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Abstract

We describe a new arithmetic system for the Magma computer algebra system for working
with p-adic numbers exactly, in the sense that numbers are represented lazily to infinite
p-adic precision. This is the first highly featured such implementation. This has the
benefits of increasing user-friendliness and speeding up some computations, as well as
forcibly producing provable results. We give theoretical and practical justification for its
design and describe some use cases. The intention is that this article will be of benefit
to anyone wanting to implement similar functionality in other languages.
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1. Introduction

When dealing with completed fields, such as R or Qp, it is generally quite difficult
to represent elements exactly. Instead, the commonest way to represent elements is by
specifying them to some pre-determined precision, and then performing operations such
as arithmetic to this precision also. This is the foundation of floating point arithmetic.
For example, one might represent the real number e by its approximation 2.718281828 to
a precision of 10 real digits. We say such a representation is inexact because several real
numbers can have the same representation: e, 2.718281828 and 2.7182818281 all have
the same representation to 10 digits precision.

Such a representation is also usually zealous meaning that when an operation is
performed, such as multiplication, it is immediately computed to the required precision.
For instance, computing e × e will work to 10 digits precision and actually compute
2.718281828×2.718281828 = 7.389056096. In fact, e×e = 7.389056098 . . ., demonstrating
that precision errors can creep into the results, so that they are in fact less precise than
the precision claims.

An often-suggested alternative to zealous arithmetic is lazy arithmetic, in which
an operation does not produce an answer per-se, but a “promise to produce an answer
to a desired precision”. That is, calling e × e would not produce the approximation
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7.389056096, but would produce a function which, when called with an integer k, returns
an approximation to e× e to k digits precision.

Such a function can be said to be an exact representation of a real number, because no
two distinct real numbers have the same representation: for a sufficiently large precision
k, the representing functions will return different approximations.

These comments hold true for p-adic numbers too. For instance, an element of Qp is
generally represented in zealous, inexact arithmetic by its residue class in Qp/pkZp for
some absolute precision k: e.g. 1 + 210Z2 might represent 1, 1 + 210 or 1 + 5× 2100.

There are numerous implementations of such zealous, inexact p-adic arithmetic. FLINT
(Hart et al. (2018)) provides some low-level arithmetic with elements of Qp, univariate
polynomials over Qp, and unramified extensions of Qp. Sage (The Sage Developers
(2018)) and Magma (Bosma et al. (1997)) have more fully-featured implementations,
including arbitrary finite extensions of Qp and higher-level routines for tasks such as
factoring.

Also of note is an implementation in Mathemagix (van der Hoeven et al. (2018)) of
the so-called relaxed p-adic arithmetic (Berthomieu et al. (2011); Berthomieu and Le-
breton (2012)), which treats elements of Qp like an infinite sequence of p-adic coefficients,
somewhat like Fp((t)), and provides algorithms to lazily compute these coefficients one
at a time. The latter property makes relaxed arithmetic particularly useful for p-adic
recursion solving. In principle it is useful in general but is somewhat more complicated
to implement than the lazy arithmetic presented in this article and as such is less fully
featured.

A more in-depth description of different p-adic arithmetic systems is given by Caruso
(2017).

In this article, we present a new implementation of a lazy, exact p-adic arithmetic
system for the Magma computer algebra system (Bosma et al. (1997)). As mentioned
above, Magma already has a fully-featured implementation of zealous, inexact p-adic
arithmetic. Our system uses this inexact functionality already available as much as
possible, allowing for rapid addition of new features to the exact arithmetic as soon as
they are available inexactly.

To the author’s knowledge, this is the first highly-featured, general-purpose imple-
mentation of lazy p-adic arithmetic.

This article describes the rationale and the fundamental concepts behind the imple-
mentation, but does not constitute a user manual. The implementation will be available
in an upcoming release of Magma with documentation available in the Magma Handbook.

1.1. Prototypes
While this implementation is written in C, we have also produced two prototype ex-

act p-adic arithmetic systems written in Magma (Doris, 2018a,b,c). Although much less
performant, the development of these prototypes heavily informed the present implemen-
tation. In particular, the present implementation is very similar to the second prototype,
and the rationale for not following the more obvious system in the first prototype is given
in Section 5.2.

To demonstrate the utility of exact arithmetic, our prototype packages have been
used to implement the algorithm of Dokchitser and Doris (2019) to compute the 2-part
of the conductor of a hyperelliptic curve of genus 2 defined over a number field. This
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implementation is available from Doris (2018d). It uses such high-level p-adic routines as:
computing the completion of a number field at a finite place; computing the factorization
of a univariate polynomial and the fields defined by its factors; and Hensel-lifting roots
of a system of multivariate equations.

As another application, the prototype packages can optionally be used with the im-
plementation of the algorithms of Doris (2019b) for computing the Galois group of a
p-adic polynomial. This is available from Doris (2018e). With either package present
the Galois group algorithm becomes provably correct, whereas otherwise with inexact
p-adics there is no such guarantee. We also find that the algorithms run faster with
exact p-adics, at least for reasonably high-degree inputs.

It is work in progress to translate these algorithms to the new system.

1.2. Notation
The field of p-adic numbers is denoted Qp and its ring of integers is Zp. If K/Qp is a

finite extension, then OK is its ring of integers, πK ∈ Qp is a uniformizing element, and
valK is the πK-adic valuation such that valK(πK) = 1. We drop the subscript when it is
clear from context.

1.3. Structure of this article
We motivate the development of exact arithmetic in Section 2 by comparing it with

zealous arithmetic. After a brief description in Section 3 of the inexact arithmetic already
available in Magma, we describe our new system in Section 4. Next, in Section 5 we
give a rationale for our design, arguing based on simple complexity analysis as well as
experience, then in Section 6 we test the performance of our system in practice and
compare to inexact arithmetic. Finally, in Section 7, we describe a few algorithms which
highlight some of the differences in implementing functionality for exact arithmetic as
compared to inexact arithmetic.

2. Motivation: Comparison of zealous and lazy arithmetic

2.1. Precision guessing
In zealous arithmetic, the user is generally required to choose a precision to work at

in advance. Then all computations are performed to that precision, and it may happen
that the precision chosen was not sufficient. In this case, the user will probably start
the computation over with a higher precision. This process of manually increasing the
precision of a computation can be burdensome for the user. In lazy arithmetic, such
precision decisions are made automatically as far as possible.

