
Non-Parametric Methods and
Support Vector Machines

Shan-Hung Wu
shwu@cs.nthu.edu.tw

Department of Computer Science,
National Tsing Hua University, Taiwan

Machine Learning

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 1 / 42



Outline

1
Non-Parametric Methods

K-NN
Parzen Windows
Local Models

2
Support Vector Machines

SVC
Slacks
Nonlinear SVC
Dual Problem
Kernel Trick

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 2 / 42



Outline

1
Non-Parametric Methods

K-NN
Parzen Windows
Local Models

2
Support Vector Machines

SVC
Slacks
Nonlinear SVC
Dual Problem
Kernel Trick

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 3 / 42



Outline

1
Non-Parametric Methods

K-NN
Parzen Windows
Local Models

2
Support Vector Machines

SVC
Slacks
Nonlinear SVC
Dual Problem
Kernel Trick

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 4 / 42



K-NN Methods I

The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

1 Choose the number K and a distance metric
2 Find the K nearest neighbors of a given point x

3 Predict the label of x by the majority vote (in classification) or average
(in regression) of NNs’ labels

Distance metric? E.g., Euclidean distance d(x(i),x) = kx

(i)�xk
Training algorithm? Simply “remember” X in storage

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5 / 42



K-NN Methods I

The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

1 Choose the number K and a distance metric

2 Find the K nearest neighbors of a given point x

3 Predict the label of x by the majority vote (in classification) or average
(in regression) of NNs’ labels

Distance metric? E.g., Euclidean distance d(x(i),x) = kx

(i)�xk
Training algorithm? Simply “remember” X in storage

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5 / 42



K-NN Methods I

The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

1 Choose the number K and a distance metric
2 Find the K nearest neighbors of a given point x

3 Predict the label of x by the majority vote (in classification) or average
(in regression) of NNs’ labels

Distance metric? E.g., Euclidean distance d(x(i),x) = kx

(i)�xk
Training algorithm? Simply “remember” X in storage

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5 / 42



K-NN Methods I

The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

1 Choose the number K and a distance metric
2 Find the K nearest neighbors of a given point x

3 Predict the label of x by the majority vote (in classification) or average
(in regression) of NNs’ labels

Distance metric? E.g., Euclidean distance d(x(i),x) = kx

(i)�xk
Training algorithm? Simply “remember” X in storage

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5 / 42



K-NN Methods I

The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

1 Choose the number K and a distance metric
2 Find the K nearest neighbors of a given point x

3 Predict the label of x by the majority vote (in classification) or average
(in regression) of NNs’ labels

Distance metric?

E.g., Euclidean distance d(x(i),x) = kx

(i)�xk
Training algorithm? Simply “remember” X in storage

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5 / 42



K-NN Methods I

The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

1 Choose the number K and a distance metric
2 Find the K nearest neighbors of a given point x

3 Predict the label of x by the majority vote (in classification) or average
(in regression) of NNs’ labels

Distance metric? E.g., Euclidean distance d(x(i),x) = kx

(i)�xk
Training algorithm?

Simply “remember” X in storage

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5 / 42



K-NN Methods I

The K-nearest neighbor (K-NN) methods are straightforward, but a
fundamentally different way, to predict the label of a data point x:

1 Choose the number K and a distance metric
2 Find the K nearest neighbors of a given point x

3 Predict the label of x by the majority vote (in classification) or average
(in regression) of NNs’ labels

Distance metric? E.g., Euclidean distance d(x(i),x) = kx

(i)�xk
Training algorithm? Simply “remember” X in storage

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 5 / 42



K-NN Methods II

Could be very complex
K is a hyperparameter controlling the model complexity

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 6 / 42



Non-Parametric Methods

K-NN method is a special case of non-parametric (or
memory-based) methods

Non-parametric in the sense that f are not described by only few
parameters
Memory-based in that all data (rather than just parameters) need to be
memorized during the training process

K-NN is also a lazy method since the prediction function f is obtained
only before the prediction

Motivates the development of other local models

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 7 / 42



Non-Parametric Methods

K-NN method is a special case of non-parametric (or
memory-based) methods

Non-parametric in the sense that f are not described by only few
parameters

Memory-based in that all data (rather than just parameters) need to be
memorized during the training process

K-NN is also a lazy method since the prediction function f is obtained
only before the prediction

Motivates the development of other local models

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 7 / 42



Non-Parametric Methods

K-NN method is a special case of non-parametric (or
memory-based) methods

Non-parametric in the sense that f are not described by only few
parameters
Memory-based in that all data (rather than just parameters) need to be
memorized during the training process

K-NN is also a lazy method since the prediction function f is obtained
only before the prediction

Motivates the development of other local models

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 7 / 42



Non-Parametric Methods

K-NN method is a special case of non-parametric (or
memory-based) methods

Non-parametric in the sense that f are not described by only few
parameters
Memory-based in that all data (rather than just parameters) need to be
memorized during the training process

K-NN is also a lazy method since the prediction function f is obtained
only before the prediction

Motivates the development of other local models

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 7 / 42



Non-Parametric Methods

K-NN method is a special case of non-parametric (or
memory-based) methods

Non-parametric in the sense that f are not described by only few
parameters
Memory-based in that all data (rather than just parameters) need to be
memorized during the training process

K-NN is also a lazy method since the prediction function f is obtained
only before the prediction

Motivates the development of other local models

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 7 / 42



Pros & Cons

Pros:
Almost no assumption on f other than smoothness

High capacity/complexity
High accuracy given a large training set

Supports online training (by simply memorizing)
Readily extensible to multi-class and regression problems

Cons:
Storage demanding
Sensitive to outliers
Sensitive to irrelevant data features (vs. decision trees)
Needs to deal with missing data (e.g., special distances)
Computationally expensive: O(ND) time for making each prediction

Can speed up with index and/or approximation

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 8 / 42



Pros & Cons

Pros:
Almost no assumption on f other than smoothness

High capacity/complexity
High accuracy given a large training set

Supports online training (by simply memorizing)

Readily extensible to multi-class and regression problems
Cons:

Storage demanding
Sensitive to outliers
Sensitive to irrelevant data features (vs. decision trees)
Needs to deal with missing data (e.g., special distances)
Computationally expensive: O(ND) time for making each prediction

Can speed up with index and/or approximation

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 8 / 42



Pros & Cons

Pros:
Almost no assumption on f other than smoothness

High capacity/complexity
High accuracy given a large training set

Supports online training (by simply memorizing)
Readily extensible to multi-class and regression problems

Cons:
Storage demanding
Sensitive to outliers
Sensitive to irrelevant data features (vs. decision trees)
Needs to deal with missing data (e.g., special distances)
Computationally expensive: O(ND) time for making each prediction

Can speed up with index and/or approximation

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 8 / 42



Pros & Cons

Pros:
Almost no assumption on f other than smoothness

High capacity/complexity
High accuracy given a large training set

Supports online training (by simply memorizing)
Readily extensible to multi-class and regression problems

