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Abstract

This technical report (TR) gives details of the data analyses backing up a paper
(Shaw, et al., submitted) having the same authors as this TR and having the title that
is quoted in the title of this TR There are three data sets. The �rst data set (Example 1
in the paper, Chapter 2 in this TR) is new, coming from Stuart Wagenius's group, and
involves the perennial plant Echinacea angustifolia (narrow leaved purple cone�ower).
The second data set (Example 2 in the paper, Chapters 3 and 4 in this TR) has been
previously analyzed (Etterson and Shaw, 2001; Etterson, 2004) and involves annual
plant Chamaecrista fasciculata (partridge pea). The third data set (Example 3 in the
paper, Chapter 5 in this TR) has been previously analyzed (Lenski and Service, 1982)
and involves the insect Uroleucon rudbeckiae (brown ambrosia aphid).

All analyses are done in R (R Development Core Team, 2006), all using the aster

contributed package, described by Geyer, et al. (2007) except for the analyses in the style
of Lande and Arnold (1983), which use ordinary least squares regression. All analyses
are done using the Sweave function in R, so that they are completely reproducible by
anyone who has R with the aster package installed and LATEX.
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Chapter 1

Recreating this Document

1.1 Obtaining R and the Package

This document was created using the aster contributed package for the R statistical
computing environment (R Development Core Team, 2006). It requires version 0.7-2 or
later of the aster package, because that was the �rst version that includes the datasets
used for the analyses in this document.

If the aster package has not yet been installed in your R installation, the R command

install.packages("aster")

will do this. One can also do the equivalent using the GUI menus if on Apple Macintosh or
Microsoft Windows. This may require root or administrator privileges.

After installation one issues the R command

> library(aster)

to use this package. One can also install the package in a nonstandard location (in one's
home directory), but this requires changing the usage of the library function, and we do
not explain this.

If the aster package has been installed in your R installation, but is not the current
version on CRAN, the R command

update.packages("aster")

will upgrade to the current version.
If R has not been installed, follow the instructions on CRAN (http://cran.r-project.

org/).
The version of R used to make this document is 4.3.2.
The version of the package used to make this document is 1.1-3.

1.2 Obtaining LaTeX

The Sweave command in R produces LATEX output. To process it, you need the LATEX
document preparation system. If you are using Linux, this is probably just came with it.
Free versions of LATEX are also available for Apple Macintosh and Microsoft Windows.
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1.3 Obtaining Files

Download from the aster web site http:www.stat.umn.edu/geyer/aster the following
�les

tr658.tex

start.Rnw

newnew.Rnw

chamae2.Rnw

chamae.Rnw

aphids.Rnw

chamae2-alpha.rda

chamae-alpha.rda

and put them all in the same directory (�folder� in GUI-speak).

1.4 Creating the Document

1.4.1 Sweave

Start R, make the director (folder) with the �les the current working directory (there is
a menu item on the R GUI for this) and use the Sweave command on each of the �les with
su�x Rnw, that is,

Sweave("start.Rnw")

Sweave("newnew.Rnw")

Sweave("chamae2.Rnw")

Sweave("chamae.Rnw")

Sweave("aphids.Rnw")

Some of these, especially chamae.Rnw take a while. Each �chunk� processed is reported
so you can see something is happening, but there is at least one chunk that takes several
minutes.

1.4.2 LaTeX

When all of these have been done, the R commands in the �les with su�x Rnw have
been executed and the results, both text output and image �les containing plots have been
produced. There will be new �les with su�xes tex, eps, and pdf.

Now running the latex command on the top-level �le tr658.tex will produce the docu-
ment. On Linux just execute either of

latex tr658

pdflatex tr658

at the Linux command line to produce the document. It will be necessary to run these
several times (until one no longer sees the message �Label(s) may have changed. Rerun to
get cross-references right�) to get all cross-references right.
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1.4.3 Stangle

For those who do not want to mess with LATEX, the Stangle function can be used instead
of Sweave.

Stangle("newnew.Rnw")

Stangle("chamae2.Rnw")

Stangle("chamae.Rnw")

Stangle("aphids.Rnw")

will produce the �les

newnew.R

chamae2.R

chamae.R

aphids.R

that contain only the R commands (the code �chunks�) from the �les with su�x Rnw. They
can then be sourced, run in batch mode, whatever the user pleases.

1.4.4 The Role of the RDA Files

The two �les having su�x rda are R data (RDA) �les. One contains one �magic� number;
the other contains two of them.

> rm(list = ls())

> load("chamae2-alpha.rda")

> ls()

[1] "alpha.fruit"

> alpha.fruit

[1] 2.46

> rm(list = ls())

> load("chamae-alpha.rda")

> ls()

[1] "alpha.fruit" "alpha.seed"

> alpha.fruit

[1] 2.48

> alpha.seed

[1] 16.18
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These are shape parameters for negative binomial distributions used in Chapters 3 and 4.
These RDA �les are read near the beginning of these chapters. New values of these param-
eters are calculated by maximum likelihood in Sections 3.8 and 4.7 near the end of those
chapters, and the new values are written out to the RDA �les (clobbering the old values).

Thus these RDA �les must exist in order to run Sweave. If one were to create these �le
with di�erent numbers other than the ones provided, it might take several runs

Sweave("chamae2.Rnw")

Sweave("chamae.Rnw")

for the values written out at the end to converge to these values.

1.5 Reproducible Research

�Reproducible research� is a buzzphrase (Buckheit and Donoho, 1995; Gentleman and
Temple Lang, 2004) that describes a simple basic idea. The following is quoted from the
web page http://www.stat.umn.edu/~charlie/Sweave.

It's the scienti�c ideal.

� Research should be reproducible. Anything in a scienti�c paper should be
reproducible by the reader.

� Whatever may have been the case in low tech days, this ideal has long
gone. Much scienti�c research in recent years is too complicated and the
published details to scanty for anyone to reproduce it.

� The lack of detail is not entirely the author's fault. Journals have severe
page pressure and no room for full explanations.

� For many years, the only hope of reproducibility is old-fashioned person-
to-person contact. Write the authors, ask for data, code, whatever. Some
authors help, some don't. If the authors are not cooperative, tough.

� Even cooperative authors may be unable to help. If too much time has gone
by and their archiving was not systematic enough and if their software was
unportable, there may be no way to recreate the analysis.

� Fortunately, the internet comes to the rescue. No page pressure there!

� Nowadays, many scienti�c papers also point to supplementary materials on
the internet, either at the journal's or the author's web site. It doesn't
matter so long as the material is permanently available. Data, computer
programs, whatever should be there.

But even more, the entire analysis should be reproducible. In real science,
this is hard. Redoing all the chemistry, or all the �eld work, or whatever is
asking a lot.

But in mathematical and computing sciences, like statistics, reproducibility
is perfectly possible. It only takes will and knowledge to do it.

The R Sweave function, created by Friedrich Leisch (Leisch, 2002a,b), is very useful for
reproducible research.

This technical report and the paper Shaw, et al. (submitted) are an example.
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Chapter 2

Comparison of Fitness Among Groups

2.1 Introduction

Data were collected on Echinacea angustifolia. These data are in the echin2 dataset
in the aster contributed package to the R statistical computing environment. The data
set is based on 557 Echinacea angustifolia plants that were planted as sprouts in a growth
chamber. Seedling survivors were then transplanted to an experimental garden.

The components of �tness are the variables in the graphical model shown in Figure 2.1.

All response variables are collected in the response vector resp in the data frame echin2.
Components of the response vector corresponding to the same individual have the same value
of the id variable in echin2. Components of the response vector corresponding to the same
node of the graphical model (to the same �original variable�) have the same value of the
varb variable in echin2. The levels of varb, the �original variables� are as follows.

Variables ldsi measure survival of individuals in a growth chamber (periods are months).
Variables ld0i measure survival of individuals in an experimental �eld plot after transplant-
ing (periods are years). Variables r0i count number of rosettes (basal leaf clusters), which
are a surrogate of �tness. The names use here are shortened from those in the dataset
where they are roct200i. Individuals resulted from crosses in which (a) mates were from
di�erent remnant populations, (b) mates were chosen at random from the same remnant, or
(c) mates shared their maternal parent (variable crosstype). Other variables in the data
set measure location in the growth chamber (flat) or in the �eld plot (posi and row) and
year of crossing (1999 or 2000, variable yearcross).

This data set was challenging because the covariate flat only makes sense in relation
to response variables in the growth chamber (ldsi) and the covariates posi and row only
make sense in relation to response variables in the �eld plot (ld0i and r0i). The R formula
mini-language is not designed to handle this sort of situation. Thus model matrices must
be constructed �by hand.�

Growth chamber is incorrectly referred to as �greenhouse� in the rest of this chapter.

2.2 Data

Load the data. Look at number of variables, their names and types.
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Figure 2.1: Graph for Echinacea angustifolia data. Arrows go from one life history com-
ponent to another indicating conditional dependence in the aster model. Nodes are labeled
by their associated variables. Root nodes are associated with the constant variable 1, indi-
cating presence of individuals at the outset. If any parent variable is zero, then the child
variable is also zero. Child variables are conditionally independent given the parent variable.
If a parent variable is nonzero, then the conditional distribution of the child variable is as
follows. ldsi and ld0i are (conditionally) Bernoulli (zero indicates mortality, one indicates
survival) and r0i is (conditionally) zero-truncated Poisson.

> library(aster)

> data(echin2)

> names(echin2)

[1] "crosstype" "yearcross" "flat" "row" "posi"

[6] "varb" "resp" "id" "root"

> levels(echin2$varb)

[1] "ld01" "ld02" "ld03" "ld04" "ld05"

[6] "lds1" "lds2" "lds3" "roct2003" "roct2004"

[11] "roct2005"

2.3 Set Up Aster Model

> vars <- c("lds1", "lds2", "lds3", "ld01", "ld02", "ld03", "roct2003", "ld04",

+ "roct2004", "ld05", "roct2005")

> pred <- c(0,1, 2, 3, 4, 5, 6, 6, 8, 8, 10)

> fam <- c(1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3)

> fam.default()[fam]

[[1]]

[1] "bernoulli"

[[2]]

[1] "bernoulli"

[[3]]

[1] "bernoulli"

6



[[4]]

[1] "bernoulli"

[[5]]

[1] "bernoulli"

[[6]]

[1] "bernoulli"

[[7]]

[1] "truncated.poisson(truncation = 0)"

[[8]]

[1] "bernoulli"

[[9]]

[1] "truncated.poisson(truncation = 0)"

[[10]]

[1] "bernoulli"

[[11]]

[1] "truncated.poisson(truncation = 0)"

Variable vars gives the names of the variables in the data that are components of the aster
response vector. Variable pred gives the graphical model: pred[i] gives the index of the
parent variable of variable i or zero if the parent is a root node. Variable fam speci�es
families. The original numeric code, now superseded, is 1 = Bernoulli, 2 = Poisson, 3 =
zero-truncated Poisson. For backwards compatibility, these three models are still speci�ed
by the new function fam.default.

Count individuals and nodes

> nind <- length(unique(echin2$id))

> nnode <- length(levels(echin2$varb))

2.4 Hand Crafted Model Matrices

2.4.1 Aster Models

We construct model matrices (which are really three-way arrays in aster) by hand. The
sad fact is that the R formula mini-language hardly quali�es as a language. It has minimal
syntax and very little generality. It is just not up to specifying the models we want to �t.

However every aster model � a canonical a�ne model, as the accepted version of the
Biometrika paper calls it � is speci�ed by having an a�ne predictor of the form

η = a+Mβ (∗)

7



which is equation (8) in the paper with the left-hand side, which is ϕ in the paper, replaced
by η, which is our notation for a general canonical parameter (either unconditional ϕ or
conditional θ, as the case may be). In this document we are using unconditional models so
we could have left (8) as it is in the paper with the canonical parameter denoted ϕ, but we
strive for generality.

Equation (∗) is a vector equation. Variable η is a vector whose length is the total number
of nodes in the whole graph. The notion of the graph changed from the �rst draft of the
paper to the third in response to the referee's comments. In the �rst draft (and this is what
the aster package still implements). The graph speci�ed by the vector pred has, call it
nnode nodes. But this graph is repeated for, call it nind individuals. In the second and
third drafts of the paper, individuals are invisible. The graph new sense is nind identical
copies of the old-sense graph. Hence the new sense graph has nind * nnode nodes. The
reasons for this change are two: there is no reason for the restriction to identical copies,
the theory working perfectly well when individuals have di�erent graphs and the combined
graph is whatever it is, and the notation is simpler, the model matrices really being three-
way arrays no longer being necessary (model matrices are really matrices in the version to
appear in Biometrika, but the aster package is still stuck in the old notation).

Now (∗), which is new sense, is a vector equation, so the dimension of each term must
have dimension nind * nnode. That means η has this dimension, so does the known �origin�
vector a, and so does the termMβ, which is a matrix multiplication, M being a matrix, the
model matrix and β being a vector of regression coe�cients. Say the length of β is ncoef.
Then the row dimension ofM must be nind * nnode and the column dimension ofM must
be ncoef.

We do not have to worry about specifying the �origin� vector a. Usually M contains a
in its range space and that means that the �tted mean value parameters do not depend on
a, although the regression coe�cients themselves are di�erent, yet another reason regression
coe�cients are meaningless.

Our job is to construct the M that speci�es the model we want. The R formula mini-
language does this automagically in simple cases. In cases too complicated for the stupid
computer to understand (and the R formula mini-language has only rudimentary knowledge
of statistical modeling), we have to just do it ourselves.

After we have constructed the new sense model matrix M , then we must reshape it to
use it with the aster function. With nind, nnode, and ncoef de�ned as above, the following
code

mold <- array(as.numeric(mnew), c(nind, nnode, ncoef))

does this reshaping, turning the new sense model matrix mnew, which is really a matrix, into
the old sense model matrix mold, which is really a three way array. For each k, the column
mnew[ , k] of the new sense model matrix corresponding to one regression coe�cient (one
�predictor vector� in the regression jargon) corresponds to a matrix mold[ , , k] which
has dimension nind by nnode.

Our strategy will be to work with new sense model matrices, since they are simpler, being
really honest-to-God matrices, and since they correspond to the paper to appear anyway.
Only at the end, just before they are fed into the aster function, will we reshape them to
three-way arrays.

We also need to reshape the data (response and root) in the same fashion
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> x <- echin2$resp

> dim(x) <- c(nind, nnode)

> r <- 0 * x + 1

2.4.2 Constructing One Model Matrix

Aster model matrices are just like any other model matrix used in regression. Theoreti-
cally they can be any matrix of the required dimension. In practice, they often have many
columns that are zero-or-one valued. The columns that are zero-or-one valued are often
called �dummy� predictor variables. Their e�ect is to add a constant, the corresponding
regression coe�cient βk to the a�ne predictor ηi for the individuals having a one in mik.
So this just puts in an additive term for individuals in a certain class (the class indicated
by the dummy variable thought of as an indicator variable).

We have just one quantitative variable posi. Everything else is qualitative and corre-
sponds to one or more dummy variables.

One Categorical Variable

We start building the model matrix for the largest model we will consider (call it the
�supermodel�) as follows.

> modmat.super <- NULL

> names.super <- NULL

> for (i in levels(echin2$varb)) {

+ modmat.super <- cbind(modmat.super, as.numeric(echin2$varb == i))

+ names.super <- c(names.super, i)

+ }

It is a standard S trick to start a recursion with an empty object NULL, which will act as a
vector with no elements or a matrix with no columns. Each trip through the loop adds one
column to the model matrix and a corresponding label to what will eventually be the column
names for the model matrix. Note that we don't bother to construct regression coe�cient
labels that are exactly the same as those constructed by the R formula mini-language. Those
are ridiculously verbose, done by a computer that is really very stupid. If anyone doesn't
like these labels, they can just change the way names.super is de�ned.

Here we add one dummy variable for each element of

> levels(echin2$varb)

[1] "ld01" "ld02" "ld03" "ld04" "ld05"

[6] "lds1" "lds2" "lds3" "roct2003" "roct2004"

[11] "roct2005"

what we usually call the response variables, but that terminology does not �t well with aster
terminology, which says there are really nrow(echin2) or nind * nnode response variables.
Whatever we call them, we have now added one dummy variable for each one of them. Thus
each of these will have an independently �tted level (since each corresponds to a dummy
variable).
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A De�nition

Next we de�ne an indicator variable that indicates being in the greenhouse.

> in.greenhouse <- is.element(echin2$varb,

+ grep("lds", levels(echin2$varb), value = TRUE))

> print(unique(echin2$varb[in.greenhouse]), max.levels = 0)

[1] lds1 lds2 lds3

> print(unique(echin2$varb[! in.greenhouse]), max.levels = 0)

[1] ld01 ld02 ld03 roct2003 ld04 roct2004

[7] ld05 roct2005

Another Categorical Variable

Now we have another loop that adds one column per trip through the loop.