Example 1. Here is a typical interactive Magma session, using its builtin inexact arith-
metic:

> // try to factorize at precision 10
> K := pAdicField(2, 10);
> R<x> := PolynomialRing(K);
> f := my_favourite_polynomial(R);
> Factorization(f);
error: ...
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> // try to factorize at precision 20
> K := pAdicField(2, 20);
> R<x> := PolynomialRing(K);
> f := my_favourite_polynomial(R);
> Factorization(f);
error: ...
> // try to factorize at precision 40
> K := pAdicField(2, 40);
> R<x> := PolynomialRing(K);
> f := my_favourite_polynomial(R);
> Factorization(f);
[ <x^10 + ... >, ... ]

Using lazy arithmetic provided by our package, the equivalent session would be the
following. Note that there is no explicit mention of precision.
> K := pAdicField(2 : Exact);
> R<x> := PolynomialRing(K);
> f := my_favourite_polynomial(R);
> Factorization(f);
[ <x^10 + ... >, ... ] ♦

2.2. Repeated computation
Some p-adic computations fall into two distinct parts: the first part being compu-

tationally expensive but independent of the precision, and the second part being com-
putationally cheap. For example, polynomial root-finding algorithms typically have an
expensive first part to identify the roots, and then use cheap Hensel lifting in the second
part to approximate these roots to high precision.

If such a computation is performed with inexact arithmetic at several increasing
precisions, as in the previous section, then both parts will be repeated at each precision.

If we instead use exact arithmetic, the expensive first part is only performed once,
and only the cheap second part is repeated for each successive precision.

2.3. Locality of precision
In lazy arithmetic, each individual computation is performed to approximately the

smallest precision it can be, and so precisions are very local in the computation. In
zealous arithmetic, the precision is generally chosen once at the start of a computation,
so each operation is performed to the same precision, and so precisions are more global.
If there is a single operation requiring a high global precision, this increases the precision
that all other operations are performed to, which is a performance hit compared to lazy
arithmetic.
Example 2. An example comes from the conductor algorithm mentioned in the intro-
duction. One portion of this algorithm takes a polynomial f(x) ∈ Q2[x], computes its
factorization, chooses a factor g(x), computes the extension K/Q2 defined by g, and then
finds a root of g in K. Usually, the precision required for the factorization far exceeds
that of the root-finding; however, because the root-finding is over an extension K, if it
were to be done at the same high precision as the factorization, its run-time would often
dominate. ♦
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2.4. Correctness and provability
When a p-adic number x ∈ K is represented inexactly as a class x+πkO, then it can

be ambiguous whether it is really representing x or the class itself. For many operations,
the distinction makes no difference; for example since

(x+ y) + πkO = (x+ πkO) + (y + πkO)

then addition works the same in either interpretation. For other operations, Magma can
produce potentially misleading answers; for example if x is represented as 0 + πkO then
Valuation(x) will return k, when in fact all we really know is that val(x) ≥ k.

Our implementation avoids this ambiguity. Whenever we provide a function whose
name is a mathematical concept (such as Valuation) then the returned value will be
correct, and in particular will not depend on the precision to which the input was given
— instead, more precision will be computed as required. This frees the user to think
about these objects as actual p-adic numbers, not as residue classes.

Similarly, if x = 1 and y = 1 + 210 are both represented inexactly as 1 + 210Z2, then
they will be reported as equal, even though the true values are different. In fact, it is
not possible to determine that two arbitrary p-adic numbers are equal when given to
any finite precision, because they could always differ at some higher precision. With our
exact arithmetic, x and y would be reported as unequal by repeatedly increasing their
precision until they differ. If also z = 1, then testing if x and z are equal will most likely
not terminate, but it will certainly not return false.

In some cases, such as polynomial root-finding and factorization (Roots and Factor-
ization), the correctness of the output is forced by the fact that the outputs are given
exactly. That is, if Roots returns a root (exactly), then it by definition comes with
a program to compute an approximation to the root to arbitrarily high precision, and
therefore assuming the program is correct this is a proof that the root is correct. In the
case of Roots, it is Hensel’s lemma which provides this proof.

Any functions we provide whose output depends on the representation itself are given
names which make this clear. The terms Weakly and Definitely are used to denote tests
which can give false positives or false negatives; for example IsWeaklyZero(x) is true
if its input appears to be zero up to some precision (but does not guarantee it is zero).
Similarly the term Weak denotes functions whose output depends on the precision of its
inputs, so for example WeakValuation(x) returns a lower bound on val(x) dependent on
the current precision of x.

2.5. Overheads
The main down-sides of lazy arithmetic are the extra time and memory overheads

introduced. In lazy arithmetic, p-adic values depend on other p-adic values, and all these
dependencies need to be kept in memory for the duration of a computation. Each time
an operation is performed, some dependency tracking and propagation needs to occur,
which entails some processing time overhead.

This said, we find that these overheads are usually negligible unless one performs a
large number of ordinarily very fast operations, such as basic arithmetic, and even then
the overheads do not dominate (see Section 6). If this is the case, then one can consider
implementing the whole sequence of operations as a new atomic p-adic operation, which
therefore now only contributes a single node to the dependency graph.
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3. Inexact p-adics in Magma

Before describing our implementation, we give a brief description of the inexact p-
adics already available in Magma. In this discussion, K/Qp is a finite extension and
O/Zp is its ring of integers.

The inexact representation of K has type FldPad and O has type RngPad. If K = Qp
then both are defined simply by the prime p. Otherwise, K is defined by a polynomial
over some sub-field M . The coefficients of this polynomial are themselves inexact.

Alternatively, K may be defined by a function m : N→M [x], and where m(k) is the
defining polynomial of K/M given to absolute precision k. We refer fields defined in this
way as semi-exact because their defining polynomial is defined exactly via m but the
elements are still inexact.

One can change the precision of such a semi-exact field, yielding a field defined by
a polynomial to that precision. Importantly, Magma understands these fields to be
compatible with each other, allowing for very cheap coercion of elements between them.

Integer elements x ∈ O have type RngPadElt, and are defined by its residue class

x+ πkO

for some k ≥ 0. This is its absolute precision, which can be different for each element.
If K = Qp or K is semi-exact then k is unbounded, but if K is defined by an inexact
polynomial, then k is bounded by the absolute precision of that polynomial.

If x ∈ πkO then we say x is weakly zero. If x is zero then it is weakly zero, but the
converse does not hold, if x is weakly zero we only know val(x) ≥ k. If x − y is weakly
zero, then we say x and y are weakly equal.

Field elements x ∈ K have type FldPadElt, and are defined by the pair

(v, y) ∈ Z×O where x = πvy.

Clearly val(x) ≥ v, and we refer to v as the weak valuation of x.
Recalling that y is defined by y+πkO, then x is equivalently defined by πvy+πv+kO.

