PANGEA/Privatebet - Decentralized and generalized
shuffled decks with faceup and facedown support
and recovery from minority nodes disconnecting

sg777
Email: sarath.ginjupalli89 @ gmail.com

Abstract—The idea is to develop a privacy enhanced peer-to-
peer gaming system which allows players to play and transact
funds without need of any centralization institution. The platform
is resilient against collusion between any of the participating
entities, player disconnection and privacy tracking. Each entity
in the system associates with a key pair, where a public key
represents the identity of an entity, and the use of digital
signatures in every move by an entity represents the sense of
ownership. PANGEA is based on M of N trust, which means
that at any point in time during the game, a move can’t be
made unless M of N players agreed where) represents majority
and is of (N/2) + 1 and fund distribution is handled using an
M of N multi-signature transaction. It’s likely that players may
disconnect while in game, there can be many reasons for this,
so the deck reconstruction will happen every time when there
isn’t M players and the value of) is adjusted to (N —¢)/2+1
and then newly constructed deck will be redistributed, where
0 be the number of players get disconnected. The state of the
game will be maintained whenever reconstruction happens, and
in every instance the game resumed from the point where it is
halted. CHIPS, a bitcoin fork, is a token on this platform, and is
transacted using the JUMBLR process in Komodo, which brings
anonymity to CHIPS. The consensus of the game is made by
recording every move on the blockchain.

Keywords—Private bet, Block chain, CHIPS.

I. INTRODUCTION

The internet or any networking is designed to connect the
machines, not people or identities associated with them. In
the process of establishing trust, identities are associated with
the machines, which unfortunately made the whole ecosystem
centralized and vulnerable to succumb to the law of the land.
Even further association of identities to the machines comes
up with the cost of privacy and unlawful regulations imposed
by governments. The advancement in cryptography techniques
made it possible to establish the trust in a decentralized
environment by concealing the identities of the communicating
entities. This paper proposes a generic gaming paradigm called
PANGEA, which allows the game to be played fairly over a
decentralized network.

When money depends on the accuracy of the numbers, it
is important to make sure that it is the right number. When it
comes to cards, making sure that the deck was not tampered
with in any way is of utmost importance. To achieve this,
PANGEA uses a method similar to coin shuffling and all
participants are involved in the process of deck shuffling. If
just single player is honest then the deck is properly shuffled.

i1777

Email: jameslee777@yahoo.com

The limitations with the other known methods for mental poker
protocols are that they require a lot of bandwidth and are not
as fast as PANGEA, which uses a single curve25519 field
multiplication for the vast majority of its encrypt and decrypt
functions. This creates an order of magnitude in speed and
reduction of bandwidth required.

Often, there is high possibility that the entities in the de-
centralized environment can collude. PANGEA was designed
such that it is impossible that any of the entities can collude.
Our proposed approach consists of three entities.

1) Deck Creating Vendor (DCV)
2) Blinding Value Vendor (BVV)
3) Players (P)

The primary goal of any game is to make sure its played in
a fair manner and PANGEA is designed to ensure that. Non-
Repudiation is provided such that none of the entities in the
game can deny their actions. Since the game is played over a
decentralized network where the privacy of the players needs
to be preserved, a lot of math is required to enable trust in such
scenarios. The software shouldnt allow any parties to collude
and it should be able to reconstruct the deck and have the
capability to take the game forward in case if any of the players
gets disconnected in the middle. In the proposed approach,
every entity in the game is involved in the shuffling process.
DCYV and BV'V does the digital signing of the shuffled deck
in order to make sure nobody can spoof their roles. Shamirs
shared secret keys are used to carry the game forward based
on M of N players trust.

Any move in the game is possible only if M of N players
are agreed to share the Shamir shards. If (N — M + 1) players
get disconnected it is impossible to validate the move for
the remaining players, in such scenarios, reconstruction and
redistribution of the deck is done by the BVV in order to
make the game progress.

Reconstruction and redistribution happens only if the num-
ber of active players in the game is less than the minimum
number of players that are required to play the game, i.e M.
If more of such scenarios happens very often, then it can
impose some computing load on BVV but this computational
overhead is negligible, and the players will experience a
seamless transition during the reconstruction and redistribution
of the deck.

II. 'WORKING METHODOLOGY

Card deck handling, fund handling and privacy handling
are the three major tasks that needs to be achieved in order to
ensure the fair play of the game.

A. Card Deck Creation

The initial card deck is created such that none of the parties
participating in the game should be aware of which slot what
card presents. The deck is shuffled such that no entity can
guess the next card in the sequence. The randomness in the
shuffling process ensures the fairness of the game. Trust is
established among the players by providing a provision that
every player in the game can verify each other player’s move
in the game.