> for (i in levels(echin2$flat))

+ if (i > "1") {

+ modmat.super <- cbind(modmat.super,

+ as.numeric(in.greenhouse & echin2$flat == i))

+ names.super <- c(names.super, paste("flat", i, sep = ""))

+ }

Here we add one column for each of

> levels(echin2$flat)

[1] "1" "2" "3"

that are greater than "1" in the sort order.
The reason for dropping one of the dummy variables is well known and taught in every

regression class. The vector sum of all dummy variables corresponding to one categorical
variable (in this case echin2$varb) is a vector of all ones, since each observation falls in
exactly one category.

Since the same holds for every categorical variable, we must do one of the following in
order to construct a model matrix that is not rank de�cient.

� Drop one dummy variable from each group of dummy variables corresponding to one
categorical variable. Then add a dummy variable corresponding to no categorical
variable that is a column of all ones, a so-called �intercept� dummy variable.

� Drop one dummy variable from each group of dummy variables corresponding to one
categorical variable, except for one group for which we keep them all.

Here we follow the latter strategy. We have no �intercept� and do not drop any of the dummy
variables made in the �rst loop, but drop one from each loop thereafter.

Note that we do deal with the in-and-out-of-greenhouse issue explicitly and hence do
what is obviously the Right Thing. The dummy variables we construct have a one if and
only if the item in question has in.greenhouse equal to TRUE and echin2$flat equal to
the value we are constructing a dummy variable for.
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Yet Another Categorical Variable

Now we have another loop that adds one column per trip through the loop.

> for (i in levels(echin2$row))

+ if (i > "10") {

+ modmat.super <- cbind(modmat.super,

+ as.numeric((! in.greenhouse) & echin2$row == i))

+ names.super <- c(names.super, paste("row", i, sep = ""))

+ }

Here we add one column for each of

> levels(echin2$row)

[1] "0" "10" "11" "12" "13"

that are greater than "10" in the sort order.

This is very similar to the preceding loop except the level "0" is both bogus, a forlorn
attempt to deal with the in-and-out of greenhouse issue. We must drop one dummy variable
besides the bogus one.

Again we deal with the in-and-out-of-greenhouse issue explicitly and obviously do the
Right Thing. The dummy variables we construct have a one if and only if the item in
question has in.greenhouse equal to FALSE and echin2$row equal to the value we are
constructing a dummy variable for.

And Another Categorical Variable

Now we have another loop that adds one column per trip through the loop.

> for (i in levels(echin2$yearcross))

+ if (i >= "2000") {

+ modmat.super <- cbind(modmat.super, as.numeric(echin2$yearcross == i))

+ names.super <- c(names.super, paste("yc", i, sep = ""))

+ }

Here we add one column for each of

> levels(echin2$yearcross)

[1] "1999" "2000"

that are greater than or equal to "2000" in the sort order.

This is very similar to the preceding loops, but simpler. There is no bogus level to
deal with and there is no in-and-out-of-greenhouse issue. The fact that the body of the
if statement only executes once and we only add one dummy variable (one column of the
model matrix) is not a problem. It just works.
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Finally, a Quantitative Variable

No loop is needed to construct a predictor variable that is quantitative. We just make
it a column of the model matrix.

> modmat.super <- cbind(modmat.super, as.numeric(! in.greenhouse) * echin2$posi)

> names.super <- c(names.super, "posi")

We do have to deal with the in-and-out-of-greenhouse issue. The Right Thing is to make
the quantitative variable zero when it has no e�ect, because that makes zero contribution
to the canonical parameter, which is obviously what is wanted.

One might think that this �locates� all the in-greenhouse variables at posi equal to zero,
but this is an illusion. The other dummy variables that in-greenhouse variables have give
them independently �tted levels (corresponding to their regression coe�cients), so there is
no problem.

Interaction of Crosstype and Final Response in the Field

We have another loop that adds, again one column per trip through the loop.

> for (i in levels(echin2$crosstype))

+ if (i > "W") {

+ modmat.super <- cbind(modmat.super, as.numeric(echin2$crosstype == i &

+ echin2$varb == "roct2005"))

+ names.super <- c(names.super, paste("cross", i, sep = ""))

+ }

Here we add one column for each of

> levels(echin2$crosstype)

[1] "Br" "Wi" "Wr"

that are greater than "W" in the sort order.

Here we do something very tricky, only the same sort of trickiness involved in the - pop

in the model formulae in the Biometrika, but even that was clear as mud, and when combined
with the in-and-out-of-greenhouse issue, the R formula mini-language is just not up to the
task.

The dummy variable(s) we add, 2 of them, have a one if and only if the item in question
has echin2$varb equal to "roct2005" and echin2$crosstype equal to the value we are
constructing a dummy variable for.

Interaction of Crosstype and Final Response in the Greenhouse

The columns we add here are just like those added in the preceding section except they
involve the last greenhouse variable.
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> for (i in levels(echin2$crosstype))

+ if (i > "W") {

+ modmat.super <- cbind(modmat.super, as.numeric(echin2$crosstype == i &

+ echin2$varb == "lds3"))

+ names.super <- c(names.super, paste("crossgreen", i, sep = ""))

+ }

2.4.3 Reshape This Matrix

> nodename <- unique(as.character(echin2$var))

> modmat.super <- array(as.vector(modmat.super), c(dim(x), length(names.super)))

> dimnames(modmat.super) <- list(NULL, nodename, names.super)

The array function constructs arrays. We now assign appropriate dimnames using the
names.super that we constructed as we constructed the matrix.

2.4.4 Extract Submatrices

Now we extract three submatrices of this supermodel matrix: one having only the �eld-
crosstype e�ect, one having only the greenhouse-crosstype e�ect, and one having neither.

> ifield <- grep("crossW", names.super)

> names.super[ifield]

[1] "crossWi" "crossWr"

> igreen <- grep("crossgreenW", names.super)

> names.super[igreen]

[1] "crossgreenWi" "crossgreenWr"

> modmat.field <- modmat.super[ , , -igreen]

> modmat.green <- modmat.super[ , , -ifield]

> modmat.sub <- modmat.super[ , , -c(ifield, igreen)]

2.5 Model Fits and Hypothesis Tests

2.5.1 Fit Models

Fit aster models. Although it is not obvious from the syntax, the function aster is
generic with two methods aster.formula and aster.default. If the �rst argument is a
formula the former is used. If not, as here, the latter is used.

> out.sub <- aster(x, r, pred, fam, modmat.sub)

> summary(out.sub)
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Call:

NULL

Estimate Std. Error z value Pr(>|z|)

ld01 0.79675 0.27149 2.935 0.003338 **

ld02 0.97698 0.24674 3.959 7.51e-05 ***

ld03 2.34798 0.37897 6.196 5.81e-10 ***

ld04 2.24919 0.39090 5.754 8.73e-09 ***

ld05 3.60101 0.27798 12.954 < 2e-16 ***

lds1 -0.55897 0.40883 -1.367 0.171554

lds2 0.90860 0.49505 1.835 0.066453 .

lds3 1.81132 0.39792 4.552 5.31e-06 ***

roct2003 -2.23956 0.20443 -10.955 < 2e-16 ***

roct2004 -1.13113 0.11786 -9.597 < 2e-16 ***

roct2005 -0.37779 0.08139 -4.642 3.45e-06 ***

flat2 -0.23666 0.13477 -1.756 0.079096 .

flat3 0.25855 0.18589 1.391 0.164262

row11 0.14098 0.03587 3.930 8.50e-05 ***

row12 0.11678 0.03450 3.385 0.000711 ***

row13 0.12177 0.03408 3.573 0.000353 ***

yc2000 -0.05429 0.02831 -1.918 0.055170 .

posi -0.31281 0.06909 -4.527 5.97e-06 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> out.field <- aster(x, r, pred, fam, modmat.field)

> summary(out.field)

Call:

NULL

Estimate Std. Error z value Pr(>|z|)

ld01 0.77621 0.27149 2.859 0.004248 **

ld02 0.95652 0.24676 3.876 0.000106 ***

ld03 2.32696 0.37898 6.140 8.25e-10 ***

ld04 2.22832 0.39098 5.699 1.20e-08 ***

ld05 3.67920 0.27981 13.149 < 2e-16 ***

lds1 -0.57777 0.40893 -1.413 0.157693

lds2 0.88916 0.49509 1.796 0.072498 .

lds3 1.79129 0.39796 4.501 6.76e-06 ***

roct2003 -2.25932 0.20455 -11.045 < 2e-16 ***

roct2004 -1.15086 0.11808 -9.747 < 2e-16 ***

roct2005 -0.28183 0.08575 -3.287 0.001014 **

flat2 -0.24194 0.13516 -1.790 0.073443 .

flat3 0.26025 0.18634 1.397 0.162510
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row11 0.14506 0.03631 3.995 6.47e-05 ***

row12 0.12226 0.03528 3.465 0.000530 ***

row13 0.11932 0.03455 3.453 0.000554 ***

yc2000 -0.02960 0.02895 -1.022 0.306616

posi -0.32096 0.06986 -4.594 4.34e-06 ***

crossWi -0.65270 0.14628 -4.462 8.12e-06 ***

crossWr -0.10687 0.13935 -0.767 0.443123

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> out.green <- aster(x, r, pred, fam, modmat.green)

> summary(out.green)

Call:

NULL

Estimate Std. Error z value Pr(>|z|)

ld01 0.78859 0.27151 2.904 0.003678 **

ld02 0.96886 0.24677 3.926 8.63e-05 ***

ld03 2.33927 0.37897 6.173 6.71e-10 ***

ld04 2.24076 0.39091 5.732 9.92e-09 ***

ld05 3.59308 0.27802 12.924 < 2e-16 ***

lds1 -0.55537 0.40941 -1.356 0.174941

lds2 0.90989 0.49531 1.837 0.066209 .

lds3 2.22018 0.43851 5.063 4.13e-07 ***

roct2003 -2.24693 0.20450 -10.987 < 2e-16 ***

roct2004 -1.13848 0.11799 -9.649 < 2e-16 ***

roct2005 -0.38512 0.08157 -4.721 2.34e-06 ***

flat2 -0.25543 0.13672 -1.868 0.061723 .

flat3 0.25410 0.18761 1.354 0.175598

row11 0.14202 0.03587 3.960 7.50e-05 ***

row12 0.11942 0.03469 3.442 0.000576 ***

row13 0.12159 0.03421 3.554 0.000380 ***

yc2000 -0.04521 0.02907 -1.555 0.119887

posi -0.31388 0.06907 -4.545 5.50e-06 ***

crossgreenWi -1.01366 0.34051 -2.977 0.002912 **

crossgreenWr -0.39520 0.46967 -0.841 0.400099

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> out.super <- aster(x, r, pred, fam, modmat.super)

> summary(out.super)

Call:

NULL
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Figure 2.2: Relationship of Aster Models. Arrows go from one model to another that is a
nested submodel of it.

Estimate Std. Error z value Pr(>|z|)

ld01 0.77412 0.27150 2.851 0.004355 **

ld02 0.95432 0.24678 3.867 0.000110 ***

ld03 2.32493 0.37898 6.135 8.53e-10 ***

ld04 2.22592 0.39099 5.693 1.25e-08 ***

ld05 3.65585 0.27983 13.064 < 2e-16 ***

lds1 -0.57400 0.40929 -1.402 0.160787

lds2 0.89143 0.49525 1.800 0.071867 .

lds3 2.04511 0.44247 4.622 3.80e-06 ***

roct2003 -2.26195 0.20461 -11.055 < 2e-16 ***

roct2004 -1.15350 0.11817 -9.761 < 2e-16 ***

roct2005 -0.29824 0.08701 -3.428 0.000609 ***

flat2 -0.25165 0.13647 -1.844 0.065188 .

flat3 0.25957 0.18745 1.385 0.166122

row11 0.14635 0.03641 4.019 5.85e-05 ***

row12 0.12414 0.03545 3.502 0.000462 ***

row13 0.12050 0.03470 3.472 0.000516 ***

yc2000 -0.02756 0.02940 -0.937 0.348565

posi -0.32282 0.07003 -4.609 4.04e-06 ***

crossWi -0.58086 0.15305 -3.795 0.000148 ***

crossWr -0.08069 0.14552 -0.554 0.579272

crossgreenWi -0.52844 0.35997 -1.468 0.142100

crossgreenWr -0.29471 0.49249 -0.598 0.549563

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

2.5.2 Tests of Model Comparison

Figure 2.2 shows the relationship between these models. The only models that are
not nested and so cannot be directly compared are out.field and out.green (although
something can be said from the comparison of each to the models above and below).

The following anova commands do the four tests associated with the four arrows in
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Figure 2.2.

> anova(out.sub, out.field, out.super)

Analysis of Deviance Table

Model 1: (no formulas)

Model 2: (no formulas)

Model 3: (no formulas)

Model Df Model Dev Df Deviance P(>|Chi|)

1 18 -2150.3

2 20 -2127.5 2 22.7531 1.146e-05 ***

3 22 -2125.4 2 2.1798 0.3363

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out.sub, out.green, out.super)

Analysis of Deviance Table

Model 1: (no formulas)

Model 2: (no formulas)

Model 3: (no formulas)

Model Df Model Dev Df Deviance P(>|Chi|)

1 18 -2150.3

2 20 -2141.5 2 8.7841 0.0123752 *

3 22 -2125.4 2 16.1488 0.0003114 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

We reach the following conclusions of a purely statistical nature (there is no point in
scienti�c interpretations until the statistics is done).

First look at the right-hand side of Figure 2.2. We see that, although the model with
crosstype e�ect in the greenhouse only (out.green) does �t signi�cantly better (P = 0.012)
than the baseline model with no crosstype e�ect, it does not �t as well (P = 3.1× 10−4) as
the supermodel with both crosstype e�ects. Thus looking at the right-hand side of Figure 2.2
only, the hypothesis tests of model comparison indicate that the supermodel (out.super) is
the only model that �ts the data.

Now we look at the left-hand side of Figure 2.2. We see that the model with crosstype
e�ect in the �eld only (out.field) not only �ts signi�cantly better (P = 1.1×10−5) than the
baseline model with no crosstype e�ect but also does not �t signi�cantly worse (P = 0.34)
than the supermodel with both crosstype e�ects. Thus looking at the left-hand side of
Figure 2.2 only, the hypothesis tests of model comparison indicate that the middle model
(out.field) is the most parsimonious model that �ts the data (the super model also �ts
the data but no better than out.field).

Now looking at all the tests, the overall conclusion is that (out.field) is the most
parsimonious model that �ts the data.
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2.6 Mean Value Parameters

2.6.1 In the Field

We need to make a new model matrix for hypothetical individuals having the same data
structure as modmat.super. We want three individuals, one for each value of �cross.� The
easiest way to do this is to just use the �rst three �rows� (really layers of a three-way array)
of modmat.field and adjust the predictors to be what we want.

> newmodmat.super <- modmat.super[1:3, , ]

> i <- grep("ld0[1-5]|lds[1-3]|roct200[3-5]", dimnames(newmodmat.super)[[3]])

> newmodmat.super[ , , -i] <- 0

> newmodmat.super[2, "roct2005", "crossWi"] <- 1

> newmodmat.super[3, "roct2005", "crossWr"] <- 1

> newmodmat.super[2, "lds3", "crossgreenWi"] <- 1

> newmodmat.super[3, "lds3", "crossgreenWr"] <- 1

We set all �predictor� values except for those corresponding to response variables to zero
(which we take to be a �neutral� or �typical� value) and then set the ones for cross type back
to what we want them to be: individual 2 is cross type "Wi", individual 3 is cross type "Wr",
and individual 1 is the remaining cross type "Br".

Now we extract the other new model matrices just like we did the old.

> newmodmat.field <- newmodmat.super[ , , -igreen]

> newmodmat.green <- newmodmat.super[ , , -ifield]

> newmodmat.sub <- newmodmat.super[ , , -c(ifield, igreen)]

Now we need root data and observed data of the appropriate shape to go with this model
matrix, since the observed �x� data is ignored when we predict unconditional mean value
parameters, we can use the same data structure for both.

> newroot <- array(1, dim = dim(newmodmat.field)[1:2])

We also need an amat argument that picks o� the "roct2005" elements of the mean
value parameter vector.

> amat <- array(0, dim = c(dim(newmodmat.field)[1:2], 3))

> for (i in 1:3)

+ amat[i, dimnames(newmodmat.field)[[2]] == "roct2005", i] <- 1

This says we want the i-th component of the prediction to be the unconditional mean value
parameter for "roct2005" for the i-th individual.