The absolute precision of x is v + k and the relative precision of x is k.
This definition is normalized so that if k > 0 then y ∈ O×. Hence x is weakly zero if

and only if k = 0, and if x is not weakly zero then val(x) = v.
Additionally, v =∞ is allowed, in which case x = 0 is the precise zero. In this case,

we set k = 0 so that the precise zero is also weakly zero.

4. Our implementation

4.1. Core description
All p-adic objects for which we provide an exact implementation (such as p-adic

fields, p-adic integer rings, elements thereof, and polynomials defined over these) are
represented in a common fashion, which we describe in this section.

Let X be such an object, then X is defined by three pieces of information: its type,
its dependencies and its kind.

The type means its type in the Magma type system, including FldXPad for p-adic
fields and FldXPadElt for their elements. All exact types have XPad in their name.
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X = type kind
dependencies
[D(1), . . . , D(d)]

approximations
[X̃1, . . . , X̃n, . . .]

GetApprox (n, [D̃(1)
n , . . . , D̃

(d)
n ]) =: X̃n

Figure 1: Illustration of an exact p-adic object X.

The dependencies is a list of other objects of any type (not necessarily exact p-adic
objects) on which the value of X depends. For example, if X is an element of K equal
to the integer x ∈ Z then the dependencies of X may be [K,x].

The kind describes how X may be computed given its dependencies. For example,
there is a kind for p-adic field elements which are coerced from integers, as in the previous
paragraph. Similarly, there is a kind for fields which are an unramified extension of some
other field, or for a field element which is the sum of two other elements of the same
field, or for a polynomial which is an irreducible factor of another polynomial.

Concretely, the kind is an integer which indexes into a static table of kind information
for the type, fully describing the kind. Each entry contains: the number of dependencies
of objects of this kind (or a wildcard value meaning any number is allowed), the types
expected of each dependency, and a GetApprox function, whose usage we describe shortly.

The type, dependencies and kind define the object X by defining an infinite sequence
[X̃1, X̃2, . . . , X̃n, . . .] of increasingly precise (inexact) approximations to X. For example,
the approximations of a p-adic field element of type FldXPadElt are inexact p-adic field
elements of type FldPadElt.

The nth term of this sequence is defined and computed as follows. Let [D(1), . . . , D(d)]
be the dependencies of X. For i = 1, . . . , d, if D(i) is an exact p-adic object, compute
D̃

(i)
n recursively; otherwise define D̃(i)

n := D(i). Then

X̃n := GetApprox(n, [D̃(1)
n , . . . , D̃(d)

n ])

where the GetApprox function is looked up using the type and kind of X.
We describe n as the epoch, so that X̃n is the approximation of X at epoch

n. Then the above definition may be put as: the approximation of X at epoch n is
the GetApprox function called with the epoch n and the list of approximations of its
dependencies at epoch n.

Each element keeps a cache [X̃1, . . . , X̃n] of the approximations computed so far. We
require that precision is not lost: if n1 ≤ n2 then X̃n2 is at least as precise as X̃n1 .
Figure 1 illustrates the relationships between defining information of X.

If X is an exact p-adic structure, such as a ring of p-adic integers, then its elements
are also exact p-adic objects. If x ∈ X is such an element, then we require that x̃n ∈ X̃n

for all n. That is, the approximation of an element of a structure must be an element of
the approximation of the structure. In particular approximations of different elements
of X at the same epoch belong to the same approximate structure.
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4.2. Particular types
In this section, we describe the particular types currently provided by our imple-

mentation, namely rings and fields of p-adic numbers, their elements, and univariate
polynomials over these.

We plan to support more aggregate types in the future, including multivariate poly-
nomials, vectors and matrices. These can be modelled on the univariate polynomials.

4.2.1. FldXPad and RngXPad: fields of p-adic numbers and rings of p-adic integers
These have an almost identical implementation to each other. An approximation of

a FldXPad, as returned by its GetApprox function, is a finite-precision FldPad whose
precision increases with the epoch. Similarly an approximation of a RngXPad is a finite-
precision RngPad.

There are three kinds of these fields and rings. Firstly there is the kind of prime p-adic
fields and rings, namely Qp and Zp. The approximation at epoch n is the corresponding
finite-precision ring or field of precision 2n. See Section 5.1 for the rationale behind this
choice of precision.

Then there is the kind of unramified extensions and the kind of totally ramified
extensions. These are defined by a base ring or field R and an inertial or Eisenstein
polynomial f(x) ∈ R[x] (itself an exact p-adic polynomial of type RngUPolXPad). If S is
the extension defined by f , then its approximation S̃n is the extension of R̃n defined by
f̃n. The defining polynomial is cached by the field or ring, so that the base field, degree
and other information about the extension can be deduced.

4.2.2. FldXPadElt and RngXPadElt: p-adic numbers and integers
An element of an exact p-adic number field of type FldXPad has type FldXPadElt,

and similarly for integers. As with the rings and fields themselves, the implementation of
their elements is almost identical to each other. Since the approximation of an element of
a structure must be an element of the approximation of the structure, an approximation
of a FldXPadElt is an element of a FldPad, which is a finite-precision p-adic number of
type FldPadElt as described in Section 3.

For example the sequence of approximations of 1 ∈ Z3 might be

[1 + 32Z3, 1 + 34Z3, 1 + 38Z3, . . .].

There are many kinds of p-adic numbers. For example, there are kinds for numbers
coerced from integers or rationals, or coerced from a base field, or lifted from the residue
class field. There are kinds for special elements of the parent ring or field, such as a
uniformizing element or generator. There are kinds for numbers arising from arithmetic
operations on other numbers, such as addition, multiplication, division and powering.
There are also kinds for numbers obtained from more complex routines, such as roots of
polynomials obtained via Hensel lifting.

The implementation of the GetApprox function for many of these kinds is very simple.
For example if K is a p-adic field and a ∈ Z and x = Coerce(K, a) is the element of K
equal to a then x has dependencies [K, a] and

x̃n := GetApprox(n, [K̃n, a]) = Coerce(K̃n, a).
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Similarly if x, y ∈ K and z := x+ y ∈ K then

z̃n := GetApprox(n, [x̃n, ỹn]) = x̃n + ỹn.

One must be careful that the GetApprox function is well-defined at all epochs, for example
division requires some extra care (see Section 4.3.1).

4.2.3. RngUPolXPad and RngUPolXPadElt: Univariate polynomial rings and their ele-
ments

We provide the type RngUPolXPad to represent the ring of polynomials over any exact
p-adic ring, such as a p-adic field. Its elements have type RngUPolXPadElt, and both
types are exact p-adic objects, in the established sense that they are defined by a list of
dependencies and a kind.