All the entities in the game i.e. Players, DCV, BVV and
Cards are associated with a set of key pairs and the public keys
of these key pairs of Players, DCV and BV'V represents the
identities of the corresponding entities and the private keys
(i.e random scalar values) of the corresponding key pairs of
the Cards which represent identity of the cards in the context
of the game. The Card’s identity is secret and is only to be
revealed as the game progresses.The scope of association of
these identities to the entities are restricted to the context of
the game. In the initial card deck creation process, the flow of
events and the order of shuffling the deck among the entities
is as follows:

Player — DCV — BVV — Player

Let N be the number of players and Z be the number of
distinguishable cards in the game.

1) At Player: Every entity in the game is associated with
a key pair on the curve25519. Let p; be the 32 byte random
scalar value generated by the i*" player and P; be the public
point on the curve corresponds to the i* player.
i.e.

Each player generates a high entropy 32 byte random
numbers as many as Z and sets the second byte as the index
of the card.

i.e.

Rij2l=j V1<i<N,1<j<Z

Where IR;; represents the 4" random value generated by the
it" player or in simple terms it represents the identity of the
jth card of the *" player. The set of 32 byte random values
generated by i*" player are represented as R;.

Where

Ri={Ryl1<j<2 Ry[2)=j}

The player performs the permutation on R;, i.e. o;(R;) and
keeps the permutation as secret to the player and is represented

as

o ={ (i) <

The permutation followed by blinding is done by the
player in order to prevent the DCV guessing the position
of the card. In this way even if the DC'V and the BVV
colluded also they cant guess the sequence of the final shuffled
cards. In order to blind the deck, o;(R;) is multiplied with
the corresponding public point of the player. i.e. P; and is

represented as Ep, (ai (Rz) .

EBp(oi(R)) ={ai(Ry) s P1<j<z}

In order to ensure the non-repudiation, the player signs
Ep, <O’Z‘ (Rz)) and publish these values. The authenticated
initial deck of cards of the i*" player is represented as A,.

A = {sign (Ep (Ui (Ri))’p"> }
_ { sign(EPi (Ui(Rij))mi)‘ 1<j< Z}

The authenticated vector generated by the player is the set
of signatures over each and every blinded card that is submitted
to DCV. These authenticated vectors can be used by any entity
in the game to verify the claims made by the corresponding
player.

)

The values published by an ‘" player are:

<Epi (:(R:)), Ai)

2) At Deck Creating Vendor: Let d be a 32 byte random
scalar value that is private to the DCV and is multiplied with
G to get the public point D on the curve and that represents
the identity of DC'V.

i.e.

D=dxG

DCYV receives Ep, (O’i (RZ)) shuffled, blinded cards along

with the authenticated vector A; from each player, where 1 <
1 < Z.Now DCYV has the set of all the initial shuffled, blinded
cards of all the players, i.e. R.

Where
R= {Epl(az-(Ri))b <i<N }

For each card of every player, DCV generates a 32 byte
random numbers and the set of all such random numbers are

represented as ¢ and the random numbers specific to an i*?

player are represented as c;.

ci=c|1<j<Z

and multiplies ¢ with G to get the public points on the curve
and which further used to blind the card deck created by DC'V'.
W here

C=cxG
={¢;*GI<i<N1<j<Z}

The X/Z(XoverZ) values of C, computed for an i*" player
is

L&w&m)={(X@Wg/z@ﬂ@)bfjgz}

For each player ¢ and for each card j, DC'V multiplies
each card in Ep, (ai (R;)
random value which is specifically generated for that card of
the player, i.e. ¢;;

E; =c; * Ep, (ai (Rz))

—{ cyroiRy)+Pl1<j< 2}

) with the corresponding 32 byte

Encrypted deck for the player ¢ is represented as E; and
(X/Z) of E; is represented as

Ei(x/z) = (XE1/ZEL)

:{(X@MW@QMQ/EQWWQHMQ>

1<j<Z}

Then hash of (El is computed using S H A-256 is

()

as follows:

H [EZXX/ZJ

|

1< Z}

The Encrypted Deck of cards for the it" player is blinded with
the random scalar values and is represented as

ED; = { Cij * H{(X(Cij*o"i(R'ij)*Pi)/

Z(Cij*o'i(Rij)*Pi))] '1 <j<Z }

- {R;j

Encrypting the deck with the random scalar values make it
blind to the players and BV'V. Now the DCV shuffles ED;

1§js2}

so that neither the player nor the BV'V or the combination of
them can able to get the sequence of the cards.