Now we can predict

> pout.super <- predict(out.super, newroot, newroot, newmodmat.super, amat,

+ se.fit = TRUE)

> pout.super$fit

[1] 0.9477683 0.5510009 0.8659104
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> pout.field <- predict(out.field, newroot, newroot, newmodmat.field, amat,

+ se.fit = TRUE)

> pout.field$fit

[1] 0.9516398 0.5591503 0.8733273

> pout.green <- predict(out.green, newroot, newroot, newmodmat.green, amat,

+ se.fit = TRUE)

> pout.green$fit

[1] 0.8988469 0.8095031 0.8722694

> pout.sub <- predict(out.sub, newroot, newroot, newmodmat.sub, amat,

+ se.fit = TRUE)

> pout.sub$fit

[1] 0.8905837 0.8905837 0.8905837

Figure 2.3 is produced by the following code

> modelfits <- list(sub = pout.sub, green = pout.green, field = pout.field,

+ super = pout.super)

> conf.level <- 0.95

> crit <- qnorm((1 + conf.level) / 2)

> crossnames <- levels(echin2$crosstype)

> icross <- c(1, 3, 2)

> foo <- 0.05

> modelcolors <- c("blue", "green", "red", "black")

> modellty <- c(3, 2, 1, 4)

> ylim <- NULL

> for (i in seq(along = modelfits)) {

+ thefit <- modelfits[[i]]

+ ylim <- range(ylim, thefit$fit + crit * thefit$se.fit)

+ ylim <- range(ylim, thefit$fit - crit * thefit$se.fit)

+ }

> xlim <- range(icross + 10 * foo, icross - 10 * foo)

> plot(NA, NA, xlim = xlim, ylim = ylim, xlab = "", ylab = "", axes = FALSE)

> for (i in seq(along = modelfits)) {

+ thefit <- modelfits[[i]]

+ ytop <- thefit$fit + crit * thefit$se.fit

+ ybot <- thefit$fit - crit * thefit$se.fit

+ ymid <- thefit$fit

+ col <- modelcolors[i]

+ lty <- modellty[i]

+ jcross <- icross + (i - mean(seq(along = modelfits))) * 3 * foo

+ segments(jcross, ybot, jcross, ytop, lty = lty)
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Figure 2.3: 95% con�dence intervals for unconditional mean value parameter for �tness
(rosette count in the last year recorded) for one �typical� individual for each cross type.
Colors indicate model: blue, model.sub; green, model.green; red, model.field; black,
model.super.

+ segments(jcross - foo, ybot, jcross + foo, ybot, lty = lty)

+ segments(jcross - foo, ymid, jcross + foo, ymid, lty = lty)

+ segments(jcross - foo, ytop, jcross + foo, ytop, lty = lty)

+ }

> axis(side = 2)

> axis(side = 1, at = icross, labels = crossnames)

> title(xlab = "cross type")

and appears on p. 20.
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2.6.2 In the Greenhouse

This section is very similar to the preceding. The only di�erence is that we want to
predict lds3 values rather than roct2005 values.

We also need an amat argument that picks o� the "lds3" elements of the mean value
parameter vector.

> amat <- array(0, dim = c(dim(newmodmat.field)[1:2], 3))

> for (i in 1:3)

+ amat[i, dimnames(newmodmat.field)[[2]] == "lds3", i] <- 1

Now we can predict as before

> pout.super <- predict(out.super, newroot, newroot, newmodmat.super, amat,

+ se.fit = TRUE)

> pout.super$fit

[1] 0.9281132 0.8242624 0.8987400

> pout.field <- predict(out.field, newroot, newroot, newmodmat.field, amat,

+ se.fit = TRUE)

> pout.field$fit

[1] 0.9126000 0.8583929 0.9036532

> pout.green <- predict(out.green, newroot, newroot, newmodmat.green, amat,

+ se.fit = TRUE)

> pout.green$fit

[1] 0.9371359 0.8439862 0.9094262

> pout.sub <- predict(out.sub, newroot, newroot, newmodmat.sub, amat,

+ se.fit = TRUE)

> pout.sub$fit

[1] 0.9123147 0.9123147 0.9123147

> modelfits.field <- modelfits

> modelfits <- list(sub = pout.sub, green = pout.green, field = pout.field,

+ super = pout.super)

> modelfits.green <- modelfits

Figure 2.4 is now produced by the same code as Figure 2.3. and appears on p. 22.
Note that Figure 2.4 shows a similar pattern to Figure 2.3. Even though the mean value

parameters predicted in Figure 2.3 correspond to canonical parameter values that contain
the regression coe�cients that di�er between the two models and the mean value parameters
predicted in Figure 2.4 do not.

So the failure of model out.super to be statistically signi�cant does not mean that
there are no �tness e�ects in the greenhouse; it merely means that what e�ects there are
are adequately explained by an unconditional aster model with no additional parameters.
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Figure 2.4: 95% con�dence intervals for unconditional mean value parameter for the best
surrogate for �tness measured in the greenhouse (survival in the last year recorded) for one
�typical� individual for each cross type. Just as in Figure 2.3, colors indicate model: blue,
model.sub; green, model.green; red, model.field; black, model.super.
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Figure 2.5: Plots for paper. Line types: dotted �sub� model, dashed �chamber� model, solid
��eld� model, and dot-dash �super� model.

2.6.3 Plot for Paper

Here we assemble the two preceding plots into one postscript �le (Figure 2.5).
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Chapter 3

Fitness Landscapes and Lande-Arnold

Analysis using Aster Models

3.1 Introduction

Lande and Arnold (1983) proposed using the vector β of ordinary least squares (OLS)
multiple regression coe�cients (not including the intercept) from the regression of relative
�tness on quantitative phenotypic characters as �a general solution to the problem of measur-
ing the forces of directional selection acting directly on the characters� (Lande and Arnold,
1983, p. 1213).

Lande and Arnold actually give two di�erent arguments justifying their procedure. The
�rst argument, parts of which go back to Pearson (1903, cited by Lande and Arnold),
involves a quantitative genetic model for the vector z of phenotypic characters. The second
argument, which may have been independently invented by Lande and Arnold, but involves
what statisticians call Stein's lemma (Stein, 1981), does not involve a quantitative genetic
model, and is the one we follow here.

The assumptions made by Lande and Arnold (1983, p. 1213), somewhat generalized, are
as follows.

(i) The vector of phenotypic characters z is multivariate normal.

(ii) The conditional expectation of relative �tness w given z, denote it

u(z) = E(w | z), (3.1)

is a continuously di�erentiable function.

(iii) The expectation
β = E{∇u(z)} (3.2)

exists.

(iv) The limits

lim
zi→∞

u(z)f(z)

lim
zi→−∞

u(z)f(z)
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exist and are zero, letting each coordinate zi go to plus or minus in�nity, holding
the rest �xed (Lande and Arnold, 1983, assume u is bounded, which is a su�cient
condition for the limits above to be zero, but not a necessary condition).

Then it follows by integration by parts (Lande and Arnold, 1983, p. 1213) and from the
de�nition of relative �tness, which requires E(w) = 1, that

β = E{∇u(z)} = var(z)−1 cov(w, z) (3.3)

and for this reason Lande and Arnold call β the directional selection gradient. They also
observe that the obvious empirical estimate of β, which is

β̂OLS = v̂ar(z)−1ĉov(w, z), (3.4)

where the hats on the var and cov operators denote the empirical analogs, is the ordinary
least squares (OLS) regression estimate of w on z, done with intercept, which is not consid-
ered part of β̂. They therefore seem to recommend (3.4) as an estimator of (3.3); this is not
completely clear since they do not actually distinguish between (3.3) and (3.4), between the
parameter β and its estimate β̂OLS. They do, however, use (3.4) as an estimator of (3.3)
in their examples, and a large literature has followed them in this practice (Google Scholar,
http://scholar.google.com, says �Cited by 816� as this is written).

Assumption (i) above, which we should also note in passing is also required by the
��rst argument� in Lande and Arnold (1983), implies that v̂ar(z) will be a good estimator
of var(z), so long as the dimension of z is not too large relative to the amount of data.
Assumptions (ii) through (iv) above are very weak. They do not even imply, for example,
that var(w | z) is �nite. They do imply, by the integration by parts argument, that cov(w, z)
exists, which we should also note in passing is also required by the ��rst argument� in Lande
and Arnold (1983), but this does not imply that ĉov(w, z) is a good estimator of it. It may
be a very bad estimator, in which case (3.4) will be a very bad estimator of (3.3). In fact,
this should be expected when the distribution of w is heavy tailed (since relative �tness w
is nonnegative, this means heavy upper tail).

To start a search for better estimators, we make the following observation (which follows
from the iterated conditional expectation theorem)

cov(w, z) = cov
(
u(z), z

)
, (3.5)

where u(z) is de�ned by (3.1). This says that we can just as well use

β̂ = v̂ar(z)−1ĉov
(
û(z), z

)
(3.6)

as an estimator of (3.3), where û(z) is any estimator of u(z) that we can construct, such
as, predicted mean values in any model we happen to have for the conditional distribution
of w given z. If one uses a conventional linear, normal-theory, OLS regression model, then
substituting (3.6) for (3.4) will do nothing (regressing OLS predicted values on predictors
gives the same regression coe�cients as the original regression), but there may be very
large di�erences between (3.6) and (3.4) if one uses any other kind of regression model, for
example, a generalized linear model (McCullagh and Nelder, 1989) or an aster model (Geyer,
et al., 2007).
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Wemake one more generalization, which is not new here, having been used in many exam-
ples in the literature (Mitchell-Olds and Shaw, 1987), but for which an adequate theoretical
explanation has not yet been provided. Suppose we also have a vector of other variables e
that we also wish to add to the regression. These may not be normally distributed, they
may be categorical, for example, and may also be nonrandom (�xed by experimental de-
sign). Thus they cannot be considered part of the z in the Lande-Arnold argument (because
z must be multivariate normal). They may also not be phenotypic characters. They may
be environmental (hence our use of e to denote them), but they may also be just �other.�

We apply the Lande-Arnold argument separately for each value of e. We assume

(i) The vector of phenotypic characters z is conditionally multivariate normal given e.

(ii) The conditional expectation of relative �tness w given z and e, denote it

ue(z) = E(w | z, e) (3.7)

is a continuously di�erentiable function of z.

(iii) The expectation

β(e) = E{∇ue(z) | e} (3.8)

exists for each value of e.

(iv) The limits

lim
zi→∞

ue(z)f(z)

lim
zi→−∞

ue(z)f(z)

exist and are zero, letting each coordinate zi go to plus or minus in�nity, holding the
rest of the coordinates of z �xed and all coordinates of e �xed.

Then applying the Lande-Arnold argument for each value of e gives

β(e) = E{∇ue(z)} = var(z | e)−1 cov(w, z | e) (3.9)

This trivial extension of Lande-Arnold theory may not at �rst sight seem to do much.
Typically, there will be far too many e values for β(e) to be estimated naively using OLS
regression to work. Since we have already seen that OLS regression may be a very bad idea
for other reasons, this is no impediment. We proceed as everywhere else in statistics trying
to �nd simple models for the gradient-vector-valued function (of �other� variables e) that is
β(e).

For example, the simplest model is that β(e) is a constant function, which seems to get
us back to using (3.6), but it does not. Recall that β or β̂ uses OLS regression of something
(preferably predicted mean values for a good model of the conditional distribution of w given
z and e) on z and e and drops the intercept. Thus we model β(e) as a constant function of
e if we do OLS regression of something on z and e with only the intercept depending on e.
Note that this allows the intercept term to depend on e in an arbitrarily complicated way.
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We just don't have �interaction� terms between z and e in the regression model. If we were
going to write the kind of models just discussed in conventional terms, we would write

w = α(e) + βT z + error

where α(e) is an arbitrary function (of course, we don't believe the �+ error� part of this
�model,� which is given only to help the reader understand the structure of the assumed
regression function). Of course we don't have to stop with this simplest model for β(e), but
it is interesting that even the simplest case of this theory (with e) is nontrivial.

When one uses the OLS regression estimator (3.4), the question arises about how to do
statistical inference about β when the normality assumptions required for OLS F -tests are
clearly violated. There is a large literature on this subject (see Mitchell-Olds and Shaw, 1987;
Stanton and Thiede, 2005, and references cited therein). Transforming w to make it more
normal, for example, doing OLS regression of logw on z is biologically wrong (Stanton and
Thiede, 2005), destroying the logic of the Lande-Arnold theory which requires OLS regression
of w (untransformed) on z. Lande and Arnold (1983) say that z may be transformed to
make it more normal, hence more closely satisfy condition (i) above, but this may or may
not make the distribution of w given (transformed) z more nearly satisfy OLS regression
assumptions.

Sometimes, as in our example (Section 3.2 below), it is impossible to transform w to con-
ditional normality given z. This happens, in particular, when a sizable fraction of individuals
have (measured) �tness zero. The normal distribution is continuous. Any transformation
of w has a large atom at whatever point zero is transformed to, hence is far from being
continuous. The standard trick w̃ = log(w + 1) − 1, may make the distribution of w̃ have
a more normal looking upper tail, but can do nothing about the fact that w̃ is nonnegative
with a large atom at zero.

Having already decided to abandon OLS regression and use estimators of the form (3.6)
or their analogs for estimating β(e), which we have not provided equations for, we do not
have the problem of depending on a procedure whose assumptions are badly violated.

If we can �nd an adequate model for the conditional distribution of w given z, we can
simulate the sampling distribution of our estimator of β or β(e) and use the simulations to
make con�dence intervals or do tests of signi�cance. Strictly speaking, our simulation distri-
bution depends on estimated parameters, hence is a parametric bootstrap. Our simulation
will be valid if and only if our model actually is adequate and its estimated parameters are
close enough to the true unknown parameters so that the simulation distribution is close to
the true unknown distribution of w given z.

Mitchell-Olds and Shaw (1987) considered nonparametric bootstrap and jackknife meth-
ods in this situation, but the conditions for those procedures may be violated in many
applications, particularly when �tness zero has appreciable probability. Mitchell-Olds and
Shaw (1987) �wish to emphasize that resampling techniques are not a panacea� and cite lit-
erature cautioning about violations of required assumptions, in particular �both techniques
are based on asymptotic theory (sample size must be `large'), they assume residuals are
identically and independently distributed . . . .� That last point is a killer in the current con-
text. There is no generally accepted way to resample residuals for generalized linear models,
much less for aster models. Resampling cases does not mimic the conditional distribution
of response given predictors, which is what is crucial in this application.
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3.2 Data

We reanalyze a subset of the data analyzed by Etterson and Shaw (2001). These data
are in the chamae2 dataset in the aster contributed package to the R statistical computing
environment. This dataset is restricted to the Minnesota site of the original (larger) data.

These data are already in �long� format, no need to use the reshape function on them
to do aster analysis. We will, however, need the �wide� format for Lande-Arnold analysis.
So we do that, before making any changes (we will add newly de�ned variables) to chamae2.

> library(aster)

> data(chamae2)

> chamae2w <- reshape(chamae2, direction = "wide", timevar = "varb",

+ v.names = "resp", varying = list(levels(chamae2$varb)))

> names(chamae2w)

[1] "id" "root" "STG1N" "LOGLVS" "LOGSLA" "BLK" "fecund"

[8] "fruit"

Individuals of Chamaecrista fasciculata (common name, partridge pea) were obtained
from three locations in the country and planted in three �eld sites. Of the complete data
we only reanalyze here individuals from one site (Minnesota). For each individual, many
characteristics were measured, three of which we consider phenotypic characters (so our z
is three-dimensional), and others which combine to make up an estimate of �tness. The
three phenotypic characters are reproductive stage (STG1N), log leaf number (LOGLVS), and
log leaf thickness (LOGSLA). �At the natural end of the growing season, [they] recorded total
pod number and seed counts from three representative pods; from these measures, [they]
estimated [�tness]� (Etterson and Shaw, 2001, further explained in their note 12).

In this chapter we take fruit count as the measure of �tness because that gives the best
example of aster analysis. (In Chapter 4 we combine fruit count and seed count, but the
aster analysis is not as simple as in this chapter.)

We model fruit count as having a zero-in�ated negative binomial distribution. The zero
in�ation allows for excess (or de�cit) of individuals having zero fruit (over and above the
small number of zeros that would occur if the distribution were pure negative binomial). In
an aster model this is done by having a Bernoulli node followed by a zero-truncated negative
binomial node (each individual having a simple graph with two nodes). This means the event
that an individual has one or more fruits is modeled as Bernoulli, and the distribution of the
number of fruit given that the number is at least one is modeled as zero-truncated negative
binomial.

3.3 Aster Analysis

Then we set up the aster model framework.

> vars <- c("fecund", "fruit")

> pred <- c(0, 1)
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We need to choose the non-exponential-family parameters (sizes) for the negative bino-
mial distributions, since the aster package only does maximum likelihood for exponential
family parameters. We start with the following values, which were chosen with knowledge
of the maximum likelihood estimates for these parameters, which we �nd in Section 3.8.