Cons:
Storage demanding

Sensitive to outliers
Sensitive to irrelevant data features (vs. decision trees)
Needs to deal with missing data (e.g., special distances)
Computationally expensive: O(ND) time for making each prediction

Can speed up with index and/or approximation

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 8 / 42



Pros & Cons

Pros:
Almost no assumption on f other than smoothness

High capacity/complexity
High accuracy given a large training set

Supports online training (by simply memorizing)
Readily extensible to multi-class and regression problems

Cons:
Storage demanding
Sensitive to outliers

Sensitive to irrelevant data features (vs. decision trees)
Needs to deal with missing data (e.g., special distances)
Computationally expensive: O(ND) time for making each prediction

Can speed up with index and/or approximation

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 8 / 42



Pros & Cons

Pros:
Almost no assumption on f other than smoothness

High capacity/complexity
High accuracy given a large training set

Supports online training (by simply memorizing)
Readily extensible to multi-class and regression problems

Cons:
Storage demanding
Sensitive to outliers
Sensitive to irrelevant data features (vs. decision trees)

Needs to deal with missing data (e.g., special distances)
Computationally expensive: O(ND) time for making each prediction

Can speed up with index and/or approximation

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 8 / 42



Pros & Cons

Pros:
Almost no assumption on f other than smoothness

High capacity/complexity
High accuracy given a large training set

Supports online training (by simply memorizing)
Readily extensible to multi-class and regression problems

Cons:
Storage demanding
Sensitive to outliers
Sensitive to irrelevant data features (vs. decision trees)
Needs to deal with missing data (e.g., special distances)

Computationally expensive: O(ND) time for making each prediction
Can speed up with index and/or approximation

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 8 / 42



Pros & Cons

Pros:
Almost no assumption on f other than smoothness

High capacity/complexity
High accuracy given a large training set

Supports online training (by simply memorizing)
Readily extensible to multi-class and regression problems

Cons:
Storage demanding
Sensitive to outliers
Sensitive to irrelevant data features (vs. decision trees)
Needs to deal with missing data (e.g., special distances)
Computationally expensive: O(ND) time for making each prediction

Can speed up with index and/or approximation

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 8 / 42



Outline

1
Non-Parametric Methods

K-NN
Parzen Windows
Local Models

2
Support Vector Machines

SVC
Slacks
Nonlinear SVC
Dual Problem
Kernel Trick

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 9 / 42



Parzen Windows and Kernels
Binary KNN classifier:

f (x) = sign

⇣
Âi :x

(i)2KNN(x)
y(i)

⌘

The “radius” of voter boundary depends on the input x

We can instead use the Parzen window with a fixed radius:

f (x) = sign

⇣
Âi y(i)1(x(i);kx

(i)�xk  R)
⌘

Parzen windows also replace the hard boundary with a soft one:

f (x) = sign

⇣
Âi y(i)k(x(i),x)

⌘

k(x(i),x) is a radial basis function (RBF) kernel whose value
decreases along space radiating outward from x

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 10 / 42



Parzen Windows and Kernels
Binary KNN classifier:

f (x) = sign

⇣
Âi :x

(i)2KNN(x)
y(i)

⌘

The “radius” of voter boundary depends on the input x

We can instead use the Parzen window with a fixed radius:

f (x) = sign

⇣
Âi y(i)1(x(i);kx

(i)�xk  R)
⌘

Parzen windows also replace the hard boundary with a soft one:

f (x) = sign

⇣
Âi y(i)k(x(i),x)

⌘

k(x(i),x) is a radial basis function (RBF) kernel whose value
decreases along space radiating outward from x

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 10 / 42



Parzen Windows and Kernels
Binary KNN classifier:

f (x) = sign

⇣
Âi :x

(i)2KNN(x)
y(i)

⌘

The “radius” of voter boundary depends on the input x

We can instead use the Parzen window with a fixed radius:

f (x) = sign

⇣
Âi y(i)1(x(i);kx

(i)�xk  R)
⌘

Parzen windows also replace the hard boundary with a soft one:

f (x) = sign

⇣
Âi y(i)k(x(i),x)

⌘

k(x(i),x) is a radial basis function (RBF) kernel whose value
decreases along space radiating outward from x

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 10 / 42



Parzen Windows and Kernels
Binary KNN classifier:

f (x) = sign

⇣
Âi :x

(i)2KNN(x)
y(i)

⌘

The “radius” of voter boundary depends on the input x

We can instead use the Parzen window with a fixed radius:

f (x) = sign

⇣
Âi y(i)1(x(i);kx

(i)�xk  R)
⌘

Parzen windows also replace the hard boundary with a soft one:

f (x) = sign

⇣
Âi y(i)k(x(i),x)

⌘

k(x(i),x) is a radial basis function (RBF) kernel whose value
decreases along space radiating outward from x

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 10 / 42



Common RBF Kernels

How to act like soft K-NN?

Gaussian RBF kernel:

k(x(i),x) = N (x(i)�x;0,s2

I)

Or simply
k(x(i),x) = exp

⇣
�gkx

(i)�xk2

⌘

g � 0 (or s

2) is a hyperparameter controlling the smoothness of f

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 11 / 42



Common RBF Kernels

How to act like soft K-NN?
Gaussian RBF kernel:

k(x(i),x) = N (x(i)�x;0,s2

I)

Or simply
k(x(i),x) = exp

⇣
�gkx

(i)�xk2

⌘

g � 0 (or s

2) is a hyperparameter controlling the smoothness of f

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 11 / 42



Common RBF Kernels

How to act like soft K-NN?
Gaussian RBF kernel:

k(x(i),x) = N (x(i)�x;0,s2

I)

Or simply
k(x(i),x) = exp

⇣
�gkx

(i)�xk2

⌘

g � 0 (or s

2) is a hyperparameter controlling the smoothness of f

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 11 / 42



Outline

1
Non-Parametric Methods

K-NN
Parzen Windows
Local Models

2
Support Vector Machines

SVC
Slacks
Nonlinear SVC
Dual Problem
Kernel Trick

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 12 / 42



Locally Weighted Linear Regression

In addition to the majority voting and average, we can define local

models for lazy predictions

E.g., in (eager) linear regression, we find w 2 RD+1 that minimizes
SSE:

argmin

w

Â
i
(y(i)�w

>
x

(i))2

Local model: to find w minimizing SSE local to the point x we

want to predict:

argmin

w

Â
i

k(x(i),x)(y(i)�w

>
x

(i))2

k(·, ·) 2 R is an RBF kernel

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 13 / 42



Locally Weighted Linear Regression

In addition to the majority voting and average, we can define local

models for lazy predictions
E.g., in (eager) linear regression, we find w 2 RD+1 that minimizes
SSE:

argmin

w

Â
i
(y(i)�w

>
x

(i))2

Local model: to find w minimizing SSE local to the point x we

want to predict:

argmin

w

Â
i

k(x(i),x)(y(i)�w

>
x

(i))2

k(·, ·) 2 R is an RBF kernel

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 13 / 42



Outline

1
Non-Parametric Methods

K-NN
Parzen Windows
Local Models

2
Support Vector Machines

SVC
Slacks
Nonlinear SVC
Dual Problem
Kernel Trick

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 14 / 42



Kernel Machines

Kernel machines:

f (x) =
N

Â
i=1

cik(x(i),x)+ c
0

For example:
Parzen windows: ci = y(i) and c

0

= 0

Locally weighted linear regression: ci = (y(i)�w

>
x

(i))2 and c
0

= 0

The variable c 2 RN can be learned in either an eager or lazy manner
Pros: complex, but highly accurate if regularized well

