset (N)
o Time limit
o Space limit
o Can we make ¢ sparse?
o l.e., to make ¢; # 0 for only a small fraction of examples called support
vectors

o How?
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Outline

@ Support Vector Machines
o SVC
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Separating Hyperplane |

o Model: F={f:f(x;w,b) =w'x+b}
o A collection of hyperplanes

o Prediction: $ = sign(f(x))
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o Model: F={f:f(x;w,b) =w'x+b}
o A collection of hyperplanes

o Prediction: $ = sign(f(x))

o Training: to find w and b such that

wix4p>0 ify)=1
wix4p<0, if y) =—1

or simply . ‘
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Separating Hyperplane Il

o There are many feasible w's and b's when the classes are linearly
separable
o Which hyperplane is the best?

X
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Support Vector Classification

o Support vector classifier (SVC) picks one with largest margin:
o yO(wTx) +b) > aforall i
o Margin: 2a/||w| [Homework]

Margin
Support vectors
X, ,,_‘/ w
Ny
Decision boundary |- .
wix+b=0
“negative” . _ “positive”
hyperplane o AN hyperplane
wix+b=-1 00 ~ M . wix+b=1
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Support Vector Classification

o Support vector classifier (SVC) picks one with largest margin:
o yO(wTx) +b) > aforall i
o Margin: 2a/||w| [Homework]

Margin
Support vectors
X2 4
Decision boundary
wix+b=0 ¥
+
“negative” + “positive”
hyperplane hyperplane
wix+b=-1 o wix+b=1
X;

o With loss of generality, we let a = 1 and solve the problem:

argminy, i HwH2
sibject to y(w x) 4-b) > 1,Vi
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Outline

@ Support Vector Machines

o Slacks
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Overlapping Classes

o In practice, classes may be overlapping
o Due to, e.g., noises or outliers

X2
[ ]
° [ ]
[ ] ° o
°
Y L]
] ® [ ]
° L)
[ ]
[ ]
X1
Non-Parametric Methods & SVM Machine Learning
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Overlapping Classes

o In practice, classes may be overlapping
o Due to, e.g., noises or outliers

o The problem
argmin, 3| w2
sibject to y) (w ' x) +b) > 1,Vi

has no solution in this case. How to fix this?
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Slacks

o SVC tolerates slacks that fall outside of the regions they ought to be
o Problem:

argmin,, ; ¢ 5[[w|*+CLY &
sibject to y)(wx() +b) > 1—-&; and & > 0,Vi

o Favors large margin but also fewer slacks

X2

X1
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Hyperparameter C
argmin,, ¢ 3[w[* + CEL, &

o The hyperparameter C controls the tradeoff between
o Maximizing margin
o Minimizing number of slacks

X, X, [
“ 1 i
o 8. + ++ o | ! | + ++
RN o
R Lo
o o °o ! o |
Xl’ >
Large value for Small value for
parameter C parameter C
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Hyperparameter C
argmin,, ¢ 3[w[* + CEL, &

o The hyperparameter C controls the tradeoff between
o Maximizing margin
o Minimizing number of slacks

Xp X, : i
+ L+
N + L+
o Wy *t g F
°o Nt o ! T ¥
®o LS ® o ! o
X1
Large value for Small value for
parameter C parameter C

o Provides a geometric explanation to the weight decay
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Outline

@ Support Vector Machines

o Nonlinear SVC
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Nonlinearly Separable Classes

o In practice, classes may be nonlinearly separable

x2 °
[} [ ]
° [}
o o °
[
° ° o
PY [ )
[ ]
[}
X1
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Nonlinearly Separable Classes

o In practice, classes may be nonlinearly separable

x2 °
[} [ ]
° [}
o o °
[
° ° o
PY [ )
[ ]
[}
X1

o SVC (with slacks) gives “bad" hyperplanes due to underfitting

o How to make it nonlinear?
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Feature Augmentation

o Recall that in polynomial regression, we augment data features to
make a linear regressor nonlinear
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Feature Augmentation

o Recall that in polynomial regression, we augment data features to
make a linear regressor nonlinear

o We can can define a function ®(-) that maps each data point to a
high dimensional space:

grgminw.h% slwl>+Cxé
sibject to y(!) (wTCD(x(’ J+b)>1-¢& and & >0,Vi

_—— —-05
4&11105000510; 1015
z

A5 o0 -5 00 05 1o 15 2

5-1.5-100500 03
z

-1
1 A5 o s o0 o5 10 15
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Outline