> load("chamae2-alpha.rda")

> print(alpha.fruit)

[1] 2.46

> famlist <- list(fam.bernoulli(),

+ fam.truncated.negative.binomial(size = alpha.fruit, truncation = 0))

> fam <- c(1,2)

We can now �t our �rst aster model.

> out1 <- aster(resp ~ varb + BLK, pred, fam, varb, id, root,

+ data = chamae2, famlist = famlist)

> summary(out1, show.graph = TRUE)

Call:

aster.formula(formula = resp ~ varb + BLK, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = chamae2, famlist = famlist)

Graphical Model:

variable predecessor

fecund root

fruit fecund

family

bernoulli

truncated.negative.binomial(size = 2.46, truncation = 0)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.4692026 0.1354062 -47.776 < 2e-16 ***

varbfruit 7.4564500 0.1354514 55.049 < 2e-16 ***

BLK2 -0.0010528 0.0004303 -2.447 0.0144 *

BLK4 0.0021565 0.0003841 5.614 1.97e-08 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

The �response� resp is a numeric vector containing all the response variables (fecund and
fruit). The �predictor� varb is a factor with two levels distinguishing with resp which
original response variable an element is. The predictor BLK has not been mentioned so far.
It is block within the �eld where the plants were grown.

Now we add phenotypic variables.
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> out2 <- aster(resp ~ varb + BLK + LOGLVS + LOGSLA + STG1N,

+ pred, fam, varb, id, root, data = chamae2, famlist = famlist)

> summary(out2, info.tol = 1e-9)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVS + LOGSLA +

STG1N, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae2, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.0437702 0.1361498 -44.391 < 2e-16 ***

varbfruit 6.9883947 0.1364070 51.232 < 2e-16 ***

BLK2 -0.0022856 0.0004175 -5.475 4.37e-08 ***

BLK4 -0.0006200 0.0004041 -1.534 0.12498

LOGLVS 0.0158193 0.0004725 33.483 < 2e-16 ***

LOGSLA -0.0066609 0.0024405 -2.729 0.00635 **

STG1N -0.0011121 0.0001947 -5.711 1.12e-08 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

One might think we should use varb * (LOGLVS + LOGSLA + STG1N).

> out2foo <- aster(resp ~ BLK + varb * (LOGLVS + LOGSLA + STG1N),

+ pred, fam, varb, id, root, data = chamae2, famlist = famlist)

> summary(out2foo, info.tol = 1e-11)

Call:

aster.formula(formula = resp ~ BLK + varb * (LOGLVS + LOGSLA +

STG1N), pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae2, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.1621864 1.5413726 -3.349 0.000811 ***

BLK2 -0.0022692 0.0004155 -5.461 4.72e-08 ***

BLK4 -0.0006208 0.0004032 -1.540 0.123638

varbfruit 6.1067811 1.5418304 3.961 7.47e-05 ***

LOGLVS -0.0669469 0.4954370 -0.135 0.892512

LOGSLA 1.9912512 1.8268006 1.090 0.275704

STG1N 0.3702374 0.1453418 2.547 0.010854 *

varbfruit:LOGLVS 0.0826889 0.4954705 0.167 0.867457

varbfruit:LOGSLA -1.9984472 1.8272874 -1.094 0.274100

varbfruit:STG1N -0.3714445 0.1453823 -2.555 0.010620 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> feig <- eigen(out2foo$fisher, symmetric = TRUE, only.values = TRUE)$values

> range(feig)
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[1] 1.060871e-01 3.717578e+09

> anova(out2, out2foo)

Analysis of Deviance Table

Model 1: resp ~ varb + BLK + LOGLVS + LOGSLA + STG1N

Model 2: resp ~ BLK + varb * (LOGLVS + LOGSLA + STG1N)

Model Df Model Dev Df Deviance P(>|Chi|)

1 7 -57461

2 10 -57453 3 8.1545 0.04293 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

It turns out the Fisher information is nearly singular, as shown by the need for the info.tol = 1e-11

argument to the summary command and also by the eigenvalues of the Fisher information
matrix, the condition number (ratio of largest and smallest eigenvalues) being 3.5 × 1010.
Thus we do not use this model.

An alternative model with the same number of parameters as out2 puts in the regression
coe�cients only at the ��tness� level (here fruit). This is similar to the example in Geyer,
et al. (2007). Because we are �tting an unconditional aster model, the e�ects of these terms
are passed down to fecund.

> foo <- as.numeric(as.character(chamae2$varb) == "fruit")

> chamae2$LOGLVSfr <- chamae2$LOGLVS * foo

> chamae2$LOGSLAfr <- chamae2$LOGSLA * foo

> chamae2$STG1Nfr <- chamae2$STG1N * foo

> out6 <- aster(resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr,

+ pred, fam, varb, id, root, data = chamae2, famlist = famlist)

> summary(out6, info.tol = 1e-9)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSfr + LOGSLAfr +

STG1Nfr, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae2, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.0045600 0.1363337 -44.043 < 2e-16 ***

varbfruit 6.9491771 0.1366290 50.862 < 2e-16 ***

BLK2 -0.0022851 0.0004174 -5.474 4.39e-08 ***

BLK4 -0.0006202 0.0004041 -1.535 0.12480

LOGLVSfr 0.0158197 0.0004725 33.482 < 2e-16 ***

LOGSLAfr -0.0066704 0.0024411 -2.733 0.00628 **

STG1Nfr -0.0011126 0.0001948 -5.712 1.12e-08 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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It is not possible to compare out2 and out6 by standard methods (likelihood ratio test)
because the models are not nested. They seem to �t equally well, and out6 more directly
models the relation of �tness (here de�ned as fruit) to phenotypic variables.

In both out2 and out6 the regression coe�cient for the phenotypic variable STG1N is
statistically signi�cant (P = 1.1 × 10−8 and P = 1.1 × 10−8, respectively, although one
should treat with extreme caution any P -values printed out when the info.tol argument
is used in the summary call).

We now want to model the canonical parameter corresponding to �tness as a quadratic
function of phenotype variables. Since STG1N is quite discrete, taking only six theoretically
possible values with the vast majority of individuals having only two of these,

> sort(unique(chamae2w$STG1N))

[1] 1 2 3

> tabulate(chamae2w$STG1N)

[1] 1094 228 917

it does not make sense to model �tness as a quadratic function of STG1N. Thus we drop this
phenotypic variable from the analysis.

> out7 <- aster(resp ~ varb + BLK + LOGLVSfr + LOGSLAfr,

+ pred, fam, varb, id, root, data = chamae2, famlist = famlist)

> summary(out7)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSfr + LOGSLAfr,

pred = pred, fam = fam, varvar = varb, idvar = id, root = root,

data = chamae2, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.0099069 0.1364221 -44.054 < 2e-16 ***

varbfruit 6.9486443 0.1367514 50.812 < 2e-16 ***

BLK2 -0.0022225 0.0004176 -5.322 1.03e-07 ***

BLK4 -0.0010662 0.0003982 -2.677 0.00742 **

LOGLVSfr 0.0174130 0.0003987 43.673 < 2e-16 ***

LOGSLAfr -0.0066010 0.0024390 -2.706 0.00680 **

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Now we add quadratic terms, looking for a maximum of the �tness function.

> out8 <- aster(resp ~ varb + BLK + LOGLVSfr + LOGSLAfr +

+ I(LOGLVSfr^2) + I(LOGSLAfr^2) + I(2 * LOGLVSfr * LOGSLAfr),

+ pred, fam, varb, id, root, data = chamae2, famlist = famlist)

> summary(out8, info.tol = 1e-9)
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Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSfr + LOGSLAfr +

I(LOGLVSfr^2) + I(LOGSLAfr^2) + I(2 * LOGLVSfr * LOGSLAfr),

pred = pred, fam = fam, varvar = varb, idvar = id, root = root,

data = chamae2, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.5424746 0.1458750 -37.995 < 2e-16 ***

varbfruit 6.2100415 0.1552610 39.997 < 2e-16 ***

BLK2 -0.0024726 0.0004085 -6.053 1.42e-09 ***

BLK4 -0.0005549 0.0003721 -1.491 0.1359

LOGLVSfr 0.1569760 0.0151565 10.357 < 2e-16 ***

LOGSLAfr -0.2405565 0.0534496 -4.501 6.78e-06 ***

I(LOGLVSfr^2) -0.0229378 0.0024441 -9.385 < 2e-16 ***

I(LOGSLAfr^2) -0.1251870 0.0303839 -4.120 3.79e-05 ***

I(2 * LOGLVSfr * LOGSLAfr) 0.0103318 0.0059896 1.725 0.0845 .

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out7, out8)

Analysis of Deviance Table

Model 1: resp ~ varb + BLK + LOGLVSfr + LOGSLAfr

Model 2: c("resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + I(LOGLVSfr^2) + I(LOGSLAfr^2) + ", " I(2 * LOGLVSfr * LOGSLAfr)")

Model Df Model Dev Df Deviance P(>|Chi|)

1 6 -57495

2 9 -57296 3 199.37 < 2.2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

The quadratic term is highly signi�cant. We could try more experimentation with di�er-
ent models, but we deem this one satisfactory and base our analysis on this (out8). See
Section 3.7 below for residual analysis.

3.4 The Regression Function for Fitness

In this section we examine the regression function ue(z) that corresponds to the model.
For simplicity, we answer a slightly di�erent question: what is E(W | z, e) changing from
w (relative �tness) to W (raw �tness). Since E(w | z, e) and E(W | z, e) are proportional,
they have maxima, minima, or saddle points (as the case may be) in the same place.

By assumption (in this chapter) W is the variable fruit, a canonical statistic of the
aster model. Thus its conditional expectation is the corresponding mean value parameter
(τ in the notation of Geyer, et al., 2007). Since the map from canonical parameter (ϕ in the
notation of Geyer, et al., 2007) is monotone increasing, it maps maxima to maxima, minima
to minima, and saddle points to saddle points (see Section 3.10 for details). Thus we can

33



look at ϕ as a function of the phenotypic predictor variables (which is quadratic) to see
which type of stationary point we have (if we have any, which we must because a quadratic
function always has stationary points) and where the stationary point is.

The regression function for canonical parameter, ignoring intercept terms (which do not
a�ect the location or type of stationary point and which depend on the environmental or
�other� predictors e), is quadratic, letting ϕ1 denote the canonical parameter for LOGLVSfr
and ϕ2 denote the canonical parameter for LOGSLAfr, it is of the form

aTϕ+ϕTAϕ (3.10)

where a is a vector and A a matrix de�ned as follows.

> a1 <- out8$coefficients["LOGLVSfr"]

> a2 <- out8$coefficients["LOGSLAfr"]

> a <- c(a1, a2)

> A11 <- out8$coefficients["I(LOGLVSfr^2)"]

> A22 <- out8$coefficients["I(LOGSLAfr^2)"]

> A12 <- out8$coefficients["I(2 * LOGLVSfr * LOGSLAfr)"]

> A <- matrix(c(A11, A12, A12, A22), 2, 2)

Since the eigenvalues of A are all negative

> eigen(A, symmetric = TRUE, only.values = TRUE)$values

[1] -0.02190421 -0.12622051

the regression function has a (unique) maximum. The derivative of (3.10) being

aT + 2ϕTA

the maximum is achieved at the point

−1
2A
−1a

which is computed in R by

> max8 <- (- solve(A, a) / 2)

> print(max8)

[1] 3.1044207 -0.7045769

Figure 3.1 (page 36) shows the scatterplot of data values for LOGLVS and LOGSLA and
the contours of the estimated quadratic �tness function (3.10). It is made by the following
code.

> plot(chamae2w$LOGLVS, chamae2w$LOGSLA, xlab = "LN", ylab = "SLA")

> ufoo <- par("usr")

> nx <- 101

> ny <- 101

> z <- matrix(NA, nx, ny)
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> x <- seq(ufoo[1], ufoo[2], length = nx)

> y <- seq(ufoo[3], ufoo[4], length = ny)

> points(max8[1], max8[2], pch = 19)

> for (i in 1:nx) {

+ for (j in 1:ny) {

+ b <- c(x[i], y[j])

+ z[i, j] <- sum(a * b) + as.numeric(t(b) %*% A %*% b)

+ }

+ }

> b <- as.numeric(max8)

> # z <- z - sum(a * b) + as.numeric(t(b) %*% A %*% b)

> contour(x, y, z, add = TRUE)

> contour(x, y, z, levels = c(0.325), add = TRUE)

3.5 Lande-Arnold Analysis

In contrast to the aster analysis, the Lande-Arnold analysis is very simple.

> chamae2w$relfit <- chamae2w$fruit / mean(chamae2w$fruit)

> lout1 <- lm(relfit ~ LOGLVS + LOGSLA + STG1N, data = chamae2w)

> summary(lout1)

Call:

lm(formula = relfit ~ LOGLVS + LOGSLA + STG1N, data = chamae2w)

Residuals:

Min 1Q Median 3Q Max

-1.9803 -0.3805 -0.0553 0.3061 4.7094

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.79228 0.18755 -14.888 < 2e-16 ***

LOGLVS 1.64621 0.05592 29.439 < 2e-16 ***

LOGSLA 0.14274 0.19445 0.734 0.463

STG1N -0.10732 0.01470 -7.302 3.92e-13 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.6428 on 2235 degrees of freedom

Multiple R-squared: 0.3245, Adjusted R-squared: 0.3236

F-statistic: 358 on 3 and 2235 DF, p-value: < 2.2e-16

The information contained in the printout of summary(lout1) with the exception of the
Estimate column is unreliable because the OLS model assumptions are not satis�ed, as
acknowledged by Etterson and Shaw (2001) and Etterson (2004). Therefore measures of
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Figure 3.1: Scatterplot of LOGLVS versus LOGSLA with contours of the estimated quadratic
�tness function. Variable names in axis labels changes to LN and SLA, respectively to agree
with paper, which used these names. Solid dot is the point where the estimated �tness
function achieves its maximum. Note �z� coordinate is only a monotone function of �tness
(3.10), not actual �tness (compare Figure 3.7).
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statistical signi�cance including standard errors (Std. Error column), t-statistics (t value

column), and P -values (Pr(>|t|) column) are erroneous.
Also the (Intercept) regression is of no interest (not part of β or γ).
We can also estimate β(e) as a constant function, where e is BLK, our comments about

that applying to OLS regression estimates as well as to (our as yet to be determined �better�
estimates).

> lout2 <- lm(relfit ~ BLK + LOGLVS + LOGSLA + STG1N, data = chamae2w)

> summary(lout2)

Call:

lm(formula = relfit ~ BLK + LOGLVS + LOGSLA + STG1N, data = chamae2w)

Residuals:

Min 1Q Median 3Q Max

-1.8282 -0.3590 -0.0509 0.2850 4.6027

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.73021 0.18460 -14.790 < 2e-16 ***

BLK2 -0.22484 0.03313 -6.787 1.46e-11 ***

BLK4 0.04761 0.03468 1.373 0.17

LOGLVS 1.62216 0.05699 28.462 < 2e-16 ***

LOGSLA 0.00494 0.19411 0.025 0.98

STG1N -0.12909 0.01488 -8.674 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.6322 on 2233 degrees of freedom

Multiple R-squared: 0.3472, Adjusted R-squared: 0.3457

F-statistic: 237.5 on 5 and 2233 DF, p-value: < 2.2e-16

Note that if we paid attention to the putative P -values from the OLS regression (which we
should not because the assumptions for OLS do not hold) we would make the wrong decision
about which phenotypic variable to drop from the analysis (dropping LOGSLA and keeping
STG1N).

Note also that there is no reason why predictors that are important for the regression
function itself are important for its average gradient (even assuming that the assumptions for
Stein's lemma hold). Thus there is no reason why our aster analysis should agree with the
Lande-Arnold analysis. When the analyses disagree, our approach, which directly estimates
the regression function u(z) or ue(z) itself, has more direct evolutionary implications.

Lande and Arnold (1983) also gave a justi�cation for quadratic regression with an appeal
to integration by parts (Stein's lemma). Let us try that, using the same predictors as for
our aster model out8 so that we get a direct comparison.