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 15 / 42



Kernel Machines

Kernel machines:

f (x) =
N

Â
i=1

cik(x(i),x)+ c
0

For example:
Parzen windows: ci = y(i) and c

0

= 0

Locally weighted linear regression: ci = (y(i)�w

>
x

(i))2 and c
0

= 0

The variable c 2 RN can be learned in either an eager or lazy manner
Pros: complex, but highly accurate if regularized well

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 15 / 42



Sparse Kernel Machines

To make a prediction, we need to store all examples
May be infeasible due to

Large dataset (N)
Time limit
Space limit

Can we make c sparse?
I.e., to make ci 6= 0 for only a small fraction of examples called support

vectors

How?

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 16 / 42



Sparse Kernel Machines

To make a prediction, we need to store all examples
May be infeasible due to

Large dataset (N)
Time limit
Space limit

Can we make c sparse?
I.e., to make ci 6= 0 for only a small fraction of examples called support

vectors

How?

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 16 / 42



Outline

1
Non-Parametric Methods

K-NN
Parzen Windows
Local Models

2
Support Vector Machines

SVC
Slacks
Nonlinear SVC
Dual Problem
Kernel Trick

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 17 / 42



Separating Hyperplane I

Model: F= {f : f (x;w,b) = w

>
x+b}

A collection of hyperplanes

Prediction: ŷ = sign(f (x))

Training: to find w and b such that

w

>
x

(i) +b � 0, if y(i) = 1

w

>
x

(i) +b  0, if y(i) =�1

or simply
y(i)(w>

x

(i) +b)� 0

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 18 / 42



Separating Hyperplane I

Model: F= {f : f (x;w,b) = w

>
x+b}

A collection of hyperplanes

Prediction: ŷ = sign(f (x))

Training: to find w and b such that

w

>
x

(i) +b � 0, if y(i) = 1

w

>
x

(i) +b  0, if y(i) =�1

or simply
y(i)(w>

x

(i) +b)� 0

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 18 / 42



Separating Hyperplane I

Model: F= {f : f (x;w,b) = w

>
x+b}

A collection of hyperplanes

Prediction: ŷ = sign(f (x))

Training: to find w and b such that

w

>
x

(i) +b � 0, if y(i) = 1

w

>
x

(i) +b  0, if y(i) =�1

or simply
y(i)(w>

x

(i) +b)� 0

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 18 / 42



Separating Hyperplane II

There are many feasible w’s and b’s when the classes are linearly
separable
Which hyperplane is the best?

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 19 / 42



Support Vector Classification
Support vector classifier (SVC) picks one with largest margin:

y(i)(w>
x

(i) +b)� a for all i
Margin: 2a/kwk [Homework]

With loss of generality, we let a = 1 and solve the problem:

argmin

w,b
1

2

kwk2

sibject to y(i)(w>
x

(i) +b)� 1,8i

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 20 / 42



Support Vector Classification
Support vector classifier (SVC) picks one with largest margin:

y(i)(w>
x

(i) +b)� a for all i
Margin: 2a/kwk [Homework]

With loss of generality, we let a = 1 and solve the problem:

argmin

w,b
1

2

kwk2

sibject to y(i)(w>
x

(i) +b)� 1,8i

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 20 / 42



Outline

1
Non-Parametric Methods

K-NN
Parzen Windows
Local Models

2
Support Vector Machines

SVC
Slacks
Nonlinear SVC
Dual Problem
Kernel Trick

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 21 / 42



Overlapping Classes
In practice, classes may be overlapping

Due to, e.g., noises or outliers

The problem
argmin

w,b
1

2

kwk2

sibject to y(i)(w>
x

(i) +b)� 1,8i

has no solution in this case. How to fix this?

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 22 / 42



Overlapping Classes
In practice, classes may be overlapping

Due to, e.g., noises or outliers

The problem
argmin

w,b
1

2

kwk2

sibject to y(i)(w>
x

(i) +b)� 1,8i

has no solution in this case. How to fix this?
Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 22 / 42



Slacks
SVC tolerates slacks that fall outside of the regions they ought to be
Problem:

argmin

w,b,x
1

2

kwk2+C ÂN
i=1

xi

sibject to y(i)(w>
x

(i) +b)� 1�xi and xi � 0,8i

Favors large margin but also fewer slacks

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 23 / 42



Hyperparameter C

argmin

w,b,x
1

2

kwk2 +C ÂN
i=1

xi

The hyperparameter C controls the tradeoff between
Maximizing margin
Minimizing number of slacks

Provides a geometric explanation to the weight decay

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 24 / 42



Hyperparameter C

argmin

w,b,x
1

2

kwk2 +C ÂN
i=1

xi

The hyperparameter C controls the tradeoff between
Maximizing margin
Minimizing number of slacks

Provides a geometric explanation to the weight decay

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 24 / 42



Outline

1
Non-Parametric Methods

K-NN
Parzen Windows
Local Models

2
Support Vector Machines

SVC
Slacks
Nonlinear SVC
Dual Problem
Kernel Trick

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 25 / 42



Nonlinearly Separable Classes

In practice, classes may be nonlinearly separable

SVC (with slacks) gives “bad” hyperplanes due to underfitting
How to make it nonlinear?

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 26 / 42



Nonlinearly Separable Classes

In practice, classes may be nonlinearly separable

SVC (with slacks) gives “bad” hyperplanes due to underfitting
How to make it nonlinear?

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 26 / 42



Feature Augmentation

Recall that in polynomial regression, we augment data features to
make a linear regressor nonlinear

We can can define a function F(·) that maps each data point to a
high dimensional space:

argmin

w,b,x
1

2

kwk2 +C Âi xi

sibject to y(i)(w>F(x(i))+b)� 1�xi and xi � 0,8i

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 27 / 42



Feature Augmentation

Recall that in polynomial regression, we augment data features to
make a linear regressor nonlinear
We can can define a function F(·) that maps each data point to a
high dimensional space:

argmin

w,b,x
1

2

kwk2 +C Âi xi

sibject to y(i)(w>F(x(i))+b)� 1�xi and xi � 0,8i

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 27 / 42



Outline

1
Non-Parametric Methods

K-NN
Parzen Windows
Local Models

2
Support Vector Machines

SVC
Slacks
Nonlinear SVC
Dual Problem
Kernel Trick

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 28 / 42



Time Complexity

Nonlinear SVC:

argmin

w,b,x
1

2

kwk2 +C Âi xi

sibject to y(i)(w>F(x(i))+b)� 1�xi and xi � 0,8i

The higher augmented feature dimension, the more variables in w to
solve

Can we solve w in time complexity that is independent with the
mapped dimension?