Note that Magma already provides types RngUPol and RngUPolElt for univariate
polynomials over arbitrary rings. See Section 5.4 for why we define a new representation.

There is only one kind of univariate polynomial ring, defined by its base ring. It
has one dependency, the base ring, and its approximation at epoch n is the univariate
polynomial ring (of type RngUPol) over the approximation at epoch n of its base ring.

4.3. Further details
4.3.1. Minimum epoch
Example 3. Suppose x, y ∈ Qp and we wish to compute z = x/y. Of course, we first
check that y is non-zero, which we do by inspecting each approximation ỹn of y in turn
until we find one which is not weakly zero. Now suppose z has dependencies [x, y] and
approximations

z̃n := GetApprox(n, [x̃n, ỹn]) = x̃n/ỹn.

Even though y is non-zero, it might be the case that its first approximation is weakly
zero, namely ỹ1 = 0 + pvZp, which results in a division-by-zero error when computing
x̃1/ỹ1. ♦

To avoid this problem, each object X has an additional piece of information called
min_epoch, which is the smallest n for which the corresponding GetApprox function may
be called. That is, we restrict the earlier definition:

X̃n := GetApprox(n, [D̃(1)
n , . . . , D̃(d)

n ]) for n ≥ min_epoch.

We obtain the approximations at smaller epochs by limiting the precision of X̃min_epoch
appropriately. In particular, in the case where X is an element of a structure S, we define

X̃n := Coerce(S̃n, X̃min_epoch) for n < min_epoch.

In the division example, we set the min_epoch to be the smallest epoch n such that
ỹn is not weakly zero. Since we require that precision must not be lost as n is increased,
it is guaranteed that all subsequent approximations are also not weakly zero.

Another example of using min_epoch is ensuring that the leading coefficient of a
polynomial is non-zero when computing its discriminant. Another example is ensuring
that an approximate root is sufficiently precise to guarantee that Hensel lifting it to a
root of a polynomial will succeed.
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4.3.2. Infinite-precision approximations
Recall that if S/R is an extension of p-adic number fields or integer rings, defined by

the irreducible polynomial f(x) ∈ R[x], then its approximation S̃n is the extension of R̃n
defined by f̃n.

In Magma however, if we were to directly generate these extensions S̃n/R̃n separately
for each epoch, they would not be considered to be related in any way. In particular,
coercion between S̃n at different epochs n would not be possible.

Instead, we attach to S its infinite-precision approximation, denoted S̃∞, which
is a semi-exact representation of S as described in Section 3. Its defining map m : N→
R̃∞[x] returns a sufficiently precise approximation of f(x).

Then S has dependencies [S̃∞, f ] and its approximations are actually computed as

S̃n := GetApprox(n, [S̃∞, f̃n]) := ChangePrecision(S̃∞, AbsolutePrecision(f̃n)).

This definition ensures that the approximation of f returned by m is already available.

4.3.3. Main algorithm
For clarity, we now present the main algorithm for computing an approximation at

epoch n, including using the cache of approximations (which afterwards contains all
approximations up to epoch n), checking the generated approximations are valid (using
IsValidApproximation, which for example checks consistency as in Section 5.3), and
accounting for the minimum epoch.

Algorithm 4 (Approximation(X,n)). Given an exact p-adic object X and an epoch
n ∈ N, returns the approximation X̃n of X at epoch n.
1: A := ApproximationsCache(X)
2: if n > #A then
3: nmin := MinEpoch(X)
4: D := Dependencies(X)
5: GetApprox := GetApproxFunction(Type(X), Kind(X))

6: (For each epoch to do above the minimum epoch)
7: for i := max(#A+ 1, nmin), . . . ,max(n, nmin) do

8: (Create and check an approximation from the dependencies)
9: D̃ := [Approximation(D[j], i) : j := 1, . . . ,#D]
10: X̃ := GetApprox(i, D̃)
11: assert IsValidApproximation(X̃,X, i)

12: (If required, create approximations up to the minimum epoch)
13: if i = nmin and i > #A+ 1 then
14: S := Parent(X)
15: for j := #A+ 1, . . . , i− 1 do
16: S̃ := Approximation(S, j)
17: X̃ ′ := Coerce(S̃, X̃)
18: assert IsValidApproximation(X̃ ′, X, j)
19: Append(A, X̃ ′)
20: end for
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21: end if

22: (Keep this approximation)
23: Append(A, X̃)
24: end for
25: end if
26: return A[n]

4.3.4. User-defined kinds
We overload the elt<> syntax to allow the creation of elements with user-defined

kinds in Magma. That is, if S is an exact p-adic structure then

X := elt<S | ga, [D(1), . . . , D(d)]>

is an element of S whose approximations are

X̃n := ga([D̃(1)
n , . . . , D̃(d)

n ]).

The user get-approx function ga may be viewed as defining a user-defined kind of
element of S.

In fact, all such elements have the same kind. The dependencies of X are actually
[ga, D(1), . . . , D(d)] and

GetApprox(n, [ga, D̃(1)
n , . . . , D̃(d)

n ]) := ga([D̃(1)
n , . . . , D̃(d)

n ]).

This construction is particularly useful when X is the output of some complex algo-
rithm which is simpler to implement in Magma than in the C back-end. For example,
our polynomial factorization and Hensel lifting routines use this (see Section 7.3).

4.3.5. Optimizing dependencies
Suppose z = f(x(1), . . . , x(d)) where f is some complicated function in exact p-adic

objects X = [x(1), . . . , x(d)]. In particular, while z recursively depends ultimately on X ,
there are a lot of intermediate values in the graph of dependencies between them.

We now present an optimization which produces a new exact p-adic object z′ which
is equal to z but whose dependencies are precisely X . That is, we eliminate all the
intermediate values. The GetApprox function for z′ will execute a straight-line program
to compute an approximation of z from approximations of X .

What is optimized. The intermediate values have been eliminated, so that the depen-
dency graph is substantially simpler. This means less time will be spent in dependency-
tracking code. In particular, to compute an approximation of z′ we have to evaluate a
straight-line program, instead of navigating the graph of dependencies of z.

Furthermore, approximations of the intermediate values are computed when needed
and then discarded, reducing persistent memory usage.

See Section 6 for the practical effect of this optimization.

Down-sides. The time spent constructing z′ from z may not be negligible. The min_
epoch of z′ must be the maximum of the min_epoch of any intermediate value between
z and X .
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Construction. Given exact p-adic object z and a set of exact p-adic objects X = [x(1), . . . , x(d)],
we construct the optimized z′ as follows.

