Machine Learning Notation

Shan-Hung Wu

1 Numbers & Arrays

- a A scalar (integer or real)
- A A scalar constant
- \boldsymbol{a} A vector
- **A** A matrix
- **A** A tensor
- I_n The $n \times n$ identity matrix
- \boldsymbol{D} A diagonal matrix
- $\begin{array}{ll} \mathrm{diag}(\pmb{a}) & \mathrm{A \ square, \ diagonal \ matrix \ with \ diagonal \ entries \ given \ by \ \pmb{a}} \end{array}$
 - a A scalar random variable
 - ${\bf a}$ $\;$ A vector-valued random variable
 - ${\bf A}$ $\;$ A matrix-valued random variable $\;$

2 Sets & Graphs

- \mathbb{A} A set
- \mathbb{R} The set of real numbers
- $\{0,1\}$ The set containing 0 and 1
- $\{0, 1, \cdots, n\}$ The set of all integers between 0 and n
 - [a, b] The real interval including a and b

 - - \mathcal{G} A graph whose each vertex $\mathbf{x}^{(i)}$ denotes a random variable and edge denotes conditional dependency (directed) or correlation (undirected)
 - $\operatorname{Pa}(\mathbf{x}^{(i)})$ The parents of a vertex $\mathbf{x}^{(i)}$ in \mathcal{G}

3 Indexing

- a_i Element *i* of vector *a*, with indexing starting at 1
- a_{-i} All elements of vector \boldsymbol{a} except for element i
- $A_{i,j}$ Element (i,j) of matrix A
- $A_{i,:}$ Row *i* of matrix A
- $A_{:,i}$ Column *i* of matrix A
- $A_{i,j,k}$ Element (i, j, k) of a 3-D tensor **A**
- $\mathbf{A}_{:,:,i}$ 2-D slice of a 3-D tensor
 - a_i Element *i* of the random vector **a**

4 Functions

$f:\mathbb{A}\to\mathbb{B}$	A function f with domain \mathbb{A} and range \mathbb{B}
$f\circ g$	Composition of functions f and g
$f(oldsymbol{x};oldsymbol{ heta})$	A function of \boldsymbol{x} parametrized by $\boldsymbol{\theta}$ (with $\boldsymbol{\theta}$
	omitted sometimes)
$\ln x$	Natural logarithm of x
$\sigma(x)$	Logistic sigmoid, i, $(1 + \exp(-x))^{-1}$
$\zeta(x)$	Softplus, $\ln(1 + \exp(x))$
$\ m{x}\ _p$	L^p norm of \boldsymbol{x}
$\ m{x}\ $	L^2 norm of \boldsymbol{x}
x^+	Positive part of x , i.e., $\max(0, x)$
1(x; cond)	The indicator function of x : 1 if the
	condition is true, 0 otherwise
Г <i>с</i> , 1	

g[f;x] A functional that maps f to f(x)

Sometimes we use a function f whose argument is a scalar, but apply it to a vector, matrix, or tensor: $f(\boldsymbol{x})$, $f(\boldsymbol{X})$, or $f(\boldsymbol{X})$. This means to apply f to the array element-wise. For example, if $\mathbf{C} = \sigma(\boldsymbol{X})$, then $C_{i,j,k} = \sigma(X_{i,j,k})$ for all i, j and k.

