
CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

Plugin Development for Firrtl

Jiuyang Liu

SiFive China & Huazhong University of Science and Technology

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

Liu Jiuyang (Sequencer)

PhD candidates from HUST, Wuhan Hubei

SiFive China, Shanghai

GitHub: https://github.com/sequencer

Blog: https://jiuyang.me

!2

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

Why firrtl?

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

Why firrtl?

• firrtl abstraction layer is the main difference between chisel2
and chisel3

• So just split chisel2 into chisel3 as front-end while firrtl as
back-end?
– SpinalHDL forked chisel2, adding the AST manipulation in

the elaborating time
– later chisel3 did it too

• AST transform framework is the reason

!4

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

Why firrtl?

• AST Transform
– firrtl provides the LLVM-like framework
– Some elaboration part from chisel2
– Target multi-backend like: ASIC/FPGA/Simulation
– Circuit Optimization
– Custom Transform with pattern match

• Phase/Stage Based Annotation Framework
– Circuit analysis(diagrammer)
– Place&Route plugin

!5

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

Why firrtl?

• Is firrtl really important for the end user?
– Or you want to achieve extreme PPA for your ASIC design

• Special design follow like full custom design
– Or chisel cannot achieve what you really want to describe

• Generate specific design after some transform
– Unless you wanna do some subtle change to your circuit

• Find the source and sink of registers
• Add print statement for debug to AST pattern

!6

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

Why firrtl?

• There are 3 abstraction layer for common rocket-chip users:
– Diplomacy

• SoC
• DAG

– Chisel
• chiselFrontend for circuit elaboration

– Firrtl

• If you think chisel standard Verilog emitter is enough for your
common usage, and you wanna try some advanced chisel, you
may try diplomacy instead.

!7

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

Glance to firrtl

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

Glance to firrtl

• Annotation
– Store all metadata,

• From Circuit to Logger
– FirrtlCircuitAnnoation
– LoggerAnnoation

• Can directly transformed by Phase
• Checks, Elaborate, AddImplicitOutputFile,

AddImplicitOutputAnnotationFile, Emitter, Convert,
MaybeFirrtlStage

• AddDefaults, AddImplicitEmitter, Checks, AddCircuit,
AddImplicitOutputFile, Compiler, WriteEmitted

!9

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

Glance to firrtl

• Circuit
– Circuit is stored at FirrtlCircuitAnnotaion
– Extracted in Compiler for IR Transform

• IR
– Info
– PrimOp
– Statement
– Expression
– DefModule
– Circuit
– Width, Orientation, Direction, Param, Type, Field

!10

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

Glance to firrtl

• Target
– Target is a pointer to a Statement
– Transform may alter the name of Statement
– CompleteTarget is common used by Transform developing

• TransformLike
– Phase
– Transform

• Visitor
• Emitter

!11

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

The plug-in development

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

The plug-in development

• In general, firrtl contains two types of plugin
– Transform-based Circuit manipulation
– Phase-based metadata plugin

• Annotate clock edge information for register
– THIS IS NOT AN MERGED MODIFICATION TO FIRRTL AND

CHISEL
• It may not be accepted, or merged in current version
• This is a demo tutorial from Visitor to Emitter

!13

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

The plug-in development

!14

stmt
 : 'wire' id ':' type info?
- | 'reg' id ':' type exp ('with' ':' reset_block)? info?
+ // use edge? for back compatibility
+ | 'reg' id ':' type edge? exp ('with' ':' reset_block)? info?

antlr4/FIRRTL.g4

+ enum Edge {
+ REGISTER_EDGE_POSEDGE = 0;
+ REGISTER_EDGE_NEGEDGE = 1;
+ }
message Register {
 // Required.
 string id = 1;
 // Required.
 Type type = 2;
 // Required.
 Expression clock = 3;
 Expression reset = 4;
 Expression init = 5;
+ Edge edge = 6;
 }

proto/firrtl.proto

+ sealed abstract class Edge extends FirrtlNode
+ case object Posedge extends Edge {
+ def serialize: String = "posedge"
+ }
+ case object Negedge extends Edge {
+ def serialize: String = "negedge"
+ }
 case class DefRegister(info: Info,
 name: String,
 tpe: Type,
+ edge: Edge,
 clock: Expression,
 reset: Expression,
 init: Expression
) extends Statement with IsDeclaration

scala/firrtl/ir/IR.scala

+ private def visitEdge[FirrtlNode](ctx: Option[EdgeContext]): Edge =
+ ctx match {
+ case Some(edge) => edge.getText match {
+ case "posedge" => Posedge
+ case "negedge" => Negedge
+ }
+ case None => Posedge
+ }

scala/firrtl/Visitor.scala

sequencer/firrtl/clockedge

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

The plug-in development

!15

case class ClockEdgeAnnotation(register: ReferenceTarget, edge: Edge) extends
 SingleTargetAnnotation[ReferenceTarget] {
 override val target: ReferenceTarget = register

 override def duplicate(n: ReferenceTarget): Annotation = ClockEdgeAnnotation(register, edge: Edge)
}

object annoEdge {
 def apply(reg: Data, edge: Edge)(implicit compileOptions: CompileOptions): Unit = {
 // TODO: wait freechipsproject/chisel3#1120 to be merged
 annotate(new ChiselAnnotation {
 def toFirrtl = ClockEdgeAnnotation(reg.toNamed.toTarget, edge)
 })
 }
}

class DummyClockEdgeModule extends MultiIOModule {
 val in: Bool = IO(Input(Bool()))
 val out: Bool = IO(Output(Bool()))
 val dummyReg = RegNext(in)
 annoEdge(dummyReg, Negedge)
 out := dummyReg
}

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

The plug-in development

!16

class CompleteClockEdge extends Transform {
 override def inputForm: CircuitForm = MidForm

 override def outputForm: CircuitForm = MidForm

 def addEdge(annoMap: Map[String, Edge])(s: Statement): Statement = s.mapStmt {
 case r: DefRegister => {
 annoMap.get(r.name) match {
 // need freechipsproject/firrtl#1125
 case Some(e) => r.copy(edge = e)
 case None => r
 }
 }
 case s: Statement => s.mapStmt(addEdge(annoMap))
 }

 override def execute(state: CircuitState): CircuitState = state.copy(circuit =
 state.circuit.copy(modules =
 state.circuit.modules.map(
 _.mapStmt(addEdge(state.annotations.collect {case ClockEdgeAnnotation(t, e) => t.name -> e}.toMap)
))))
}

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

Firrtl in the future

CONFIDENTIAL – COPYRIGHT 2019 SIFIVE. ALL RIGHTS RESERVED.

Firrtl in the future

• Processing
– AsyncReset support (firrtl#1011)
– Dependency API(firrtl#1123)
– Analysis Transform (firrtl#937, firrtl#1132)
– Attributes for Verilog(firrtl#1040)
– Mill support for firrtl and chisel3(firrtl#1083)

• Feature Request
– Full expression ability
– Formal Support by Euclid or Kami
– Verilog UDP support

!18

CONFIDENTIAL – COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED.

Thank you！