First, compute the directed acyclic graph of dependencies whose source is z and whose
sinks include X and any non-exact dependencies.

Topologically sort this graph, yielding dependencies [y(1), . . . , y(m)], so that if y(i)

is a dependency of y(j) then i < j. We can ensure that [y(1), . . . , y(r)] are the inexact
dependencies, [y(r+1), . . . , y(r+d)] = X , and y(m) = z.

For each i = r + d + 1, . . . ,m, find the type Ti and kind Ki of y(i), and the indices
Ji = [j1, . . . , jdi

] of the dependencies [y(j)]j∈Ji
of y(i). Compute the sequence P =

[(Ti,Ki, Ji)]mi=r+d+1, which is the program.
The dependencies of z′ are [P, y(1), . . . , y(r+d)], that is, the program and any required

inputs. The GetApprox function receives approximations [P, ỹ(1)
n , . . . , ỹ

(r+d)
n ], and com-

putes ỹ(i)
n successively for i = r + d + 1, . . . ,m using the program. In particular we

find the GetApprox function for the type Ti and kind Ki of y(i), and call it with the
approximations [ỹ(j)

n ]j∈Ji
which have already been computed. The final approximation

computed is ỹ(m)
n = z̃n, which is returned.

5. Design rationale

5.1. Exponentially increasing precision
Recall that we define the precision of Qp at epoch n to be 2n. All computations over

Qp and its extensions occur to this precision by default. In this section we justify this
choice of precision.

Suppose that an inexact computation at precision k has some cost (e.g. run-time or
memory usage) C(k) ∝ kα. Suppose that at epoch n we work to precision bn for some
b > 1, and therefore using exact p-adics to achieve at least the same precision has cost

C∗(k) :=
n∑
i=1

C(bi) ∝ bα b
αn − 1
bα − 1

where bn−1 ≤ k ≤ bn, since this will work at each precision b, b2, . . . , bn successively.
Hence bn ≤ bk and the relative overhead of using exact versus inexact p-adics is

R(k) := C∗(k)
C(k) ≤

bα+1

bα − 1 =: r(α, b).

Setting ∂
∂br(α, b) = 0, we find that r(α, b) is minimized by b = b∗ := (1 + α)α−1 and

r∗(α) := r(α, b∗) = (1 + α)1+α−1

α
.

In particular, for linear-cost operations (α = 1) this optimum is b∗ = 2 and r∗ = 4. That
is, our choice of b = 2 is optimal with respect to relative cost of linear operations between
exact and inexact arithmetic.

Furthermore ∂
∂αr(α, b) < 0, so we deduce that R(k) ≤ 4 when α ≥ 1. That is, the

relative overhead is at most 4 for any super-linear computation.
12



We can also ask: since b = 2 is only optimal for α = 1, how much further could we
have reduced R(k) for a specific α > 1? Since 2 < e, we have 2α ≥ 1 + α and we deduce

α2α ≤ (2α − 1)(1 + α) ≤ (2α − 1)(1 + α)1+α−1

which rearranges to
r(α, 2) ≤ 2 · r∗(α).

That is, with our non-optimal choice of b = 2 for α > 1, we are still within a factor of 2
of the optimal overhead. This ratio grows quite slowly, so even for cubic-cost algorithms
(α = 3) then r(α, 2) ≤ 1.08 · r∗(α). That is, optimizing instead for cubic-cost operations
would save only around 10% compared to using b = 2.

We emphasize that this factor of 4 overhead is in the worst-case scenario that the
inexact computation is performed exactly once, at the correct precision, which must have
been known in advance. In the more common scenario that the correct precision was not
known in advance, the inexact computation would necessarily be repeated at increasing
precisions just as for the exact computation, in which case the overhead factor is 1 for
linear operations, and no more than 2 for super-linear operations.

5.2. Epoch versus precision
Perhaps a more obvious scheme for lazily computed p-adics would be one which

deals with precisions of elements directly, instead of using the epoch. Such a scheme is
implemented in the prototype Magma package ExactpAdics (Doris, 2018a) and works
essentially as follows. Each element X is still defined by its type, dependencies and kind,
but now the kind stores slightly different information. Firstly, there is a function

[k1, . . . , kd] := GetReqPrec(k, [D(1), . . . , D(d)])

which returns a precision for each dependency. Secondly, there is a function

X̃[k] := GetApprox(k, [D̃(1)
[k1], . . . , D̃

(d)
[kd]])

which returns the approximation of X to precision k, given approximations of its depen-
dencies at precisions [k1, . . . , kd]. With this pair of functions, we can compute X̃[k] by
computing [k1, . . . , kd] using GetReqPrec, then recursively computing each D̃

(i)
[ki], then

calling GetApprox.
We now discuss the relative merits of these schemes.

5.2.1. Precision optimality
The main advantage of the precision-based scheme is that one can compute an ap-

proximation X̃[k] to some required precision using as little precision as possible in all its
dependent computations.

It is rare, however, that one needs to know an approximation to some specific preci-
sion. It is more common that one is interested in some other property of the object, such
as its valuation, for which any sufficiently large approximation will do. In such cases, it
is likely that one will compute the approximation at successively higher precisions, such

13



as by repeatedly doubling the precision, which is essentially what the epoch scheme does
anyway.

Nevertheless, there are corner cases where this could matter. For example, suppose
we compute z := f(x, y) where x is very expensive to compute, and where y is cheap
to compute but loses a lot of precision. Under the epoch scheme, since y loses a lot of
precision, so will z, and therefore to achieve a particular precision we must compute z̃n
at some relatively high epoch n, which is expensive because computing x̃n at this epoch
is expensive. That is, x̃n is being computed to an unnecessarily high precision, a problem
avoided by the precision scheme. Such corner cases seem rare.

5.2.2. Complexity of implementation and performance
The GetApprox function in both schemes will be implemented almost identically.

On the other hand, the precision scheme additionally requires the GetReqPrec function.
This function is used to do a backwards pass to determine the precisions required of
all recursive dependencies, followed by a forward pass using GetApprox to actually
compute the approximations. The epoch scheme only does a forward pass.

In simple cases, such as addition or multiplication of p-adic numbers, GetReqPrec is
simple to implement. However, something just slightly more complex such as polynomial
multiplication gets very unwieldy to implement: one has to find all the places where each
coefficient contributes to the result, find what it is multiplied with, find the precision
required, and take the maximum over all such places. This is also a significant amount
of extra computation.