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 29 / 42



Time Complexity

Nonlinear SVC:

argmin

w,b,x
1

2

kwk2 +C Âi xi

sibject to y(i)(w>F(x(i))+b)� 1�xi and xi � 0,8i

The higher augmented feature dimension, the more variables in w to
solve
Can we solve w in time complexity that is independent with the
mapped dimension?

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 29 / 42



Dual Problem

Primal problem:

argmin

w,b,x
1

2

kwk2 +C Âi xi

sibject to y(i)(w>F(x(i))+b)� 1�xi and xi � 0,8i

Dual problem:

argmax

a,b min

w,b,x L(w,b,x ,a,b )
subject to a � 0,b � 0

where L(w,b,x ,a,b ) =
1

2

kwk2 +C Âi xt+Âi ai(1� y(i)(w>F(x(i))+b)�xi)+Âi bi(�xi)

Primal problem is convex, so strong duality holds

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 30 / 42



Dual Problem

Primal problem:

argmin

w,b,x
1

2

kwk2 +C Âi xi

sibject to y(i)(w>F(x(i))+b)� 1�xi and xi � 0,8i

Dual problem:

argmax

a,b min

w,b,x L(w,b,x ,a,b )
subject to a � 0,b � 0

where L(w,b,x ,a,b ) =
1

2

kwk2 +C Âi xt+Âi ai(1� y(i)(w>F(x(i))+b)�xi)+Âi bi(�xi)

Primal problem is convex, so strong duality holds

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 30 / 42



Solving Dual Problem I

L(w,b,x ,a,b ) =
1

2

kwk2 +C Âi xt+Âi ai(1� y(i)(w>F(x(i))+b)�xi)+Âi bi(�xi)

The inner problem
min

w,b,x
L(w,b,x ,a,b )

is convex in terms of w, b, and x

Let’s solve it analytically:

∂L
∂w

= w�Âi aiy(i)F(x(i)) = 0 ) w = Âi aiy(i)F(x(i))
∂L
∂b = Âi aiy(i) = 0

∂L
∂xi

= C�ai �bi = 0 ) bi = C�ai

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 31 / 42



Solving Dual Problem I

L(w,b,x ,a,b ) =
1

2

kwk2 +C Âi xt+Âi ai(1� y(i)(w>F(x(i))+b)�xi)+Âi bi(�xi)

The inner problem
min

w,b,x
L(w,b,x ,a,b )

is convex in terms of w, b, and x

Let’s solve it analytically:
∂L
∂w

= w�Âi aiy(i)F(x(i)) = 0 ) w = Âi aiy(i)F(x(i))

∂L
∂b = Âi aiy(i) = 0

∂L
∂xi

= C�ai �bi = 0 ) bi = C�ai

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 31 / 42



Solving Dual Problem I

L(w,b,x ,a,b ) =
1

2

kwk2 +C Âi xt+Âi ai(1� y(i)(w>F(x(i))+b)�xi)+Âi bi(�xi)

The inner problem
min

w,b,x
L(w,b,x ,a,b )

is convex in terms of w, b, and x

Let’s solve it analytically:
∂L
∂w

= w�Âi aiy(i)F(x(i)) = 0 ) w = Âi aiy(i)F(x(i))
∂L
∂b = Âi aiy(i) = 0

∂L
∂xi

= C�ai �bi = 0 ) bi = C�ai

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 31 / 42



Solving Dual Problem I

L(w,b,x ,a,b ) =
1

2

kwk2 +C Âi xt+Âi ai(1� y(i)(w>F(x(i))+b)�xi)+Âi bi(�xi)

The inner problem
min

w,b,x
L(w,b,x ,a,b )

is convex in terms of w, b, and x

Let’s solve it analytically:
∂L
∂w

= w�Âi aiy(i)F(x(i)) = 0 ) w = Âi aiy(i)F(x(i))
∂L
∂b = Âi aiy(i) = 0

∂L
∂xi

= C�ai �bi = 0 ) bi = C�ai

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 31 / 42



Solving Dual Problem II
L(w,b,x ,a,b ) =
1

2

kwk2 +C Âi xt+Âi ai(1� y(i)(w>F(x(i))+b)�xi)+Âi bi(�xi)

Substituting w = Âi aiy(i)F(x(i)) and bi = C�ai in L(w,b,x ,a,b ):

L(w,b,x ,a,b ) = Â
i

ai �
1

2

Â
i,j

aiajy(i)y(j)F(x(i))>F(x(j))�bÂ
i

aiy(i),

min

w,b,x
L(w,b,x ,a,b ) =

8
>><

>>:

Âi ai � 1

2

Âi,j aiajy(i)y(j)F(x(i))>F(x(j)) ,
if Âi aiy(i) = 0,

�•,
otherwise

Outer maximization problem:

argmax

a

1>a � 1

2

a

>
Ka

subject to 0  a  C1 and y

>
a = 0

Ki,j = y(i)y(j)F(x(i))>F(x(j))
bi = C�ai � 0 implies ai  C

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 32 / 42



Solving Dual Problem II
L(w,b,x ,a,b ) =
1

2

kwk2 +C Âi xt+Âi ai(1� y(i)(w>F(x(i))+b)�xi)+Âi bi(�xi)

Substituting w = Âi aiy(i)F(x(i)) and bi = C�ai in L(w,b,x ,a,b ):

L(w,b,x ,a,b ) = Â
i

ai �
1

2

Â
i,j

aiajy(i)y(j)F(x(i))>F(x(j))�bÂ
i

aiy(i),

min

w,b,x
L(w,b,x ,a,b ) =

8
>><

>>:

Âi ai � 1

2

Âi,j aiajy(i)y(j)F(x(i))>F(x(j)) ,
if Âi aiy(i) = 0,

�•,
otherwise

Outer maximization problem:

argmax

a

1>a � 1

2

a

>
Ka

subject to 0  a  C1 and y

>
a = 0

Ki,j = y(i)y(j)F(x(i))>F(x(j))
bi = C�ai � 0 implies ai  C

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 32 / 42



Solving Dual Problem II
L(w,b,x ,a,b ) =
1

2

kwk2 +C Âi xt+Âi ai(1� y(i)(w>F(x(i))+b)�xi)+Âi bi(�xi)

Substituting w = Âi aiy(i)F(x(i)) and bi = C�ai in L(w,b,x ,a,b ):

L(w,b,x ,a,b ) = Â
i

ai �
1

2

Â
i,j

aiajy(i)y(j)F(x(i))>F(x(j))�bÂ
i

aiy(i),

min

w,b,x
L(w,b,x ,a,b ) =

8
>><

>>:

Âi ai � 1

2

Âi,j aiajy(i)y(j)F(x(i))>F(x(j)) ,
if Âi aiy(i) = 0,

�•,
otherwise

Outer maximization problem:

argmax

a

1>a � 1

2

a

>
Ka

subject to 0  a  C1 and y

>
a = 0

Ki,j = y(i)y(j)F(x(i))>F(x(j))

bi = C�ai � 0 implies ai  C

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 32 / 42



Solving Dual Problem II
L(w,b,x ,a,b ) =
1

2

kwk2 +C Âi xt+Âi ai(1� y(i)(w>F(x(i))+b)�xi)+Âi bi(�xi)