The shuffling of DC'V is represented as

opcv = { opov(j)[1<j< Z}

and is only published if required at the end of game to
validate the correctness of the game and to resolve the disputes.
Applying the shuffling on E'D; results to the final output of
DCV

opcv (ED;) = {UDCV (Cij * H[(X(eijvoi(Riy)eP)/

Z(cij*ai(Rij)*Pi))]) ‘1 sI=7 }

For simplicity,

{UDCV (Cij * H{ (X(cij*ai(Ri])*Pi)/ Z(cij*ai(Rij)*Pi))D }
3)

represents the blinded, shuffled j** card of the i*" player

generated by the DC'V and is represented as R;j.

opcv (ED;) is the raw deck that is created by DCV and is

represented with Rpcy, the above equation can be rewritten

as

Rpcv = { R;’j

1<i<N1<j<7) @)

Apart from Rpcv, the digital signing of the card random bytes
(c) will be done that produces an authenticated vector Apcy
which ensure nobody can spoof the role of DCV'.

The authenticated vector generated by DC'V that corre-
sponds to the i*" player is defined as Apcv;.

Apcvy, = { Sign(oDCV(EDi),(O’l <j<Z }

The complete digitally signed deck is represented as
Apcv.

ADCV:{ADC%|1§i§N}

Apcy is a set of digital signatures of each and every
card over Rpcy, this will be used by BVV to verify the
authenticity of the deck that it received.

The authenticity of the permutation and the random values
generated by the DCV also needs to be published which is
used to resolve the conflicts. A SH A-256 hash is computed
on the concatenated permuted values and is signed.

A;DCV = sign (H(valopcv (z)),d)

Aoy = sgn(H (I Fores))

Since the values of C are needed by the players in order
to reveal the card, so the values of C is published to the

players by DC'V by signing them. The authenticator vector
that constitutes the signatures of C is represented as Ac.

AC:{ACi‘lgiSN}

= { sign<Ci,d) ‘1 <i<N }
- { Sign<Cij,d>‘l <i< N1 gjgz}
The set of values that get published by DC'V are:

(RDCVa C, Apcv, Apev, Apev AC)

3) At Blinding Value Vendor: Let b be a 32 byte random
scalar value which is private to BVV and

B=bxG
be the corresponding public point of it on the curve25519.
Once the BV'V receives the raw deck Rpcy and a set of
authenticated vectors (Apcyv Apoy Apey | from DCV it

generates a set of binding values for each player.

Let BV be the set of blinding values generated for the i*"
player and is represented as follows:

BVi={b;1<j<Z}

The complete set of blinding values which are used to blind
the whole deck are:

BV ={BV1<i<N}

The M of N Shamir shared secret shards over the blinding
values are to be computed and are represented as, i.e.

S(bis) = { si(by)[1 <k <N }
Sk (bij) represents the k'” share of the j** card of the i
player.s;, represents the set of all k" shares of the cards which
are intended for the k*" player and is represented as:

se={s(by)1<i<N1<j<7 |

BVV encrypts the shamir secret keys with the corresponding
public keys of the players, so that the only the intended player
can get to reveal the shamir secret key when and where it is
needed. Let Ey, (sk) represents the the encrypted set of shamir
secret keys intended for the k' A player and is represented
as:

Ek(sk)_{sk(b¢j>*Pk‘1§i§N, 1§jgz}

Shared secret key for each card is computed and it is the
multiplication of the corresponding blinding value with the
corresponding public point of the player on the curve25519.
The set of shared secret keys that corresponds to encrypt the
deck of the cards intended for the i*" player are generated as:

The total set of shared secret keys generated by BVV to
encrypt the whole deck are:

K:{Ki|1§i§N})

The deck received from DCV will be shuffled by BVYV, in
order to prevent any collusion between players and DCV. The
shuffling of BVV is represented as

OBVV = { opvv(j)|1<i<Z }

and is only published at the end of game to validate the
correctness of the game and to resolve the disputes if any.
The shuffling is applied on the raw deck received from
DCVi.e RDCV

OBVV (RDCV) = { UBVV(R;J')

léjSZ}

To blind the shuffling, the deck is encrypted with shared secret
key computed in equation 5. The encrypted deck of cards

intended for an i*" player are as follows:
Rpvv, = Ek,; <UBVV (RDCV>>
= {(UBVV(RDCV) * K11 <5< Z)}

By replacing, (oBVV (RDCV> * Kij> with R;; the above

(6)

equation can be rewritten as
Rpyv, ={R;[1<j<Z}

The complete deck of cards of all the players are represented
as EB.
Rpvy ={ Rpyy,[1<i< N}

Once the shuffled encrypted deck is created by the BV'V,
it is digitally signed by BV'V to ensure nobody can spoof the
role of it. The digital fingerprint of the final shuffled encrypted
deck is computed as follows:

Apvv = { Apyy;|1 SiSN}
== { Sign(Rvai,bﬂl SZS N}

_{sign<R;7j,b)‘1gi§N,1gjgz}

The authenticity of the permutation and the blinding values
generated by the BVV also needs to be signed and these
values are used to verify the correctness of the game and to
resolve the conflicts.

Apyy = sign <H<||§-V103vv (j))J?)