> lout8 <- lm(relfit ~ BLK + LOGLVS + LOGSLA +

+ I(LOGLVS^2) + I(LOGSLA^2) + I(2 * LOGLVS * LOGSLA),

37



+ data = chamae2w)

> summary(lout8)

Call:

lm(formula = relfit ~ BLK + LOGLVS + LOGSLA + I(LOGLVS^2) + I(LOGSLA^2) +

I(2 * LOGLVS * LOGSLA), data = chamae2w)

Residuals:

Min 1Q Median 3Q Max

-2.2233 -0.3402 -0.0645 0.2815 3.7487

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.19353 1.25205 0.155 0.877177

BLK2 -0.21240 0.03285 -6.466 1.23e-10 ***

BLK4 -0.03398 0.03382 -1.005 0.315125

LOGLVS -4.33814 0.63377 -6.845 9.85e-12 ***

LOGSLA -10.46591 2.84477 -3.679 0.000240 ***

I(LOGLVS^2) 1.28399 0.13081 9.816 < 2e-16 ***

I(LOGSLA^2) -6.77004 1.93748 -3.494 0.000485 ***

I(2 * LOGLVS * LOGSLA) 0.09666 0.36360 0.266 0.790391

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.6267 on 2231 degrees of freedom

Multiple R-squared: 0.359, Adjusted R-squared: 0.357

F-statistic: 178.5 on 7 and 2231 DF, p-value: < 2.2e-16

Note that the Lande-Arnold analysis seems to have gotten the wrong sign for the co-
e�cient of I(LOGLVS^2), where �wrong� means disagreeing with the aster analysis. Again,
this is no surprise. The OLS model is not actually trying to �t the regression surface so
there is no surprise that it tells us little about the regression surface and what it does say
is misleading. Since we cannot tell whether a matrix is positive de�nite or inde�nite by
looking at its coe�cients, we must form the matrix of coe�cients of quadratic terms and
look at its eigenvalues to see what we really have.

> a1 <- lout8$coefficients["LOGLVS"]

> a2 <- lout8$coefficients["LOGSLA"]

> olsa <- c(a1, a2)

> A11 <- lout8$coefficients["I(LOGLVS^2)"]

> A22 <- lout8$coefficients["I(LOGSLA^2)"]

> A12 <- lout8$coefficients["I(2 * LOGLVS * LOGSLA)"]

> olsA <- matrix(c(A11, A12, A12, A22), 2, 2)

Since the eigenvalues of A are all negative

> eigen(olsA, symmetric = TRUE, only.values = TRUE)$values
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Figure 3.2: Scatterplot of LOGLVS versus LOGSLA with contours of the quadratic �tness
function estimated by OLS. As in Figure 3.1 variable names in axis labels changes to LN and
SLA, respectively to agree with paper, which used these names. This surface does not have
a maximum, so, unlike Figure 3.1 no maximum is shown.

[1] 1.285148 -6.771197

Since one eigenvalue is positive and the other negative the OLS regression suggests dis-
persive selection in one direction and stabilizing selection in another. Of course, since the
assumptions for OLS regression are not met, there is no reason to trust this �suggestion�.

Figure 3.2 (page 39) is just like Figure 3.1 except it shows the quadratic �tness function
estimated by OLS (the Lande-Arnold analysis) rather than by aster.
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3.6 More on Quadratic Lande-Arnold Analysis

With u(z) de�ned by (3.1), Lande and Arnold (1983) de�ned

β = E{∇u(z)} (3.11a)

γ = E{∇2u(z)} (3.11b)

calling (3.11a) the directional selection gradient and (3.11b) the stabilizing selection gradient.
Equation (3.2) just repeats (3.2) above. Note that β is a vector and γ is a matrix.

Because β and γ are averages over the assumed multivariate normal distribution of z, it
may not make sense to draw plots like our Figure 3.2. In fact, such a �gure is the �tness
landscape u(z) only if ∇2u(z) is constant (not, in fact, a function of z) and the �tness
landscape is actually quadratic.

Lande and Arnold (1983) show that, if z is jointly mean-zero multivariate normal, then
β and γ can be estimated by the linear and quadratic regression coe�cients in the OLS
regression of relative �tness on z. This depends crucially on z being jointly multivariate
normal. In our data, z is the two-dimensional vector with components LOGLVS and LOGSLA.

For our data (and for most data sets), this multivariate normality assumption is not
correct, although perhaps not too badly violated for these two variables. The scatterplot of
these variables is the pattern of dots in Figure 3.1 or 3.2 and although not elliptical is not
too far from that.

One technical issue that we ignored, is that Lande and Arnold (1983) require that predic-
tor variables be centered, so that (again assuming joint multivariate normality) the estimates
for β will be the same whether or not the quadratic term is added. Thus we try this.

> chamae2w$cLOGLVS <- chamae2w$LOGLVS - mean(chamae2w$LOGLVS)

> chamae2w$cLOGSLA <- chamae2w$LOGSLA - mean(chamae2w$LOGSLA)

> lout1too <- lm(relfit ~ BLK + cLOGLVS + cLOGSLA, data = chamae2w)

> summary(lout1too)

Call:

lm(formula = relfit ~ BLK + cLOGLVS + cLOGSLA, data = chamae2w)

Residuals:

Min 1Q Median 3Q Max

-1.8207 -0.3903 -0.0771 0.2952 4.6646

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.07834 0.02430 44.368 < 2e-16 ***

BLK2 -0.21916 0.03367 -6.510 9.27e-11 ***

BLK4 -0.01086 0.03458 -0.314 0.754

cLOGLVS 1.74174 0.05621 30.984 < 2e-16 ***

cLOGSLA 0.07791 0.19713 0.395 0.693

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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Residual standard error: 0.6426 on 2234 degrees of freedom

Multiple R-squared: 0.3252, Adjusted R-squared: 0.324

F-statistic: 269.1 on 4 and 2234 DF, p-value: < 2.2e-16

> lout1took <- lm(relfit ~ BLK + LOGLVS + LOGSLA, data = chamae2w)

> summary(lout1took)

Call:

lm(formula = relfit ~ BLK + LOGLVS + LOGSLA, data = chamae2w)

Residuals:

Min 1Q Median 3Q Max

-1.8207 -0.3903 -0.0771 0.2952 4.6646

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.20534 0.17919 -17.887 < 2e-16 ***

BLK2 -0.21916 0.03367 -6.510 9.27e-11 ***

BLK4 -0.01086 0.03458 -0.314 0.754

LOGLVS 1.74174 0.05621 30.984 < 2e-16 ***

LOGSLA 0.07791 0.19713 0.395 0.693

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.6426 on 2234 degrees of freedom

Multiple R-squared: 0.3252, Adjusted R-squared: 0.324

F-statistic: 269.1 on 4 and 2234 DF, p-value: < 2.2e-16

> as.numeric(coefficients(lout1too)[4:5])

[1] 1.74174277 0.07791206

> as.numeric(coefficients(lout1took)[4:5])

[1] 1.74174277 0.07791206

Note that centering does not change the estimates of β.
Now for the quadratic regression.

> lout8too <- lm(relfit ~ BLK + cLOGLVS + cLOGSLA +

+ I(cLOGLVS^2) + I(cLOGSLA^2) + I(2 * cLOGLVS * cLOGSLA),

+ data = chamae2w)

> summary(lout8too)

Call:

lm(formula = relfit ~ BLK + cLOGLVS + cLOGSLA + I(cLOGLVS^2) +

I(cLOGSLA^2) + I(2 * cLOGLVS * cLOGSLA), data = chamae2w)
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Residuals:

Min 1Q Median 3Q Max

-2.2233 -0.3402 -0.0645 0.2815 3.7487

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.03697 0.02660 38.983 < 2e-16 ***

BLK2 -0.21240 0.03285 -6.466 1.23e-10 ***

BLK4 -0.03398 0.03382 -1.005 0.315125

cLOGLVS 1.92049 0.05933 32.368 < 2e-16 ***

cLOGSLA -0.12717 0.19782 -0.643 0.520380

I(cLOGLVS^2) 1.28399 0.13081 9.816 < 2e-16 ***

I(cLOGSLA^2) -6.77004 1.93748 -3.494 0.000485 ***

I(2 * cLOGLVS * cLOGSLA) 0.09666 0.36360 0.266 0.790391

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.6267 on 2231 degrees of freedom

Multiple R-squared: 0.359, Adjusted R-squared: 0.357

F-statistic: 178.5 on 7 and 2231 DF, p-value: < 2.2e-16

> as.numeric(coefficients(lout8too)[6:8])

[1] 1.28398842 -6.77003697 0.09665758

> as.numeric(coefficients(lout8)[6:8])

[1] 1.28398842 -6.77003697 0.09665758

Note that centering does not change the estimates of γ.

However, the estimates of β do change depending on whether the quadratic terms are in
or out.

> as.numeric(coefficients(lout1too)[4:5])

[1] 1.74174277 0.07791206

> as.numeric(coefficients(lout8too)[4:5])

[1] 1.9204918 -0.1271687

They do not change much, but they do change. We may regard this as a failure of the
multivariate normality assumption about the phenotype vector, since Lande and Arnold
(1983) state that the coe�cients would not change if z were multivariate normal.
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3.7 Goodness of Fit

In this section we examine goodness of �t to the assumed conditional distributions for
fruit given fecund == 1 by looking at a residual plot.

Residual analysis of generalized linear models (GLM) is tricky. (Our aster model becomes
a GLM when we consider only the conditional distribution associated with one arrow.) Many
di�erent residuals have been proposed Davison and Snell (1991). We start with the simplest,
so called Pearson residuals.

> xi.hat <- predict(out8, model.type = "cond", parm.type = "mean")

> xi.hat <- matrix(xi.hat, nrow = nrow(out8$x), ncol = ncol(out8$x))

> theta.hat <- predict(out8, model.type = "cond", parm.type = "canon")

> theta.hat <- matrix(theta.hat, nrow = nrow(out8$x), ncol = ncol(out8$x))

> woof <- chamae2w$fruit[chamae2w$fecund == 1]

> range(woof)

[1] 1 1390

> nwoof <- length(woof)

> woof.theta <- theta.hat[chamae2w$fecund == 1, 2]

> woof.xi <- xi.hat[chamae2w$fecund == 1, 2]

> wgrad <- double(nwoof)

> winfo <- double(nwoof)

> for (i in 1:nwoof) {

+ wgrad[i] <- famfun(famlist[[2]], deriv = 1, woof.theta[i])

+ winfo[i] <- famfun(famlist[[2]], deriv = 2, woof.theta[i])

+ }

> all.equal(woof.xi, wgrad)

[1] TRUE

> pearson <- (woof - woof.xi) / sqrt(winfo)

Figure 3.3 (page 44) shows the scatter plot of the Pearson residuals for fruit count plotted
against the expected fruit count given that fruit count is nonzero (for each individual) for
individuals with nonzero �tness only.

3.8 Maximum Likelihood Estimation of Size

The aster function does not calculate the correct likelihood when the size parameters
are considered unknown, because it drops terms that do not involve the exponential family
parameters. However, the full log likelihood is easily calculated in R.

> x <- out8$x

> logl <- function(alpha.fruit, theta, x) {

+ x.fecund <- x[ , 1]
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Figure 3.3: Pearson residuals for fruit count given nonzero �tness plotted against �tted
values.
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+ theta.fecund <- theta[ , 1]

+ p.fecund <- 1 / (1 + exp(- theta.fecund))

+ logl.fecund <- sum(dbinom(x.fecund, 1, p.fecund, log = TRUE))

+ x.fruit <- x[x.fecund == 1, 2]

+ theta.fruit <- theta[x.fecund == 1, 2]

+ p.fruit <- (- expm1(theta.fruit))

+ logl.fruit <- sum(dnbinom(x.fruit, size = alpha.fruit,

+ prob = p.fruit, log = TRUE) - pnbinom(0, size = alpha.fruit,

+ prob = p.fruit, lower.tail = FALSE, log = TRUE))

+ logl.fecund + logl.fruit

+ }

We then calculate the pro�le likelihood for the size parameter alpha.fruit maximizing over
the other parameters, evaluating the pro�le log likelihood on a grid of points.

> alpha.fruit.seq <- seq(1.5, 4.5, 0.25)

> logl.seq <- double(length(alpha.fruit.seq))

> for (i in 1:length(alpha.fruit.seq)) {

+ famlist.seq <- famlist

+ famlist.seq[[2]] <- fam.truncated.negative.binomial(size =

+ alpha.fruit.seq[i], truncation = 0)

+ out8.seq <- aster(out8$formula, pred, fam, varb, id, root,

+ data = chamae2, famlist = famlist.seq, parm = out8$coefficients)

+ theta.seq <- predict(out8.seq, model.type = "cond",

+ parm.type = "canon")

+ dim(theta.seq) <- dim(x)

+ logl.seq[i] <- logl(alpha.fruit.seq[i], theta.seq, x)

+ }

> ##### interpolate #####

> alpha.foo <- seq(min(alpha.fruit.seq), max(alpha.fruit.seq), 0.01)

> logl.foo <- spline(alpha.fruit.seq, logl.seq, n = length(alpha.foo))$y

> imax <- seq(along = alpha.foo)[logl.foo == max(logl.foo)]

> alpha.fruit <- alpha.foo[imax]

> save(alpha.fruit, file = "chamae2-alpha.rda", ascii = TRUE)

At the end of this chunk we save the maximum likelihood estimates in a �le which is read
in at the beginning of this chapter.

Figure 3.4 (page 46) shows the pro�le log likelihood for the size parameters.

3.9 OLS Diagnostic Plots

Although unnecessary because we know the assumptions justifying OLS are badly vio-
lated, here are some diagnostic plots for the OLS regression.

Figure 3.5 (page 47) shows the plot of residuals versus �tted values made by the R
statement

> plot(lout8, which = 1, add.smooth = FALSE, id.n = 0,

+ sub.caption = "", caption = "")
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Figure 3.4: Pro�le log likelihood for size parameter for the (zero-truncated) negative bino-
mial distribution of fruit. Hollow dots are points at which the log likelihood was evaluated
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Figure 3.5: Residuals versus Fitted plot for OLS �t with blocks.

Figure 3.6 (page 48) shows the Normal Q-Q (quantile-quantile) plot made by the R
statement

> plot(lout8, which = 2, id.n = 0, sub.caption = "")

Clearly the errors are highly non-normal

3.10 Monotone Transformation of Fitness

This section makes explicit the monotonicity argument used on p. 33 that allows us to
look at the quadratic surface shown in Figure 3.1 rather than the �tness surface (landscape)
itself.

This argument holds whenever an unconditional aster model is used and one component
of the canonical statistic is taken to be observed �tness and the corresponding canonical
parameter the only parameter taken to be a function of phenotypic predictor variables z.
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The argument is very simple but a bit confusing since it applies to a aster model that is
not the actual model used. Consider any unconditional aster model. Then

ϕ = a+Mβ

gives the relation between the unconditional canonical parameter vector ϕ and the vector
of regression coe�cients β and

Y =MTX

gives the relation between the original data vector X and the canonical statistic vector Y
(which is the minimal su�cient statistic). These are (8) and (9) in Geyer, et al. (2007).

We are supposing that one component of Y , say Yk is observed �tness Let

w = Eβ(Yk)

be expected �tness. Then the relationship between expected �tness and the corresponding
canonical parameter βk is given by (22) in Geyer, et al. (2007)

∂w

βk
=
∂Eβ(Yk)

∂βk
> 0

which means that, other components of β being held �xed, w is a strictly increasing function
of βk.

Now suppose that we make βk and no other component of β a function of phenotypic
predictor variables z. Then by the argument given above

w(z) = Eβ(z)(Yk)

is a strictly increasing function of βk(z) other predictor variables being held �xed. Hence
w(z) has a maximum where βk(z) has a maximum, and so forth.

That is the end of the argument, but there is still the tricky part to deal with. When
we actually �t an aster model, we cannot have regression coe�cients that are arbitrary
functions of predictors. We have to write them as linear functions of other coe�cients. So
in our example (p. 33) we actually had

βk(z) = βk1z1 + βk2z2 + βk11z
2
1 + 2βk12z1z2 + βk22z

2
2

So what is one regression coe�cient βk in our argument becomes several regression coe�-
cients in the actual model.

So let us repeat the argument keeping track of what is �tness in the actual example.
There �tness is fruit count. Therefore our argument requires that phenotypic predictors
only directly a�ect fruit count (only involve fruit count variables), and this is what we have
done by creating the predictor variables LOGLVSfr and LOGSLAfr.

3.11 Plotting the Fitness Landscape

If one does not want to use the argument of the preceding section or if one wants to
see the actual (modeled) �tness surface rather than a plot like Figure 3.1, which is only a
monotone transformation of the �tness surface, this section shows how to do that.
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Figure 3.7 (page 51) shows the scatterplot of data values for LOGLVS and LOGSLA and the
contours of the estimated �tness function that is the transform of (3.10) to the mean value
parameter scale. It is made by the following code.