Substituting w = Âi aiy(i)F(x(i)) and bi = C�ai in L(w,b,x ,a,b ):

L(w,b,x ,a,b ) = Â
i

ai �
1

2

Â
i,j

aiajy(i)y(j)F(x(i))>F(x(j))�bÂ
i

aiy(i),

min

w,b,x
L(w,b,x ,a,b ) =

8
>><

>>:

Âi ai � 1

2

Âi,j aiajy(i)y(j)F(x(i))>F(x(j)) ,
if Âi aiy(i) = 0,

�•,
otherwise

Outer maximization problem:

argmax

a

1>a � 1

2

a

>
Ka

subject to 0  a  C1 and y

>
a = 0

Ki,j = y(i)y(j)F(x(i))>F(x(j))
bi = C�ai � 0 implies ai  C

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 32 / 42



Solving Dual Problem II

Dual minimization problem of SVC:

argmin

a

1

2

a

>
Ka �1>a

subject to 0  a  C1 and y

>
a = 0

Number of variables to solve?

N instead of augmented feature
dimension
In practice, this problem is solved by specialized solvers such as the
sequential minimal optimization (SMO) [3]

As K is usually ill-conditioned

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 33 / 42



Solving Dual Problem II

Dual minimization problem of SVC:

argmin

a

1

2

a

>
Ka �1>a

subject to 0  a  C1 and y

>
a = 0

Number of variables to solve? N instead of augmented feature
dimension

In practice, this problem is solved by specialized solvers such as the
sequential minimal optimization (SMO) [3]

As K is usually ill-conditioned

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 33 / 42



Solving Dual Problem II

Dual minimization problem of SVC:

argmin

a

1

2

a

>
Ka �1>a

subject to 0  a  C1 and y

>
a = 0

Number of variables to solve? N instead of augmented feature
dimension
In practice, this problem is solved by specialized solvers such as the
sequential minimal optimization (SMO) [3]

As K is usually ill-conditioned

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 33 / 42



Making Predictions

Prediction: ŷ = sign(f (x)) = sign(w>
x+b)

We have w = Âi aiy(i)F(x(i))

How to obtain b?
By the complementary slackness of KKT conditions, we have:

ai(1� y(i)(w>F(x(i))+b)�xi) = 0 and bi(�xi) = 0

For any x

(i) having 0 < ai < C, we have

bi = C�ai > 0 ) xi = 0,

(1� y(i)(w>F(x(i))+b)�xi) = 0 ) b = y(i)�w

>F(x(i))

In practice, we usually take the average over all x

(i)’s having
0 < ai < C to avoid numeric error

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 34 / 42



Making Predictions

Prediction: ŷ = sign(f (x)) = sign(w>
x+b)

We have w = Âi aiy(i)F(x(i))

How to obtain b?

By the complementary slackness of KKT conditions, we have:

ai(1� y(i)(w>F(x(i))+b)�xi) = 0 and bi(�xi) = 0

For any x

(i) having 0 < ai < C, we have

bi = C�ai > 0 ) xi = 0,

(1� y(i)(w>F(x(i))+b)�xi) = 0 ) b = y(i)�w

>F(x(i))

In practice, we usually take the average over all x

(i)’s having
0 < ai < C to avoid numeric error

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 34 / 42



Making Predictions

Prediction: ŷ = sign(f (x)) = sign(w>
x+b)

We have w = Âi aiy(i)F(x(i))

How to obtain b?
By the complementary slackness of KKT conditions, we have:

ai(1� y(i)(w>F(x(i))+b)�xi) = 0 and bi(�xi) = 0

For any x

(i) having 0 < ai < C, we have

bi = C�ai > 0 ) xi = 0,

(1� y(i)(w>F(x(i))+b)�xi) = 0 ) b = y(i)�w

>F(x(i))

In practice, we usually take the average over all x

(i)’s having
0 < ai < C to avoid numeric error

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 34 / 42



Making Predictions

Prediction: ŷ = sign(f (x)) = sign(w>
x+b)

We have w = Âi aiy(i)F(x(i))

How to obtain b?
By the complementary slackness of KKT conditions, we have:

ai(1� y(i)(w>F(x(i))+b)�xi) = 0 and bi(�xi) = 0

For any x

(i) having 0 < ai < C, we have

bi = C�ai > 0 ) xi = 0,

(1� y(i)(w>F(x(i))+b)�xi) = 0 ) b = y(i)�w

>F(x(i))

In practice, we usually take the average over all x

(i)’s having
0 < ai < C to avoid numeric error

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 34 / 42



Making Predictions

Prediction: ŷ = sign(f (x)) = sign(w>
x+b)

We have w = Âi aiy(i)F(x(i))

How to obtain b?
By the complementary slackness of KKT conditions, we have:

ai(1� y(i)(w>F(x(i))+b)�xi) = 0 and bi(�xi) = 0

For any x

(i) having 0 < ai < C, we have

bi = C�ai > 0 ) xi = 0,

(1� y(i)(w>F(x(i))+b)�xi) = 0 ) b = y(i)�w

>F(x(i))

In practice, we usually take the average over all x

(i)’s having
0 < ai < C to avoid numeric error

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 34 / 42



Outline

1
Non-Parametric Methods

K-NN
Parzen Windows
Local Models

2
Support Vector Machines

SVC
Slacks
Nonlinear SVC
Dual Problem
Kernel Trick

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 35 / 42



Kernel as Inner Product

We need to evaluate F(x(i))>F(x(j)) when
Solving dual problem of SVC, where Ki,j = y(i)y(j)F(x(i))>F(x(j))
Making a prediction, where f (x) = w

>
x+b = Âi aiy(i)F(x(i))>F(x)+b

Time complexity?
If we choose F carefully, we can can evaluate F(x(i))>F(x) = k(x(i),x)
efficiently
Polynomial kernel: k(a,b) = (a>b/a +b )g

E.g., let a = 1, b = 1, g = 2 and a 2 R2, then
F(a) = [1,

p
2a

1

,
p

2a
2

,a2

1

,a2

2

,
p

2a
1

a
2

]> 2 R6

Gaussian RBF kernel: k(a,b) = exp(�gka�bk2) , g � 0

k(a,b) = exp(�gkak2 +2ga

>
b� gkbk2)=

exp(�gkak2 � gkbk2)(1+ 2ga

>
b

1!

+ (2ga

>
b)2

2!

+ · · ·)
Let a 2 R2, then F(a) =

exp(�gkak2)[1,
q

2g

1!

a
1

,
q

2g

1!

a
2

,
q

2g

2!

a2

1

,
q

2g

2!

a2

2

,2
q

g

2!

a
1

a
2

, · · · ]> 2 R•

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 36 / 42



Kernel as Inner Product

We need to evaluate F(x(i))>F(x(j)) when
Solving dual problem of SVC, where Ki,j = y(i)y(j)F(x(i))>F(x(j))
Making a prediction, where f (x) = w

>
x+b = Âi aiy(i)F(x(i))>F(x)+b

Time complexity?