Ay = sign (1201710)0)

Since the blinding values are needed to reveal decrypt the card,
BV'V should provide a mechanism to check the authenticity

and correctness of the blinding values.The Hash of the
blinding values signed by BV'V is as follows:

ABV:{AB%|1SiSN}
= { sign(H(BV:),b) |1 giSN}

_ { sign(H(bij),le <i<N,1<j< Z}

The set of values that get published by BV'V are
(RBVV7ABVVa Ay, Ay, ABV)

4) At Player: Raw deck is the set of the values published
by DCV and BV'V, which are available to the player before
the game get starts. The raw deck of an i*" player is as follows:

(RBVV“Ci>

The authenticated vectors needed to check the deck integrity
of an i*" player are

<ABV\4 , ABv;, Acf,)

The authenticated vectors which are needed for an ¥ player to
verify the authenticity of the permutations made by the DC'V
and BVV and to verify the correctness of the game when
disputes arise are:

’ ki ’ i
(ADCVi ’ ADC%’ ABVVi ’ ABVVi>

The revealing and correctness of the raw deck as the game
progresses demonstrated in the later sections of this paper.

B. Handling of the Deck

The cards in the deck will get revealed as the game
progresses, even if the players possess the raw deck they
can’t get to reveal the cards since they are blinded by the
blinding values and which are split into shamir secret shares
and distributed among the players, in this way the deck got
locked and it only get unlocks upon the approval of M players.
Where M represents the majority which usually be a minimum
of (N /2 + 1)

Since initially all players have been applied it’s own
permutation on the deck, so the the raw deck generated by the
BV'V for each player have the cards in different sequences.
Once all the players received the raw deck from BV'V they
have to undone the initial permutation applied on the raw
deck, in this way all the players have the deck which has the
permutation applied by only DCV and BVV. So the deck
of cards that each player possesses same sequence, but none
knows which card in what slot.

Lets say if its 5" turn of the i*" player, the player picks
up the j*" card from the published deck Rpyv, in sequence
and follows the below procedure in order to reveal the card.

Lets say player gets a card sz such that

R;J S RBVVi and

By substituting Rpy v, from equation 6 the above equation
can be rewritten as

R;; = Bk, (UBVV (RDCVi)>

for some 1<j<Z @)
= Bk, (UBVV (RDCWJ»))
Since K;; = P; x b;;, in order to compute the Kj;

player needs the corresponding blinding value b;;. Since b;; is
split and distributed using MofN shamir secret key sharing
approach, player ¢ requests the rest of the players, including
DCV, for Shamir secret key in order to reconstruct the
blinding value.

Each player encrypts the corresponding shamir shard with
the i* player (requested player) public key and send it to them,
in this way none of the players be aware of the shamir shards
except i*" player, it means none of the players can reconstruct
the corresponding value. In case if i*" player failed to receive
at least M shards, then in such scenario BVV steps in and
the reconstruction and redistribution of the deck happens and
which is mentioned in detail in the next sections.

In ideal scenario the shamir shards received by the i

player are for the j** card in the sequence are:

{sk(bij)u gng}

Using these values player ¢ reconstruct the blinding value b;;
and computes K;; by multiplying it with ;. Using K;; player
decrypts R;fj in equation 7 as follows:

Dx,; (R,]) = Dg,, (EKJ (O’BVV (RDCX/',:j))) ®)

=o0Bvv (RDCV”)

Substitute equation 3 and 4 in 8
Dk, (R;) = opvy (RDCV,,]‘)

=0oBVV (R,]>

{UBVV <0'DCV <Cij*
H|: (X(cij*ai(Rij)*Pi)/ Z(CLJ*O'L(RLJ)*P1)>:|>)
9

Since the i*" player have the knowledge of C;,p; and R;.
The following set of values (say «;) is computed:

oo~ (X(oon <>)/

-1
zZ)] forsomel <j < Z
(cij/ *0; (Rij/) *P,L-)

= { aij/

1<) <7}

a; is multiplied with Dy, (Rw> in 9 and the result is
represented as c;.

c; = Dk, (R”) *Q

= {UBVV <JDCV (Cij*
H| (Xeyemmpery / Z(cw*m(Ri-f)*P”)D) }* (10)

ECammyi
Z(c,,/*ai(R“')*P’i) >} _1f07"50m61 <]'/ < Z}

Multiplying c; with G gives
.

3

’
=c¢;*xG

Compare C; with C'* and

for some j:j/7where 1<j<Z

Hl(x(%,m(my)*a) /Z(cij,*gi(Rij)*Pi))]j
H[(X(CMW(RM)*E) /Z(CUW(RU)*H) ﬂ .

,an
and if we found a match in C; and for that j = j the Hash
and inverse of the Hash gets nullified in equation 10 and we

get c;j as
¢y = (ova (eovv (j))) (12)

From equation 12 it is clear that, the card in the sequence is
the combined shuffled result of DC'V and BV'V.

