Estimating the course of the COVID-19 pandemic in Germany via spline-based hierarchical modelling of death counts

Tobias Wistuba, Andreas Mayr, Christian Staerk

Department of Medical Biometry, Informatics and Epidemiology University Hospital Bonn

BIFI 2022

09.06.2022

Retrospective estimation based on death counts

Idea: Estimate course of pandemic via Bayesian hierarchical model based on death counts

Retrospective estimation based on death counts

Idea: Estimate course of pandemic via Bayesian hierarchical model based on death counts

ightarrow Estimated infections, effective repr. number \hat{R}_t , effects of NPIs

Flaxman et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584(7820), 257-261 (2020).

Retrospective estimation based on death counts

Idea: Estimate course of pandemic via Bayesian hierarchical model based on death counts

ightarrow Estimated infections, effective repr. number \hat{R}_t , effects of NPIs

Flaxman et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584(7820), 257-261 (2020).

Aim

Application and adaptation of model of Flaxman et al. to estimate further course of pandemic in Germany

Modelling issues

Results of Flaxman et al. for first wave in Germany in 2020:

Aim

Application of model of Flaxman et al. on German data

Issues

 Estimated effects of NPIs sensitive to prespecified change points (timings of adapted NPIs)

Modelling issues

Results of Flaxman et al. for first wave in Germany in 2020:

Aim

Application of model of Flaxman et al. on German data

Issues

- (1) Estimated effects of NPIs sensitive to prespecified change points (timings of adapted NPIs)
- (2) Model did not fit well for the full first year of the pandemic (e.g. estimated infections < confirmed cases)

Resolved issues

- (1) Estimated effects of NPIs sensitive to prespecified change points (adaptations of NPIs)
 - \rightarrow Smooth data-driven estimation via splines

Resolved issues

 Estimated effects of NPIs sensitive to prespecified change points (adaptations of NPIs)

ightarrow Smooth data-driven estimation via splines

(2) Model did not fit well for the full first year of the pandemic (e.g. estimated infections < confirmed cases)

 \rightarrow Time-varying effective infection fatality rate (IFR)

Infection fatality rate (IFR)

Infection fatality rate/ratio (IFR): Deaths / Infections

 \rightarrow Crucial link to infer infections from reported deaths

Age-specific IFR		
Age group	O'Driscoll [5]	Verity [11]
0-4	0.002 [0.001; 0.002]	0.002 [0.000; 0.025]
5-14	0.000 [0.000; 0.000]	0.004 [0.001; 0.037]
15-34	0.009 [0.007; 0.010]	0.041 [0.019; 0.110]
35-59	0.122 [0.115; 0.128]	0.349 [0.194; 0.743]
60-79	0.992 [0.942; 1.045]	2.913 [1.670; 5.793]
80+	7.274 [6.909; 7.656]	7.800 [3.800; 13.30]
IFR _{DE}	0.756 [0.717; 0.796]	1.296 [0.694; 2.453]
IFR estimates are given in percentages (with 95% confidence intervals in brackets)		

Age- and time-dependent risk of infection

Mar Apr May June July Aug Sep Oct Nov Dec Ja

Effective IFR for Germany

Resolved issues

(1) Estimated effects of NPIs sensitive to prespecified change points (adaptations of NPIs)

ightarrow Smooth data-driven estimation via splines

(2) Model did not fit well for the full first year of the pandemic (estimated infections < confirmed cases)</p>

 \rightarrow Time-varying effective infection fatality rate (IFR)

Results for Germany (first year)

Results for Germany: Estimated infections

"Lockdown light": Restaurants and leisure facilities closed, while schools and shops remained open

 \rightarrow Flattening/decreasing trend in confirmed cases, but estimated infections continued to rise until one week after "second lockdown"

 \rightarrow Why?

Results for Germany: Dark figures

Infections per confirmed case (IPCC): Factor for dark figures of undetected infections

 \rightarrow Limited (restricted) testing introduced almost concurrently with "lockdown light", leading to increase in estimated dark figures

 \rightarrow Changes in IPCC often associated with changes in testing policies

Results for Germany: Effective reproduction number

Smooth estimation of effective reproduction number:

 \rightarrow Model estimates based on death counts often similar to RKI estimates based on confirmed cases

 \rightarrow However, model estimates based on death counts more robust to changes in testing

Some limitations of our approach

- Retrospective estimation approach
 - \rightarrow Not for now-casting and forecasting

Some limitations of our approach

- Retrospective estimation approach
 - \rightarrow Not for now-casting and forecasting
- No incorporation of vaccination effects (yet)
 - \rightarrow Integration of vaccination effects via effective IFR

Some limitations of our approach

- Retrospective estimation approach
 - \rightarrow Not for now-casting and forecasting
- No incorporation of vaccination effects (yet)
 → Integration of vaccination effects via effective IFR
- Parametric assumptions, e.g. regarding time between infections and reported deaths

 \rightarrow Specific assumptions may not work for other countries

Conclusions

Summary

Our spline-based hierarchical model based on death counts

- allows to disentangle effects of adapted testing from transmission dynamics
- provides estimates of dark figures of infections over time

Conclusions

Summary

Our spline-based hierarchical model based on death counts

- allows to disentangle effects of adapted testing from transmission dynamics
- provides estimates of dark figures of infections over time

Future research

- Incorporation of various pieces of information: Data on vaccinations, confirmed cases, hospitalizations, intensive care unit cases and death counts
- Account for altered intrinsic severity of different variants

Staerk, Wistuba & Mayr (2021). Estimating effective infection fatality rates during the course of the COVID-19 pandemic in Germany. BMC Public Health. Wistuba, Mayr & Staerk (2022). Estimating the course of the COVID-19 pandemic in Germany via spline-based hierarchical modelling of death counts. Scientific Reports (accepted). Prep: https://arxiv.org/abs/2109.02599