If we choose F carefully, we can can evaluate F(x(i))>F(x) = k(x(i),x)
efficiently
Polynomial kernel: k(a,b) = (a>b/a +b )g

E.g., let a = 1, b = 1, g = 2 and a 2 R2, then
F(a) = [1,

p
2a

1

,
p

2a
2

,a2

1

,a2

2

,
p

2a
1

a
2

]> 2 R6

Gaussian RBF kernel: k(a,b) = exp(�gka�bk2) , g � 0

k(a,b) = exp(�gkak2 +2ga

>
b� gkbk2)=

exp(�gkak2 � gkbk2)(1+ 2ga

>
b

1!

+ (2ga

>
b)2

2!

+ · · ·)
Let a 2 R2, then F(a) =

exp(�gkak2)[1,
q

2g

1!

a
1

,
q

2g

1!

a
2

,
q

2g

2!

a2

1

,
q

2g

2!

a2

2

,2
q

g

2!

a
1

a
2

, · · · ]> 2 R•

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 36 / 42



Kernel as Inner Product

We need to evaluate F(x(i))>F(x(j)) when
Solving dual problem of SVC, where Ki,j = y(i)y(j)F(x(i))>F(x(j))
Making a prediction, where f (x) = w

>
x+b = Âi aiy(i)F(x(i))>F(x)+b

Time complexity?
If we choose F carefully, we can can evaluate F(x(i))>F(x) = k(x(i),x)
efficiently

Polynomial kernel: k(a,b) = (a>b/a +b )g

E.g., let a = 1, b = 1, g = 2 and a 2 R2, then
F(a) = [1,

p
2a

1

,
p

2a
2

,a2

1

,a2

2

,
p

2a
1

a
2

]> 2 R6

Gaussian RBF kernel: k(a,b) = exp(�gka�bk2) , g � 0

k(a,b) = exp(�gkak2 +2ga

>
b� gkbk2)=

exp(�gkak2 � gkbk2)(1+ 2ga

>
b

1!

+ (2ga

>
b)2

2!

+ · · ·)
Let a 2 R2, then F(a) =

exp(�gkak2)[1,
q

2g

1!

a
1

,
q

2g

1!

a
2

,
q

2g

2!

a2

1

,
q

2g

2!

a2

2

,2
q

g

2!

a
1

a
2

, · · · ]> 2 R•

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 36 / 42



Kernel as Inner Product

We need to evaluate F(x(i))>F(x(j)) when
Solving dual problem of SVC, where Ki,j = y(i)y(j)F(x(i))>F(x(j))
Making a prediction, where f (x) = w

>
x+b = Âi aiy(i)F(x(i))>F(x)+b

Time complexity?
If we choose F carefully, we can can evaluate F(x(i))>F(x) = k(x(i),x)
efficiently
Polynomial kernel: k(a,b) = (a>b/a +b )g

E.g., let a = 1, b = 1, g = 2 and a 2 R2, then
F(a) = [1,

p
2a

1

,
p

2a
2

,a2

1

,a2

2

,
p

2a
1

a
2

]> 2 R6

Gaussian RBF kernel: k(a,b) = exp(�gka�bk2) , g � 0

k(a,b) = exp(�gkak2 +2ga

>
b� gkbk2)=

exp(�gkak2 � gkbk2)(1+ 2ga

>
b

1!

+ (2ga

>
b)2

2!

+ · · ·)
Let a 2 R2, then F(a) =

exp(�gkak2)[1,
q

2g

1!

a
1

,
q

2g

1!

a
2

,
q

2g

2!

a2

1

,
q

2g

2!

a2

2

,2
q

g

2!

a
1

a
2

, · · · ]> 2 R•

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 36 / 42



Kernel as Inner Product

We need to evaluate F(x(i))>F(x(j)) when
Solving dual problem of SVC, where Ki,j = y(i)y(j)F(x(i))>F(x(j))
Making a prediction, where f (x) = w

>
x+b = Âi aiy(i)F(x(i))>F(x)+b

Time complexity?
If we choose F carefully, we can can evaluate F(x(i))>F(x) = k(x(i),x)
efficiently
Polynomial kernel: k(a,b) = (a>b/a +b )g

E.g., let a = 1, b = 1, g = 2 and a 2 R2, then
F(a) = [1,

p
2a

1

,
p

2a
2

,a2

1

,a2

2

,
p

2a
1

a
2

]> 2 R6

Gaussian RBF kernel: k(a,b) = exp(�gka�bk2) , g � 0

k(a,b) = exp(�gkak2 +2ga

>
b� gkbk2)=

exp(�gkak2 � gkbk2)(1+ 2ga

>
b

1!

+ (2ga

>
b)2

2!

+ · · ·)
Let a 2 R2, then F(a) =

exp(�gkak2)[1,
q

2g

1!

a
1

,
q

2g

1!

a
2

,
q

2g

2!

a2

1

,
q

2g

2!

a2

2

,2
q

g

2!

a
1

a
2

, · · · ]> 2 R•

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 36 / 42



Kernel as Inner Product

We need to evaluate F(x(i))>F(x(j)) when
Solving dual problem of SVC, where Ki,j = y(i)y(j)F(x(i))>F(x(j))
Making a prediction, where f (x) = w

>
x+b = Âi aiy(i)F(x(i))>F(x)+b

Time complexity?
If we choose F carefully, we can can evaluate F(x(i))>F(x) = k(x(i),x)
efficiently
Polynomial kernel: k(a,b) = (a>b/a +b )g

E.g., let a = 1, b = 1, g = 2 and a 2 R2, then
F(a) = [1,

p
2a

1

,
p

2a
2

,a2

1

,a2

2

,
p

2a
1

a
2

]> 2 R6

Gaussian RBF kernel: k(a,b) = exp(�gka�bk2) , g � 0

k(a,b) = exp(�gkak2 +2ga

>
b� gkbk2)=

exp(�gkak2 � gkbk2)(1+ 2ga

>
b

1!

+ (2ga

>
b)2

2!