C. Non Repudiation and Correctness of the Game

PANGEA provides the provision to authenticate and vali-
date every move of the game in order to ensure the fair play
of the game.

The authenticated vectors of all the participating entities
are published among the entities to resolve any disputes and
to validate the published deck of values of the corresponding
entities.

Each player possess the following authenticated vectors, from
different entities in the game.
From players:

{ AN<i<N }
From DCV:
(ADCV» Apov, Apev, AC)
From BVV:
(Avaa Agvv, Apyv, ABV)

As the game finishes every player reveals the cards received
by revealing the initial 32 byte random numbers which are
associated with them, where the second byte of that 32 byte
random number represents the card index value. Any player
in the game can verify the revealed cards of any other player
and DCV, which act as a dealer, verifies the revealed cards
and evaluates the game.

Since all the entities in the game possesses the authenticator
vectors, so any player can verify and ensure the fair play of
the game.

Lets say i player is claiming it received j** card in k*" turn,
i.e. card of index j. In order to prove the claim ‘" player
publishes R;;.

The verifying entity, does the following steps to verify the
correctness of the card.

1) Check R;;[2] = j, to ensure that the claimed card
index is correct.

2) Verifies the signature of the card R;; against the
values present in A; and if this is successful it ensures
that the card is valid.

3) In order to verify the position of the card, first the au-
thenticity of the permutations done DC'V and BVV
should needs to be verified. Since at the end of the
game opcy,opyy are published, the authenticity
of them will be verified against the corresponding
signatures A/DCV and AIBVV.

4) Apply the inverse permutation opcy,opyy On
k(turn) to get to initial published authenticated
vector of that card in A; i.e.

s = A {agév (@%,V(k)ﬂ

5) Verifies the signature of the card R;; against the
signature s identified above and if this successful both
the card and position of the card in the deck are valid
otherwise not.

The authenticator vectors Ac and Apy are used during
the progress of the card if any player failed to reveal the card
from the raw deck.

D. Funds Handling

Each hand (re)distributes the total funds the table has put
into chips according to the result of each game. Under normal
conditions, the majority of players sign an M of N multisig
transaction to release the funds at the conclusion of a table.
However, if more than N — M players refuse to sign, then the
funds would not be distributed correctly, they would be stuck.
In the event where more than N — M players end up without
any chips, they have no financial incentive to stay online to
approve the M of N multisig transaction.

One way to mitigate this is to have an M of N transaction
signed after each round, so at most the result of a single game
is unaccounted for. However, we still have the case of there
being nobody left to cosign with the last man standing from
financial self-interest. Also, it is common for online game
players to simply disconnect out of frustration (admit it, you
have done this too!), so relying on the losing players to approve
a payout to the winner is not likely to be reliable. Even if the

M of N values are reduced as the number of players at the
table is reduced, this can be avoided as we certainly do not
want to get to a 1 of 2 multisig for obvious reasons.

The ideal solution is to have a blockchain-enforced payout.
This requires each change of gamestate to be recorded in the
blockchain and the blockchain to be able to determine the
proper allocation of funds. The method of doing a M of N
after each game will reduce the blockchain bloat as only a
game that doesnt have sufficient signers needs to be blockchain
interpreted. The optimal scenario is to use bi-directional mul-
tisig payment channels for normal play and have a backup
blockchain mechanism that can be invoked by any single
player in the event of the funds being stuck due to not enough
signers.

E. Privacy Handling

A totally separate issue is privacy, which in the case
of online games is needed as some govts impose juridical
restrictions on these and made online gaming illegal. This
has nothing to do with hundreds of millions of dollars in
campaign financing and other funds paid by Las Vegas casinos
to politicians. I am assured that it is purely to protect the
innocents from, well, not sure what the online players are being
protected from. So, I think a way to play privately is quite
important. To that effect, the psock capability allows a single
node to publish an IP address and if that node is not playing,
but just participating in the creation of the card deck, it will
allow all the other players to play in realtime without posting
their IP address. By using JUMBLR secret funds to purchase
chips, the identity of the source of the funds is not linked.
If you are in a totalitarian regime that is monitoring your
IP traffic, then unfortunately you would need to take further
protective actions, ie. dont play from any IP address that can be
correlated to you. As can be seen from the above, decentralized
card games are one of the most difficult challenges in the
crypto world and was unsolved, until PANGEA was released.
The critical tech is divided between the card deck handling and
the funds handling and each will be described independently.

F. Deck Recovery

PANGEA is designed on Mof N trust, it means that at least
M Shamir shards are required to reveal any card, otherwise
game halts. The deck creation process is so independent and
agile that, except the BV'V none of the participating entities
will have to bear the computing load while reconstructing the
deck.

