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Summary

We present a new class of statistical models, designed for life history anal-
ysis of plants and animals, that allow joint analysis of data on survival and
reproduction over multiple years, allow for variables having di�erent proba-
bility distributions, and correctly account for the dependence of variables on
earlier variables. We illustrate their utility with an analysis of data taken from
an experimental study of Echinacea angustifolia sampled from remnant prairie
populations in western Minnesota. These models generalise both generalised
linear models and survival analysis. The joint distribution is factorised as
a product of conditional distributions, each an exponential family with the
conditioning variable being the sample size of the conditional distribution.
The model may be heterogeneous, each conditional distribution being from
a di�erent exponential family. We show that the joint distribution is from a
�at exponential family and derive its canonical parameters, Fisher informa-
tion and other properties. These models are implemented in an R package
`aster' available from the Comprehensive R Archive Network, CRAN.

Keywords: Conditional Exponential Family; Curved Exponential Family; Flat
Exponential Family; Generalized Linear Model; Graphical Model; Maximum
Likelihood; Nuisance Variable.

This technical report consists of a draft paper about aster models supple-
mented by 5 appendicies on technical subjects.

� Appendix A (p. 16) gives details about �prediction� (what the
predict.aster function does), although the technical details are about
change-of-parameter formulas and their derivatives.

� Appendix B (p. 21) gives details about the one-parameter exponential
families currently available as conditional distribution of variables given
their parent variable in the aster package.

� Appendix C (p. 26) gives details about simulating a Poisson distribution
conditional on being nonzero (the only non-trivial issue being getting
e�cient simulation for unconditional means close to zero).

� Appendix D (p. 28) gives details of the data analysis that is brie�y
described in the draft paper.

� Appendix E (p. 56) shows that steepness of conditional exponential
families implies stepness of corresponding unconditional families, and
the full unconditional family gets no new parameter points (that do not
correspond to conditional parameter points).



Note added for this git repository. The text �le of the draft paper that
was used to make this technical report seems to have been lost. (We were not
using version control when the paper was written.) So this document does
not reproduce the technical report exactly (the text here is the text of the
published version of the paper). The PDF of the original technical is found
at https://www.stat.umn.edu/geyer/aster/tr644.pdf.



Chapter 1

Draft Paper

1.1 Introduction

This article introduces a class of statistical models we call `aster models'.
They were invented for life history analysis of plants and animals and are
best introduced by an example about perennial plants observed over several
years. For each individual planted, at each census, we record whether or not
it is alive, whether or not it �owers, and its number of �ower heads. These
data are complicated, especially when recorded for several years, but simple
conditional models may su�ce. We consider mortality status, dead or alive,
to be Bernoulli given the preceding mortality status. Similarly, �owering
status given mortality status is also Bernoulli. Given �owering, the number
of �ower heads may have a zero-truncated Poisson distribution (Martin, et
al., 2005). Figure 1.1 shows the graphical model for a single individual. This
aster model generalises both discrete time Cox regression (Cox, 1972; Breslow,
1972, 1974) and generalised linear models (McCullagh & Nelder, 1989). Aster
models apply to any similar conditional modelling. We could, for example,
add other variables, such as seed count modelled conditional on �ower head
count.

A simultaneous analysis that models the joint distribution of all the vari-
ables in a life history analysis can answer questions that cannot be addressed
through separate analyses of each variable conditional on the others. Joint
analysis also deals with structural zeros in the data; for example, a dead in-
dividual remains dead and cannot �ower, so in Fig. 1.1 any arrow that leads
from a variable that is zero to another variable implies that the other variable
must also be zero. Such zeros present intractable missing data problems in
separate analyses of individual variables. Aster models have no problem with
structural zeros; likelihood inference automatically handles them correctly.

Aster models are simple graphical models (Lauritzen, 1996, � 3.2.3) in
which the joint density is a product of conditionals as in equation (1.1) be-
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Figure 1.1: Graph for Echinacea aster data. Arrows go from parent nodes to
child nodes. Nodes are labelled by their associated variables. The only root
node is associated with the constant variable 1. Mj is the mortality status in
year 2001 + j. Fj is the �owering status in year 2001 + j. Hj is the �ower
head count in year 2001+j. TheMj and Fj are Bernoulli conditional on their
parent variables being one, and zero otherwise. The Hj are zero-truncated
Poisson conditional on their parent variables being one, and zero otherwise.

low. No knowledge of graphical model theory is needed to understand aster
models. One innovative aspect of aster models is the interplay between two
parameterisations described in �� 1.2.2 and 1.2.3 below. The `conditional
canonical parameterisation' arises when each conditional distribution in the
product is an exponential family and we use the canonical parameterisation
for each. The `unconditional canonical parameterisation' arises from observ-
ing that the joint model is a full �at exponential family (Barndor�-Nielsen,
1978, Ch. 8) and using the canonical parameters for that family, de�ned by
equation (1.5) below.

1.2 Aster Models

1.2.1 Factorisation and graphical model

Variables in an aster model are denoted by Xj , where j runs over the
nodes of a graph. A general aster model is a chain graph model (Lauritzen,
1996, pp. 7, 53) having both arrows, corresponding to directed edges, and
lines, corresponding to undirected edges. Figure 1.1 is special, having only
arrows. Arrows go from parent to child, lines between neighbours. Nodes
that are not children are called root nodes. Those that are not parents are
called terminal nodes.

Let F and J denote root and non-root nodes. Aster models have very
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special chain graph structure determined by a partition G of J and a function
p : G → J ∪ F . For each G ∈ G there is an arrow from p(G) to each element
of G and a line between each pair of elements of G. For any set S, let XS

denote the vector whose components are Xj , j ∈ S. The graph determines a
factorisation

Pr(XJ |XF ) =
∏
G∈G

Pr{XG|Xp(G)}; (1.1)

compare equation 3.23 in Lauritzen (1996).
Elements of G are called chain components because they are connectivity

components of the chain graph (Lauritzen, 1996, pp. 6�7). Since Fig. 1.1
has no undirected edge, each node is a chain component by itself. Allowing
nontrivial chain components allows the elements of XG to be conditionally
dependent given Xp(G) with merely notational changes to the theory. In our
example in � 1.5 the graph consists of many copies of Fig. 1.1, one for each
individual plant. Individuals have no explicit representation. For any set S,
let p−1(S) denote the set of G such that p(G) ∈ S. Then each subgraph
consisting of one G ∈ p−1(F ), its descendants, children, children of children,
etc., and arrows and lines connecting them, corresponds to one individual.
If we make each such G have a distinct root element p(G), then the set of
descendants of each root node corresponds to one individual. Although all
individuals in our example have the same subgraph, this is not required.

1.2.2 Conditional exponential families

We take each of the conditional distributions in (1.1) to be an exponential
family having canonical statistic XG that is the sum of Xp(G) independent
and identically distributed random vectors, possibly a di�erent such family
for each G. Conditionally, Xp(G) = 0 implies that XG = 0G almost surely. If
j 6= p(G) for any G, then the values of Xj are unrestricted. If the distribution
of XG given Xp(G) is in�nitely divisible, such as Poisson or normal, for each
G ∈ p−1({j}), then Xj must be nonnegative and real-valued. Otherwise, Xj

must be nonnegative and integer-valued.
The loglikelihood for the whole family has the form

∑
G∈G

∑
j∈G

Xjθj −Xp(G)ψG(θG)

 =
∑
j∈J

Xjθj −
∑
G∈G

Xp(G)ψG(θG), (1.2)

where θG is the canonical parameter vector for the Gth conditional family,
having components θj , j ∈ G, and ψG is the cumulant function for that family
(Barndor�-Nielsen, 1978, pp. 105, 139, 150) that satis�es

EθG{XG|Xp(G)} = Xp(G)∇ψG(θG) (1.3)

varθG{XG|Xp(G)} = Xp(G)∇2ψG(θG), (1.4)
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where varθ(X) is the variance-covariance matrix of X and ∇2ψ(θ) is the
matrix of second partial derivatives of ψ (Barndor�-Nielsen, 1978, p. 150).

1.2.3 Unconditional exponential families

Collecting terms with the same Xj in (1.2), we obtain

∑
j∈J

Xj

θj − ∑
G∈p−1({j})

ψG(θG)

− ∑
G∈p−1(F )

Xp(G)ψG(θG)

and see that
ϕj = θj −

∑
G∈p−1({j})

ψG(θG), j ∈ J, (1.5)

are the canonical parameters of an unconditional exponential family with
canonical statistics Xj . We now write X instead of XJ , ϕ instead of ϕJ ,
and so forth, and let 〈X,ϕ〉 denote the inner product

∑
j Xjϕj . Then we can

write the loglikelihood of this unconditional family as

l(ϕ) = 〈X,ϕ〉 − ψ(ϕ), (1.6)

where the cumulant function of this family is

ψ(ϕ) =
∑

G∈p−1(F )

Xp(G)ψG(θG). (1.7)

All of the Xp(G) in (1.7) are at root nodes, and hence are nonrandom, so that
ψ is a deterministic function. Also the right-hand side of (1.7) is a function of
ϕ by the logic of exponential families (Barndor�-Nielsen, 1978, pp. 105 �.).

The system of equations (1.5) can be solved for the θj in terms of the
ϕj in one pass through the equations in any order that �nds θj for children
before parents. Thus (1.5) determines an invertible change of parameter.

1.2.4 Canonical a�ne models

One of the desirable aspects of exponential family canonical parameter
a�ne models de�ned by reparameterisation of the form

ϕ = a+ Mβ, (1.8)

where a is a known vector, called the origin, and M is a known matrix, called
the model matrix, is that, because 〈X,Mβ〉 = 〈MTX,β〉, the result is a new
exponential family with canonical statistic

Y = MTX (1.9)
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and canonical parameter β. The dimension of this new family will be the
dimension of β, if M has full rank.

As is well known (Barndor�-Nielsen, 1978, p. 111), the canonical statistic
of an exponential family is minimal su�cient. Since we have both conditional
and unconditional families in play, we stress that this well-known result is
about unconditional families. A dimension reduction to a low-dimensional
su�cient statistic like (1.9) does not occur when the conditional canonical
parameters θ are modelled a�nely, and this suggests that a�ne models for the
unconditional parameterisation may be scienti�cally more interesting despite
their more complicated structure.

1.2.5 Mean-value parameters

Conditional mean values

ξj = EθG{Xj |Xp(G)} = Xp(G)
∂ψG(θG)

∂θj
, j ∈ G, (1.10)

are not parameters because they contain random data Xp(G), although they
play the role of mean-value parameters when we condition on Xp(G), treating
it as constant. By standard exponential family theory (Barndor�-Nielsen,
1978, p. 121), ∇ψG is an invertible change of parameter.

Unconditional mean-value parameters are the unconditional expectations

τ = Eϕ{X} = ∇ψ(ϕ). (1.11)

By standard theory, ∇ψ : ϕ 7→ τ is an invertible change of parameter. The
unconditional expectation in (1.11) can be calculated using the iterated ex-
pectation theorem

Eϕ{Xj} = Eϕ{Xp(G)}
∂ψG(θG)

∂θj
, j ∈ G, (1.12)

where θ is determined from ϕ by solving (1.5). The system of equations (1.12)
can produce the τj in one pass through the equations in any order that �nds
τj for parents before children.

1.3 Likelihood Inference

1.3.1 Conditional models

The score ∇l(θ) for conditional canonical parameters is particularly sim-
ple, having components

∂l(θ)

∂θj
= Xj −Xp(G)

ψG(θG)

∂θj
, j ∈ G, (1.13)

5



and, if these parameters are modelled a�nely as in (1.8) but with ϕ replaced
by θ, then

∇l(β) = ∇l(θ)M. (1.14)

The observed Fisher information matrix for θ, which is the matrix
−∇2l(θ), is block diagonal with

− ∂
2l(θ)

∂θi∂θj
= Xp(G)

∂2ψG(θG)

∂θi∂θj
, i, j ∈ G, (1.15)

the only nonzero entries. The expected Fisher information matrix for θ is
the unconditional expectation of the observed Fisher information matrix, cal-
culated using (1.15) and (1.12). If I(θ) denotes either the observed or the
expected Fisher information matrix for θ and similarly for other parameters,
then

I(β) = MT I(θ)M. (1.16)

1.3.2 Unconditional models

The score ∇l(ϕ) for unconditional canonical parameters is, as in every
unconditional exponential family, `observed minus expected':

∂l(ϕ)

∂ϕj
= Xj − Eϕ{Xj},

the unconditional expectation on the right-hand side being evaluated by us-
ing (1.12). If these parameters are modelled a�nely as in (1.8), then we have
(1.14) with θ replaced by ϕ. Note that (1.13) is not `observed minus condi-
tionally expected' if considered as a vector equation because the conditioning
would di�er amongst components.