> plot(chamae2w$LOGLVS, chamae2w$LOGSLA, xlab = "LN", ylab = "SLA")

> points(max8[1], max8[2], pch = 19)

> ufoo <- par("usr")

> nx <- 101

> ny <- 101

> x <- seq(ufoo[1], ufoo[2], length = nx)

> y <- seq(ufoo[3], ufoo[4], length = ny)

> xx <- outer(x, y^0)

> yy <- outer(x^0, y)

> xx <- as.vector(xx)

> yy <- as.vector(yy)

> n <- length(xx)

> newdata1 <- data.frame(

+ BLK = factor(rep("1", n), levels = levels(out8$data$BLK)),

+ varb = factor(rep("fecund", n), levels = levels(out8$data$varb)),

+ LOGLVSfr = rep(0, n),

+ LOGSLAfr = rep(0, n),

+ resp = rep(1, n),

+ id = 1:n)

> newdata2 <- data.frame(

+ BLK = factor(rep("1", n), levels = levels(out8$data$BLK)),

+ varb = factor(rep("fruit", n), levels = levels(out8$data$varb)),

+ LOGLVSfr = xx,

+ LOGSLAfr = yy,

+ resp = rep(1, n),

+ id = 1:n)

> newdata <- rbind(newdata1, newdata2)

> pout <- predict(out8, newdata = newdata, varvar = varb, idvar = id,

+ root = rep(1, 2 * n))

> zz <- pout[newdata$varb == "fruit"]

> zz <- matrix(zz, nx, ny)

> contour(x, y, zz, add = TRUE)

> contour(x, y, zz, levels = c(10, 25), add = TRUE)

3.12 Diagnostic Plots for Paper

Here we just put Figure 3.3 and Figure 3.5 in one plot.
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Figure 3.7: Scatterplot of LOGLVS versus LOGSLA with contours of the estimated �tness
landscape. Variable names in axis labels changes to LN and SLA, respectively to agree with
paper, which used these names. Solid dot is the point where the estimated �tness function
achieves its maximum. Compare Figure 3.1.
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Chapter 4

Lande-Arnold Analysis using Aster

Models

4.1 Introduction

The analysis presented in this chapter actually was done before the analysis presented
in the preceding chapter. It is an attempt to do full justice to the data. As the experiment
was designed there were multiple components of �tness. For each plant that survived to
that stage, fruits were counted (fruit) and then a random sample of fruits of size 3 was
taken and the seeds in those fruits counted (textttseed). This experimental design does not
�t aster models perfectly (not the fault of the experimenters because the experiment was
done before aster models were described). It would have been better if seeds were counted
for all fruits or for a fraction p of fruits. Nevertheless, we do what we can, combining aster
analysis and Lande-Arnold analysis. Since Lande and Arnold (1983) assume nothing about
the distribution of �tness given phenotype, it is impossible to develop sampling distributions
of estimates, con�dence intervals, or hypothesis tests. We assume the distribution of �tness
given phenotypic variables and other predictor variables is given by an aster model. Hence
we can do valid statistical hypothesis tests and con�dence intervals.

4.2 Data

We reanalyze a subset of the data analyzed by Etterson and Shaw (2001). Individuals of
Chamaecrista fasciculata (common name, partridge pea) were obtained from three locations
in the country and planted in three �eld sites. Of the complete data we only reanalyze here
individuals planted in one �eld site (Minnesota).

These data are already in �long� format, no need to use the reshape function on them
to do aster analysis. We will, however, need the �wide� format for Lande-Arnold analysis.
So we do that, before making any changes (we will add newly de�ned variables) to chamae.

> library(aster)

> data(chamae)

> chamaew <- reshape(chamae, direction = "wide", timevar = "varb",
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Figure 4.1: Graph for Chamaecrista Aster Data. Arrows go from parent nodes to child
nodes. Nodes are labeled by their associated variables. The only root node is associated
with the constant variable 1. fecund is Bernoulli (zero indicates no seeds, one indicates
nonzero seeds). If fecund is zero, then so are the other variables. If fecund is nonzero, then
fruit (fruit count) and seed (seed count) are conditionally independent, fruit has a two-
truncated negative binomial distribution, and seed has a zero-truncated negative binomial
distribution.

+ v.names = "resp", varying = list(levels(chamae$varb)))

> names(chamaew)

[1] "id" "root" "STG1N" "LOGLVS" "LOGSLA" "BLK" "fecund"

[8] "fruit" "seed"

For each individual, many characteristics were measured, three of which we consider
phenotypic characters (so our z is three-dimensional), and others which combine to make up
an estimate of �tness. The three phenotypic characters are reproductive stage (STG1N), log
leaf number (LOGLVS), and log leaf thickness (LOGSLA). �At the natural end of the growing
season, [they] recorded total pod number and seed counts from three representative pods;
from these measures, [they] estimated [�tness]� (Etterson and Shaw, 2001, further explained
in their note 12).

Although aster model theory in the published version of Geyer, et al. (2007) does allow
conditionally multinomial response variables, versions of the aster package up through 0.7-
2, the current version at the time this was written, do not. Multinomial response, if we could
use it, would allow us to deal individuals having seeds counted from 0, 1, 2, or 3 fruits. To
avoid multinomial response, we remove individuals with seeds counted for only one or two
fruits (there were only four such).

Figure 4.1 shows the graph of the aster model we use for these data. Fruit count (fruit)
and seed count (seed) are dependent only in that if one is zero, then so is the other (we only
model fruit count for individuals who have seeds, because fruit count for other individuals
is irrelevant). Given that neither is zero (when fecund == 1), they are conditionally inde-
pendent. Given that fruit count is nonzero, it is at least three (by our data modi�cations).
The conditional distribution of seed given that it is nonzero is what is called zero-truncated
negative binomial, which is negative binomial conditioned on being greater than zero. By
analogy we call the conditional distribution of fruit given that it is nonzero, two-truncated
negative binomial, which is negative binomial conditioned on being greater than two.
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4.3 Aster Analysis

Then we set up the aster model framework.

> vars <- c("fecund", "fruit", "seed")

> pred <- c(0,1,1)

We need to choose the non-exponential-family parameters (sizes) for the negative bino-
mial distributions, since the aster package only does maximum likelihood for exponential
family parameters. We start with the following values, which were chosen with knowledge
of the maximum likelihood estimates for these parameters, which we �nd in Section 4.7.

> load("chamae-alpha.rda")

> print(alpha.fruit)

[1] 2.48

> print(alpha.seed)

[1] 16.18

> famlist <- list(fam.bernoulli(), fam.poisson(),

+ fam.truncated.negative.binomial(size = alpha.seed, truncation = 0),

+ fam.truncated.negative.binomial(size = alpha.fruit, truncation = 2))

> fam <- c(1,4,3)

We can now �t our �rst aster model.

> out1 <- aster(resp ~ varb + BLK, pred, fam, varb, id, root,

+ data = chamae, famlist = famlist)

> summary(out1, show.graph = TRUE)

Call:

aster.formula(formula = resp ~ varb + BLK, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = chamae, famlist = famlist)

Graphical Model:

variable predecessor

fecund root

fruit fecund

seed fecund

family

bernoulli

truncated.negative.binomial(size = 2.48, truncation = 2)

truncated.negative.binomial(size = 16.18, truncation = 0)

Estimate Std. Error z value Pr(>|z|)
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(Intercept) -1.966e+01 1.209e-01 -162.587 <2e-16 ***

varbfruit 2.064e+01 1.211e-01 170.499 <2e-16 ***

varbseed 2.019e+01 1.240e-01 162.785 <2e-16 ***

BLK2 3.928e-04 5.150e-04 0.763 0.446

BLK4 4.502e-03 4.640e-04 9.701 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

The �response� resp is a numeric vector containing all the response variables (fecund, fruit,
and seed). The �predictor� varb is a factor with four levels distinguishing with resp which
original response variable an element is. The predictor BLK has not been mentioned so far.
It is block within the �eld where the plants were grown.

Now we add phenotypic variables.

> out2 <- aster(resp ~ varb + BLK + LOGLVS + LOGSLA + STG1N,

+ pred, fam, varb, id, root, data = chamae, famlist = famlist)

> summary(out2)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVS + LOGSLA +

STG1N, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.925e+01 1.228e-01 -156.793 < 2e-16 ***

varbfruit 2.020e+01 1.234e-01 163.759 < 2e-16 ***

varbseed 1.975e+01 1.263e-01 156.454 < 2e-16 ***

BLK2 2.483e-04 5.572e-04 0.446 0.65582

BLK4 1.994e-03 5.238e-04 3.807 0.00014 ***

LOGLVS 9.831e-03 9.381e-04 10.479 < 2e-16 ***

LOGSLA 6.099e-03 2.847e-03 2.143 0.03215 *

STG1N 5.381e-03 2.841e-04 18.941 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

One might think we should use varb * (LOGLVS + LOGSLA + STG1N) but it turns out this
is too many parameters and the Fisher information is ill conditioned, as shown by the need
to use the info.tol argument.

> out2foo <- aster(resp ~ BLK + varb * (LOGLVS + LOGSLA + STG1N),

+ pred, fam, varb, id, root, data = chamae, famlist = famlist)

> summary(out2foo, info.tol = 1e-11)

Call:

aster.formula(formula = resp ~ BLK + varb * (LOGLVS + LOGSLA +

STG1N), pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae, famlist = famlist)
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Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.029e+01 1.586e+00 -6.487 8.75e-11 ***

BLK2 8.529e-04 5.787e-04 1.474 0.140559

BLK4 2.114e-03 5.574e-04 3.793 0.000149 ***

varbfruit 1.123e+01 1.587e+00 7.077 1.47e-12 ***

varbseed 1.062e+01 1.627e+00 6.530 6.59e-11 ***

LOGLVS -4.041e+00 4.464e-01 -9.054 < 2e-16 ***

LOGSLA 1.945e+00 1.671e+00 1.164 0.244244

STG1N 1.200e+00 1.591e-01 7.541 4.68e-14 ***

varbfruit:LOGLVS 4.058e+00 4.465e-01 9.089 < 2e-16 ***

varbseed:LOGLVS 4.085e+00 4.587e-01 8.905 < 2e-16 ***

varbfruit:LOGSLA -1.942e+00 1.672e+00 -1.161 0.245510

varbseed:LOGSLA -1.986e+00 1.710e+00 -1.161 0.245579

varbfruit:STG1N -1.201e+00 1.593e-01 -7.540 4.70e-14 ***

varbseed:STG1N -1.178e+00 1.637e-01 -7.197 6.16e-13 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out2, out2foo)

Analysis of Deviance Table

Model 1: resp ~ varb + BLK + LOGLVS + LOGSLA + STG1N

Model 2: resp ~ BLK + varb * (LOGLVS + LOGSLA + STG1N)

Model Df Model Dev Df Deviance P(>|Chi|)

1 8 -85233

2 14 -84432 6 801.55 < 2.2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Despite the statistically signi�cant improvement (based on the chi-square approximation
to the log likelihood ratio, which may not be valid with such an ill-conditioned Fisher
information), we do not adopt this model (out2foo) either.

Although we cannot a�ord 9 parameters (3 levels of varb times 3 predictor variables)
for the interaction, we can a�ord 6, only putting the phenotype variables in at level fruit
and seed. Because we are �tting an unconditional aster model, the e�ects of these terms
are passed down to fecund. See the example in Geyer, et al. (2007) for discussion of this
phenomenon.

> foo <- as.numeric(as.character(chamae$varb) == "fruit")

> chamae$LOGLVSfr <- chamae$LOGLVS * foo

> chamae$LOGSLAfr <- chamae$LOGSLA * foo

> chamae$STG1Nfr <- chamae$STG1N * foo

> foo <- as.numeric(as.character(chamae$varb) == "seed")

> chamae$LOGLVSsd <- chamae$LOGLVS * foo

> chamae$LOGSLAsd <- chamae$LOGSLA * foo
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> chamae$STG1Nsd <- chamae$STG1N * foo

> out6 <- aster(resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr +

+ LOGLVSsd + LOGSLAsd + STG1Nsd, pred, fam, varb, id, root, data = chamae,

+ famlist = famlist)

> summary(out6)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSfr + LOGSLAfr +

STG1Nfr + LOGLVSsd + LOGSLAsd + STG1Nsd, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = chamae, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.871e+01 1.274e-01 -146.865 < 2e-16 ***

varbfruit 1.966e+01 1.280e-01 153.615 < 2e-16 ***

varbseed 1.926e+01 1.344e-01 143.371 < 2e-16 ***

BLK2 5.049e-04 5.717e-04 0.883 0.377128

BLK4 2.105e-03 5.446e-04 3.866 0.000111 ***

LOGLVSfr 1.639e-02 1.035e-03 15.844 < 2e-16 ***

LOGSLAfr 7.287e-03 3.783e-03 1.926 0.054101 .

STG1Nfr 1.294e-04 3.146e-04 0.411 0.680958

LOGLVSsd -7.076e-02 8.038e-03 -8.803 < 2e-16 ***

LOGSLAsd -1.621e-03 2.904e-02 -0.056 0.955483

STG1Nsd 5.884e-02 2.978e-03 19.759 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

When we analyzed the Minnesota-Minnesota subset alone (the subset of these data
consisting of only the Minnesota population) the there was no statistically signi�cant e�ect
of the phenotypic predictors on seed count. In these data that e�ect is signi�cant.

> out5 <- aster(resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr,

+ pred, fam, varb, id, root, data = chamae, famlist = famlist)

> summary(out5)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSfr + LOGSLAfr +

STG1Nfr, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.930e+01 1.224e-01 -157.764 < 2e-16 ***

varbfruit 2.025e+01 1.230e-01 164.601 < 2e-16 ***

varbseed 1.984e+01 1.254e-01 158.152 < 2e-16 ***

BLK2 1.752e-04 5.489e-04 0.319 0.749659

BLK4 1.944e-03 5.163e-04 3.765 0.000166 ***

LOGLVSfr 1.135e-02 1.004e-03 11.301 < 2e-16 ***

LOGSLAfr 6.041e-03 3.064e-03 1.972 0.048663 *
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STG1Nfr 5.246e-03 2.996e-04 17.508 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out5, out6)

Analysis of Deviance Table

Model 1: resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr

Model 2: c("resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr + LOGLVSsd + ", " LOGSLAsd + STG1Nsd")

Model Df Model Dev Df Deviance P(>|Chi|)

1 8 -85302

2 11 -84610 3 692.17 < 2.2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

We stop our search for aster models here (using model out6 for the rest of our analysis).
Perhaps with a more diligent search we could �nd a slightly better �tting model, but obvious
things to throw into the model (interactions) use too many parameters, so a better �tting
model would have to be cleverly devised. This model �ts well enough to serve as an example
(see, however, the residual analyses in Section 4.6 below).

4.4 Lande-Arnold Analysis

In contrast to the aster analysis, the Lande-Arnold analysis is very simple.

> chamaew$fit <- chamaew$fruit * chamaew$seed

> chamaew$relfit <- chamaew$fit / mean(chamaew$fit)

> lout <- lm(relfit ~ LOGLVS + LOGSLA + STG1N, data = chamaew)

> summary(lout)

Call:

lm(formula = relfit ~ LOGLVS + LOGSLA + STG1N, data = chamaew)

Residuals:

Min 1Q Median 3Q Max

-2.8589 -0.7953 -0.3592 0.2828 11.4682

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.43393 0.44764 -7.671 2.53e-14 ***

LOGLVS 1.73055 0.13352 12.961 < 2e-16 ***

LOGSLA 1.83028 0.46410 3.944 8.27e-05 ***

STG1N 0.75655 0.03507 21.571 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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Residual standard error: 1.533 on 2231 degrees of freedom

Multiple R-squared: 0.1972, Adjusted R-squared: 0.1962

F-statistic: 182.7 on 3 and 2231 DF, p-value: < 2.2e-16

The information contained in the printout of summary(lout1) with the exception of the
Estimate column is unreliable because the OLS model assumptions are not satis�ed, as
acknowledged by Etterson and Shaw (2001) and Etterson (2004). Therefore measures of
statistical signi�cance including standard errors (Std. Error column), t-statistics (t value

column), and P -values (Pr(>|t|) column) are erroneous.

Also the (Intercept) regression is of no interest (not part of β or γ).

We can also estimate β(e) as a constant function, where e is BLK, our comments about
that applying to OLS regression estimates as well as to (our as yet to be determined �better�
estimates).

> loute <- lm(relfit ~ BLK + LOGLVS + LOGSLA + STG1N, data = chamaew)

> summary(loute)

Call:

lm(formula = relfit ~ BLK + LOGLVS + LOGSLA + STG1N, data = chamaew)

Residuals:

Min 1Q Median 3Q Max

-2.9551 -0.7811 -0.3143 0.2689 11.6144

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.33725 0.44323 -7.529 7.36e-14 ***

BLK2 -0.03046 0.07953 -0.383 0.70176

BLK4 0.49001 0.08329 5.883 4.63e-09 ***

LOGLVS 1.51631 0.13686 11.079 < 2e-16 ***

LOGSLA 1.28264 0.46609 2.752 0.00597 **

STG1N 0.69622 0.03574 19.482 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.517 on 2229 degrees of freedom

Multiple R-squared: 0.2148, Adjusted R-squared: 0.2131

F-statistic: 122 on 5 and 2229 DF, p-value: < 2.2e-16

> coefficients(loute)

(Intercept) BLK2 BLK4 LOGLVS LOGSLA

-3.33724548 -0.03046094 0.49000559 1.51631480 1.28263998

STG1N

0.69621813
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Note the large change from including e.