Worse, in some cases, it is practically impossible to determine the precision required
in advance. This necessitates further complexity in the implementation: we must allow
GetReqPrec to return a “best guess” at the precision required, and allow GetApprox to
return a null response, indicating that the precision required was not enough. At this
point, the implementation increases the guessed precision by further calls to GetReqPrec
until GetApprox succeeds. This means that we cannot easily bound the number of calls
to GetApprox for any particular object, and so we could spend arbitrarily long doing
dependency tracking. Additionally, the benefit of precision optimality is nullified in this
case. Contrast this with the epoch scheme, where GetApprox is called precisely once per
epoch per object. Note also that if such a null response occurs, the forward pass must
be stopped and a partial backwards pass must occur again.

Observe that in the precision scheme, during the backwards pass the same dependency
D might occur multiple times, possibly with different precisions k1, k2, . . .. In a naive
implementation, during the forwards pass the precision of D would be increased multiple
times, to k1 then to k2 and so on. To avoid this, we can keep track of which dependencies
appear multiple times, and take the supremum of their required dependencies. To do this
efficiently requires explicitly representing the directed acyclic graph of dependencies. In
contrast, this is avoided in the epoch scheme by definition: even if the same dependency
occurs multiple times, it is always required at the same epoch n.

5.2.3. Representation of precision
In the precision scheme, we need to define what we mean by precision. The absolute

or relative precision of a p-adic number is simply an integer or ∞. But for aggregate
structures such as polynomials, there is a choice to make for how to define them.
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One option would be to define the precision of a polynomial f(x) =
∑
i fix

i to be the
minimum precision of its coefficients

precision(f) := min
i

precision(fi)

which is itself an integer, but this loses information since some coefficients may have a
higher precision. In particular, this could mean that a higher precision gets used than
was necessary, nullifying the benefits of precision optimality.

Another option is to define the precision to be the sequence of precisions of its coef-
ficients

precision(f) := (precision(f0), precision(f1), . . .).

This does not lose information, but now the precision is represented by an object of
similar complexity to the polynomial itself, and GetReqPrec has even more to compute.

5.3. Do not re-use previous approximations
One might expect that we could use the approximation X̃n−1 in order to compute

X̃n more quickly, since by definition they agree up to their common precision and only
the difference needs to be computed. There are a number of reasons we do not do this.

Firstly, this would essentially require re-implementing all inexact p-adic operations
from scratch in order to use this extra information, instead of the present scheme which
simply directly uses the inexact p-adic operations as they are.

Secondly, the redundancy allows for error-checking, namely that X̃n−1 and X̃n are
weakly equal as expected. In practice this is a very useful way to catch precision-related
errors coming from the underlying inexact arithmetic. For example it is not an uncommon
implementation error that the trailing few p-adic coefficients of a ramified field element
are incorrect after reducing modulo the defining Eisenstein polynomial.

Thirdly, by similar arguments as in Section 5.1, this would not actually save much
computation time: since precision is increasing exponentially, the proportion of time
spent repeating previous computations is bounded less than 1. See Section 6.

5.4. Exact aggregate structures
We earlier described our implementation of polynomials over exact p-adic rings, and

stated our intention to define other structures such as vector spaces, despite the fact that
such structures already exist generically in Magma over any base ring. We now justify
these new representations.

Consider the multiplication h(x) := f(x)g(x) ∈ K[x] of two univariate polynomials
of degree d over an exact p-adic field K, which entails multiplying around d2 pairs of
coefficients. Using the generic polynomial type RngUPolElt, which stores the coefficients
individually, these d2 intermediate values exist forever as dependencies of the coefficients
of h(x). In contrast, using our RngUPolXPadElt then h depends only on f and g. This
shrinking of the dependency graph not only reduces the time spent tracking dependencies,
but also reduces the memory usage since the intermediate variables in the computation
of h̃n are deleted once it has been computed.

Now consider another example, let f(x) ∈ K[x] be a polynomial and let g(x) be one of
its irreducible factors, such as returned from a factorization routine. The approximations
of g are computed using Hensel lifting, and in particular an approximation of g can
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only be computed in its entirety. That is, it is not known how to compute only a
single coefficient of g to high precision faster than computing all coefficients. Hence it is
natural to represent g in its entirety, as RngUPolXPadElt does, instead of by a sequence
of coefficients. If g were represented naively as a generic RngUPolElt, then in order
to compute an approximation of one of its coefficients, we would have to compute an
approximation of the whole polynomial via Hensel lifting and extract the coefficient, and
hence computing an approximation to all coefficients of g would repeat the same Hensel
lifting step deg g times.

As a compromise between usability and efficiency, we still allow the user to use the
generic RngUPolElt type, but implicitly convert this to RngUPolXPadElt and back for
certain operations.

6. Performance comparison

In this section, we compare the performance of our exact p-adic arithmetic versus
the equivalent inexact p-adic arithmetic in Magma. Since our exact arithmetic uses the
inexact arithmetic internally, these comparisons measure the other overheads in the exact
arithmetic, such as from recursively resolving dependencies.

For this reason, we are not making comparisons to p-adic systems in other computer
algebra systems, since this would be comparing the performance of Magma’s inexact
arithmetic, which is beyond the scope of this article.

Experiment 1. We compute y =
∑N
i=1 xi where x1 = 1 ∈ Q2, x2 = 2 ∈ Q2 and xi =

xji
+ xki

for i = 2, . . . , N where 1 ≤ ji, ki < i are chosen at random. Using our exact
arithmetic, we compute approximations of y at epochs n = 1, . . . , 16. Using the inexact
arithmetic, we also compute y to absolute precisions k = 21, 22, . . . , 216, which emulates
the computations being performed in the exact case. The same random choices are used
for each computation.

Note that the definition of y is designed to be something which is quick to com-
pute, but which has a complex set of dependencies, and therefore should highlight any
overheads due to dependency tracking.

We repeat these computations 50 times with different random choices, and report the
average times in Table 1 along with standard deviations. For the exact arithmetic, we also
report separately the time to construct y and the time to compute its approximations.
We also report the time just to compute the final approximation, at epoch 16 or precision
216.

Note that we repeat this experiment with three different modes of use of exact arith-
metic: the default behaviour; or the default behaviour but with consistency checking of
each approximation disabled; or with the optimization from Section 4.3.5 enabled.

Observe that the exact arithmetic is at most around 1.60 times slower than the equiv-
alent inexact arithmetic, reducing to about 1.05 times slower with consistency checking
disabled, implying that most of the overheads are in consistency checking.