Second derivatives with respect to unconditional canonical parameters
of an exponential family are nonrandom, and hence observed and expected
Fisher information matrices I(ϕ) are equal, given by either of the expressions
∇2ψ(ϕ) and varϕ(X). Fix θ and ϕ related by (1.5). For i, j ∈ G, the iterated
covariance formula gives

covϕ{Xi, Xj} =
∂2ψG(θG)

∂θi∂θj
Eϕ
{
Xp(G)

}
+
∂ψG(θG)

∂θi

∂ψG(θG)

∂θj
varϕ

{
Xp(G)

}
.

(1.17)
Otherwise we may assume that j ∈ G and i is not a descendant of j so that
covϕ{Xi, Xj |Xp(G)} = 0 because Xj is conditionally independent given Xp(G)

of all variables except itself and its descendants. Then the iterated covariance
formula gives

covϕ{Xi, Xj} =
∂ψG(θG)

∂θj
covϕ

{
Xi, Xp(G)

}
. (1.18)
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Expectations having been calculated using (1.12), variances, the case i = j
in (1.17), are calculated in one pass through (1.17) in any order that deals
with parents before children. Then another pass using (1.17) and (1.18) gives
covariances. The information matrix for β is given by (1.16) with θ replaced
by ϕ.

1.3.3 Prediction

By `prediction', we only mean evaluation of a function of estimated pa-
rameters, what the predict function in R does for generalised linear models.
In aster models we have �ve di�erent parameterisations of interest, β, θ, ϕ,
ξ and τ . The Fisher information matrix for β, already described, handles
predictions of β, so this section is about `predicting' the remaining four.

One often predicts for new individuals having di�erent covariate values
from the observed individuals. Then the model matrix M̃ used for the pre-
diction is di�erent from that used for calculating β̂ and the Fisher information
matrix I(β̂), either observed or expected.

Let η be the a�ne predictor, i. e., η = θ for conditional models and η = ϕ
for unconditional models, let ζ be any one of θ, ϕ, ξ and τ , and let f : η 7→ ζ.
Suppose we wish to predict

g(β) = h(ζ) = h
{
f(M̃β)

}
. (1.19)

Then, by the chain rule, (1.19) has derivative

∇g(β) = ∇h(ζ)∇f(η)M̃, (1.20)

and, by the `usual' asymptotics of maximum likelihood and the delta method,
the asymptotic distribution of the prediction h(ζ̂) = g(β̂) is

N
[
g(β), {∇g(β̂)}I(β̂)−1{∇g(β̂)}T

]
,

where ∇g(β̂) is given by (1.20) with η̂ = M̃β̂ plugged in for η and ζ̂ = f(η̂)
plugged in for ζ. We write `predictions' in this complicated form to separate
the parts of the speci�cation, the functions h and ∇h and the model matrix
M̃, that change from application to application from the part ∇f that does
not change and can be dealt with by computer; see Appendix A for details.

To predict mean-value parameters one must specify new `response' data
Xj as well as new `covariate' data in M̃. Unconditional mean-value param-
eters τ depend on Xj , j ∈ F , whereas conditional mean-value parameters
ξ depend on Xj , j ∈ J ∪ F . It is often interesting, however, to predict ξ
for hypothetical individuals with Xj = 1 for all j, thus obtaining conditional
mean values per unit sample size.
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1.4 Software

We have released an R (R Development Core Team, 2004) package aster
that �ts, tests, predicts and simulates aster models. It uses the R for-
mula mini-language, originally developed for genstat and S (Wilkinson &
Rogers, 1973; Chambers & Hastie, 1992) so that model �tting is much like
that for linear or generalised linear models. The R function summary.aster

provides regression coe�cients with standard errors, z statistics and p-
values; anova.aster provides likelihood ratio tests for model comparison;
predict.aster provides the predictions with standard errors described in
� 1.3.3; raster generates random aster model data for simulation studies
or parametric bootstrap calculations. The package is available from CRAN
(http://www.cran.r-project.org) and is open source.

The current version of the package limits the general model described in
this article in several ways. In predictions, only linear h are allowed in (1.19),
but this can be worked around. For general h, observe that h(ζ̂) and AT ζ̂,
where A = ∇h(ζ), have the same standard errors. Thus, obtain h(ζ̂) by one
call to predict.aster and the standard errors for AT ζ̂, where A = ∇h(ζ̂)
by a second call. In models, the only conditional families currently imple-
mented are Bernoulli, Poisson, k-truncated Poisson, negative binomial and
k-truncated negative binomial, but adding another one-parameter exponen-
tial family would require only implementation of its ψ, ψ′ and ψ′′ functions
and its random variate generator. Multiparameter conditional families, chain
components, are not yet implemented. Allowing terminal nodes that are
two-parameter normal or allowing child nodes that are multinomial given a
common parent would require more extensive changes to the package.

1.5 Example

Data were collected on 570 individuals of Echinacea angustifolia, each
having the data structure shown in Fig. 1.1. These plants were sampled as
seeds from seven remnant populations that are surviving fragments of the
tall-grass prairie that a century ago covered western Minnesota and other
parts of the Great Plains of North America. The plants were experimentally
randomised at the time of planting into a �eld within 6.5 km of all populations
of origin. The dataset contains three predictor variables: ewloc and nsloc

give east-west and north-south positions of individuals and pop gives their
remnant population of origin. To use the R formula mini-language we need
to create more variables: resp is a vector comprising the response variables,
theMj , Fj and Hj ; level is categorical naming the type of response variable,
with values M , F and H; year is categorical giving the year; varb is the
interaction of level and year; and hdct is short for level = H.
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Table 1.1: Tests for model comparison. The model formulae are given above
and the analysis of deviance below; deviance is double the loglikelihood.

Model 1: resp ~ varb + level:(nsloc + ewloc)

Model 2: resp ~ varb + level:(nsloc + ewloc) + hdct * pop - pop

Model 3: resp ~ varb + level:(nsloc + ewloc) + hdct * pop

Model 4: resp ~ varb + level:(nsloc + ewloc) + level * pop

Model Model Model Test Test Test
Number d. f. Deviance d. f. Deviance p-value

1 15 2728.72
2 21 2712.54 6 16.18 0.013
3 27 2684.86 6 27.67 0.00011
4 33 2674.70 6 10.17 0.12

d. f., degrees of freedom.

We �tted many models; see Appendix D for details. Scienti�c interest
focuses on the model comparison shown in Table 1.1. The models are nested.
The a�ne predictor for Model 4 can be written

ϕj = µLj ,Yj + αLjUj + βLjVj + γLj ,Pj , (1.21)

where Lj , Yj , Uj , Vj and Pj are level, year, ewloc, nsloc and pop, respec-
tively, and the alphas, betas and gammas are regression coe�cients. Model 3
is the submodel of Model 4 that imposes the constraint γM,P = γF,P , for all
populations P . Model 2 is the submodel of Model 3 that imposes the con-
straint γM,P = γF,P = 0, for all P . Model 1 is the submodel of Model 2 that
imposes the constraint γL,P = 0, for all L and P .

All models contain the graph node e�ect, varb or µLj ,Yj , and the quan-
titative spatial e�ect, level:(nsloc + ewloc) or αLjUj + βLjVj , which was
chosen by comparing many models; for details see Appendix D. We explain
here only di�erences amongst models, which involve only categorical predic-
tors. In an unconditional aster model, which these are, such terms require
the maximum likelihood estimates of mean-value parameters for each cate-
gory, summed over all individuals in the category, to match their observed
values: `observed equals expected'. Model 4 makes observed equal expected
for total head count

∑
j Hj , for total �owering

∑
j Fj , and for total survival∑

jMj within each population. Model 3 makes observed equal expected for
total head count

∑
j Hj and for total non-head count

∑
j(Mj + Fj) within

each population. Model 2 makes observed equal expected for total head count∑
j Hj within each population.
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From purely statistical considerations, Model 3 is the best of these four
nested models. Model 4 does not �t signi�cantly better. Model 2 �ts sig-
ni�cantly worse. It is di�cult to interpret Model 3 scienti�cally, because
`non-head count'

∑
j(Mj +Fj) is unnatural, in e�ect scoring 0 for dead, 1 for

alive without �owers or 2 for alive with �owers.

Model 2 is the model of primary scienti�c interest. Evolutionary biolo-
gists are fundamentally interested in �tness, but it is notoriously di�cult to
measure; see Beatty (1992), Keller (1992) and Paul (1992). The �tness of
an individual may be de�ned as its lifetime contribution of progeny to the
next generation. For these data the most direct surrogate measure for �tness
is total head count

∑
j Hj . The currently available data represent a small

fraction of this plant's lifespan. To obtain more complete measures of �tness,
we are continuing these experiments and collecting these data for successive
years.

Biologists call all our measured variables, theMj , Fj and Hj , `components
of �tness'. Since Mj and Fj contribute to �tness only through Hj , in an
aster model the unconditional expectation of Hj , its unconditional mean-
value parameter, completely accounts for the contributions of Mj and Fj .
Strictly speaking, this is not quite true, since we do not have Hj measured
over the whole life span, so the lastMj contains the information about future
reproduction, but it becomes more true as more data are collected in future
years. Moreover, we have no data about life span and do not wish to inject
subjective opinion about future �ower head count into the analysis.

The statistical point of this is that the Mj and Fj are in the model only
to produce the correct stochastic structure. If we could directly model the
marginal distribution of the Hj , but we cannot, we would not need the other
variables. They are `nuisance variables' that must be in the model but are
of no interest in this particular analysis; the mean-value parameters for those
variables are nuisance parameters. Model 3 is the best according to the like-
lihood ratio test, but does it �t the variables of interest better than Model 2?
We do not know of an established methodology for addressing this issue, so
we propose looking at con�dence intervals for the mean-value parameters for
total �ower head count shown in Fig. 1.2. Although we have no formal test to
propose, we claim that it is obvious that Model 3 is no better than Model 2
at `predicting' the best surrogate of expected �tness. We take this as justi�-
cation for using Model 2 in scienti�c discussion and infer from it signi�cant
di�erences among the populations in �ower head count and, thus, �tness.

It being di�cult to interpret Model 3 scienti�cally, Model 4 is the next
larger readily interpretable model. Model 4 does �t signi�cantly better than
Model 2, P = 0.00016, which implies di�erences among populations in mor-
tality and �owering (the Mj and Fj) that may be of scienti�c interest even
though they make no direct contribution to �tness, since Model 2 already
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and dashed bars are based on Model 3 in Table 1.1.
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fully accounts for their contributions through Hj .
Note that we would have obtained very di�erent results had we used a

conditional model, not shown, see Section D.3.2. The parameters of interest
are unconditional expectations of total �ower head count. This alone suggests
an unconditional model. Furthermore, we see in (1.5) that unconditional aster
models `mix levels' passing information up from children to parents. This is
why Model 2 in our example was successful in predicting total head count
while only modelling pop e�ects at head count nodes. Since a conditional
aster model does not mix levels in this way, it must model all levels and so
usually needs many more parameters than an unconditional model.

1.6 Discussion

The key idea of aster models, as we see it, is the usefulness of what we
have called unconditional aster models, which have low-dimensional su�cient
statistics (1.9). Following Geyer & Thompson (1992), who argued in favour of
exponential family models with su�cient statistics chosen to be scienti�cally
interpretable, an idea they attributed to Jaynes (1978), we emphasise the
value of these models in analyses of life histories and overall �tness.