> phenonam <- c("LOGLVS", "LOGSLA", "STG1N")

> beta.hat.ols <- coefficients(lout)[phenonam]

> beta.hat.ols.e <- coefficients(loute)[phenonam]

> beta.hat.ols - beta.hat.ols.e

LOGLVS LOGSLA STG1N

0.21424019 0.54763766 0.06033548

Although we think we should �nd better estimators of β and β(e) than the OLS estima-
tors, we work with these �rst.

4.5 Parametric Bootstrap

In a parametric bootstrap, the results are random. The depend on the random number
generator seed and the bootstrap sample size. For su�ciently large bootstrap sample size,
the dependence on the seed is small, but it still there. In order to get the same results every
time, we set the seed. Anyone who does not want the same result every time (to see the
randomness in the bootstrap, for example, should remove the following chunk.

> set.seed(42)

The function raster simulates data from an aster model. This follows the last section
of the aster package vignette. We use the parameter values for the model out6.

> theta.hat <- predict(out6, model.type = "cond", parm.type = "canon")

> theta.hat <- matrix(theta.hat, nrow = nrow(out6$x), ncol = ncol(out6$x))

> root <- out6$root

> nboot <- 1000

> betastar <- matrix(NA, length(beta.hat.ols), nboot)

> betaestar <- matrix(NA, length(beta.hat.ols), nboot)

> for (i in 1:nboot) {

+ foo <- raster(theta.hat, pred, fam, root, famlist = famlist)

+ wstar <- foo[ , 2] * foo[ , 3]

+ wstar <- wstar / mean(wstar)

+ loutstar <- lm(wstar ~ LOGLVS + LOGSLA + STG1N, data = chamaew)

+ loutestar <- lm(wstar ~ BLK + LOGLVS + LOGSLA + STG1N, data = chamaew)

+ betastar[ , i] <- coefficients(loutstar)[phenonam]

+ betaestar[ , i] <- coefficients(loutestar)[phenonam]

+ }

The matrix betastar contains the (parametric) bootstrap distribution of β̂OLS. Each row
is the bootstrap distribution of one regression coe�cient. Each column (a three-vector) is
one bootstrap replicate of β̂. The matrix betaestar contains the (parametric) bootstrap
distribution of our analogous OLS estimator of β(e).

Figure 4.2 (page 62) shows the histogram of the parametric bootstrap distribution of
the regression coe�cient for LOGLVS. in the estimate of β. It is given only to show that
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Figure 4.2: Histogram of the parametric bootstrap distribution for the selection gradient for
log leaf number.
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this bootstrap distribution is approximately normal, so it can be described in terms of
mean and standard deviation. The distributions for the other two regression coe�cients in
betastar (not shown) are similarly approximately normal, as are those for the three regres-
sion coe�cients in betaestar. The means and standard deviations for our OLS estimates
of components of β are

> meanbetastar <- apply(betastar, 1, mean)

> sdbetastar <- apply(betastar, 1, sd)

> foo <- cbind(meanbetastar, sdbetastar)

> dimnames(foo) <- list(phenonam, c("mean", "s. d."))

> print(foo)

mean s. d.

LOGLVS 1.3561669 0.13707633

LOGSLA 1.7897740 0.41916187

STG1N 0.8095845 0.02957681

For comparison the OLS estimates and nominal standard errors are

> foo <- summary(lout)$coefficients[ , 1:2]

> print(foo)

Estimate Std. Error

(Intercept) -3.4339326 0.44764441

LOGLVS 1.7305550 0.13352262

LOGSLA 1.8302776 0.46410116

STG1N 0.7565536 0.03507319

We note in passing that the means are rather di�erent from the OLS estimates given on
p. 60, the maximum absolute di�erence being 0.374.

The means and standard deviations for our OLS estimates of components of β(e) are

> meanbetaestar <- apply(betaestar, 1, mean)

> sdbetaestar <- apply(betaestar, 1, sd)

> foo <- cbind(meanbetaestar, sdbetaestar)

> dimnames(foo) <- list(phenonam, c("mean", "s. d."))

> print(foo)

mean s. d.

LOGLVS 1.1877270 0.13666071

LOGSLA 1.3807413 0.42240265

STG1N 0.7662728 0.03115819

For comparison the OLS estimates and nominal standard errors are

> foo <- summary(loute)$coefficients[ , 1:2]

> print(foo)
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Estimate Std. Error

(Intercept) -3.33724548 0.44323206

BLK2 -0.03046094 0.07953440

BLK4 0.49000559 0.08328757

LOGLVS 1.51631480 0.13686216

LOGSLA 1.28263998 0.46609281

STG1N 0.69621813 0.03573699

We note in passing that the means are rather di�erent from the OLS estimates given on
p. 61, the maximum absolute di�erence being 0.329.

Our bootstrap standard errors are much smaller than the OLS standard errors produced
by the regression routine (which are invalid because the OLS model assumptions are invalid).

Although here we have so much data that all three regression coe�cients are clearly
statistically signi�cantly di�erent from zero, if the sample size were smaller doing the right
thing might make a di�erence in hypothesis testing. A more important point is that our
standard errors are scienti�cally defensible, whereas the OLS standard errors are not, since
the OLS assumptions are obviously and grossly false.

4.6 Goodness of Fit

In this section we examine three issues. Is the assumed conditional independence of
fruit and seed given fecund == 1 correct? Are the assumed conditional distributions for
fruit and seed given fecund == 1 correct?

4.6.1 Independence

We tackle the easiest �rst. Easy in a sense because impossible. We cannot test for
independence. The best we can do is a nonparametric test for lack of correlation.

> woof <- chamaew$fruit[chamaew$fecund == 1]

> meow <- chamaew$seed[chamaew$fecund == 1]

> cout <- cor.test(woof, meow, method = "kendall")

> print(cout)

Kendall's rank correlation tau

data: woof and meow

z = 4.0141, p-value = 5.967e-05

alternative hypothesis: true tau is not equal to 0

sample estimates:

tau

0.08651135

The correlation (Kendall's tau) is statistically signi�cantly di�erent from zero, but perhaps,
at 0.087 not practically signi�cant. In any case, having no way put dependence in our aster
model, we proceed as if not practically signi�cant. Figure 4.3 (page 65) shows the scatter
plot of the �tted mean value parameter (for each individual) versus the observed value for
fruit count.
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4.6.2 Conditional of Fruit given Nonzero Fitness

Residual analysis of generalized linear models (GLM) is tricky. (Our aster model becomes
a GLM when we consider only the conditional distribution associated with one arrow.) Many
di�erent residuals have been proposed Davison and Snell (1991). We start with the simplest,
so called Pearson residuals.

> xi.hat <- predict(out6, model.type = "cond", parm.type = "mean")

> xi.hat <- matrix(xi.hat, nrow = nrow(out6$x), ncol = ncol(out6$x))

> range(woof)

[1] 3 781

> nwoof <- length(woof)

> woof.theta <- theta.hat[chamaew$fecund == 1, 2]

> woof.xi <- xi.hat[chamaew$fecund == 1, 2]

> wgrad <- double(nwoof)

> winfo <- double(nwoof)

> for (i in 1:nwoof) {

+ wgrad[i] <- famfun(famlist[[4]], deriv = 1, woof.theta[i])

+ winfo[i] <- famfun(famlist[[4]], deriv = 2, woof.theta[i])

+ }

> all.equal(woof.xi, wgrad)

[1] TRUE

> pearson <- (woof - woof.xi) / sqrt(winfo)

Figure 4.4 (page 67) shows the scatter plot of the Pearson residuals for fruit count plotted
against the expected fruit count given that fruit count is nonzero (for each individual) for
individuals with nonzero �tness only.

Figure 4.4 is not perfect. There are 1 individuals with Pearson residual greater than
6 and an additional 3 individuals with Pearson residual between 4 and 6. On the other
hand, there are no individuals with Pearson residual less thatn −2. One does not expect
Pearson residuals for a generalized linear model, much less an aster model, to behave as
well for normal-theory linear models, but the lack of �t here is a bit worrying. The large
positive �outliers� (which are not outliers in the sense of being bad data) indicate that our
negative binomial model does not perfectly model these data (the negative binomial model
is, however, an enormous improvement over the Poisson model).

4.6.3 Conditional of Seed given Nonzero Fitness

Now we do the analogous plot of the conditional distribution of seed given nonzero
�tness.

> range(meow)
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Figure 4.4: Pearson residuals for fruit count given nonzero �tness plotted against �tted
values.
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[1] 2 53

> nmeow <- length(meow)

> meow.theta <- theta.hat[chamaew$fecund == 1, 3]

> meow.xi <- xi.hat[chamaew$fecund == 1, 3]

> wgrad <- double(nmeow)

> winfo <- double(nmeow)

> for (i in 1:nmeow) {

+ wgrad[i] <- famfun(famlist[[3]], deriv = 1, meow.theta[i])

+ winfo[i] <- famfun(famlist[[3]], deriv = 2, meow.theta[i])

+ }

> all.equal(meow.xi, wgrad)

[1] TRUE

> pearson <- (meow - meow.xi) / sqrt(winfo)

Figure 4.5 (page 69) shows the scatter plot of the Pearson residuals for seed count plotted
against the expected seed count given that fruit count is nonzero (for each individual)
for individuals with nonzero �tness only. There are no obvious problem with Figure 4.5.
Certainly, it is much less troubling than Figure 4.4.

4.7 Maximum Likelihood Estimation of Size

The aster function does not calculate the correct likelihood when the size parameters
are considered unknown, because it drops terms that do not involve the exponential family
parameters. However, the full log likelihood is easily calculated in R.

> x <- out6$x

> logl <- function(alpha.fruit, alpha.seed, theta, x) {

+ x.fecund <- x[ , 1]

+ theta.fecund <- theta[ , 1]

+ p.fecund <- 1 / (1 + exp(- theta.fecund))

+ logl.fecund <- sum(dbinom(x.fecund, 1, p.fecund, log = TRUE))

+ x.fruit <- x[x.fecund == 1, 2]

+ theta.fruit <- theta[x.fecund == 1, 2]

+ p.fruit <- (- expm1(theta.fruit))

+ logl.fruit <- sum(dnbinom(x.fruit, size = alpha.fruit,

+ prob = p.fruit, log = TRUE) - pnbinom(2, size = alpha.fruit,

+ prob = p.fruit, lower.tail = FALSE, log = TRUE))

+ x.seed <- x[x.fecund == 1, 3]

+ theta.seed <- theta[x.fecund == 1, 3]

+ p.seed <- (- expm1(theta.seed))

+ logl.seed <- sum(dnbinom(x.seed, size = alpha.seed,

+ prob = p.seed, log = TRUE) - pnbinom(0, size = alpha.seed,

+ prob = p.seed, lower.tail = FALSE, log = TRUE))

+ logl.fecund + logl.fruit + logl.seed

+ }
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Figure 4.5: Pearson residuals for seed count given nonzero �tness plotted against �tted
values.
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We then calculate the pro�le likelihood for the two size parameters (alpha.fruit and
alpha.seed), maximizing over the other parameters. Evaluating the pro�le log likelihood
on a grid of points.

> alpha.fruit.seq <- seq(1.5, 3.5, 0.25)

> alpha.seed.seq <- seq(10, 30, 0.5)

> logl.seq <- matrix(NA, nrow = length(alpha.fruit.seq),

+ ncol = length(alpha.seed.seq))

> for (i in 1:length(alpha.fruit.seq)) {

+ for (j in 1:length(alpha.seed.seq)) {

+ famlist.seq <- famlist

+ famlist.seq[[3]] <- fam.truncated.negative.binomial(size =

+ alpha.seed.seq[j], truncation = 0)

+ famlist.seq[[4]] <- fam.truncated.negative.binomial(size =

+ alpha.fruit.seq[i], truncation = 2)

+ out6.seq <- aster(out6$formula, pred, fam, varb, id, root,

+ data = chamae, famlist = famlist.seq, parm = out6$coefficients)

+ theta.seq <- predict(out6.seq, model.type = "cond",

+ parm.type = "canon")

+ dim(theta.seq) <- dim(x)

+ logl.seq[i, j] <- logl(alpha.fruit.seq[i], alpha.seed.seq[j],

+ theta.seq, x)

+ }

+ }

> ##### interpolate #####

> alpha.fruit.interp <- seq(min(alpha.fruit.seq), max(alpha.fruit.seq), 0.01)

> alpha.seed.interp <- seq(min(alpha.seed.seq), max(alpha.seed.seq), 0.01)

> logl.foo <- matrix(NA, nrow = length(alpha.fruit.interp),

+ ncol = length(alpha.seed.seq))

> for (i in 1:length(alpha.seed.seq))

+ logl.foo[ , i] <- spline(alpha.fruit.seq, logl.seq[ , i],

+ n = length(alpha.fruit.interp))$y

> logl.bar <- matrix(NA, nrow = length(alpha.fruit.interp),

+ ncol = length(alpha.seed.interp))

> for (i in 1:length(alpha.fruit.interp))

+ logl.bar[i, ] <- spline(alpha.seed.seq, logl.foo[i, ],

+ n = length(alpha.seed.interp))$y

> imax.fruit <- row(logl.bar)[logl.bar == max(logl.bar)]

> imax.seed <- col(logl.bar)[logl.bar == max(logl.bar)]

> alpha.fruit <- alpha.fruit.interp[imax.fruit]

> alpha.seed <- alpha.seed.interp[imax.seed]

> save(alpha.fruit, alpha.seed, file = "chamae-alpha.rda", ascii = TRUE)

At the end of this chunk we save the maximum likelihood estimates in a �le which is read
in at the beginning of this document.

Figure 4.6 (page 71) shows the pro�le log likelihood for the size parameters.
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Figure 4.6: Pro�le log likelihood for size parameters for the negative binomial distributions
of fruit and seed. Solid dot is maximum likelihood estimate.
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Figure 4.7: Residuals versus Fitted plot for OLS �t with blocks.

4.8 OLS Diagnostic Plots

Although unnecessary because we know the assumptions justifying OLS are badly vio-
lated, here are some diagnostic plots for the OLS regression.

Figure 4.7 (page 72) shows the plot of residuals versus �tted values made by the R
statement

> plot(loute, which = 1)

Figure 4.8 (page 73) shows the Normal Q-Q (quantile-quantile) plot made by the R
statement

> plot(loute, which = 2)

Clearly the errors are highly non-normal.
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Chapter 5

Aster Analysis of Growth Rate

5.1 Introduction

5.1.1 Data

Lenski and Service (1982) give data (their Table 2) that is ideal for aster model analysis
(Geyer, et al., 2007). These data are in a dataset aphid in version 0.7-2 or later of the aster
contributed package for R.

> library(aster)

> data(aphid)

> names(aphid)

[1] "root" "varb" "resp" "id"

These data are already in �long� format, no need to use the reshape function on them to
do aster analysis. The �original� variables, those describe in Lenski and Service (1982), are
all in the variable resp. Which components of resp correspond to which �original� variable
is indicated by the variable varb, which has levels

> levels(aphid$varb)

[1] "B2" "B3" "B4" "B5" "B6" "B7" "B8" "B9" "S1" "S10"

[11] "S11" "S12" "S13" "S2" "S3" "S4" "S5" "S6" "S7" "S8"

[21] "S9"

Which components of resp correspond to which �original� individual is indicated by the
variable id, which has unique values

> sort(unique(aphid$id))

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

so we have the 18 individuals recorded in the data of Lenski and Service (1982).
The �original� variables labeled Sx, where x is a number between 1 and 13, are survival

indicators (one for alive, zero for dead), and root is all ones (every individual was alive at
the start of data collection). Our root corresponds to the S0 of Lenski and Service (1982).
The �original� variables labeled Bx where x is a number between 2 and 9 are the number of
o�spring born to that individual (all individuals are female aphids) in that time period.
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1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

B2 B3 B4 B5 B6 B7 B8 B9
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Figure 5.1: Graph for Uroleucon rudbeckiae data. Arrows go from one life history component
to another indicating conditional dependence in the aster model. Nodes are labeled by their
associated variables. Root nodes are associated with the constant variable 1, indicating
presence of individuals at the outset. If any parent variable is zero, then the child variable
is also zero. Child variables are conditionally independent given the parent variable. If
a parent variable is nonzero, then the conditional distribution of the child variable is as
follows. Si is (conditionally) Bernoulli (zero indicates mortality, one indicates survival) and
Bi is (conditionally) zero-truncated Poisson.

5.1.2 Aster Model

We use an aster model for these data described as follows.

� Variable root is the predecessor of the variable S1.