+ · · ·)
Let a 2 R2, then F(a) =

exp(�gkak2)[1,
q

2g

1!

a
1

,
q

2g

1!

a
2

,
q

2g

2!

a2

1

,
q

2g

2!

a2

2

,2
q

g

2!

a
1

a
2

, · · · ]> 2 R•

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 36 / 42



Kernel Trick

If we choose F induced by Polynomial or Gaussian RBF kernel, then

Ki,j = y(i)y(j)k(x(i),x)

takes only O(D) time to evaluate, and

f (x) = Â
i

aiy(i)k(x(i),x)+b

takes O(ND) time

Independent with the augmented feature dimension
a , b , and g are new hyperparameters

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 37 / 42



Kernel Trick

If we choose F induced by Polynomial or Gaussian RBF kernel, then

Ki,j = y(i)y(j)k(x(i),x)

takes only O(D) time to evaluate, and

f (x) = Â
i

aiy(i)k(x(i),x)+b

takes O(ND) time
Independent with the augmented feature dimension

a , b , and g are new hyperparameters

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 37 / 42



Kernel Trick

If we choose F induced by Polynomial or Gaussian RBF kernel, then

Ki,j = y(i)y(j)k(x(i),x)

takes only O(D) time to evaluate, and

f (x) = Â
i

aiy(i)k(x(i),x)+b

takes O(ND) time
Independent with the augmented feature dimension
a , b , and g are new hyperparameters

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 37 / 42



Sparse Kernel Machines
SVC is a kernel machine:

f (x) = Â
i

aiy(i)k(x(i),x)+b

It is surprising that SVC works like K-NN in some sense

However, SVC is a sparse kernel machine
Only the slacks become the support vectors (ai > 0)

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 38 / 42



Sparse Kernel Machines
SVC is a kernel machine:

f (x) = Â
i

aiy(i)k(x(i),x)+b

It is surprising that SVC works like K-NN in some sense
However, SVC is a sparse kernel machine
Only the slacks become the support vectors (ai > 0)

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 38 / 42



KKT Conditions and Types of SVs

By KKT conditions, we have:
Primal feasibility: y(i)(w>F(x(i))+b)� 1�xi and xi � 0

Complementary slackness: ai(1� y(i)(w>F(x(i))+b)�xi) = 0 and
bi(�xi) = 0

Depending on the value of ai, each example x

(i) can be:
Non SVs (ai = 0): y(i)(w>F(x(i))+b)� 1 (usually strict)

1� y(i)(w>F(x(i))+b)�xi  0

Since bi = C�ai 6= 0, we have xi = 0

Free SVs (0 < ai < C): y(i)(w>F(x(i))+b) = 1

1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = C�ai 6= 0, we have xi = 0

Bounded SVs (ai = C): y(i)(w>F(x(i))+b) 1 (usually strict)
1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = 0, we have xi � 0

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 39 / 42



KKT Conditions and Types of SVs

By KKT conditions, we have:
Primal feasibility: y(i)(w>F(x(i))+b)� 1�xi and xi � 0

Complementary slackness: ai(1� y(i)(w>F(x(i))+b)�xi) = 0 and
bi(�xi) = 0

Depending on the value of ai, each example x

(i) can be:

Non SVs (ai = 0): y(i)(w>F(x(i))+b)� 1 (usually strict)
1� y(i)(w>F(x(i))+b)�xi  0

Since bi = C�ai 6= 0, we have xi = 0

Free SVs (0 < ai < C): y(i)(w>F(x(i))+b) = 1

1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = C�ai 6= 0, we have xi = 0

Bounded SVs (ai = C): y(i)(w>F(x(i))+b) 1 (usually strict)
1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = 0, we have xi � 0

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 39 / 42



KKT Conditions and Types of SVs

By KKT conditions, we have:
Primal feasibility: y(i)(w>F(x(i))+b)� 1�xi and xi � 0

Complementary slackness: ai(1� y(i)(w>F(x(i))+b)�xi) = 0 and
bi(�xi) = 0

Depending on the value of ai, each example x

(i) can be:

Non SVs (ai = 0): y(i)(w>F(x(i))+b)� 1 (usually strict)
1� y(i)(w>F(x(i))+b)�xi  0

Since bi = C�ai 6= 0, we have xi = 0

Free SVs (0 < ai < C): y(i)(w>F(x(i))+b) = 1

1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = C�ai 6= 0, we have xi = 0

Bounded SVs (ai = C): y(i)(w>F(x(i))+b) 1 (usually strict)
1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = 0, we have xi � 0

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 39 / 42



KKT Conditions and Types of SVs

By KKT conditions, we have:
Primal feasibility: y(i)(w>F(x(i))+b)� 1�xi and xi � 0

Complementary slackness: ai(1� y(i)(w>F(x(i))+b)�xi) = 0 and
bi(�xi) = 0

Depending on the value of ai, each example x

(i) can be:
Non SVs (ai = 0): y(i)(w>F(x(i))+b)� 1 (usually strict)

1� y(i)(w>F(x(i))+b)�xi  0

Since bi = C�ai 6= 0, we have xi = 0

Free SVs (0 < ai < C): y(i)(w>F(x(i))+b) = 1

1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = C�ai 6= 0, we have xi = 0

Bounded SVs (ai = C): y(i)(w>F(x(i))+b) 1 (usually strict)

1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = 0, we have xi � 0

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 39 / 42



KKT Conditions and Types of SVs

By KKT conditions, we have:
Primal feasibility: y(i)(w>F(x(i))+b)� 1�xi and xi � 0

Complementary slackness: ai(1� y(i)(w>F(x(i))+b)�xi) = 0 and
bi(�xi) = 0

Depending on the value of ai, each example x

(i) can be:
Non SVs (ai = 0): y(i)(w>F(x(i))+b)� 1 (usually strict)

1� y(i)(w>F(x(i))+b)�xi  0

Since bi = C�ai 6= 0, we have xi = 0

Free SVs (0 < ai < C): y(i)(w>F(x(i))+b) = 1

1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = C�ai 6= 0, we have xi = 0

Bounded SVs (ai = C): y(i)(w>F(x(i))+b) 1 (usually strict)

1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = 0, we have xi � 0

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 39 / 42



KKT Conditions and Types of SVs

By KKT conditions, we have:
Primal feasibility: y(i)(w>F(x(i))+b)� 1�xi and xi � 0

Complementary slackness: ai(1� y(i)(w>F(x(i))+b)�xi) = 0 and
bi(�xi) = 0

Depending on the value of ai, each example x

(i) can be:
Non SVs (ai = 0): y(i)(w>F(x(i))+b)� 1 (usually strict)

1� y(i)(w>F(x(i))+b)�xi  0

Since bi = C�ai 6= 0, we have xi = 0

Free SVs (0 < ai < C): y(i)(w>F(x(i))+b) = 1

1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = C�ai 6= 0, we have xi = 0

Bounded SVs (ai = C): y(i)(w>F(x(i))+b) 1 (usually strict)

1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = 0, we have xi � 0

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 39 / 42



KKT Conditions and Types of SVs

By KKT conditions, we have:
Primal feasibility: y(i)(w>F(x(i))+b)� 1�xi and xi � 0

Complementary slackness: ai(1� y(i)(w>F(x(i))+b)�xi) = 0 and
bi(�xi) = 0

Depending on the value of ai, each example x

(i) can be:
Non SVs (ai = 0): y(i)(w>F(x(i))+b)� 1 (usually strict)

1� y(i)(w>F(x(i))+b)�xi  0

Since bi = C�ai 6= 0, we have xi = 0

Free SVs (0 < ai < C): y(i)(w>F(x(i))+b) = 1

1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = C�ai 6= 0, we have xi = 0

Bounded SVs (ai = C): y(i)(w>F(x(i))+b) 1 (usually strict)
1� y(i)(w>F(x(i))+b)�xi = 0

Since bi = 0, we have xi � 0

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 39 / 42



Remarks I

Pros of SVC:
Global optimality (convex problem)

Works with different kernels (linear, Polynomial, Gaussian RBF, etc.)
Works well with small training set

Cons:
Nonlinear SVC not scalable to large tasks

Takes O(N2)⇠ O(N3) time to train using SMO in LIBSVM [1]
On the other hand, linear SVC takes O(ND) time

Kernel matrix K requires O(N2) space
In practice, we cache only a small portion of K in memory

Sensitive to irrelevant data features (vs. decision trees)
Non-trivial hyperparameter tuning

The effect of a (C, g) combination is unknown in advance
Usually done by grid search

Separate only 2 classes
Usually wrapped by the 1-vs-1 technique for multi-class classification

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 40 / 42



Remarks I

Pros of SVC:
Global optimality (convex problem)
Works with different kernels (linear, Polynomial, Gaussian RBF, etc.)