We do not insist, however, the R package aster is even-handed with
respect to conditional and unconditional models and conditional and uncon-
ditional parameters. Users may use whatever seems best to them. Any joint
analysis is better than any separate analyses of di�erent variables. We have,
however, one warning. In an unconditional aster model, as in all exponential
family models, the map from canonical parameters to mean-value parameters
is monotone; with su�cient statistic vector Y given by (1.9) having compo-
nents Yk we have

−∂
2l(β)

∂β2k
=
∂Eβ{Yk}
∂βk

> 0. (1.22)

This gives regression coe�cients their simple interpretation: an increase in βk
causes an increase in Eβ{Yk}, other betas being held constant. The analogue
of (1.22) for a conditional model is

−∂
2l(β)

∂β2k
=

∂

∂βk

∑
G∈G

∑
j∈G

Eβ{Xj |Xp(G)}mjk > 0, (1.23)

where mjk are components of M. Because we cannot move the sums in (1.23)
inside the conditional expectation, there is no corresponding simple inter-
pretation of regression coe�cients. Conditional aster models are therefore
algebraically simple but statistically complicated. Unconditional aster mod-
els are algebraically complicated but statistically simple. They can be simply
explained as �at exponential families having the desired su�cient statistics.
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They are the aster models that behave according to the intuitions derived
from linear and generalised linear models.

We saw in our example that aster models allowed us to model �tness
successfully. In medical applications, Darwinian �tness is rarely interesting,
but aster models may allow data on mortality or survival to be analyzed in
combination with other data, such as quality of life measures.
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Appendix A

More Details on Prediction

A.1 Introduction

A.1.1 Functions of Regression Coe�cients

Suppose we have an aster model, a maximum likelihood estimate β̂, and
Fisher information I(β̂), whether observed or expected makes no di�erence.
The asymptotic distribution of β̂ is

Normal
(
β, I(β̂)−1

)
where β is the true unknown parameter value.

But we usually don't want to make predictions about β (regression co-
e�cients are meaningless, only probabilities and expectations are directly
interpretable) but about some function g(β), where g is a scalar-valued or
vector-valued function. The delta method then says that the asymptotic dis-
tribution of g(β̂) is

Normal
(
g(β), [∇g(β̂)]I(β̂)−1[∇g(β̂)]T

)
Since we already have β̂ and I(β̂), we only need ∇g(β̂) to �nish our problem.

A.1.2 Functions of Other Parameters

Since regression coe�cients are meaningless, users will typically want to
specify a function of some other parameter, for example the unconditional
mean value parameter τ , which, of course, is itself a function of β if the
model is correct. That is, we have a composition

g = h ◦ fβ,τ

where h is an arbitrary function speci�ed by the user and fβ,τ is the map
β 7→ τ . The point is that fβ,τ is quite complicated but is understood (or
should be understood) by the computer, whereas h may be quite simple.
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Of course, from the chain rule we have

∇g(β) = ∇h(τ ) ◦ ∇fβ,τ (β) (A.1a)

Since ∇h(τ ) and ∇fβ,τ (β) are linear operators represented by matrices (of
partial derivatives), the composition here is represented by matrix multipli-
cation. Of course, we want to use this with estimates plugged in.

∇g(β̂) = ∇h(τ̂ ) ◦ ∇fβ,τ (β̂) (A.1b)

So the general idea is that the user supplies the easy part, the matrix repre-
senting ∇h(τ̂ ), and the computer does the hard part, the matrix representing
∇fβ,τ (β̂).

There is one slight complication. The user often provides part of the
speci�cation of ∇fβ,τ (β̂), for which see Section A.1.4 below.

A.1.3 What Other Parameters?

We suppose that in place of τ in the preceding section, the user may
chose to specify h in terms of any of the parameters we use in discussing aster
models. There are four (the one already mentioned and three others)

� θ, the conditional canonical parameters.

� ϕ, the unconditional canonical parameters.

� ξ, the conditional mean value parameters.

� τ , the unconditional mean value parameters.

Letting ζ stand for any one of these parameters, we replace τ by ζ in (A.1b)
obtaining

∇g(β̂) = ∇h(ζ̂) ◦ ∇fβ,ζ(β̂) (A.1c)

we need the user to be able to specify a ∇h(ζ̂) and have the computer produce
the required ∇fβ,ζ(β̂).

A.1.4 What Covariates?

An important thing the predict.lm function in R does is allow prediction
at covariate values other than those in the observed data. In fact, this is its
main �feature.� The multiplicity of parameter values found in aster models is
absent in simple least squares regression.

Let η be the canonical parameter that is linearly modeled in terms of β
(either θ for a conditional model or ϕ for an unconditional model). Then the
�generalized linear� part of the aster model is

η = Mβ
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where M is a linear operator, represented by a matrix (the model matrix),
but, and this is important, the M used in the prediction problem need not be
the M used in �tting the model to observed data. The two model matrices
must have the same column dimension and the columns must have the same
meaning (covariate variables), but the rows need bear no analogy. Each row
of the model matrix for the real data corresponds to a real individual, but
rows of the model matrix for a prediction problem may correspond to entirely
hypothetical individuals, or newly observed individuals not in the original
data, or whatever. In this note we use the notation M to stand for the model
matrix involved in our prediction problem. The model matrix for the original
data, when needed, will be denoted Morig.

Now we can write our function to predict as the composition

g = h ◦ fη,ζ ◦M

and the chain rule with plug-in becomes

∇g(β̂) = ∇h(ζ̂) ◦ ∇fη,ζ(η̂) ◦M (A.1d)

(the derivative of a linear operator being the operator itself).

So the division of labor we envisage is that the user will specify the two
matrices ∇h(ζ̂) and M (the latter either explicitly or, more usually, implicitly
by specifying a new data frame to be used with the formula for the regression)
and the computer must �gure out ∇fη,ζ(η̂) by itself.

A.2 Changes of Parameter

A.2.1 Identity

For two �changes of parameter� of interest to us, fη,ζ is the identity map-
ping and hence so is ∇fη,ζ . These are the cases η = ζ = θ and η = ζ = ϕ.
In these cases the computer's part of (A.1d) is trivial.

A.2.2 Conditional Canonical to Unconditional Canonical

This section deals with fθ,ϕ, which is described by (??). Let ∆θij denote
an increment in θij and similarly for ∆ϕij . Then

∆ϕij = ∆θij −
∑
k∈S(j)

ψ′k(θ̂ik)∆θik (A.2)

provides a description of ∇fθ,ϕ(θ̂). It is a linear operator that maps a vector
with components ∆θij to a vector with components ∆ϕij .
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It is perhaps easier to understand this (and more useful to the ac-
tual computer programming of predictions) if we compute the composition
∇fη,ζ(η̂) ◦M, the last two bits of (A.1d). We get, in this case where η = θ,

∂ϕij
∂βk

= mijk −
∑
l∈S(j)

ψ′l(θ̂il)milk

where mijk are the components of M.

A.2.3 Unconditional Canonical to Conditional Canonical

This section deals with fϕ,θ, which is implicitly described by (??). It is
clear that inverting (A.2) gives

∆θij = ∆ϕij +
∑
k∈S(j)

ψ′k(θ̂ik)∆θik (A.3)

Since (A.3) has ∆θim terms on both sides, it must be used recursively,
as with many other aster model equations, including (??) itself. Clearly, if
(A.3) is used when S(j) is empty, it is trivial. This gives us (A.3) for all �leaf�
notes of the graph. We can then use (A.3) for j such that S(j) is contained
in the leaf nodes. This gives us more nodes done, and we can repeat, at each
stage being able to use (A.3) for j such that S(j) is contained in the set of
nodes already done. When the graphical model is drawn, like Figure 1.1, with
parents above children then the recursion moves up the graph from children
to parents to grandparents and so forth.

If G = ∇fη,ζ(η̂) ◦M had components gijk and M has components mijk,
then we get in this case where η = ϕ,

gijk = mijk +
∑
l∈S(j)

ψ′l(θ̂il)gilk (A.4)

and (as discussed above), since gi·k is on both sides of the equation (A.4) must
be used recursively going from the leaves of the graph toward the roots.

A.2.4 Conditional Canonical to Conditional Mean Value

This section deals with fθ,ξ, which is trivial given exponential family the-
ory. This map is given by equation (1.10) which we repeat here

ξij = Xip(j)ψ
′
j(θij)

and so the derivative is trivially

∂ξij
∂θij

= Xip(j)ψ
′′
j (θij) (A.5)

(other partial derivatives being zero).
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A.2.5 Unconditional Canonical to Unconditional Mean Value

This section deals with fϕ,τ , which is also trivial given exponential family
theory. This map is given by equation (1.12) which we repeat here

τ = fϕ,τ (ϕ) = ∇ψ(ϕ)

and so the derivative is trivially

∇fϕ,τ (ϕ) = ∇2ψ(ϕ). (A.6)

Although algebraically complicated, this map is already known to the com-
puter, since it needs it to calculate Fisher information for unconditional mod-
els. It is completely described by equations (1.17) and (1.18) in Section 1.3.2.

A.2.6 Conditional Canonical to Unconditional Mean Value

This section deals with fθ,τ , which could be considered already done be-
cause of fθ,τ = fϕ,τ ◦ fθ,ϕ. We could compute derivatives using the chain
rule.

But let us try something di�erent. We have a simple expression of τ in
terms of θ given by (1.12) in Chapter 1

τij(θ) = Xif(j)

∏
m∈J

j�m≺f(j)

ψ′m(θim).

We can easily di�erentiate this directly

∂τij(θ)

∂θim
= τij(θ)

ψ′′m(θim)

ψ′m(θim)
, j � m ≺ f(j)

(and other partial derivatives are zero).

A.2.7 Unconditional Canonical to Conditional Mean Value

This section deals with fϕ,ξ, and this one we probably should consider
already done using fϕ,ξ = fθ,ξ ◦fϕ,θ. We compute derivatives using the chain
rule

∇fϕ,ξ(ϕ̂) = ∇fθ,ξ(θ̂) ◦ ∇fϕ,θ(ϕ̂)

since one of these ∇fθ,ξ(θ̂) is diagonal, given by (A.5), this should be easy.
The other bit ∇fϕ,θ(ϕ̂) is given by (A.4) and the following discussion.

A.3 Discussion

All of this is a bit brief, but it is the design document that was used to
implement and test the code in the aster package for R.
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Appendix B

Some One-Parameter
Exponential Families for Aster
Models

B.1 Bernoulli

B.1.1 Density

fp(x) = px(1− p)1−x

B.1.2 Canonical Parameter

The log density is

log fp(x) = x log p+ (1− x) log(1− p)

= x log

(
p

1− p

)
+ log(1− p)

from which it is seen that the canonical parameter is

θ = logit(p) = log

(
p

1− p

)
Note that the inverse map is

p = logit−1(θ) =
1

1 + e−θ
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B.1.3 Cumulant Function

We must have
log fp(x) = xθ − ψ(θ) + h(x)

from which we get

ψ(θ) = − log(1− p)

= − log

(
1

1 + eθ

)
= log

(
1 + eθ

)
B.1.4 Mean Function

By mean function we mean the map between the canonical parameter and
the mean value parameter

τ(θ) = EθX = ψ′(θ).

Here

τ(θ) =
1

1 + e−θ

B.1.5 Variance Function

By variance function we mean the derivative of τ

ν(θ) = τ ′(θ) = varθX = ψ′′(θ).

Here

ν(θ) =
e−θ

(1 + e−θ)2

B.1.6 Check

We do have

τ(θ) = p

ν(θ) = p(1− p)

the familiar mean and variance of the Bernoulli distribution.

B.2 Poisson

B.2.1 Density

fµ(x) =
µx

x!
e−µ
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B.2.2 Canonical Parameter

The log density is

log fµ(x) = x logµ− µ− log(x!)

from which it is seen that the canonical parameter is

θ = log(µ) (B.1a)

Note that the inverse map is
µ = eθ (B.1b)

B.2.3 Cumulant Function

And

ψ(θ) = µ

= eθ

B.2.4 Mean Function

And
τ(θ) = eθ

B.2.5 Variance Function

And
ν(θ) = eθ

B.2.6 Check

We do have

τ(θ) = µ

ν(θ) = µ

the familiar mean and variance of the Poisson distribution.

B.3 Poisson Conditioned on Non-Zero

B.3.1 Density

fµ(x) =
µx

x!
· e−µ

1− e−µ

=
µx

x!
· 1

eµ − 1
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(µ is the mean of the Poisson distribution not this distribution).

B.3.2 Canonical Parameter

The log density is

log fµ(x) = x logµ− log (eµ − 1)− log(x!)

from which it is seen that the canonical parameter and its inverse are still
given by (B.1a) and (B.1b).