@ Support Vector Machines

o Dual Problem
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Time Complexity

o Nonlinear SVC;:

?rgminw,b,% Swl?+CYi&;
sibject to ) (w ®(x)) +b) > 1—-& and & >0,Vi

o The higher augmented feature dimension, the more variables in w to
solve
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Time Complexity

o Nonlinear SVC;:

?rgminw,b,% Swl?+CYi&;
sibject to ) (w ®(x)) +b) > 1—-& and & >0,Vi

o The higher augmented feature dimension, the more variables in w to
solve

o Can we solve w in time complexity that is independent with the
mapped dimension?
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Dual Problem

o Primal problem:

?-rgminmlz% slwl?+CLi&
sibject to y(!) (wab(x(’ )+b)>1-¢& and & >0,Vi

o Dual problem:

argmax, g min,, , e L(w,b,&, a, B)
subject to ¢ > 0,5 >0

where L(w,b, &, a0, B) =
HwlP+CLi&+Yi (1 =y (w @(x D) +b) — &) + ¥, Bi(—&)
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Dual Problem

o Primal problem:

?-rgminmlz% slwl?+CLi&
sibject to y(!) (wab(x(’ )+b)>1-¢& and & >0,Vi

o Dual problem:

argmax, g min,, , e L(w,b,&, a, B)
subject to ¢ > 0,5 >0

where L(w,b, &, a0, B) =
Hwl? + CLi&t L oi(1 =y (w! @(xD) +b) — &) + X Bi(~ &)
o Primal problem is convex, so strong duality holds
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Solving Dual Problem |

o L(w,b,E,a,B)=
Hwl?+ CLi&t X on(1 =y (w  (xD) +b) — &) + L fi( &)
o The inner problem
min L(w,b,&, a, B)

w7b7§
is convex in terms of w, b, and &

o Let's solve it analytically:
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is convex in terms of w, b, and &
o Let's solve it analytically:

o % =W — Zi aiy(i)CID(x(i)) =0=>w= Zi aiy(i)q)(x(i))

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 31/ 42



Solving Dual Problem |

o L(w,b,E,a,B)=
Hwl?+ CLi&t X on(1 =y (w  (xD) +b) — &) + L fi( &)
o The inner problem
min L(w,b,&, a, B)

w,b,E
is convex in terms of w, b, and &
o Let's solve it analytically:
o % =w-Y; Ociy(i)CID(x(i)) =0=w=Y, Ot,-y(i)CI)(x(i))
° % =Y 097 =0

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 31/ 42



Solving Dual Problem |

o L(w,b,E,a,B)=
Hwl?+ CLi&t X on(1 =y (w  (xD) +b) — &) + L fi( &)
o The inner problem
min L(w,b,&, a, B)

w,b,E
is convex in terms of w, b, and &
o Let's solve it analytically:
o % =w-Y; Ociy(i)CID(x(i)) =0=w=Y, Ot,-y(i)CI)(x(i))
° % =Y 097 =0

Q %:C—(Xi—ﬁi:0:>ﬁizc—0{i
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Solving Dual Problem II

o L(w7b7§7a7ﬁ): . .
3IwlP+ CE&tE (1 =y (wT D (x) +b) = &) + L Bi(~&)
o Substituting w = ¥, 0y ®(x)) and B = C— a; in L(w,b,&, a, B):

1 NG
Lw,b,&,0,B) =) ati— EZOCiOij( YW (xD) T (xV)) bZa,y ,
i iy
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Solving Dual Problem Il
OL(w7b7§7a7ﬁ): . .
Sl + CLi &t i oi(1 =y (wT @(x?) +b) = &) + i Bi(—&)
o Substituting w = ¥, 0y ®(x)) and B = C— a; in L(w,b,&, a, B):

1 NG
L(W,b,g,a,ﬁ) = ZOC,' — Ezala]y( )y(])q)( Tq) x(f bZaly

Yioi—5Y; oc,oc]y( )yDP(x)TPp(x)) |
if Yoy =0,

—00’

inL(w,b =
min L(w,b,5,a,8)

otherwise
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Solving Dual Problem II

o L(w7b7§7a7ﬁ): . .
3IwlP+ CE&tE (1 =y (wT D (x) +b) = &) + L Bi(~&)
o Substituting w = ¥, 0y ®(x)) and B = C— a; in L(w,b,&, a, B):