In the proposed approach reconstruction of the partial
deck takes place without compromising any of the security
constraints. In the reconstruction of the deck a new value of
M say M is chosen such that M = (N'/2) +2. Where N’/
2 + 1 shards represents the majority, and plus one is added
since DC'V also holds a Shamir shard.

In most of the scenarios the players who get disconnected
are either losers or who get disconnected abruptly due to power
failure or loss of cable connection. Once the BV'V identifies
the reconstruction needs to be done, it finds out § where ¢
is the number of players get disconnected and (N — 6) gives

number of active players in the game.
If
§<(N-M+1)

then in such scenario reconstruction of the deck should happen
in order to continue the game.

BVYV has Rpcy received from the DCV and a new set
of blinding values will be created for all the players who are
present in the game, i.e.

BV, Vi=1toN'

where N’ represents the active players present in the
game.While in reconstruction of the deck M is computed as

M = ((N=6)/2) +2

In the process of recovery of the deck, in order to maintain the
state of the game the permutation applied remains unchanged.

The MofN Shamir shards computed for the newly gener-
ated blinding values and are represented as, i.e.

S (b)) = { s <k (N -5+1) }

The Shamir shards are encrypted with the corresponding
player public key and are distributed to the Players securely
and DCV.

Here b;j represents the reconstructed deck blinding value
associated with the ;" card of the i" player. The encrypted
Shamir shards of b;; is represented as F (b;j .

E(b,) =

A Shared secret key for each card is computed and it is
the multiplication of the corresponding blinding value with the
public point of the player on the curve25519. For instance, the
shared secret keys which are generated to encrypt the cards
correspond to the i player is represented as:

K; = {Pi«b,

Ep, (sk(b;j)) wherel < k < (N —9)
Ep (sk(b;j)) wherek = (N — 0+ 1)

1<j<z)}

Since the reconstruction of the deck needs to preserve
the state of the game, for that while reconstruction, the deck
should be shuffled with an initially generated permuted values

i.e OBVV
CTBVV(RDCV> = { UBVV(R;j) ’1 <j<Z }
The shuffled deck is encrypted with the shared secret key
computed, i.e. Ex, | opvv (RDCV) and is represented as
Rpyy,-

R/vai = By <JBVV (RDCV>>

Encryption and shuffling of the deck prevents the DC'V
to guess the sequence of the cards that each player gets. The
newly published raw deck of all the players is represented as

Rpyy-

ng:{Rgm‘lgig(N—a)}

Once the shuffled encrypted deck is created by the BVV,
it also digitally signs the blinding values.Since the permutation
applied by BV'V remains unchanged so A;BVV vector remains
unchanged and all the remaining authenticated vectors will be
recomputed.

The digital fingerprint of newly constructed raw deck is
Apvv = { Apyy |1 <i < N}
= { sign(RBVVi/,b)‘l <1 <N }
_ { sign(sz,b)‘l <i<N,1<j< Z}

Combined authenticator vector over a newly generated blind-
ing values is

L CA (PAFATHRY

Since the blinding values are needed to reveal decrypt the card,
BV'V should provide a mechanism to check the authenticity
and correctness of the blinding values. The Hash of the
blinding values signed by BV'V is as follows:

Apy = { Apyr

_ { gign(H(Bm’),b)’1 <i<N }

lgiSN}

_ { Sign(H(b;j),b)’l <i<N,1<j< Z}

The newly reconstructed raw deck along with newly gen-
erated authenticator vectors is as follows:

’ ’ ”
(RBVV» ABVV7 ABVV7 ABVV? ABV)

Since the newly generated deck preserves the sequence of the
cards in the original sequence, once it get distributed to the
players the play resumes from the point where it is halted.

III. IMPLEMENTATION
A. Message Communication

All the communications in the game must happen
through DCV, PANGEA protocol doesn’t allow
any direct communication between the Players and
the BVV. Players and BVV connect to DCV via
NN_PUSH/NN_PULL socket, if any entity in the
game is willing to send a message, it sends it to DCV
via NN_PUSH, and DCV receives it via NN_PULL.

Player N BV
PUSH PUSH

Messages

Once the DCV receives the messages it publishes
it via. NN_PUB and since Players and BVV are
subscribed to DCV via NN_SUB so whenever the DCV
publishes the messages the Players and BV'V receives it.

DCV
Publisher

Messages

Player 1

Flayer N BW

Subscriber Subscriber

Subscriber

B. Coding Implementation

The whole project is written in C and the source code is
available at [8] and [9].

CHIPS is a bitcoin fork, use of lightening protocol to get
the consensus of the block chain make the transactions in the
game real time. CHIPS uses curve25519 for faster response.
In order to understand the cryptomath PANGEA does, it is
required to understand a bit of the curve25519 internals.