B.3.3 Cumulant Function

And

ψ(θ) = log (eµ − 1)

= log
(
ee
θ − 1

)
B.3.4 Mean Function

Here

τ(θ) =
ee
θ
eθ

eeθ − 1

=
eθ

1− e−eθ

B.3.5 Variance Function

And

ν(θ) =
eθ

1− e−eθ
− e−e

θ
e2θ

(1− e−eθ)2

= τ(θ)
(

1− τ(θ)e−e
θ
)

B.3.6 Check

We do have

τ(θ) =
µ

1− e−µ

ν(θ) =
µ[1− (1 + µ)e−µ]

(1− e−µ)2

= τ(θ)[1− τ(θ)e−µ]
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the somewhat unfamiliar mean and variance of the Poisson distribution con-
ditioned on not being zero. Despite it not being obvious from the formula,
ν(θ) is indeed nonnegative, as a variance must be, and goes to zero as θ goes
to minus in�nity.
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Appendix C

Simulation of Poisson
Conditioned on Being Nonzero

How to simulate Poisson conditional on nonzero? We have two cases.

� For large µ, we can do rejection sampling. Just simulate Poisson(µ)
random variates until we get one greater than zero, and return it.

� For small µ, naive rejection sampling can be arbitrarily slow. So we
need another strategy.

Let us be slightly more sophisticated about our rejection sampling for
small µ. The density of X is

fµ(x) =
µx

x!

e−µ

1− e−µ
, x = 1, 2, . . . .

Consider rejection sampling from Y which is one plus a Poisson(ν). The
density of Y is

gν(y) =
νy−1

(y − 1)!
e−ν , y = 1, 2, . . . .

The ratio of the two densities is

fµ(x)

gν(x)
=

µx

νx−1
· (x− 1)!

x!
· e−µ

1− e−µ
· 1

e−ν

=
(µ
ν

)x−1
· 1

x
· µe−µ

1− e−µ
· eν

This is bounded above considered as a function of x (so rejection sampling is
possible at all) if and only if µ ≤ ν.

Introduce the notation

τ =
µ

1− e−µ
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for the mean of X. And the upper bound is

max
x≥1

fµ(x)

gν(x)
=
fµ(1)

gν(1)
= τe−µ · eν

If we're not worried about being maximally clever, then we can take µ = ν,
so the upper bound becomes just τ . And what happens if we take the break
point between the two schemes to be µ = 1? The �rst scheme then has worst
case rejection fraction

> dpois(0, 1)

[1] 0.3678794

And the second scheme then has worst case rejection fraction

> mu <- 1

> tau <- mu / (1 - exp(- mu))

> print(tau)

[1] 1.581977

> fmu <- function(x) dpois(x, mu) / (1 - dpois(0, mu))

> gnu <- function(y) dpois(y - 1, mu)

> xxx <- seq(1, 100)

> yyy <- fmu(xxx) / (tau * gnu(xxx))

> all.equal(yyy, 1 / xxx)

[1] TRUE

> max(yyy)

[1] 1

Now rejection sampling simulates X ∼ 1 +Poisson(µ) and U ∼ Uniform(0, 1)
and accepts this X if U < 1/X.

The probability it fails to do so is

> 1 - sum(1 / xxx * gnu(xxx))

[1] 0.3678794

Perfect balance! Woof!
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Appendix D

Example Analysis of Purple
Cone�ower (Echinacea
angustifolia) Data

D.1 Preliminaries

Load the aster package and the data.

> library(aster)

> data(echinacea)

> names(echinacea)

[1] "hdct02" "hdct03" "hdct04" "pop" "ewloc" "nsloc"

[7] "ld02" "fl02" "ld03" "fl03" "ld04" "fl04"

the variables with numbers in the names are the columns of the response
matrix of the aster model. The variables ld0x (where x is a digit) are the
survival indicator variables for year 200x (one for alive, zero for dead). The
variables fl0x are the �owering indicator variables (one for any �owers, zero
for none). The variables hdct0x are the in�orescence (�ower head) count
variables (number of �ower heads). The variables without numbers are other
predictors. The variables ewloc and nsloc are spatial positions (east-west
and north-south location, respectively). The variable pop is the remnant
population of origin of the plant, so plants with di�erent values of pop may
be more genetically diverse than those with the same values of pop.

Make the graph (of the graphical model, speci�ed by a function p given
by an R vector pred).

> pred <- c(0, 1, 2, 1, 2, 3, 4, 5, 6)

> fam <- c(1, 1, 1, 1, 1, 1, 3, 3, 3)
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Reshape the data.

> vars <- c("ld02", "ld03", "ld04", "fl02", "fl03", "fl04",

+ "hdct02", "hdct03", "hdct04")

> redata <- reshape(echinacea, varying = list(vars),

+ direction = "long", timevar = "varb", times = as.factor(vars),

+ v.names = "resp")

> redata <- data.frame(redata, root = 1)

> names(redata)

[1] "pop" "ewloc" "nsloc" "varb" "resp" "id" "root"

D.2 Modeling

D.2.1 First Model

For our �rst model we try something simple (moderately simple). We
have no population e�ects. We put in a mean and e�ect of north-south and
east-west position for each of the nine variables. That gives us 3 × 9 = 27
parameters.

> out1 <- aster(resp ~ varb + varb:nsloc + varb:ewloc,

+ pred, fam, varb, id, root, data = redata)

> summary(out1, show.graph = TRUE)

Call:

aster.formula(formula = resp ~ varb + varb:nsloc + varb:ewloc,

pred = pred, fam = fam, varvar = varb, idvar = id, root = root,

data = redata)

Graphical Model:

variable predecessor family

ld02 root bernoulli

ld03 ld02 bernoulli

ld04 ld03 bernoulli

fl02 ld02 bernoulli

fl03 ld03 bernoulli

fl04 ld04 bernoulli

hdct02 fl02 truncated.poisson(truncation = 0)

hdct03 fl03 truncated.poisson(truncation = 0)

hdct04 fl04 truncated.poisson(truncation = 0)

Estimate Std. Error z value Pr(>|z|)
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(Intercept) -1.1005073 0.1928540 -5.706 1.15e-08 ***

varbfl03 -0.2585034 0.2961442 -0.873 0.38272

varbfl04 -0.3368137 0.2601966 -1.294 0.19551

varbhdct02 1.4248487 0.2675730 5.325 1.01e-07 ***

varbhdct03 1.3772526 0.2203482 6.250 4.10e-10 ***

varbhdct04 1.9283230 0.2001443 9.635 < 2e-16 ***

varbld02 -0.1322951 0.3502261 -0.378 0.70562

varbld03 1.8823218 0.4281242 4.397 1.10e-05 ***

varbld04 4.2762222 0.3469256 12.326 < 2e-16 ***

varbfl02:nsloc 0.0838694 0.0265213 3.162 0.00157 **

varbfl03:nsloc 0.0655407 0.0302581 2.166 0.03031 *

varbfl04:nsloc 0.0698900 0.0244358 2.860 0.00423 **

varbhdct02:nsloc -0.0179987 0.0116776 -1.541 0.12324

varbhdct03:nsloc 0.0001156 0.0138761 0.008 0.99335

varbhdct04:nsloc -0.0034831 0.0074230 -0.469 0.63891

varbld02:nsloc -0.0463586 0.0376371 -1.232 0.21805

varbld03:nsloc 0.0291040 0.0527152 0.552 0.58088

varbld04:nsloc 0.0339060 0.0405000 0.837 0.40249

varbfl02:ewloc 0.0460555 0.0267844 1.719 0.08553 .

varbfl03:ewloc -0.0060486 0.0290874 -0.208 0.83527

varbfl04:ewloc -0.0094399 0.0239818 -0.394 0.69385

varbhdct02:ewloc 0.0024187 0.0120993 0.200 0.84156

varbhdct03:ewloc 0.0230630 0.0135295 1.705 0.08826 .

varbhdct04:ewloc 0.0084179 0.0072661 1.159 0.24665

varbld02:ewloc 0.0149197 0.0357336 0.418 0.67629

varbld03:ewloc -0.0285742 0.0517154 -0.553 0.58059

varbld04:ewloc 0.0048502 0.0409964 0.118 0.90582

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

D.2.2 Second Model

So now we put in population.

> levels(echinacea$pop)

[1] "AA" "Eriley" "Lf" "NWLF" "Nessman" "SPP"

[7] "Stevens"

Let us put pop in only at the top level in this model (just to see what happens).
In order to do that we have to add a predictor that �predicts� the top level.

> hdct <- grep("hdct", as.character(redata$varb))

> hdct <- is.element(seq(along = redata$varb), hdct)
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> redata <- data.frame(redata, hdct = as.integer(hdct))

> names(redata)

[1] "pop" "ewloc" "nsloc" "varb" "resp" "id" "root"

[8] "hdct"

> out2 <- aster(resp ~ varb + varb:nsloc + varb:ewloc + hdct * pop - pop,

+ pred, fam, varb, id, root, data = redata)

> summary(out2)

Call:

aster.formula(formula = resp ~ varb + varb:nsloc + varb:ewloc +

hdct * pop - pop, pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0846586 0.1925029 -5.635 1.76e-08 ***

varbfl03 -0.2591673 0.2953707 -0.877 0.38025

varbfl04 -0.3272159 0.2594037 -1.261 0.20716

varbhdct02 1.5103441 0.2751442 5.489 4.04e-08 ***

varbhdct03 1.4619118 0.2298569 6.360 2.02e-10 ***

varbhdct04 2.0131411 0.2106706 9.556 < 2e-16 ***

varbld02 -0.1398184 0.3499238 -0.400 0.68947

varbld03 1.8718618 0.4279181 4.374 1.22e-05 ***

varbld04 4.2604338 0.3467427 12.287 < 2e-16 ***

varbfl02:nsloc 0.0835490 0.0264359 3.160 0.00158 **

varbfl03:nsloc 0.0655031 0.0301469 2.173 0.02980 *

varbfl04:nsloc 0.0698326 0.0243307 2.870 0.00410 **

varbhdct02:nsloc -0.0184434 0.0116321 -1.586 0.11284

varbhdct03:nsloc -0.0004162 0.0138183 -0.030 0.97597

varbhdct04:nsloc -0.0038684 0.0073788 -0.524 0.60010

varbld02:nsloc -0.0459235 0.0376414 -1.220 0.22245

varbld03:nsloc 0.0295182 0.0527428 0.560 0.57571

varbld04:nsloc 0.0339706 0.0405350 0.838 0.40200

varbfl02:ewloc 0.0462769 0.0267337 1.731 0.08345 .

varbfl03:ewloc -0.0054404 0.0289865 -0.188 0.85112

varbfl04:ewloc -0.0089080 0.0239051 -0.373 0.70942

varbhdct02:ewloc 0.0028066 0.0120847 0.232 0.81635

varbhdct03:ewloc 0.0231490 0.0134693 1.719 0.08568 .

varbhdct04:ewloc 0.0086106 0.0072716 1.184 0.23636

varbld02:ewloc 0.0153283 0.0357260 0.429 0.66789

varbld03:ewloc -0.0283036 0.0517141 -0.547 0.58417

varbld04:ewloc 0.0048550 0.0409914 0.118 0.90572
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hdct:popEriley -0.1782285 0.0893919 -1.994 0.04618 *

hdct:popLf -0.1617692 0.0960825 -1.684 0.09225 .

hdct:popNWLF -0.1076672 0.0832346 -1.294 0.19582

hdct:popNessman -0.3152202 0.1387855 -2.271 0.02313 *

hdct:popSPP 0.0198694 0.0862319 0.230 0.81777

hdct:popStevens -0.1288083 0.0891936 -1.444 0.14870

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Original predictor variables dropped (aliased)

hdct

> anova(out1, out2)

Analysis of Deviance Table

Model 1: resp ~ varb + varb:nsloc + varb:ewloc

Model 2: resp ~ varb + varb:nsloc + varb:ewloc + hdct * pop - pop

Model Df Model Dev Df Deviance P(>|Chi|)

1 27 -2717.4

2 33 -2701.3 6 16.135 0.01305 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Comment The last bit of the summary that the �original predictor� hdct
was �dropped (aliased)� means just what it (tersely) says. The R formula mini-
language as implemented in the R functions model.frame and model.matrix

produces a model matrix that is not full rank. In order to estimate anything
we must drop some dummy variable that it constructed. In this particular
case the (dummy variable that is the indicator of) hdct is equal to the sum of
the (dummy variables that are the indicators of) varbhdct02, varbhdct03,
and varbhdct04. Thus we must drop one of these variables for the model to
be identi�able. So aster does.