1 NG
L(w,b,8,a,B) :Z%—Ezaiajy( Y@ (x) T @ (x)) bZa,y
i iy

Yioi—5Y; oc,oc]y( )yDP(x)TPp(x)) |
min L(w,b,&, 0, B) = if ¥, 00y =0,
w,b,E

—00’

otherwise

o Outer maximization problem:

argmaxg 10— %OCTKOt
subject to 0 < ¢ < Cl andy ' a =0

o Kij=yyld(x)To(xl))
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Solving Dual Problem II

o L(w7b7§7a7ﬁ) =
Hiwl?+ CL &+ (1 —yD (w  @(xD) +b) — &) + X Bi(—&)

o Substituting w = ¥, 0y ®(x)) and B = C— a; in L(w,b,&, a, B):

1 NG
L(w,b,8,a,B) :Z%—Ezaiajy( Y@ (x) T @ (x)) bZa,y
i iy

Yioi—5Y; oc,oc]y( )yDP(x)TPp(x)) |

min L(w,b,&,a,B) = i Liowy =0,
WJ’:& —o9,

otherwise
o Outer maximization problem:

argmaxg 10— %OCTKOt
subject to 0 < ¢ < Cl andy ' a =0

o Kij=y Oy a(x)Td(x0))
o fi=C—0; >0 implies a; < C
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Solving Dual Problem II

o Dual minimization problem of SVC:

argming %(XTKO(—ITO(
subject to 0 < o < Cl andy =0

o Number of variables to solve?
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Solving Dual Problem II

o Dual minimization problem of SVC:

argming %(XTKO(—ITO(
subject to 0 < o < Cl andy =0

o Number of variables to solve? N instead of augmented feature
dimension
o In practice, this problem is solved by specialized solvers such as the
sequential minimal optimization (SMO) [3]
o As K is usually ill-conditioned

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 33 /42



Making Predictions

o Prediction: $ = sign(f(x)) = sign(w'x +b)
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Making Predictions

Prediction: § = sign(f(x)) = sign(w "x +b)
We have w =¥, oy d(x(?)
How to obtain b7

©

©

©

©

By the complementary slackness of KKT conditions, we have:

(1 =y (w d(x") +b) —&) =0 and fi(~&) =0
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Making Predictions

o Prediction: $ = sign(f(x)) = sign(w'x +b)
o We have w = ¥, oy (x (1)
o How to obtain b7

o By the complementary slackness of KKT conditions, we have:
o4(1— 30w D(x) +b) — &) = 0 and Bi(~&) =0
o For any x\) having 0 < o; < C, we have
Bi=C—0o;>0=¢& =0,

1=y w @) +b) - &) =0= b=y —w ()
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Making Predictions

o Prediction: $ = sign(f(x)) = sign(w'x +b)
o We have w = ¥, oy (x (1)
o How to obtain b7

o By the complementary slackness of KKT conditions, we have:
ai(1 =y (w D) +b) —&) =0 and fi(~&) =
o For any x\) having 0 < o; < C, we have
Bi=C-0a;>0=§=0,

(1= w D) +b) = &) =0=b=y" —w D)

In practice, we usually take the average over all x()'s having
0 < o < C to avoid numeric error

()
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Outline

@ Support Vector Machines

o Kernel Trick
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Kernel as Inner Product
o We need to evaluate ®(x())Td(x")) when

o Solving dual problem of SVC, where K;; = yy")(x()) Td(x 1))
o Making a prediction, where f(x) =w'x+b =Y, iy d(x)) & (x) +b
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o Solving dual problem of SVC, where K;; = yy")(x()) Td(x 1))
o Making a prediction, where f(x) =w'x+b =Y, iy d(x)) & (x) +b
o Time complexity?
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efficiently
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Kernel as Inner Product

o We need to evaluate ®(x())Td(x")) when

o Solving dual problem of SVC, where K;; = yy")(x()) Td(x 1))

o Making a prediction, where f(x) =w'x+b =Y, iy d(x)) & (x) +b
Time complexity?