Works well with small training set
Cons:

Nonlinear SVC not scalable to large tasks
Takes O(N2)⇠ O(N3) time to train using SMO in LIBSVM [1]
On the other hand, linear SVC takes O(ND) time

Kernel matrix K requires O(N2) space
In practice, we cache only a small portion of K in memory

Sensitive to irrelevant data features (vs. decision trees)
Non-trivial hyperparameter tuning

The effect of a (C, g) combination is unknown in advance
Usually done by grid search

Separate only 2 classes
Usually wrapped by the 1-vs-1 technique for multi-class classification

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 40 / 42



Remarks I

Pros of SVC:
Global optimality (convex problem)
Works with different kernels (linear, Polynomial, Gaussian RBF, etc.)
Works well with small training set

Cons:
Nonlinear SVC not scalable to large tasks

Takes O(N2)⇠ O(N3) time to train using SMO in LIBSVM [1]
On the other hand, linear SVC takes O(ND) time

Kernel matrix K requires O(N2) space
In practice, we cache only a small portion of K in memory

Sensitive to irrelevant data features (vs. decision trees)
Non-trivial hyperparameter tuning

The effect of a (C, g) combination is unknown in advance
Usually done by grid search

Separate only 2 classes
Usually wrapped by the 1-vs-1 technique for multi-class classification

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 40 / 42



Remarks I

Pros of SVC:
Global optimality (convex problem)
Works with different kernels (linear, Polynomial, Gaussian RBF, etc.)
Works well with small training set

Cons:
Nonlinear SVC not scalable to large tasks

Takes O(N2)⇠ O(N3) time to train using SMO in LIBSVM [1]
On the other hand, linear SVC takes O(ND) time

Kernel matrix K requires O(N2) space
In practice, we cache only a small portion of K in memory

Sensitive to irrelevant data features (vs. decision trees)
Non-trivial hyperparameter tuning

The effect of a (C, g) combination is unknown in advance
Usually done by grid search

Separate only 2 classes
Usually wrapped by the 1-vs-1 technique for multi-class classification

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 40 / 42



Remarks I

Pros of SVC:
Global optimality (convex problem)
Works with different kernels (linear, Polynomial, Gaussian RBF, etc.)
Works well with small training set

Cons:
Nonlinear SVC not scalable to large tasks

Takes O(N2)⇠ O(N3) time to train using SMO in LIBSVM [1]
On the other hand, linear SVC takes O(ND) time

Kernel matrix K requires O(N2) space
In practice, we cache only a small portion of K in memory

Sensitive to irrelevant data features (vs. decision trees)
Non-trivial hyperparameter tuning

The effect of a (C, g) combination is unknown in advance
Usually done by grid search

Separate only 2 classes
Usually wrapped by the 1-vs-1 technique for multi-class classification

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 40 / 42



Remarks I

Pros of SVC:
Global optimality (convex problem)
Works with different kernels (linear, Polynomial, Gaussian RBF, etc.)
Works well with small training set

Cons:
Nonlinear SVC not scalable to large tasks

Takes O(N2)⇠ O(N3) time to train using SMO in LIBSVM [1]
On the other hand, linear SVC takes O(ND) time

Kernel matrix K requires O(N2) space
In practice, we cache only a small portion of K in memory

Sensitive to irrelevant data features (vs. decision trees)

Non-trivial hyperparameter tuning
The effect of a (C, g) combination is unknown in advance
Usually done by grid search

Separate only 2 classes
Usually wrapped by the 1-vs-1 technique for multi-class classification

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 40 / 42



Remarks I

Pros of SVC:
Global optimality (convex problem)
Works with different kernels (linear, Polynomial, Gaussian RBF, etc.)
Works well with small training set

Cons:
Nonlinear SVC not scalable to large tasks

Takes O(N2)⇠ O(N3) time to train using SMO in LIBSVM [1]
On the other hand, linear SVC takes O(ND) time

Kernel matrix K requires O(N2) space
In practice, we cache only a small portion of K in memory

Sensitive to irrelevant data features (vs. decision trees)
Non-trivial hyperparameter tuning

The effect of a (C, g) combination is unknown in advance
Usually done by grid search

Separate only 2 classes
Usually wrapped by the 1-vs-1 technique for multi-class classification

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 40 / 42



Remarks I

Pros of SVC:
Global optimality (convex problem)
Works with different kernels (linear, Polynomial, Gaussian RBF, etc.)
Works well with small training set

Cons:
Nonlinear SVC not scalable to large tasks

Takes O(N2)⇠ O(N3) time to train using SMO in LIBSVM [1]
On the other hand, linear SVC takes O(ND) time

Kernel matrix K requires O(N2) space
In practice, we cache only a small portion of K in memory

Sensitive to irrelevant data features (vs. decision trees)
Non-trivial hyperparameter tuning

The effect of a (C, g) combination is unknown in advance
Usually done by grid search

Separate only 2 classes
Usually wrapped by the 1-vs-1 technique for multi-class classification

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 40 / 42



Remarks II

Does nonlinear SVC always perform better than linear SVC?

No

Choose linear SVC (e.g., LIBLINEAR [2]) when
N is large (since nonlinear SVC does not scale), or
D is large (since classes may already be linearly separable)

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 41 / 42



Remarks II

Does nonlinear SVC always perform better than linear SVC? No

Choose linear SVC (e.g., LIBLINEAR [2]) when
N is large (since nonlinear SVC does not scale), or
D is large (since classes may already be linearly separable)

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 41 / 42



Reference I

[1] Chih-Chung Chang and Chih-Jen Lin.
Libsvm: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST),
2(3):27, 2011.

[2] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin.
Liblinear: A library for large linear classification.
Journal of machine learning research, 9(Aug):1871–1874, 2008.

[3] John Platt et al.
Sequential minimal optimization: A fast algorithm for training support
vector machines.
1998.

Shan-Hung Wu (CS, NTHU) Non-Parametric Methods & SVM Machine Learning 42 / 42


	Non-Parametric Methods
	K-NN
	Parzen Windows
	Local Models

	Support Vector Machines
	SVC 
	Slacks 
	Nonlinear SVC
	Dual Problem
	Kernel Trick