Comment The reason for the - pop in the formula is not obvious. In fact,
we originally did not write the formula this way and got the wrong model (see
�Tenth Model� in Section D.2.10 below). It took some grovelling in various
bits of R documentation to come up with this - pop trick, but once you see
it, the e�ect is clear.

We want population e�ects only at the �hdct� level. But the hdct * pop

crosses the hdct indicator variable, which has two values (zero and one) with
the pop variable, which has seven values (the seven populations), giving 14
parameters, one of which R drops (because it is aliased with the intercept).
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But that's not what we want. We don't want pop e�ects at the �non-hdct�
levels. The way the R formula mini-language allows us to specify that is - pop

which means to leave out the population main e�ects (7 fewer parameters,
leaving 6) and we see that we do indeed have 6 degrees of freedom di�erence
between models one and two.

D.2.3 Third Model

Let us now put pop in at all levels in this model.

> level <- gsub("[0-9]", "", as.character(redata$varb))

> redata <- data.frame(redata, level = as.factor(level))

> out3 <- aster(resp ~ varb + varb:nsloc + varb:ewloc + level * pop,

+ pred, fam, varb, id, root, data = redata)

> summary(out3)

Call:

aster.formula(formula = resp ~ varb + varb:nsloc + varb:ewloc +

level * pop, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.396128 0.423538 -3.296 0.000980 ***

varbfl03 -0.268508 0.293765 -0.914 0.360706

varbfl04 -0.303001 0.257928 -1.175 0.240094

varbhdct02 1.936558 0.546517 3.543 0.000395 ***

varbhdct03 1.892261 0.525941 3.598 0.000321 ***

varbhdct04 2.431206 0.516328 4.709 2.49e-06 ***

varbld02 0.105169 0.582421 0.181 0.856704

varbld03 2.101945 0.632563 3.323 0.000891 ***

varbld04 4.474676 0.581362 7.697 1.39e-14 ***

popEriley 0.807390 0.451694 1.787 0.073862 .

popLf 0.877245 0.481248 1.823 0.068325 .

popNWLF -0.111507 0.434671 -0.257 0.797541

popNessman -0.602180 0.681430 -0.884 0.376858

popSPP 0.541625 0.450808 1.201 0.229575

popStevens 0.112023 0.465345 0.241 0.809764

varbfl02:nsloc 0.083795 0.026329 3.183 0.001459 **

varbfl03:nsloc 0.066937 0.029982 2.233 0.025576 *

varbfl04:nsloc 0.070146 0.024162 2.903 0.003695 **

varbhdct02:nsloc -0.018769 0.011491 -1.633 0.102397

varbhdct03:nsloc -0.001417 0.013619 -0.104 0.917146

varbhdct04:nsloc -0.004397 0.007261 -0.606 0.544766
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varbld02:nsloc -0.044854 0.037640 -1.192 0.233398

varbld03:nsloc 0.030181 0.052719 0.572 0.566993

varbld04:nsloc 0.034831 0.040522 0.860 0.390030

varbfl02:ewloc 0.035972 0.026717 1.346 0.178168

varbfl03:ewloc -0.015152 0.028934 -0.524 0.600505

varbfl04:ewloc -0.018685 0.023867 -0.783 0.433709

varbhdct02:ewloc 0.006926 0.012016 0.576 0.564347

varbhdct03:ewloc 0.026914 0.013389 2.010 0.044412 *

varbhdct04:ewloc 0.012554 0.007241 1.734 0.082977 .

varbld02:ewloc 0.013009 0.035812 0.363 0.716410

varbld03:ewloc -0.030830 0.051730 -0.596 0.551187

varbld04:ewloc 0.002422 0.040976 0.059 0.952866

levelhdct:popEriley -1.341288 0.587473 -2.283 0.022422 *

levelld:popEriley -0.560351 0.553094 -1.013 0.311003

levelhdct:popLf -1.408221 0.631418 -2.230 0.025731 *

levelld:popLf -0.674658 0.588417 -1.147 0.251562

levelhdct:popNWLF 0.046822 0.553566 0.085 0.932593

levelld:popNWLF 0.140229 0.531548 0.264 0.791925

levelhdct:popNessman 0.418459 0.893928 0.468 0.639704

levelld:popNessman 0.922668 0.778683 1.185 0.236054

levelhdct:popSPP -0.702929 0.573865 -1.225 0.220611

levelld:popSPP -0.479659 0.561548 -0.854 0.393009

levelhdct:popStevens -0.215472 0.593594 -0.363 0.716608

levelld:popStevens -0.240029 0.569320 -0.422 0.673312

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Original predictor variables dropped (aliased)

levelhdct

levelld

> anova(out1, out2, out3)

Analysis of Deviance Table

Model 1: resp ~ varb + varb:nsloc + varb:ewloc

Model 2: resp ~ varb + varb:nsloc + varb:ewloc + hdct * pop - pop

Model 3: resp ~ varb + varb:nsloc + varb:ewloc + level * pop

Model Df Model Dev Df Deviance P(>|Chi|)

1 27 -2717.4

2 33 -2701.3 6 16.135 0.0130497 *

3 45 -2663.6 12 37.705 0.0001715 ***

---
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Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Comment This would �nish a sensible analysis, but we're really not sure
we have dealt with the �geometry� (the variables ewloc and nsloc) correctly.

D.2.4 Fourth Model, Less Geometry

Thus we experiment with di�erent ways to put in the spatial e�ects. First
we reduce the geometry to a product, either year or level.

> year <- gsub("[a-z]", "", as.character(redata$varb))

> year <- paste("yr", year, sep = "")

> redata <- data.frame(redata, year = as.factor(year))

> out4 <- aster(resp ~ varb + (level + year):(nsloc + ewloc) + level * pop,

+ pred, fam, varb, id, root, data = redata)

> summary(out4)

Call:

aster.formula(formula = resp ~ varb + (level + year):(nsloc +

ewloc) + level * pop, pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.333883 0.419723 -3.178 0.001483 **

varbfl03 -0.384991 0.268534 -1.434 0.151665

varbfl04 -0.373643 0.244457 -1.528 0.126398

varbhdct02 1.845677 0.541799 3.407 0.000658 ***

varbhdct03 1.858078 0.522036 3.559 0.000372 ***

varbhdct04 2.372582 0.513754 4.618 3.87e-06 ***

varbld02 0.165820 0.562506 0.295 0.768155

varbld03 1.959135 0.611123 3.206 0.001347 **

varbld04 4.377685 0.573484 7.633 2.28e-14 ***

popEriley 0.809271 0.451391 1.793 0.072999 .

popLf 0.878454 0.480895 1.827 0.067744 .

popNWLF -0.111683 0.434221 -0.257 0.797023

popNessman -0.600230 0.681076 -0.881 0.378157

popSPP 0.540528 0.450468 1.200 0.230168

popStevens 0.110291 0.464961 0.237 0.812499

levelfl:nsloc 0.068603 0.015126 4.535 5.75e-06 ***

levelhdct:nsloc -0.014500 0.007501 -1.933 0.053245 .

levelld:nsloc 0.001078 0.007299 0.148 0.882584

levelfl:ewloc 0.004590 0.015092 0.304 0.761021

levelhdct:ewloc 0.020550 0.007740 2.655 0.007927 **
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levelld:ewloc -0.001435 0.007502 -0.191 0.848252

yearyr03:nsloc 0.009125 0.007155 1.275 0.202241

yearyr04:nsloc 0.009184 0.006137 1.496 0.134535

yearyr03:ewloc -0.001812 0.007242 -0.250 0.802409

yearyr04:ewloc -0.011085 0.006324 -1.753 0.079649 .

levelhdct:popEriley -1.344673 0.587258 -2.290 0.022036 *

levelld:popEriley -0.561644 0.552345 -1.017 0.309232

levelhdct:popLf -1.410639 0.631143 -2.235 0.025414 *

levelld:popLf -0.674982 0.587591 -1.149 0.250668

levelhdct:popNWLF 0.046781 0.553089 0.085 0.932594

levelld:popNWLF 0.140718 0.530656 0.265 0.790872

levelhdct:popNessman 0.416160 0.893648 0.466 0.641440

levelld:popNessman 0.919968 0.777808 1.183 0.236900

levelhdct:popSPP -0.701296 0.573572 -1.223 0.221449

levelld:popSPP -0.477678 0.560739 -0.852 0.394286

levelhdct:popStevens -0.213370 0.593238 -0.360 0.719093

levelld:popStevens -0.237795 0.568455 -0.418 0.675714

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Original predictor variables dropped (aliased)

levelhdct

levelld

> anova(out4, out3)

Analysis of Deviance Table

Model 1: resp ~ varb + (level + year):(nsloc + ewloc) + level * pop

Model 2: resp ~ varb + varb:nsloc + varb:ewloc + level * pop

Model Df Model Dev Df Deviance P(>|Chi|)

1 37 -2668.4

2 45 -2663.6 8 4.8342 0.7751

So we have goodness of �t, and this can be our �big model�.

D.2.5 Fifth Model, Much Less Geometry

Now we reduce the geometry to just two predictors.

> out5 <- aster(resp ~ varb + nsloc + ewloc + level * pop,

+ pred, fam, varb, id, root, data = redata)

> summary(out5)
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Call:

aster.formula(formula = resp ~ varb + nsloc + ewloc + level *

pop, pred = pred, fam = fam, varvar = varb, idvar = id, root = root,

data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.199454 0.415402 -2.887 0.003884 **

varbfl03 -0.334899 0.264510 -1.266 0.205473

varbfl04 -0.328208 0.240321 -1.366 0.172032

varbhdct02 1.648701 0.536935 3.071 0.002136 **

varbhdct03 1.667842 0.516225 3.231 0.001234 **

varbhdct04 2.171474 0.509537 4.262 2.03e-05 ***

varbld02 0.075042 0.562247 0.133 0.893823

varbld03 1.827669 0.611052 2.991 0.002780 **

varbld04 4.262450 0.573689 7.430 1.09e-13 ***

nsloc 0.013506 0.001725 7.828 4.97e-15 ***

ewloc 0.005965 0.001722 3.465 0.000531 ***

popEriley 0.755567 0.448815 1.683 0.092284 .

popLf 0.809411 0.478696 1.691 0.090862 .

popNWLF -0.138061 0.433020 -0.319 0.749854

popNessman -0.721910 0.677652 -1.065 0.286735

popSPP 0.516341 0.448626 1.151 0.249757

popStevens 0.080025 0.464014 0.172 0.863074

levelhdct:popEriley -1.259136 0.585222 -2.152 0.031433 *

levelld:popEriley -0.548422 0.554771 -0.989 0.322881

levelhdct:popLf -1.308189 0.629591 -2.078 0.037724 *

levelld:popLf -0.635814 0.590884 -1.076 0.281910

levelhdct:popNWLF 0.072362 0.552482 0.131 0.895795

levelld:popNWLF 0.183780 0.534492 0.344 0.730967

levelhdct:popNessman 0.581044 0.890106 0.653 0.513898

levelld:popNessman 1.048141 0.779258 1.345 0.178609

levelhdct:popSPP -0.662518 0.572464 -1.157 0.247147

levelld:popSPP -0.474797 0.564778 -0.841 0.400528

levelhdct:popStevens -0.171288 0.593123 -0.289 0.772742

levelld:popStevens -0.216441 0.572985 -0.378 0.705622

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Original predictor variables dropped (aliased)

levelhdct

levelld

> anova(out5, out4, out3)

37



Analysis of Deviance Table

Model 1: resp ~ varb + nsloc + ewloc + level * pop

Model 2: resp ~ varb + (level + year):(nsloc + ewloc) + level * pop

Model 3: resp ~ varb + varb:nsloc + varb:ewloc + level * pop

Model Df Model Dev Df Deviance P(>|Chi|)

1 29 -2696.6

2 37 -2668.4 8 28.1778 0.0004416 ***

3 45 -2663.6 8 4.8342 0.7751464

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

So we do not have goodness of �t, and this cannot be our �big model�.

D.2.6 Sixth Model, Intermediate Geometry, Levels

So we try again with the geometry.