()

o If we choose ® carefully, we can can evaluate ®(x())Td(x) = k(x(), x)
efficiently
Polynomial kernel: k(a,b) = (a"b/a+B)Y
o Eg,leta=1,B=1 v=2andacR? then
®(a) = [1,V2a1,V2az,a},d5,v/2a1a3]" € RO
Gaussian RBF kernel: k(a,b) = exp(—ylla—b|*) , y>0
o k(a,b) = exp(—vlal*+2ya"b - y|b||*)=
exp(~7a> ~ ¥ r + 2k Coo BP
o Let @ € R?, then ®(a

exp( YH“” \/ 1!a17 \/ 1va2a \/ 2?“1» \/ 27(“27 %alaZa"']T eR”
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Kernel Trick

o If we choose @ induced by Polynomial or Gaussian RBF kernel, then
Kij = yyk(x" x)
takes only O(D) time to evaluate, and

f) =Y apyk(x" x) +b

takes O(ND) time
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Kernel Trick

o If we choose @ induced by Polynomial or Gaussian RBF kernel, then

Kij = yyk(x" x)
takes only O(D) time to evaluate, and

flx)= Z (xiy(i)k(x(i) X)+b

takes O(ND) time
o Independent with the augmented feature dimension

o a, B, and y are new hyperparameters
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Sparse Kernel Machines

o SVC is a kernel machine:
f@) =Y oy k(x? x) +b

o It is surprising that SVC works like K-NN in some sense
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Sparse Kernel Machines

o SVC is a kernel machine:
f@) =Y oy k(x? x) +b

o It is surprising that SVC works like K-NN in some sense
o However, SVC is a sparse kernel machine
o Only the slacks become the support vectors (a; > 0)
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KKT Conditions and Types of SVs

o By KKT conditions, we have:
o Primal feasibility: y)(w ®(x))+5) >1—& and & >0
o Complementary slackness: o;(1 —y (w'®(x®)+b)—&) =0 and

Bi(=&) =0
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o By KKT conditions, we have:
o Primal feasibility: y)(w ®(x))+5) >1—& and & >0
o Complementary slackness: o;(1 —y)(w'®(x®) +b) — &) =0 and
Bi(=&) =0
Depending on the value of o, each example x can be:
Non SVs (o; = 0): y@(w ®(x®)+b) > 1 (usually strict)

©

©

o Free SVs (0 < a; < C): yO(wd(x®) +b) =1

o Bounded SVs (0 = C): y(w®(x)) 4+ b) < 1 (usually strict)
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o Primal feasibility: y(w ®(x)+5)>1—E& and & >0
o Complementary slackness: (1 —y® (w ®(x)+b)—&) =0 and
Bi(=&) =0
Depending on the value of o, each example x can be:
Non SVs (o; = 0): y@(w ®(x®)+b) > 1 (usually strict)
o 1—yO(w d(x®)+p)—& <0
o Since Bi=C—0; #0, we have §; =0
o Free SVs (0 < a; < C): yO(wd(x®) +b) =1
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o Since f;i=C—0; #0, we have £, =0
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o By KKT conditions, we have:
o Primal feasibility: y(w ®(x)+5)>1—E& and & >0
o Complementary slackness: (1 —y® (w ®(x)+b)—&) =0 and
Bi(=&) =0
Depending on the value of o, each example x() can be:
Non SVs (o; = 0): y@(w ®(x®)+b) > 1 (usually strict)
o 1—yD(w o) +b)—& <0
o Since Bi=C—0; #0, we have §; =0
o Free SVs (0 < a; < C): y(w d(xD)+b) =1
o 1=y (wTd(xD)4b)—&=0
o Since f;i=C—0; #0, we have £, =0
Bounded SVs (a; = C): y(w ®(x®) +b) <1 (usually strict)
o 1—yO(w d(x®)+b)—& =0
o Since B; =0, we have ;>0
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Remarks |

o Pros of SVC:

o Global optimality (convex problem)
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Remarks |

o Pros of SVC:
o Global optimality (convex problem)
o Works with different kernels (linear, Polynomial, Gaussian RBF, etc.)
o Works well with small training set

o Cons:
o Nonlinear SVC not scalable to large tasks

o Takes O(N?) ~ O(N?) time to train using SMO in LIBSVM [1]
o On the other hand, linear SVC takes O(ND) time

o Kernel matrix K requires O(N?) space

o In practice, we cache only a small portion of K in memory
Sensitive to irrelevant data features (vs. decision trees)
Non-trivial hyperparameter tuning

o The effect of a (C, y) combination is unknown in advance

o Usually done by grid search

Separate only 2 classes
o Usually wrapped by the 1-vs-1 technique for multi-class classification

© ©

©
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Remarks Il

o Does nonlinear SVC always perform better than linear SVC?
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Remarks Il

o Does nonlinear SVC always perform better than linear SVC? No
o Choose linear SVC (e.g., LIBLINEAR [2]) when

o N is large (since nonlinear SVC does not scale), or
o D is large (since classes may already be linearly separable)
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