5 Calculus

$f'(a)$ or $\frac{df}{dx}(a)$	Derivative of $f : \mathbb{R} \to \mathbb{R}$ at input
	point a
$rac{\partial f}{\partial x_i}(oldsymbol{a})$	Partial derivative of $f: \mathbb{R}^n \to \mathbb{R}$ with
U U	respect to x_i at input \boldsymbol{a}
$ abla f(oldsymbol{a}) \in \mathbb{R}^n$	Gradient of $f: \mathbb{R}^n \to \mathbb{R}$ at input a
$\nabla f(\boldsymbol{A}) \in \mathbb{R}^{m imes n}$	Matrix derivatives of $f : \mathbb{R}^{m \times n} \to \mathbb{R}$
	at input \boldsymbol{A}
$ abla f(\mathbf{A})$	Tensor derivatives of f at input A
$oldsymbol{J}(oldsymbol{f})(oldsymbol{a})\in\mathbb{R}^{m imes n}$	The Jacobian matrix of $\boldsymbol{f}:\mathbb{R}^n\to\mathbb{R}^m$
	at input \boldsymbol{a}
$\nabla^2 f(\boldsymbol{a})$ or	The Hessian matrix of $f : \mathbb{R}^n \to \mathbb{R}$ at
$\boldsymbol{H}(f)(\boldsymbol{a}) \in \mathbb{R}^{n \times n}$	input point \boldsymbol{a}
$\int f(oldsymbol{x}) doldsymbol{x}$	Definite integral over the entire
	domain of \boldsymbol{x}
$\int_{\mathbb{S}} f(oldsymbol{x}) doldsymbol{x}$	Definite integral with respect to \boldsymbol{x}
~	over the set \mathbb{S}

6 Linear Algebra

- A^{\top} Transpose of matrix A
- \boldsymbol{A}^{\dagger} Moore-Penrose pseudo-inverse of \boldsymbol{A}
- $oldsymbol{A} \odot oldsymbol{B}$ Element-wise (Hadamard) product of $oldsymbol{A}$ and $oldsymbol{B}$
- $\det(\mathbf{A})$ Determinant of \mathbf{A}
- tr(A) Trace of A
- $e^{(i)}$ The *i*-th standard basis vector (a one-hot vector)

7 Probability & Info. Theory

a⊥b	Random variables a and b are independent
$a \perp b \mid c$	They are conditionally independent given c
$\Pr(a \mid b)$ or	Shorthand for the probability
$\Pr(a \mid b)$	$\Pr(\mathbf{a} = a \mathbf{b} = b)$
$P_{\rm a}(a)$	A probability mass function of the discrete
	random variable a
$p_{\mathbf{a}}(a)$	A probability density function of the
	continuous random variable a
$\mathbf{P}(\mathbf{a}=a)$	Either $P_{\mathbf{a}}(a)$ or $p_{\mathbf{a}}(a)$
$P(\theta)$	A probability distribution parametrized by
	heta
$\mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$	The Gaussian distribution with mean μ
	and covariance matrix Σ
$\mathbf{x} \sim \mathbf{P}(\theta)$	Random variable x has distribution P
$E_{x \sim P}[f(x)]$	Expectation of $f(x)$ with respect to P
Var[f(x)]	Variance of $f(x)$
Cov[f(x), g(x)]	Covariance of $f(x)$ and $g(x)$
H(x)	Shannon entropy of the random variable x
$D_{KL}(P Q)$	Kullback-Leibler (KL) divergence from
	distribution Q to P

8 Machine Learning

- X The set of training examples
- N Size of X
- $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})$ The *i*-th example pair in X (supervised learning)
 - $\boldsymbol{x}^{(i)}$ The *i*-th example in X (unsupervised learning)
 - D Dimension of a data point $\boldsymbol{x}^{(i)}$
 - K Dimension of a label $\boldsymbol{y}^{(i)}$

$$oldsymbol{X} \in \mathbb{R}^{N imes D}$$
 Design matrix, where $oldsymbol{X}_{i,:}$ denotes $oldsymbol{x}^{(i)}$

- $P(\mathbf{x}, \mathbf{y})$ A data generating distribution
 - $\label{eq:states} \begin{array}{ll} \mathbb{F} & \mbox{Hypothesis space of functions to be learnt,} \\ & \mbox{i.e., a model} \end{array}$
 - C[f] A cost functional of $f \in \mathbb{F}$
 - $C(\theta)$ A cost function of θ parametrizing $f \in \mathbb{F}$
- $(\boldsymbol{x}', \boldsymbol{y}')$ A testing pair
 - \hat{y} Label predicted by a function f, i.e., $\hat{y} = f(x')$ (supervised learning)

9 Typesetting

$Section^*$	Section that can be skipped for the first
	time reading
Section ^{**}	Section for reference only (will not be
	taught)
[Proof]	Prove it yourself
[Homework]	You have homework