> out6 <- aster(resp ~ varb + level:(nsloc + ewloc) + level * pop,

+ pred, fam, varb, id, root, data = redata)

> summary(out6)

Call:

aster.formula(formula = resp ~ varb + level:(nsloc + ewloc) +

level * pop, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.365862 0.420138 -3.251 0.001150 **

varbfl03 -0.354186 0.266796 -1.328 0.184326

varbfl04 -0.319952 0.242895 -1.317 0.187756

varbhdct02 1.882750 0.542402 3.471 0.000518 ***

varbhdct03 1.906417 0.521950 3.652 0.000260 ***

varbhdct04 2.404151 0.514751 4.671 3.00e-06 ***

varbld02 0.218855 0.562017 0.389 0.696973

varbld03 1.973463 0.611062 3.230 0.001240 **

varbld04 4.406045 0.573494 7.683 1.56e-14 ***

popEriley 0.812524 0.451595 1.799 0.071982 .

popLf 0.882088 0.481103 1.833 0.066733 .

popNWLF -0.110570 0.434822 -0.254 0.799272

popNessman -0.593161 0.680863 -0.871 0.383651

popSPP 0.543515 0.450805 1.206 0.227951

popStevens 0.114072 0.465336 0.245 0.806349

levelfl:nsloc 0.070763 0.014568 4.857 1.19e-06 ***
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levelhdct:nsloc -0.006425 0.005465 -1.176 0.239751

levelld:nsloc 0.008036 0.005924 1.356 0.174949

levelfl:ewloc 0.007768 0.014546 0.534 0.593340

levelhdct:ewloc 0.011689 0.005561 2.102 0.035575 *

levelld:ewloc -0.007240 0.006114 -1.184 0.236296

levelhdct:popEriley -1.350424 0.587897 -2.297 0.021616 *

levelld:popEriley -0.563945 0.552117 -1.021 0.307054

levelhdct:popLf -1.416802 0.631793 -2.243 0.024928 *

levelld:popLf -0.678297 0.587394 -1.155 0.248190

levelhdct:popNWLF 0.044673 0.554325 0.081 0.935768

levelld:popNWLF 0.139453 0.530726 0.263 0.792736

levelhdct:popNessman 0.405845 0.893667 0.454 0.649732

levelld:popNessman 0.912760 0.777262 1.174 0.240264

levelhdct:popSPP -0.705876 0.574445 -1.229 0.219148

levelld:popSPP -0.481472 0.560611 -0.859 0.390432

levelhdct:popStevens -0.218838 0.594180 -0.368 0.712648

levelld:popStevens -0.242044 0.568322 -0.426 0.670187

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Original predictor variables dropped (aliased)

levelhdct

levelld

> anova(out5, out6, out4, out3)

Analysis of Deviance Table

Model 1: resp ~ varb + nsloc + ewloc + level * pop

Model 2: resp ~ varb + level:(nsloc + ewloc) + level * pop

Model 3: resp ~ varb + (level + year):(nsloc + ewloc) + level * pop

Model 4: resp ~ varb + varb:nsloc + varb:ewloc + level * pop

Model Df Model Dev Df Deviance P(>|Chi|)

1 29 -2696.6

2 33 -2674.7 4 21.8671 0.000213 ***

3 37 -2668.4 4 6.3107 0.177116

4 45 -2663.6 8 4.8342 0.775146

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

So we have goodness of �t, and this can be our �big model�. But why drop
year rather than level?
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D.2.7 Seventh Model, Intermediate Geometry, Years

So we try again with the geometry.

> out7 <- aster(resp ~ varb + year:(nsloc + ewloc) + level * pop,

+ pred, fam, varb, id, root, data = redata)

> summary(out7)

Call:

aster.formula(formula = resp ~ varb + year:(nsloc + ewloc) +

level * pop, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.196096 0.416050 -2.875 0.004042 **

varbfl03 -0.316825 0.265066 -1.195 0.231981

varbfl04 -0.337380 0.241251 -1.398 0.161973

varbhdct02 1.652546 0.538051 3.071 0.002131 **

varbhdct03 1.627233 0.517159 3.146 0.001652 **

varbhdct04 2.172643 0.510169 4.259 2.06e-05 ***

varbld02 0.066383 0.562724 0.118 0.906094

varbld03 1.837868 0.611831 3.004 0.002666 **

varbld04 4.251807 0.574053 7.407 1.30e-13 ***

popEriley 0.741522 0.449483 1.650 0.099000 .

popLf 0.799687 0.479291 1.668 0.095221 .

popNWLF -0.128513 0.433273 -0.297 0.766765

popNessman -0.727352 0.678773 -1.072 0.283914

popSPP 0.507401 0.449178 1.130 0.258636

popStevens 0.075879 0.464452 0.163 0.870225

yearyr02:nsloc 0.009909 0.004372 2.266 0.023441 *

yearyr03:nsloc 0.019664 0.004995 3.937 8.27e-05 ***

yearyr04:nsloc 0.012311 0.003276 3.758 0.000172 ***

yearyr02:ewloc 0.010774 0.004435 2.430 0.015116 *

yearyr03:ewloc 0.008521 0.004798 1.776 0.075742 .

yearyr04:ewloc 0.001578 0.003246 0.486 0.626836

levelhdct:popEriley -1.239189 0.585903 -2.115 0.034429 *

levelld:popEriley -0.532712 0.555127 -0.960 0.337246

levelhdct:popLf -1.294188 0.630147 -2.054 0.039996 *

levelld:popLf -0.624375 0.591157 -1.056 0.290881

levelhdct:popNWLF 0.059302 0.552518 0.107 0.914526

levelld:popNWLF 0.174231 0.534494 0.326 0.744444

levelhdct:popNessman 0.587678 0.891330 0.659 0.509686

levelld:popNessman 1.055395 0.779991 1.353 0.176028

levelhdct:popSPP -0.650145 0.572908 -1.135 0.256452
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levelld:popSPP -0.463775 0.564970 -0.821 0.411712

levelhdct:popStevens -0.165745 0.593407 -0.279 0.780007

levelld:popStevens -0.211556 0.573114 -0.369 0.712028

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Original predictor variables dropped (aliased)

levelhdct

levelld

> anova(out5, out7, out4, out3)

Analysis of Deviance Table

Model 1: resp ~ varb + nsloc + ewloc + level * pop

Model 2: resp ~ varb + year:(nsloc + ewloc) + level * pop

Model 3: resp ~ varb + (level + year):(nsloc + ewloc) + level * pop

Model 4: resp ~ varb + varb:nsloc + varb:ewloc + level * pop

Model Df Model Dev Df Deviance P(>|Chi|)

1 29 -2696.6

2 33 -2691.9 4 4.6127 0.3294

3 37 -2668.4 4 23.5651 9.761e-05 ***

4 45 -2663.6 8 4.8342 0.7751

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

And we do not have goodness of �t! So Model Six is our �big model�
and we have been logical in our model selection. Note that it is not valid
to compare Models Six and Seven because they are not nested, but both �t
between Models Five and Four, so Six and Seven can each be compared to
both Five and Four (and this tells us what we want to know).

D.2.8 Eighth Model, Like Models Two and Six

We need to make a model with the structure of Model Two with respect
to variables and like Model Six with respect to geometry.

> out8 <- aster(resp ~ varb + level:(nsloc + ewloc) + hdct * pop - pop,

+ pred, fam, varb, id, root, data = redata)

> summary(out8)

Call:

aster.formula(formula = resp ~ varb + level:(nsloc + ewloc) +

hdct * pop - pop, pred = pred, fam = fam, varvar = varb,
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idvar = id, root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.050644 0.184332 -5.700 1.20e-08 ***

varbfl03 -0.349096 0.267919 -1.303 0.1926

varbfl04 -0.344222 0.243899 -1.411 0.1581

varbhdct02 1.450651 0.265192 5.470 4.50e-08 ***

varbhdct03 1.472612 0.219375 6.713 1.91e-11 ***

varbhdct04 1.980565 0.205048 9.659 < 2e-16 ***

varbld02 -0.029302 0.315703 -0.093 0.9260

varbld03 1.740051 0.396189 4.392 1.12e-05 ***

varbld04 4.188577 0.334266 12.531 < 2e-16 ***

levelfl:nsloc 0.070102 0.014652 4.785 1.71e-06 ***

levelhdct:nsloc -0.005804 0.005550 -1.046 0.2956

levelld:nsloc 0.007165 0.005867 1.221 0.2220

levelfl:ewloc 0.017977 0.014413 1.247 0.2123

levelhdct:ewloc 0.007606 0.005561 1.368 0.1714

levelld:ewloc -0.004787 0.005919 -0.809 0.4186

hdct:popEriley -0.178799 0.089411 -2.000 0.0455 *

hdct:popLf -0.162516 0.096116 -1.691 0.0909 .

hdct:popNWLF -0.108209 0.083110 -1.302 0.1929

hdct:popNessman -0.315507 0.138823 -2.273 0.0230 *

hdct:popSPP 0.019942 0.086198 0.231 0.8170

hdct:popStevens -0.129238 0.089129 -1.450 0.1471

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Original predictor variables dropped (aliased)

hdct

> anova(out8, out6)

Analysis of Deviance Table

Model 1: resp ~ varb + level:(nsloc + ewloc) + hdct * pop - pop

Model 2: resp ~ varb + level:(nsloc + ewloc) + level * pop

Model Df Model Dev Df Deviance P(>|Chi|)

1 21 -2712.5

2 33 -2674.7 12 37.838 0.0001632 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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D.2.9 Ninth Model, Like Models One and Eight

We need to make a model with the structure of Model Eight except no
populations.

> out9 <- aster(resp ~ varb + level:(nsloc + ewloc),

+ pred, fam, varb, id, root, data = redata)

> summary(out9)

Call:

aster.formula(formula = resp ~ varb + level:(nsloc + ewloc),

pred = pred, fam = fam, varvar = varb, idvar = id, root = root,

data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.066365 0.184593 -5.777 7.61e-09 ***

varbfl03 -0.349426 0.268532 -1.301 0.193

varbfl04 -0.353847 0.244529 -1.447 0.148

varbhdct02 1.364697 0.257183 5.306 1.12e-07 ***

varbhdct03 1.388181 0.209331 6.632 3.32e-11 ***

varbhdct04 1.895092 0.194176 9.760 < 2e-16 ***

varbld02 -0.021551 0.315991 -0.068 0.946

varbld03 1.750199 0.396379 4.415 1.01e-05 ***

varbld04 4.203943 0.334412 12.571 < 2e-16 ***

levelfl:nsloc 0.070281 0.014705 4.779 1.76e-06 ***

levelhdct:nsloc -0.005378 0.005578 -0.964 0.335

levelld:nsloc 0.006855 0.005868 1.168 0.243

levelfl:ewloc 0.017686 0.014441 1.225 0.221

levelhdct:ewloc 0.007312 0.005542 1.320 0.187

levelld:ewloc -0.005027 0.005932 -0.847 0.397

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out9, out8, out6)

Analysis of Deviance Table

Model 1: resp ~ varb + level:(nsloc + ewloc)

Model 2: resp ~ varb + level:(nsloc + ewloc) + hdct * pop - pop

Model 3: resp ~ varb + level:(nsloc + ewloc) + level * pop

Model Df Model Dev Df Deviance P(>|Chi|)

1 15 -2728.7

2 21 -2712.5 6 16.181 0.0128141 *

3 33 -2674.7 12 37.838 0.0001632 ***
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---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

D.2.10 Tenth Model, Between Models Six and Eight

We accidentally created a new tenth model by not understanding the
�minus populations� stu� in the formulae for Models Two and Eight.