With the optimization enabled, the computation is actually about 1.35 times faster,
even though the time to construct the element has doubled. Note that the optimization
by necessity does not perform consistency checking on any intermediate computations,
which explains part but not all of the speed-up. It is likely that the inexact arithmetic
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Mean time (core seconds)
Mode Total ±σ Constr. Approx. Final
N = 10, 000
Inexact 0.25± 0.01 0.02
Exact (default) 0.31± 0.02 = 0.01 + 0.30 0.02
Exact (no checks) 0.18± 0.01 = 0.01 + 0.17 0.01
Exact (optimized) 0.14± 0.01 = 0.02 + 0.12 0.01
N = 100, 000
Inexact 3.01± 0.02 0.19
Exact (default) 4.73± 0.16 = 0.16 + 4.57 0.29
Exact (no checks) 3.13± 0.15 = 0.16 + 2.97 0.18
Exact (optimized) 2.20± 0.02 = 0.30 + 1.90 0.12

Table 1: Timings for Experiment 1 over different arithmetic modes.

Mean time (core seconds)
Mode Total ±σ Constr. Approx. Final
N = 500
Inexact 1.72± 0.05 0.88
Exact (default) 2.05± 0.07 = 0.00 + 2.05 1.05
Exact (no checks) 1.75± 0.05 = 0.00 + 1.75 0.90
Exact (optimized) 1.71± 0.05 = 0.00 + 1.71 0.89

Table 2: Timings for Experiment 2 over different arithmetic modes.

has some overheads coming from the Magma interpreter, which is invoked much less in
the exact arithmetic.

We conclude that there is not a large overhead in using our exact p-adic system
compared to manually repeating a computation at successively increasing precisions.
What overhead there is can be eliminated or even reversed using the optimization.

Experiment 2. We now repeat the previous experiment, except that we define x1 = 1/3,
x2 = 1/5 and go up to epoch n = 24. The values of xi and y are no longer small integers,
and therefore require more significant computation. Given also the high epoch, we expect
overheads to now be negligible in comparison to the main computation. In the notation
of Section 5.1, in this experiment we expect C(k) ∝ k = 2n (i.e. α = 1) whereas in the
previous experiment we have C(k) being essentially a constant (i.e. α = 0).

The timings from this experiment are in Table 2. Aside from a factor of 1.2 coming
from consistency checking in the default mode, the timings are all very similar, up to
variance. Hence our implementation introduces negligible other overheads in this case.

Also observe that in this case approximately half of the total time is due to the final
approximation, as one expects due to the exponentially increasing precision, justifying
Section 5.3.

Experiment 3. In this experiment, we compare performance of our polynomial arithmetic
with equivalent inexact computations in both Magma and Sage.
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Mean time (core seconds)
n Exact Inexact Sage
8 0.02 0.02 —
9 0.02 0.02 —
10 0.02 0.03 —
11 0.02 0.05 —
12 0.02 0.07 0.02
13 0.02 0.23 0.04
14 0.02 0.84 0.11
15 0.02 3.27 0.25
16 0.02 12.57 0.68

Mean time (core seconds)
n Exact Inexact Sage
8 0.02 — —
9 0.03 — —
10 0.05 — —
11 0.08 0.19 —
12 0.16 0.37 0.08
13 0.46 1.07 0.15
14 1.40 3.82 0.34
15 4.36 14.61 0.90
16 13.06 55.85 2.31

Table 3: Timings for Experiment 3. Left: irreducible f16,u(x). Right: reducible g16,u(x). Blank entries
show failures.

Defining

fd,0(x) = xd − 210d+1

fd,u(x) = fd,0(x− u)
g2d,u(x) = fd,u(x)fd,u+211(x)

then g2d,u(x) has two irreducible factors over Q2 of degree d, with roots u+ 210 d
√

2 and
u+ 210(2 + d

√
2), which are all close to u. This is designed to be difficult to factorize.

Using our exact arithmetic, we factorize f16,u(x) over Q2, then obtain approximations
of its factors at each epoch n = 1, . . . , 16. Using inexact arithmetic, we factorize f16,u(x)
to precision 2n for n = 1, . . . , 16. We also repeat the latter using Sage. We repeat all of
this but now factorizing g16,u(x).

These experiments are repeated for 10 random choices of units u ∈ Z×2 , with average
timings given in Table 3. The “Exact” column is cumulative: it gives the total time to
compute the given epoch and all lower epochs.

In all examples, the exact computation required epoch n = 8 to compute the initial
factorization. Given that the roots are indistinguishable modulo 210, distinguishable
modulo 212, and the degree is 16, precision 10 × 16 > 27 is necessary and 12 × 16 ≤ 28

is sufficient, and so n = 8 is optimal. The inexact computations typically required
higher precision to succeed, with the exeption of Magma in the irreducible f16,u(x) case.
However, in this case the Magma implementation also incorrectly factorizes this into 16
linear factors for n < 8 instead of raising an error.

On the reducible g16,u(x), we see that Sage, when it succeeds, is somewhat quicker
than our exact implementation at the same precision, with the gap widening as the
precision increases, likely due to a superior Hensel lifting implementation. On irreducible
f16,u(x) our exact implementation is quicker because one can trivially avoid Hensel lifting
altogether.

On the other hand, the exact factorization succeeds at a much lower precision than
the other implementations and obtains its initial factorization more quickly. This is
beneficial in situations where the factorization is not required to high precision, such as
in Galois group computations where only the degrees of the factors are needed.
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Furthermore, the Sage implementation relies on PARI/GP (The PARI Group, 2020)
and therefore currently does not support extensions of Qp. Magma supports arbitrary
finite extensions of Qp.

7. Some particular algorithms

7.1. Valuation
We begin by demonstrating an algorithm to compute the valuation of a p-adic number

x. It works through each epoch n = 1, 2, . . . in turn. If at epoch n, the valuation is known
from the approximation x̃n (namely the relative precision is positive, or x̃n is the precise
zero) then the weak valuation is returned, since this is equal to the valuation. Otherwise
we move on to the next epoch.

Algorithm 5 (Valuation). Given a p-adic number x, returns its valuation.
1: for n = 1, 2, . . . do
2: if ValuationIsKnownAtEpoch(x, n) then
3: return WeakValuationAtEpoch(x, n)
4: end if
5: end for

Note that if we wish to query if val(x) ≥ 0 then one option would be to compute
Valuation(x) ≥ 0. However, if the valuation is actually very much higher than 0 then
computing Valuation(x) exactly is wasted effort, it suffices to stop as soon as its weak
valuation is greater than 0. If in fact x = 0 then Valuation(x) might not terminate.
Hence we provide:

Algorithm 6 (ValuationCmp). Given a p-adic number x and an integer v, returns −1
if val(x) < v, 0 if val(x) = v, or 1 if val(x) > v.
1: for n=1,2,. . . do
2: if ValuationIsKnownAtEpoch(x, n) or

AbsolutePrecisionAtEpoch(x, n) > v then
3: return Cmp(WeakValuationAtEpoch(x, n), v)
4: end if
5: end for

Unlike Valuation, ValuationCmp is guaranteed to terminate.