C code to generate a public point on the curve for a given
random scalar value

bits256 curve25519 (bits256 r, bits256 G)
{

bits320 bp,x,z;

r.bytes[0] &= 0x£f8,

r.bytes[31] &= 0x7f,

r.bytes[31] |= 0x40;

bp = fexpand(G);

cmult (&x, &z, r,bp);

return (fcontract (fmul (x, crecip(z))));

}

The above is the fundamental curve25519 operation that
takes a 256 bit scalar and a compressed field element. Few
bits of random scalar value is set and cleared to meet the
curve25519 dynamics. Then the compressed field element is
expanded, a curve multiplication is done to create X and Z
values. Finally X/Z is calculated by doing a field multiplication
between X and the reciprocal of Z and this field element is
compressed.

The C code for a 32bit CPU compatible equivalent func-
tion, where the base point(G) is hard coded to the generator
{9,0,0,0,0,0,0,0} is This creates the public key result out
of the private key r.

bits256 xoverz_donna (bits256 r)
{

limb x[10],zmone[10],z[10],bp[10],0ut[11];

bits256 R, G;

memset (G.bytes, 0, sizeof (G));
G.bytes[0] = 9;
fexpand32 (bp, G.bytes) ;
cmult32(x,z,a.bytes,bp);
crecip32 (zmone, z) ;
fmul32 (out, x, zmone) ;
fcontract32 (R.bytes, out) ;
return (R);

The key mathematical aspect that is utilized is that a
curve25519 public key is the field division of the X and Z
coordinates of the point on the curve, i.e X/Z. The assumption
is that calculating the reverse is mathematically hard, i.e. going
from the value of X/Z to find the individual X and Z elements
requires a lot of brute force (or a Quantum Computer from
the future). The above assumption is what the curve25519
encryption is based on, so it is a safe assumption that it is
valid. PANGEA makes a further assumption that Z/X is equally
mathematically hard.

A simple proof that this is true is as follows: If Z/X is
not mathematically hard, we can calculate the reciprocal of
X/Z to get Z/X and solve curve25519 public keys. Since the
reciprocal that converts between X/Z and Z/X does not change
the curve25519 from being mathematically hard, it follows that
we could use Z/X form and have the same security level.

We also know that a curve25519 shared secret provides
a secure way for two independent key pairs to communicate
with each other.

curve25519(privA, pubB) == curve25519(privB, pubA)
X/Z.privA x pubB == X/Z.privB x pubA

We will designate specially selected key pairs as cards,
we will require that the second byte of the private key is the
card index O to 51. To create a deck, we need 52 private
keys such that no two have the same second byte. Further,
we will designate players by their public keys (which should
be a session based key pair). This allows encoding each card
for each player. Essentially each “card” is a vector of field
elements with the special property that only the designated
player can decode the private key to determine what the second
byte is.

The C code for player and cards key pair generation is
below:

bits256 card_init (int32_t
privkeyflag,int8_t index)
{

bits256 randval;

OS_randombytes (randval.bytes,
sizeof (randval));

if (privkeyflag != 0)

randval.bytes[0] &=

randval.bytes[31] &= 0x7f,
|= 0x40;

0x£8,
randval.bytes[31]

randval.bytes[30] = index;
return (randval) ;

}

struct pair256 deck_init (struct pair256
xcards, int32_t numcards)
{
int32_t i; struct pair256
player_keypair, tmp;
player_keypair.priv=
curve25519_keypair (&player_keypair.prod);
for (i=0; i<numcards; i++) {
tmp.priv = card_init(1,1i);
tmp.prod = curve25519 (tmp.priv,
curve25519_basepoint9());
cards[i] = tmp;
}

return (player_keypair);

The messages exchanged between the entities are encoded
in JSON format, and each message is encoded/decoded based
on the predefined messages format structure defined in the
game. Below we provided the messages exchanges during the
initialization of the deck, when the number of players is two.
When the players join the table, the player deck initialization
is done. It sends the init_p message to DC'V.

Below are the deck initialization messages that are calculated
as per derived in the equation 1

At Playerl:

{

"messageid": "init_p",

"playerid": O,

"range": 2,

"publickey":
"46285eaa84e641b1c4489df2fab5d72b
dalbdf84dd1503418aa6e572a3fb£f738",
"playercards":
["738564a588c9df918f8cdf578c06d4f
3385c9£8a1950dc1dlc03c£25d4870dc59",
"897bdfa5c667b0e7cl9ffe2e40e7e91d
01614661cd85fe9caf28577e0edfd610"]
}

At Player?2:

{

"messageid": "init_p",

"playerid": 1,

"range": 2,

"publickey":
"0£3573bcb687482c9e2da620615f0a46
a89fdd4bleadlebl8b2718c284£81172",
"playercards":
["8defa7ba654c6cdbllci4c21l4a2dbd4s
b1d0cl14aff1638bd49cf288bbace8822f",
"02f£f2dd130c0feB861£8d622c12cdl1591
e820a37cf96277b2baf2dded4a87e£d45"]
}

init_d is the messageid for DC'V deck initialization message,
like as derived in the equation 4 the outcome of the deck

initialization by DCV consists of (C, RDCV) At DCV:

{
"messageid":
"deckid":
"bO0ccd2d5859%aeleebdf3549e2eblb919
deedd7e943d169dbe8ea’736eef5775£d4d",
"C "w .
["la3eafdf043077eefedf0b5746bf072
bd360a51£8376b7593893e34451162e6b",
"82428513a920fd68b93045f8b8dd3bd2
9d0d518056b886db8c068e279f96b649",
"0446251cb7baf6al626507eeb55b049%¢e
6159b7e6aac9el9d7cdf62d4ad031974",
"0cd729895b494fffe7485e3238ac92el
31783954321£f76200a311e253af2850£"],
"R_DCV":
["edf6576f707dd283586e6£19234490b
661730e50db86ellc6be899%acl246f648",
"07aff04cef5432914b46d3ca8bd7¢c70
c66d5353b763464d0761£48244600cb37",
"189cbl3c24edffa22e773314bc5e9cc
fc604e9379bbdaae51ac0c68201886106",
"916b847¢c4502bb5¢c2638082677a44£40
8514428844cdl26a3f4d369d1f2e4d64e"],
}

init_b is the messageid for BV'V deck initialization message,
like as derived in the equation 6 the outcome of the deck
initialization by BV'V is the raw deck Rpyy At BVV:

"init_d",

{

"messageid": "init_b",
"publickey_b":
"5a422ec139da8305a59020082b96840b
efdfaBae20de29018b961d25f2df4c5e",
"R_BVV":
["baed6l1l6651f8efbbel290ac22d2ead3
9324492d434658973b767ce30£79e5a49",
"45bb6d13d6e385ec7fe79c43ed7eeb679
dc5b802a3230ab44d3dc40afe0dele73",
"e61f04822391f73e66c87dc6753fa8c0
4pbdf772795f48bf988c01a77077£910c",
"409a443ac82dd6146893b0890a50b53a
12f3cadfaae7f432a973abl13fddcd276"],
}

IV. CONCLUSION

We proposed a fully decentralized peer-to-peer gaming
system which doesn’t rely upon any third party for trust.
The association of identities to the entities with a key pair
and the use of digital signatures represents a true sense of
ownership and establishes the trust. We have handled the
collusion between any entities by involving all the entities
to participate in shuffling and then further blinding them to
maintain the secrecy, and then linking the process unblinding
to M of N trust using Shamir shards forces the agreement of
majority of the players to make any valid move.

We addressed resolving disputes using by evaluating the
actions of each player recorded over the block chain. Player
dis-connectivity is addressed by adjusting the threshold value
M by reconstructing and redistributing the deck whenever it is
needed. The use of lightning network with CHIPS makes any
transactions instant, the use of JUMBLR to transact CHIPS
into the game provides the anonymity to the participating
entities. The proposed system outweighs the law of the land
and lets everyone play the game with common rules.

REFERENCES

[1] Ruffing T., Moreno-Sanchez P., Kate A. (2014) CoinShuffle: Practical
Decentralized Coin Mixing for Bitcoin. In: Kutyowski M., Vaidya J. (eds)
Computer Security - ESORICS 2014. ESORICS 2014. Lecture Notes in
Computer Science, vol 8713. Springer, Cham

[2] D. J. Bernstein, ”A state-of-the-art Diffie-Hellman function.” Available:
https://cr.yp.to/ecdh.html. [Accessed: Jan. 18, 2018]

[3] Adi Shamir, "How to Share a Secret.” Available: http://www.cs.tau.ac.il/
~bchor/Shamir.html. [Accessed: Jan. 18, 2018]

[4] Decker C., Wattenhofer R. (2015) A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels. In: Pelc A., Schwarzmann
A. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS
2015. Lecture Notes in Computer Science, vol 9212. Springer, Cham

[5] Shamir A., Rivest R.L., Adleman L.M. (1981) Mental Poker. In: Klarner
D.A. (eds) The Mathematical Gardner. Springer, Boston, MA

[6] P. Golle, "Dealing cards in poker games,” International Conference on
Information Technology: Coding and Computing (ITCC’05) - Volume II,
2005, pp. 506-511 Vol. 1.

[71 Greg Maxwell, "Confidential Transactions.” Available: https://people.
xiph.org/~greg/confidential_values.txt. [Accessed: Jan. 18, 2018]

[8] j1777, ”Source code for PANGEA.” Available: https://github.com/jl777/
lightning. [Accessed: Jan. 18, 2018]

[9]1 sg777, ”Source code for PANGEA.” Available: https://github.com/sg777/
lightning. [Accessed: Jan. 18, 2018]