� Variable S1 is Bernoulli.

� Variable Sx is the predecessor of the variable Bx.

� Variable Bx is Poisson given the variable Sx.

� Variable S(x− 1) is the predecessor of the variable Sx.

� Variable Sx is Bernoulli given the variable S(x− 1).

The graph for this model is shown in Figure 5.1.
The data of Lenski and Service (1982) included variables B1 though B13. We have deleted

some of them from the data. If we had included them and �t a saturated aster model, then
we have in addition to the structural zeroes in the data (dead individuals stay dead and
cannot reproduce) non-structural zeroes (zeroes in the data that are not forced by the model
structure). Because we intend to use a saturated model for fecundity, for the purposes of
this analysis only we deleted the Bx variables that were all zero. We do not recommend this
in general nor do we claim this is the only way to analyze these data. However the question
of what to do with these non-structural zeroes is di�cult, an open research question in
statistics, and we do not wish to complicate our example with that. If we were to use a
non-saturated model, this would avoid the non-structural zeroes problem, but would require
us to model fecundity as a function of time. We do not wish to do that either.

In contrast, we will attempt to model survivorship as a function of time, not so much
because that is easier (though it may be), but just to illustrate both approaches. Thus we
do not need to drop any Sx variables.

We now construct the aster model graphical structure as follows.

> varb <- unique(as.character(aphid$varb))

> varb.letter <- substr(varb, 1, 1)
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> varb.number <- as.numeric(substr(varb, 2, 10))

> varb.letter

[1] "S" "S" "B" "S" "B" "S" "B" "S" "B" "S" "B" "S" "B" "S" "B"

[16] "S" "B" "S" "S" "S" "S"

> varb.number

[1] 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 12

[21] 13

> pred <- rep(0, length(varb))

> indx <- seq(along = varb)

> ### B predecessors

> from <- indx[varb.letter == "B"]

> tovar <- paste("S", varb.number[from], sep = "")

> data.frame(from = varb[from], to = tovar)

from to

1 B2 S2

2 B3 S3

3 B4 S4

4 B5 S5

5 B6 S6

6 B7 S7

7 B8 S8

8 B9 S9

> to <- match(tovar, varb)

> pred[from] <- to

> pred

[1] 0 0 2 0 4 0 6 0 8 0 10 0 12 0 14 0 16 0 0 0

[21] 0

> ### S predecessors

> from <- indx[varb.letter == "S"]

> tovar <- paste("S", varb.number[from] - 1, sep = "")

> data.frame(from = varb[from], to = tovar)

from to

1 S1 S0

2 S2 S1

3 S3 S2

4 S4 S3

5 S5 S4

6 S6 S5
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7 S7 S6

8 S8 S7

9 S9 S8

10 S10 S9

11 S11 S10

12 S12 S11

13 S13 S12

> to <- match(tovar, varb)

> pred[from] <- to

> pred

[1] NA 1 2 2 4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 19

[21] 20

> data.frame(from = varb, to = varb[pred])

from to

1 S1 <NA>

2 S2 S1

3 B2 S2

4 S3 S2

5 B3 S3

6 S4 S3

7 B4 S4

8 S5 S4

9 B5 S5

10 S6 S5

11 B6 S6

12 S7 S6

13 B7 S7

14 S8 S7

15 B8 S8

16 S9 S8

17 B9 S9

18 S10 S9

19 S11 S10

20 S12 S11

21 S13 S12

> pred[is.na(pred)] <- 0

And the aster model family structure.

> ### families

> fam <- rep(1, length(varb))

> fam[varb.letter == "B"] <- 2
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5.2 Model Fitting

Unlike the examples discussed in Geyer, et al. (2007), these data require conditional

aster models. We are interested in modeling survivorship and fecundity as instantaneous
functions of time (or as close to that as we can get with discrete time periods). The use of
unconditional aster models to address lifetime �tness, so prominent in Geyer, et al. (2007),
is missing in this application.

5.2.1 Model One

We start with constant mortality rate.

> barb <- as.factor(sub("S[0-9]*", "S", as.character(aphid$varb)))

> aphid <- data.frame(aphid, barb = barb)

> out1 <- aster(resp ~ barb, pred, fam, varb, id, root = root,

+ data = aphid, type = "conditional")

> summary(out1, show.graph = TRUE)

Call:

aster.formula(formula = resp ~ barb, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = aphid, type = "conditional")

Graphical Model:

variable predecessor family

S1 root bernoulli

S2 S1 bernoulli

B2 S2 poisson

S3 S2 bernoulli

B3 S3 poisson

S4 S3 bernoulli

B4 S4 poisson

S5 S4 bernoulli

B5 S5 poisson

S6 S5 bernoulli

B6 S6 poisson

S7 S6 bernoulli

B7 S7 poisson

S8 S7 bernoulli

B8 S8 poisson

S9 S8 bernoulli

B9 S9 poisson

S10 S9 bernoulli

S11 S10 bernoulli

S12 S11 bernoulli

S13 S12 bernoulli
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Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.2513 0.2398 1.048 0.294731

barbB3 1.2368 0.2771 4.463 8.09e-06 ***

barbB4 1.0014 0.2927 3.422 0.000622 ***

barbB5 0.8938 0.3061 2.920 0.003497 **

barbB6 0.4026 0.3545 1.136 0.256134

barbB7 0.1234 0.4019 0.307 0.758855

barbB8 -1.0622 0.6710 -1.583 0.113410

barbB9 -2.0431 1.1251 -1.816 0.069393 .

barbS 1.6205 0.3653 4.436 9.16e-06 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

5.2.2 Model Two

We add a term linear in time for survival (not for fecundity).

> tim <- as.numeric(substr(as.character(aphid$varb), 2, 10))

> tim[grep("B", as.character(aphid$varb))] <- 0

> aphid <- data.frame(aphid, tim = tim)

> out2 <- aster(resp ~ barb + tim, pred, fam, varb, id, root = root,

+ data = aphid, type = "conditional")

> summary(out2)

Call:

aster.formula(formula = resp ~ barb + tim, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = aphid, type = "conditional")

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.25131 0.21637 1.162 0.245435

barbB3 1.23676 0.24749 4.997 5.82e-07 ***

barbB4 1.00145 0.25806 3.881 0.000104 ***

barbB5 0.89382 0.26698 3.348 0.000814 ***

barbB6 0.40261 0.30442 1.323 0.185984

barbB7 0.12338 0.34542 0.357 0.720954

barbB8 -1.06224 0.58820 -1.806 0.070931 .

barbB9 -2.04307 1.05913 -1.929 0.053729 .

barbS 3.38538 0.69597 4.864 1.15e-06 ***

tim -0.28661 0.08784 -3.263 0.001103 **

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

5.2.3 Model Three

We add a term quadratic in time for survival (not for fecundity).

79



> out3 <- aster(resp ~ barb + tim + I(tim^2), pred, fam, varb, id, root = root,

+ data = aphid, type = "conditional")

> summary(out3)

Call:

aster.formula(formula = resp ~ barb + tim + I(tim^2), pred = pred,

fam = fam, varvar = varb, idvar = id, root = root, data = aphid,

type = "conditional")

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.25131 0.22808 1.102 0.270520

barbB3 1.23676 0.26104 4.738 2.16e-06 ***

barbB4 1.00145 0.27148 3.689 0.000225 ***

barbB5 0.89382 0.27885 3.205 0.001349 **

barbB6 0.40261 0.31205 1.290 0.196976

barbB7 0.12338 0.34392 0.359 0.719784

barbB8 -1.06224 0.55076 -1.929 0.053768 .

barbB9 -2.04307 0.95105 -2.148 0.031695 *

barbS 1.49361 0.92541 1.614 0.106529

tim 0.49977 0.34729 1.439 0.150133

I(tim^2) -0.06100 0.02772 -2.200 0.027789 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out1, out2, out3)

Analysis of Deviance Table

Model 1: resp ~ barb

Model 2: resp ~ barb + tim

Model 3: resp ~ barb + tim + I(tim^2)

Model Df Model Dev Df Deviance P(>|Chi|)

1 9 -92.295

2 10 -80.749 1 11.5459 0.000679 ***

3 11 -75.119 1 5.6302 0.017654 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Everything we have put in seems statistically signi�cant, but we stop here, since modeling
is not the main point of the example.

5.3 Population Growth Rate

All of this is nice, but it does not directly address the question of interest to Lenski and
Service (1982). They are interested in the population growth rate φ, which we can get a
point estimate for using our methods as follows.
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5.3.1 Prediction I

First we form �new data� for prediction that corresponds to just one individual in the
old data.

> renewdata <- aphid[aphid$id == 1, ]

> class(renewdata)

[1] "data.frame"

> names(renewdata)

[1] "root" "varb" "resp" "id" "barb" "tim"

> dim(renewdata)

[1] 21 6

> nind <- 1

> nnode <- length(varb)

> prednames <- grep("B", varb, value = TRUE)

> prednames

[1] "B2" "B3" "B4" "B5" "B6" "B7" "B8" "B9"

> predno <- as.numeric(substr(prednames, 2, 10))

> predno

[1] 2 3 4 5 6 7 8 9

> npred <- length(prednames)

> amat <- array(0, c(nind, nnode, npred))

> identical(varb, as.character(renewdata$varb))

[1] TRUE

> for (i in 1:npred)

+ amat[1, varb == prednames[i], i] <- 1

> amat[1, , ]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 0

[3,] 1 0 0 0 0 0 0 0

[4,] 0 0 0 0 0 0 0 0

[5,] 0 1 0 0 0 0 0 0

[6,] 0 0 0 0 0 0 0 0

[7,] 0 0 1 0 0 0 0 0

[8,] 0 0 0 0 0 0 0 0
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[9,] 0 0 0 1 0 0 0 0

[10,] 0 0 0 0 0 0 0 0

[11,] 0 0 0 0 1 0 0 0

[12,] 0 0 0 0 0 0 0 0

[13,] 0 0 0 0 0 1 0 0

[14,] 0 0 0 0 0 0 0 0

[15,] 0 0 0 0 0 0 1 0

[16,] 0 0 0 0 0 0 0 0

[17,] 0 0 0 0 0 0 0 1

[18,] 0 0 0 0 0 0 0 0

[19,] 0 0 0 0 0 0 0 0

[20,] 0 0 0 0 0 0 0 0

[21,] 0 0 0 0 0 0 0 0

> class(out3$modmat)

[1] "array"

> dim(out3$modmat)

[1] 18 21 11

> class(out3)

[1] "aster.formula" "aster" "asterOrReaster"

> tout3 <- predict(out3, varvar = varb, idvar = id, root = root,

+ newdata = renewdata, amat = amat)

> names(tout3) <- prednames

> tout3

B2 B3 B4 B5 B6

1.06794655 3.44579803 2.56240419 2.15856319 1.22491862

B7 B8 B9

0.83848662 0.22106259 0.06516996

These are the unconditional expectations of the Bx variables indicated by the names. We
claim these correspond to σxβx (this product) in Lenski and Service (1982).

5.3.2 Point Estimation

To simplify notation we write µx = σxβx so equation (1) in Lenski and Service (1982)
becomes

1 =

∞∑
x=0

φ−(x+1)µx. (5.1)

Of course, here the sum is �nite, since we only have (nonzero) µx for x in the R variable
predno, ranging from 2 to 9.

The corresponding point estimate is found as follows.
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> foo <- function(phi) sum(phi^(- (predno + 1)) * tout3) - 1

> uout <- uniroot(foo, lower = 1, upper = 2)

> uout

$root

[1] 1.67741

$f.root

[1] 2.956994e-06

$iter

[1] 8

$init.it

[1] NA

$estim.prec

[1] 6.103516e-05

> phihat <- uout$root

Our point estimate is 1.67741. Note this is di�erent from the estimates presented in Table 3
in Lenski and Service (1982), although not much di�erent from any of their bias-corrected
estimators (F ′, F ∗, and F ′′).

5.3.3 The Delta Method

The aster package does not automatically do standard errors for nonlinear functions
such as the function de�ned by

> dophi <- function(mu) {

+ foo <- function(phi) sum(phi^(- (predno + 1)) * mu) - 1

+ uout <- uniroot(foo, lower = 1, upper = 2)

+ return(uout$root)

+ }

In order to apply the delta method we must �nd the gradient (vector of partial derivatives
∂φ/∂µx) of the function de�ned implicitly by (5.1) and explicitly by the R function dophi.

Di�erentiating (5.1) with respect to µy we get

0 =

∞∑
x=0

−(x+ 1)φ−(x+2) ∂φ

∂µy
µx + φ−(y+1)

which, since the ∂φ/∂µy does not contain x and can be pulled outside the sum, can be solved
for ∂φ/∂µy giving

∂φ

∂µy
=

( ∞∑
x=0

(x+ 1)φ−(x+2)+(y+1)µx

)−1
(5.2)
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The partial derivatives are functions of the vector µ having components µy. So we should
write ∂φ(µ)/∂µy to denote evaluation of the partial derivatives at the point µ.

Then the delta method says the estimator φ(µ̂) has the same asymptotic variance as its
linearization

φlin(µ̂) = φ(µ) +

∞∑
x=0

∂φ(µ)

∂µx
(µ̂x − µx) (5.3)

(Taylor series about µ with only zero-order and �rst-order terms).

Since φlin is a linear function of µ̂, we can calculate its asymptotic standard deviation
using the aster package.

> aphimat <- array(0, c(1, nnode, 1))

> for (i in 1:npred)

+ aphimat[1, varb == prednames[i], 1] <- 1 / sum((predno + 1) *

+ phihat^(- (predno + 2) + (predno[i] + 1)) * tout3)

> aphimat[1, , 1]

[1] 0.000000000 0.000000000 0.082172654 0.000000000 0.048987821

[6] 0.000000000 0.029204444 0.000000000 0.017410440 0.000000000

[11] 0.010379360 0.000000000 0.006187730 0.000000000 0.003688860

[16] 0.000000000 0.002199141 0.000000000 0.000000000 0.000000000

[21] 0.000000000

> tout3sd <- predict(out3, varvar = varb, idvar = id, root = root,

+ newdata = renewdata, amat = aphimat, se.fit = TRUE)

> tout3sd$se.fit

[1] 0.05608055

This is much smaller than the standard errors derived from Table 3 in Lenski and Service
(1982), but this is only to be expected. Parametric estimators are generally more accurate
than nonparametric estimators (when the parametric model is correct).

Note that from the last call to predict.aster we used only the standard error, not
the point estimate. The estimate phihat had already been derived. Moreover, since
aster.predict does not allow a constant term in the linear functions it estimates, we
cannot make it estimate (5.3). This does not matter, since we have gotten the desired point
estimate φ(µ̂) = 1.677 from our earlier calculation. The second calculation is only to get
the standard errors of both φ(µ̂) and φlin(µ̂), which are the same 0.056.

5.3.4 Check of the Delta Method

We can derive the partial derivatives used in the delta method by �nite di�erence ap-
proximation. Consider the �rst

> epsilon <- 1e-5

> dophi <- function(phi) {

+ foo <- function(phi) sum(phi^(- (predno + 1)) * tout3) - 1
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+ uout <- uniroot(foo, lower = 1, upper = 2, tol = 1e-8)

+ return(uout$root)

+ }

> dophi <- function(mu) {

+ foo <- function(phi) sum(phi^(- (predno + 1)) * mu) - 1

+ uout <- uniroot(foo, lower = 1, upper = 2, tol = 1e-8)

+ return(uout$root)

+ }

> mueps <- tout3

> mueps[1] <- mueps[1] + epsilon

> (dophi(mueps) - dophi(tout3)) / epsilon

[1] 0.0821728

> aphimat[1, 3, 1]

[1] 0.08217265

Pretty close.

5.4 Discussion

The point of this example is not that our methods are better than those of Lenski and
Service (1982). Ours being parametric and theirs being nonparametric, ours are better
when the parametric model we use is correct (or nearly so), and theirs are better otherwise,
assuming the sample size is large enough for the usual asymptotics of maximum likelihood
to work (for our methods) or for the jackknife to work (for theirs).

Our point is rather di�erent: aster models can be made to do this other kind of life
history analysis (LHA), which is rather di�erent from the kind done in the example in
Geyer, et al. (2007). Because both kinds are done in the same framework, this means it is
possible to do analyses which have some aspects of both kinds of LHA. It stands to reason
that many other kinds of LHA can be placed in the aster framework. Our story is about
uni�cation, not about one particular analysis being better than another for one particular
data set.

An unrelated lesson is that what Geyer, et al. (2007) call a �limitation� of the aster

package, that its predict.aster function handles only linear functions of the various pa-
rameterizations known to it (β, θ, ϕ, τ , and ξ), is a limitation only in terms of ease of use.
The package can be made to handle nonlinear functions, if one is willing and able to do the
delta method partially by hand (as we did here).
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