7.2. Newton polygon
Recall the definition and a key property of the Newton polygon of a univariate poly-

nomial.

Definition 7. If f(x) =
∑d
i=0 f

(i)xi ∈ K[x] is a polynomial over a p-adic field K, then
its Newton polygon ∆ is the lower convex hull in Q × Q of the points (i, val(f (i))).
It can also be interpreted as the graph of a function ∆ : [0, d] → Q. By definition, this
function is continuous, convex and piece-wise linear.
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Figure 2: Computation of a section of a Newton polygon (heavy line) from lower and upper polygons.
Circles indicate the weak valuations of weakly zero coefficients, crosses indicate valuations of non weakly
zero coefficients. Observe that since each end of the leftmost piece of the Newton polygon is at a vertex of
the lower polygon, then these must also be vertices of the Newton polygon; contrast with the rightmost
piece, in which the face could extend further to the left.

Lemma 8. Given a face of ∆, i.e. a maximal line segment in ∆ from (i0, v0) to (i1, v1),
then f has precisely w = i1 − i0 roots in Kalg of valuation −s = − v1−v0

w . Writing
−s = h/e in lowest terms, it follows that K(r)/K has ramification degree a multiple of
e.

Similarly, one can deduce the residue class of re/πh (which has valuation 0) from the
residual polynomial corresponding to the face, and obtain bounds on the residue degree
of K(r)/K. Together, this is the key information used in root finding and polynomial
factoring algorithms over K, and so we provide algorithms to compute them.

Computing the Newton polygon requires some care. One method could be to sim-
ply compute Valuation(f (i)) for each coefficient, but unless the polygon has a vertex
at i then this is redundant and might not terminate, for similar reasons as motivated
ValuationCmp above.

Instead we run through epochs n = 1, 2, . . ., find the approximation f̃n of f at that
epoch, and compute two related polygons. The lower polygon of f̃n is the lower convex
hull of the points (i, wi) where wi is the weak valuation of the ith coefficient f̃ (i)

n . The
upper polygon of f̃n is the lower convex hull of the subset of the points (i, wi) such
that the valuation of f̃ (i)

n is known, and therefore wi = val(f (i)). Since a weak valuation
is a lower bound on the true valuation, the lower polygon lies below the Newton polygon.
Since the upper polygon is defined using a subset of the points that defined the Newton
polygon, it lies above the Newton polygon. Therefore, wherever the lower and upper
polygon are equal, they are also equal to a section of the Newton polygon (see Figure 2).
Hence if the lower and upper polygons are equal, return the common polygon, otherwise
move on to the next epoch.

The lower and upper polygons can also provide useful partial information about the
Newton polygon. For example, in Figure 2 we can see that the Newton polygon has
a vertex above 1, even though the face on [0, 1] is not known. This allows testing the
Hensel condition in Lemma 10.
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7.3. Hensel’s lemma for univariate root-finding
Recall Hensel’s classic lemma.

Lemma 9 (Hensel). Suppose f(x) ∈ O[x], a ∈ O such that v(f(a)) ≥ s > 0 = v(f ′(a)).
Then there exists a unique b ∈ K such that f(b) = 0 and v(a − b) ≥ s. More precisely,
defining a′ := a − f(a)/f ′(a) then v(f(a′)) ≥ 2s and v(f ′(a′)) = 0, so iterating a 7→ a′

then a→ b.

We refer to the iteration process in Hensel’s lemma as Hensel lifting. Hensel’s
lemma can be generalized to non-integral inputs:

Lemma 10 (Non-integral Hensel). Suppose f(x) ∈ K[x], where K is a p-adic field, and
a ∈ K such that among all roots b of f , v(a − b) is maximized precisely once. Then
iterating a 7→ a− f(a)/f ′(a) yields a→ b.

Proof. The generalization is actually reducible to the original version.
Consider the polynomial f(x + a). Its roots are b − a where b is a root of f , and

so its Newton polygon measures the number of times each v(a − b) occurs. Hence the
hypothesis is equivalent to saying that the first face of the Newton polygon of f(x + a)
has width 1.

Suppose this is true, then in particular the first face has integral slope and so there
exist j, k ∈ Z so that g(x) := πjf(πkx + a) has integral coefficients, val(g0) > 0 and
val(g1) = 0. Note that g0 = g(0) and g1 = g′(0) so the original version of Hensel’s lemma
applies to g and 0. By linearity, Hensel lifting on g is equivalent to Hensel lifting on
f .

Remark 11. Krasner’s lemma (Cassels, 1986, Ch. 7, Corr. 3 to Thm. 1.1) is a corollary
of this form of Hensel’s lemma.

We provide an algorithm IsHenselLiftable which takes as input a polynomial
f(x) ∈ K[x] and an element a ∈ K and returns true if this generalized version of Hensel’s
lemma can be applied to find a root b of f close to a. If so, it also returns that root.

The algorithm proceeds by computing f(x+a) to sufficient precision to see if the first
face of its Newton polygon has width 1 or not, as in Section 7.2. If so, then the returned
root has dependencies f , a and some data from the Newton polygon, and its GetApprox
function performs Hensel lifting to the required precision.
Remark 12. We also provide an implementation of an “OM-algorithm” (essentially that
described in (Sinclair, 2015, Ch. VI)) for finding the roots or irreducible factors of such
a polynomial.
Remark 13. Hensel’s lemma can be generalized to systems of N multivariate polynomials
in N variables, essentially by replacing the derivative f ′(x) by the Jacobian matrix
of derivatives, and there is a non-integral generalization too (e.g. (Doris, 2019a, Ch.
IV, §9.9)). Multivariate Hensel lifting can also be performed in the relaxed setting
(Berthomieu and Lebreton, 2012).

Furthermore, we may express a factorization f(x) = g(x)h(x) of a degree-N monic
polynomial f as the solution to a system of N equations in N variables, where the
equations are the coefficients of f − gh and the variables are the coefficients of g and h.
This yields a Hensel’s lemma for univariate polynomial factorization, which in particular
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leads to an algorithm to factorize f according to the segments of its Newton polygon
(e.g. (Doris, 2019a, Ch. IV, §9.11)). The OM-algorithm mentioned above can be viewed
as a generalization of this.
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