> out10 <- aster(resp ~ varb + level:(nsloc + ewloc) + hdct * pop,

+ pred, fam, varb, id, root, data = redata)

> summary(out10)

Call:

aster.formula(formula = resp ~ varb + level:(nsloc + ewloc) +

hdct * pop, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.184797 0.223462 -5.302 1.15e-07 ***

varbfl03 -0.349106 0.266693 -1.309 0.19053

varbfl04 -0.330903 0.242658 -1.364 0.17268

varbhdct02 1.662588 0.331242 5.019 5.19e-07 ***

varbhdct03 1.684909 0.296256 5.687 1.29e-08 ***

varbhdct04 2.190786 0.285814 7.665 1.79e-14 ***

varbld02 -0.016209 0.316060 -0.051 0.95910

varbld03 1.733685 0.396388 4.374 1.22e-05 ***

varbld04 4.160172 0.334436 12.439 < 2e-16 ***

popEriley 0.375414 0.154884 2.424 0.01536 *

popLf 0.355237 0.164870 2.155 0.03119 *

popNWLF 0.012016 0.145094 0.083 0.93400

popNessman 0.231430 0.189693 1.220 0.22245

popSPP 0.185498 0.158948 1.167 0.24319

popStevens -0.069680 0.153063 -0.455 0.64894

levelfl:nsloc 0.070918 0.014584 4.863 1.16e-06 ***

levelhdct:nsloc -0.006532 0.005504 -1.187 0.23528

levelld:nsloc 0.007901 0.005959 1.326 0.18488

levelfl:ewloc 0.014308 0.014359 0.996 0.31904

levelhdct:ewloc 0.010083 0.005557 1.814 0.06961 .

levelld:ewloc -0.009182 0.006100 -1.505 0.13231

hdct:popEriley -0.794844 0.264102 -3.010 0.00262 **

hdct:popLf -0.744006 0.282716 -2.632 0.00850 **

hdct:popNWLF -0.114923 0.245244 -0.469 0.63935

hdct:popNessman -0.705433 0.355627 -1.984 0.04730 *
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hdct:popSPP -0.270775 0.262750 -1.031 0.30276

hdct:popStevens 0.003604 0.260305 0.014 0.98895

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Original predictor variables dropped (aliased)

hdct

> anova(out9, out8, out10, out6)

Analysis of Deviance Table

Model 1: resp ~ varb + level:(nsloc + ewloc)

Model 2: resp ~ varb + level:(nsloc + ewloc) + hdct * pop - pop

Model 3: resp ~ varb + level:(nsloc + ewloc) + hdct * pop

Model 4: resp ~ varb + level:(nsloc + ewloc) + level * pop

Model Df Model Dev Df Deviance P(>|Chi|)

1 15 -2728.7

2 21 -2712.5 6 16.181 0.0128141 *

3 27 -2684.9 6 27.672 0.0001083 ***

4 33 -2674.7 6 10.166 0.1178435

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

So this says that Model Ten (which only has 12 d. f. for �pop�) can be the big
model.

D.3 Mean Value Parameters

D.3.1 Unconditional

As argued in Chapter 1, canonical parameters are �meaningless.� Only
mean value parameters have real world, scienti�c interpretability.

So in this section we compare predicted values for a typical individual (say
zero-zero geometry) in each population under both Models Six and Eight. The
functional of mean value parameters we want is total head count, since this
has the biological interpretation of the best surrogate measure of �tness in
this data set. A biologist (at least an evolutionary biologist) is interested
in the �ancestor variables� of head count only insofar as they contribute to
head count. Two sets of parameter values that �predict� the same expected
total head count (over the three years the data were collected) have the same
contribution to �tness. So that is the �prediction� (really functional of mean
value parameters) we �predict.�

To do this we must construct �newdata� for these hypothetical individuals.
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> newdata <- data.frame(pop = levels(echinacea$pop))

> for (v in vars)

+ newdata[[v]] <- 1

> newdata$root <- 1

> newdata$ewloc <- 0

> newdata$nsloc <- 0

> renewdata <- reshape(newdata, varying = list(vars),

+ direction = "long", timevar = "varb", times = as.factor(vars),

+ v.names = "resp")

> names(redata)

[1] "pop" "ewloc" "nsloc" "varb" "resp" "id" "root"

[8] "hdct" "level" "year"

> names(renewdata)

[1] "pop" "root" "ewloc" "nsloc" "varb" "resp" "id"

> hdct <- grep("hdct", as.character(renewdata$varb))

> hdct <- is.element(seq(along = renewdata$varb), hdct)

> renewdata$hdct <- as.integer(hdct)

> level <- gsub("[0-9]", "", as.character(renewdata$varb))

> renewdata$level <- as.factor(level)

> year <- gsub("[a-z]", "", as.character(renewdata$varb))

> year <- paste("yr", year, sep = "")

> renewdata$year <- as.factor(year)

> setequal(names(redata), names(renewdata))

[1] TRUE

We are using bogus data xij = 1 for all i and j because unconditional mean
value parameters do not depend on x. We have to have an x argument because
that's the way the aster package functions work (ultimately due to limitations
of the R formula mini-language). So it doesn't matter what we make it. In
the following section, the predictions will depend on x, but then (as we shall
argue), this is the x we want.

> nind <- nrow(newdata)

> nnode <- length(vars)

> amat <- array(0, c(nind, nnode, nind))

> for (i in 1:nind)

+ amat[i , grep("hdct", vars), i] <- 1

> pout6 <- predict(out6, varvar = varb, idvar = id, root = root,

+ newdata = renewdata, se.fit = TRUE, amat = amat)

> pout8 <- predict(out8, varvar = varb, idvar = id, root = root,

+ newdata = renewdata, se.fit = TRUE, amat = amat)
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Figure D.1 is produced by the following code

> conf.level <- 0.95

> crit <- qnorm((1 + conf.level) / 2)

> popnames <- as.character(newdata$pop)

> fit8 <- pout8$fit

> i <- seq(along = popnames)

> ytop <- fit8 + crit * pout8$se.fit

> ybot <- fit8 - crit * pout8$se.fit

> plot(c(i, i), c(ytop, ybot), type = "n", axes = FALSE, xlab = "", ylab = "")

> segments(i, ybot, i, ytop)

> foo <- 0.1

> segments(i - foo, ybot, i + foo, ybot)

> segments(i - foo, ytop, i + foo, ytop)

> segments(i - foo, fit8, i + foo, fit8)

> axis(side = 2)

> title(ylab = "unconditional mean value parameter")

> axis(side = 1, at = i, labels = popnames)

> title(xlab = "population")

and appears on p. 48.
Figure D.2 is produced by the following code

> fit6 <- pout6$fit

> i <- seq(along = popnames)

> foo <- 0.1

> y8top <- fit8 + crit * pout8$se.fit

> y8bot <- fit8 - crit * pout8$se.fit

> y6top <- fit6 + crit * pout6$se.fit

> y6bot <- fit6 - crit * pout6$se.fit

> plot(c(i - 1.5 * foo, i - 1.5 * foo, i + 1.5 * foo, i + 1.5 * foo),

+ c(y8top, y8bot, y6top, y6bot), type = "n", axes = FALSE,

+ xlab = "", ylab = "")

> segments(i - 1.5 * foo, y8bot, i - 1.5 * foo, y8top)

> segments(i - 2.5 * foo, y8bot, i - 0.5 * foo, y8bot)

> segments(i - 2.5 * foo, y8top, i - 0.5 * foo, y8top)

> segments(i - 2.5 * foo, fit8, i - 0.5 * foo, fit8)

> segments(i + 1.5 * foo, y6bot, i + 1.5 * foo, y6top, lty = 2)

> segments(i + 2.5 * foo, y6bot, i + 0.5 * foo, y6bot)

> segments(i + 2.5 * foo, y6top, i + 0.5 * foo, y6top)

> segments(i + 2.5 * foo, fit6, i + 0.5 * foo, fit6)

> axis(side = 2)

> title(ylab = "unconditional mean value parameter")
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Figure D.1: 95% con�dence intervals for unconditional mean value parameter
for �tness (sum of head count for all years) at each population for a �typical�
individual having position zero-zero and having the parameterization of Model
Eight. Tick marks in the middle of the bars are the center (the MLE).
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Figure D.2: 95% con�dence intervals for unconditional mean value parameter
for �tness (sum of head count for all years) at each population for a �typical�
individual having position zero-zero and having the parameterization of Model
Eight (solid bar) or Model Six (dashed bar). Tick marks in the middle of the
bars are the center (the MLE).

> axis(side = 1, at = i, labels = popnames)

> title(xlab = "population")

and appears on p. 49.

D.3.2 Conditional

This section is very incomplete. We don't redo everything using condi-
tional models. That's not the point. We only want to show that conditional
models and conditional mean value parameters just don't do the same thing
as unconditional models (which is obvious, but some people like examples,
and in any case, this gives us an opportunity to show some options of aster
model �tting).
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Conditional Models

Let us redo Figure D.2 based on conditional models with the same model
matrices (a dumb idea, since the meaning of the models is entirely di�erent
despite the similarity in algebra, but we want to hammer the point home).

> cout6 <- aster(resp ~ varb + level:(nsloc + ewloc) + level * pop,

+ pred, fam, varb, id, root, data = redata, type = "conditional")

> cout8 <- aster(resp ~ varb + level:(nsloc + ewloc) + hdct * pop - pop,

+ pred, fam, varb, id, root, data = redata, type = "conditional")

> pcout6 <- predict(cout6, varvar = varb, idvar = id, root = root,

+ newdata = renewdata, se.fit = TRUE, amat = amat)

> pcout8 <- predict(cout8, varvar = varb, idvar = id, root = root,

+ newdata = renewdata, se.fit = TRUE, amat = amat)

Note that these are exactly like the analogous statements making
the analogous objects without the �c� in their names except for the
type = "conditional" arguments in the two aster function calls. Then
we make Figure D.3 just like Figure D.2 except for using pcout6 and pcout8

instead of pout6 and pout8. It appears on p. 51.

Note the huge di�erence between Figure D.2 and Figure D.3. The same
model matrices are used in both cases. The linear predictor satis�es η = Mβ,
but in one case (Figure D.2) the linear predictor is the unconditional canonical
parameter (η = ϕ) and in the other case (Figure D.3) the linear predictor is
the conditional canonical parameter (η = θ). In one case (Figure D.2) the
predictions of a linear functional of the unconditional mean value parameter
(τ ) are nearly the same for the two models and in the other case (Figure D.3)
the predictions of the same linear functional of τ are wildly di�erent.

Conclusion: conditional models and unconditional models are di�erent.
That's the whole point. That's why unconditional models were invented,
because conditional models can't be made to do the same thing.

More on Conditional Models

Let us redo the analysis of deviance table in Section D.2.10 based on
conditional models with the same model matrices (again we reiterate, this is
a very dumb idea, since the meaning of the models is entirely di�erent despite
the similarity in algebra, but we want to hammer the point home).

> cout9 <- aster(resp ~ varb + level:(nsloc + ewloc),

+ pred, fam, varb, id, root, data = redata, type = "cond")

> cout10 <- aster(resp ~ varb + level:(nsloc + ewloc) + hdct * pop,

+ pred, fam, varb, id, root, data = redata, type = "cond")

> anova(cout9, cout8, cout10, cout6)
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Figure D.3: 95% con�dence intervals for unconditional mean value parameter
for �tness (sum of head count for all years) at each population for a �typical�
individual having position zero-zero and having the parameterization of Model
Eight (solid bar) or Model Six (dashed bar). Tick marks in the middle of
the bars are the center (the MLE). The di�erence between this �gure and
Figure D.2 is that the models �tted are conditional rather than unconditional.
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Analysis of Deviance Table

Model 1: resp ~ varb + level:(nsloc + ewloc)

Model 2: resp ~ varb + level:(nsloc + ewloc) + hdct * pop - pop

Model 3: resp ~ varb + level:(nsloc + ewloc) + hdct * pop

Model 4: resp ~ varb + level:(nsloc + ewloc) + level * pop

Model Df Model Dev Df Deviance P(>|Chi|)

1 15 -2721.0

2 21 -2693.1 6 27.876 9.916e-05 ***

3 27 -2678.4 6 14.722 0.022533 *

4 33 -2661.0 6 17.398 0.007925 **

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

It is hard to know what lesson to draw from this. Presumably since all
three �large� models �t about equally well, none of them �t as well as the
corresponding unconditional models (we see from the analysis in the preceding
section). But since conditional and unconditional models are not nested, we
cannot use standard likelihood ratio test methodology to test this. (So we
have no clear lesson here, but leave it in to not hide anything).

Conditional Parameter

Let us redo Figure D.2 now not changing the model (we still use the �ts
out6 and out8) but changing the thingummy we �predict�. In Figure D.2 we
�predict� a linear functional A′τ of the unconditional mean value parameter
(the sum of three components of τ , those for �ower head count). In Fig-
ure D.4 we predict the same linear functional A′ξ of the conditional mean
value parameter ξ.

> pxout6 <- predict(out6, varvar = varb, idvar = id, root = root,

+ newdata = renewdata, se.fit = TRUE, amat = amat, model.type = "conditional")

> pxout8 <- predict(out8, varvar = varb, idvar = id, root = root,

+ newdata = renewdata, se.fit = TRUE, amat = amat, model.type = "conditional")

Note that these are exactly like the analogous statements making
the analogous objects without the �x� in their names except for the
model.type = "conditional" arguments in the two predict function calls.
Then we make Figure D.4 just like Figure D.2 except for using pxout6 and
pxout8 instead of pout6 and pout8. It appears on p. 53.

Note the huge di�erence between Figure D.2 and Figure D.4. The same
models are used in both cases but in one case (Figure D.2) we �predict� a
linear functional A′τ of the unconditional mean value parameter (τ ) and in
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Figure D.4: 95% con�dence intervals for conditional mean value parameter
for �tness (sum of head count for all years) at each population for a �typical�
individual having position zero-zero and having the parameterization of Model
Eight (solid bar) or Model Six (dashed bar). Tick marks in the middle of
the bars are the center (the MLE). The di�erence between this �gure and
Figure D.2 is that the parameters �predicted� are conditional rather than
unconditional.
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the other case (Figure D.4) we �predict� the same linear functional A′ξ of the
conditional mean value parameter (ξ).

Conclusion: conditional expectations and unconditional expectations are
di�erent. (Duh!) The two sorts of predictions can't be made to do the same
thing.

D.4 Plot for the Paper

We redo Figure D.2 changing the models compared to Model 8 and
Model 10 (�ts in out8 and out10).

> pout10 <- predict(out10, varvar = varb, idvar = id, root = root,

+ newdata = renewdata, se.fit = TRUE, amat = amat)

It appears on p. 55.
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Figure D.5: 95% con�dence intervals for unconditional mean value parameter
for �tness (sum of head count for all years) at each population for a �typical�
individual having position zero-zero and having the parameterization of Model
Eight (solid bar) or Model Ten (dashed bar). Tick marks in the middle of the
bars are the center (the MLE).
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Appendix E

Canonical Parameter Spaces of
Aster Models

E.1 Basic Exponential Family Theory

The Laplace transform of a positive measure λ on RJ is (Barndor�-Nielsen,
1978, Chapter 7) the function c : RJ → (0,∞] de�ned by

c(ϕ) =

∫
e〈x,ϕ〉λ(dx).

(note that the value +∞ is allowed so the function is de�ned for all ϕ). A
log Laplace transform is both convex and lower semicontinuous (Barndor�-
Nielsen, 1978, Theorem 7.1). This implies that

Φ = {ϕ ∈ RJ : c(ϕ) <∞}

is a convex set.
The full standard exponential family generated by λ is the family

P = {Pϕ : ϕ ∈ Φ }

where Pϕ is the distribution having density with respect to λ de�ned by

fϕ(x) =
1

c(ϕ)
e〈x,ϕ〉, ϕ ∈ Φ

(Barndor�-Nielsen, 1978, Chapter 8). The moment generating function of Pϕ
is de�ned by

Mϕ(t) =

∫
e〈x,t〉Pϕ(dx) =

c(ϕ+ t)

c(ϕ)

From this we see that a Laplace transform is just like a moment generating
function, except for a general positive measure λ instead of for a probability
measure Pϕ.
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The cumulant generating function is the log of the moment generating
function. Its derivatives evaluated at t = 0 are the cumulants of the distri-
bution (the �rst two are mean and variance). Since the derivatives of logMϕ

evaluated at t = 0 are the same as the derivatives of ψ = log c evaluated at
ϕ, we call ψ the cumulant function of the family.

It is sometimes convenient to choose for the dominating measure of the
family (λ in our original notation) one of the distributions in the family, a Pϕ∗

for some ϕ∗ ∈ Φ. We need to see what that does to our original formulation
with λ as the dominating measure.

The density of Pϕ with respect to Pϕ∗ is just the ratio of their densities
with respect to λ

gϕ(x) =
fϕ(x)

fϕ∗(x)
=
c(ϕ∗)

c(ϕ)
e〈x,ϕ−ϕ

∗〉 (E.1)

and we see that the Laplace transform for this �new� family is c(ϕ)/c(ϕ∗)
and the cumulant function is ψ(ϕ)− ψ(ϕ∗).

E.2 Exponential Family Theory Applied to Aster

Models

E.2.1 Cumulant Function and Full Canonical Parameter

Space

This appendix investigates what happens when the canonical parameter
spaces of an aster model are not all of Rd. The full conditional canonical
parameter space is a Cartesian product

Θ =
∏
j∈J

Θj

where Θj is the full canonical parameter space of the conditional one-
parameter exponential family model at the j-th node (which has cumulant
function ψj), the set

Θj = { θ ∈ R : ψj(θ) <∞}.

Let Pθ,j be the conditional probability measure of the j-th family. So the
joint distribution is

Pθ(dx) =
∏
j∈J

Pθj ,j(dxj | xp(j)).

Fix θ∗ ∈ Θ and let ϕ∗ be the corresponding unconditional canonical
parameter found by applying the map (1.5) to θ∗. Write ϕ = ϕ∗ + δ for a
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general unconditional canonical parameter. The Laplace transform (which in
this case is also a moment generating function) of Pϕ∗ is∫

e〈x,δ〉Pϕ∗(dx) = exp
(
ψ(ϕ∗ + δ)− ψ(ϕ∗)

)
, (E.2)

which agrees with the analysis in (E.1). Now we de�ne the full canonical
parameter space

Φ = {ϕ ∈ RJ : ψ(ϕ) <∞}

(we are using the original parameter ϕ instead of the �new� parameter δ).
It stands to reason that Φ is just the set of points obtained by mapping Θ
through the change of parameter de�ned by (1.5). The whole point of this
appendix is to show that what seems obvious actually is obvious.

E.2.2 Leaf Nodes

For j a leaf node, the only part of the integral in (E.2) involving xj is∫
exjδjPθ∗j ,j(dxj | xp(j)).

Now from the uniparameter case of the exponential family theory embodied
in (E.2) we see that∫

exjδjPθ∗j ,j(dxj | xp(j) = 1) = exp
(
ψj(θ

∗
j + δj)− ψj(θ∗j )

)
,

from which it follows from the multiplication rule for moment generating
functions and the structure of aster models that∫

exjδjPθ∗j ,j(dxj | xp(j)) = exp
(
xp(j)[ψj(θ

∗
j + δj)− ψj(θ∗j )]

)
. (E.3)

This is �nite if and only if

ϕj = θj = θ∗j + δj = ϕ∗j + δj ∈ Θj

in short if

ϕj = θj ∈ Θj .

So that is the �niteness condition for leaf nodes. The part of the integral
(E.2) that pertains to θj and ϕj has the �obvious� condition for being �nite.
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E.2.3 Non-Leaf Nodes

Now consider a non-leaf node j whose children are all leaf nodes. After
integrating out the xm for all child nodes m, as above, the only part of the
integral in (E.2) that contains xj is∫

exp

xj
δj +

∑
m∈S(j)

(
ψm(θm)− ψm(θ∗m)

)Pθ∗j ,j(dxj | xp(j)) (E.4a)

where we have written θm = ϕm = θ∗m + δm for the m, all of which are leaf
nodes. We also write ϕj = ϕ∗j + δj and note that from (1.5) we have

ϕ∗j + δj +
∑

m∈S(j)

ψm(θm) = ϕj +
∑

m∈S(j)

ψm(θm) = θj

and similarly

ϕ∗j +
∑

m∈S(j)

ψm(θ∗m) = θ∗j

so the term in large square brackets in (E.4a) is just θ∗j − θj . Hence (E.4a) is∫
exp

(
xj
[
θ∗j − θj

])
Pθ∗j ,j(dxj | xp(j)) = exp

(
xp(j)[ψj(θj)− ψj(θ∗j )]

)
. (E.4b)

and we see that (E.4a) and (E.4b) say exactly the same thing as (E.3).
However, the implication about �niteness of bits of (E.2) is a bit di�erent

than the case for leaf nodes. Now we have that

θj ∈ Θj

is the �niteness condition for the term on the right hand side of (E.4b) (no
surprise there) and that translates to the following about ϕj . Since

θj = ϕj +
∑

m∈S(j)

ψm(θm)

the �niteness condition for this section is

ϕj ∈ Θj −
∑

m∈S(j)

ψm(θm). (E.5)

E.2.4 All Nodes by Mathematical Induction

Now assume (the induction hypothesis) that

∫
exp

xj
δj +

∑
m∈S(j)

(
ψm(θm)− ψm(θ∗m)

)Pθ∗j ,j(dxj | xp(j))

= exp
(
xp(j)[ψj(θj)− ψj(θ∗j )]

)
. (E.6)
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As we have seen, this holds for all of the nodes we have examined so far. But
then we see that by the argument in the preceding section that if (E.6) holds
for all children (successors) of a node, then it holds for the node itself.

Thus (E.5) is the �niteness condition for all nodes, including leaf nodes
for which S(j) is the empty set.

Hence Φ is indeed the image of Θ under the map (1.5). And the argument
did turn out to be �obvious�.

E.2.5 Convexity

The only non-obvious fact in this whole appendix is that hence Φ must
be a convex set (like all full canonical parameter spaces). Moreover, since
the map (1.5) is a di�eomorphism (both it and its inverse are di�erentiable)
between the interiors of Θ and Φ, it follows that Θ and Φ are both open sets
or both not open.

E.2.6 Regularity

The important special case where the full canonical parameter space is
an open set is called regular (the family is a regular exponential family)
(Barndor�-Nielsen, 1978, p. 116). They are the most well-behaved with re-
spect to maximum likelihood (no boundaries of the parameter space to worry
about).

Since Θ is open if and only if each Θj is, we see that the full �at exponential
family (with the unconditional canonical parameterization) is regular if and
only if each one-parameter conditional family is regular.

E.2.7 Steepness

A full exponential family is steep (Barndor�-Nielsen, 1978, p. 117) if given
ϕi in the interior of Φ and ϕb on the boundary of Φ, then

〈∇ψ
(
tϕi + (1− t)ϕb

)
,ϕb −ϕi〉 → ∞, as t ↓ 0.

Clearly this carries over to any �at subfamily (formed by intersecting the full
canonical parameter space Φ with an a�ne subspace). The subfamily is steep
if the full family is. Thus we concentrate on the full (FEF) family only.

An equivalent (if and only if) condition for steepness is that the MLE
map x 7→ ϕ̂(x) is one-to-one and is found by solving the �likelihood equa-
tions� which have �observed equals expected� form, as in equation (??) and
the preceding unnumbered equation (Barndor�-Nielsen, 1978, Theorem 9.14,
Corollary 9.6 and their surrounding discussion).

Yet another equivalent (if and only if) condition for steepness is that the
mean value parameterization map, ∇ψ : ϕ 7→ τ in aster model notation,
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maps the interior of the full canonical parameter space Φ onto the interior of
the closed convex support of the canonical statistic (Barndor�-Nielsen, 1978,
pp. 117, 142, and 152).

Let aj and bj be the endpoints (possibly in�nite) of the full mean-value
parameter space of the one-parameter exponential family for the j-th node.
The endpoints themselves may or may not be in the mean-value parameter
space

{ψ′j(θ) : θ ∈ Θj }

but the closed convex support of the j-th one-parameter exponential family
is the closed interval R ∩ [aj , bj ] if this j-th family is steep (the point of the
R ∩ is to omit −∞ and +∞ if either aj = −∞ or bj = +∞).

Clearly from equation (1.12) the closed convex support of Xj in the FEF
is the closed interval

R ∩

Xif(j)

∏
m∈J

j�m≺f(j)

am, Xif(j)

∏
m∈J

j�m≺f(j)

bm

 . (E.7)

It is clear also that as θ runs over the interior of Θ the mean value parameter
τ (θ) runs over the interior of (E.7). Hence if each of the one-parameter
exponential families is steep, then the FEF of an aster model is steep.

E.3 Conclusions

This whole appendix is (in hindsight) �obvious.� What we have learned
is that what we thought was obvious is indeed obvious and there is no prob-
lem with maximum likelihood in an aster model if each of the one-parameter
exponential families is regular or steep. Moreover, we have learned that the
canonical parameter space of the FEF is convex (like every full canonical pa-
rameter space of every full exponential family) something that is �obvious�
only from exponential family theory and not from looking at the de�nition of
the map (1.5) between conditional and unconditional canonical parameteri-
zations.
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