
More Supporting Data Analysis for

�Unifying Life History Analysis for Inference

of Fitness and Population Growth�

By
Ruth G. Shaw, Charles J. Geyer, Stuart Wagenius,

Helen H. Hangelbroek, and Julie R. Etterson
Technical Report No. 661

School of Statistics
University of Minnesota

December 26, 2007

2

Abstract

This technical report (TR) gives details of a data reanalysis
backing up a paper having the same authors as this TR and
having the title that is quoted in the title of this TR. This
reanalysis was not in the �rst submission of the paper, which
instead had analyses given in Chapters 3 and 4 of TR 658.
This analysis is for the second submission (to the same journal,
American Naturalist) of that paper. Unlike the �rst analyses,
these reanalyses directly estimate the �tness landscape rather
than quantities related to it. The two analyses are also much
more alike than the two analyses for the �rst submission. Both
estimate exactly the same quantities, although one has to work
harder to do so.

In an unrelated issue, we also give an example of subsam-
pling a component of �tness and its a�ect on parameter esti-
mates. This issue was mentioned in the �rst draft of the paper,
but this is the �rst worked example illustrating this method.

2

1 Creating this Document

This document is created from its source �le tr661.Rnw using the
R Sweave command and the LATEX document preparation system.
First do

Sweave("tr661.Rnw")

if you have downloaded the �le, or do

Sweave(url("http://www.stat.umn.edu/geyer/aster/tr661/tr661.Rnw"))

otherwise. This step takes an hour and a half on a fairly fast computer
because of the Monte Carlo calculation in Section 3.4, and this step
needs to be redone until the statements print(ok) on pages 13 and
33 print TRUE.

Then process the output, tr661.tex and several �les with su�xes
pdf and eps in the usual fashion (which depends on your system and
installation).

2 Introduction

The analysis presented in this technical report is one more attempt
to do full justice to the Chamaecrista data described below. As the
experiment was designed there were multiple components of �tness.
For each plant that survived to that stage, fruits were counted (fruit)
and then a random sample of fruits of size 3 was taken and the seeds
in those fruits counted (seed). This experimental design does not �t
aster models perfectly (not the fault of the experimenters because the
experiment was done before aster models were described). It would
have been better if seeds were counted for all fruits or for a fraction p
of fruits.

Nevertheless, we do what we can. Using a Monte Carlo calculation
we can still estimate the �tness surface that corresponds to any aster
model we decide �ts the data. We can use the parametric bootstrap
to carry out statistical tests or con�dence intervals, although these
no longer have a simple relationship to the parameters of the �tted
aster model (as they would if the experimental design had been more
favorable to aster analysis).

In Section 3 we perform an aster analysis in which both compo-
nents of �tness, fruit and seed are used, and �tness is deemed to be
fruit * seed / 3. The multiplication in this de�nition complicates
estimation of expected �tness. The aster software can calculate the
expectation of any linear combination of components of �tness, but it
cannot calculate expectations of nonlinear functions of components of
�tness. Fortunately, expectations that cannot be calculated exactly

1

can be approximated by Monte Carlo. This takes time but is not
otherwise problematic.

In Section 4 we perform an aster analysis in which fruit is deemed
�tness. This illustrates the typical situation in which a linear com-
bination of �tness components is deemed �tness and no Monte Carlo
calculation is needed.

3 Analysis involving Both Components of Fit-

ness

3.1 Data

We reanalyze a subset of the data analyzed by Etterson and Shaw
(2001). These data are in the chamae dataset in the aster contributed
package to the R statistical computing environment (R Development
Core Team, 2006). Individuals of Chamaecrista fasciculata (common
name, partridge pea) were obtained from three locations in the country
and planted in three �eld sites. Of the complete data we only reanalyze
here individuals planted in one �eld site (Minnesota).

These data are already in �long� format, no need to use the reshape
function on them to do aster analysis. We will, however, need the
�wide� format for Lande-Arnold analysis (Lande and Arnold, 1983).
So we do that, before making any changes (we will add newly de�ned
variables) to chamae.

> library(aster)

> data(chamae)

> chamaew <- reshape(chamae, direction = "wide", timevar = "varb",

+ v.names = "resp", varying = list(levels(chamae$varb)))

> names(chamaew)

[1] "id" "root" "STG1N" "LOGLVS" "LOGSLA" "BLK" "fecund"

[8] "fruit" "seed"

For each individual, many characteristics were measured, three of
which we consider phenotypic characters (so our z is three-dimensional),
and others which combine to make up an estimate of �tness. The three
phenotypic characters are reproductive stage (STG1N), log leaf num-
ber (LOGLVS), and log leaf thickness (LOGSLA). �At the natural end of
the growing season, [they] recorded total pod number and seed counts
from three representative pods; from these measures, [they] estimated
[�tness]� (Etterson and Shaw, 2001, further explained in their note
12).

Although aster model theory in the published version of Geyer,
et al. (2007) does allow conditionally multinomial response variables,
versions of the aster package up through 0.7-2, the current version

2

1

fecund

seed fruit

��	

��	 @@R

Figure 1: Graph for Chamaecrista Aster Data. Arrows go from parent
nodes to child nodes. Nodes are labeled by their associated variables.
The only root node is associated with the constant variable 1. fecund
is Bernoulli (zero indicates no seeds, one indicates nonzero seeds). If
fecund is zero, then so are the other variables. If fecund is nonzero,
then fruit (fruit count) and seed (seed count) are conditionally in-
dependent, fruit has a two-truncated negative binomial distribution,
and seed has a zero-truncated negative binomial distribution.

at the time this was written, do not. Multinomial response, if we
could use it, would allow us to deal individuals having seeds counted
from 0, 1, 2, or 3 fruits. To avoid multinomial response, we remove
individuals with seeds counted for only one or two fruits (there were
only four such).

Figure 1 shows the graph of the aster model we use for these data.
Fruit count (fruit) and seed count (seed) are dependent only in that
if one is zero, then so is the other (we only model fruit count for in-
dividuals who have seeds, because fruit count for other individuals is
irrelevant). Given that neither is zero (when fecund == 1), they are
conditionally independent. Given that fruit count is nonzero, it is at
least three (by our data modi�cations). The conditional distribution
of seed given that it is nonzero is what is called zero-truncated nega-
tive binomial, which is negative binomial conditioned on being greater
than zero. By analogy we call the conditional distribution of fruit
given that it is nonzero, two-truncated negative binomial, which is
negative binomial conditioned on being greater than two.

3.2 Aster Analysis

We need to choose the non-exponential-family parameters (sizes)
for the negative binomial distributions, since the aster package only
does maximum likelihood for exponential family parameters. We start
with the following values, which were chosen with knowledge of the
maximum likelihood estimates for these parameters, which we �nd in
Section 3.3. The values that are found then are written out to a �le
and loaded here if the �le exists, so after several runs (of Sweave)
we are reading in here the maximum likelihood values of these non-
exponential-family parameters.

3

> options(show.error.messages = FALSE, warn = -1)

> try(load("chamae-alpha.rda"))

> options(show.error.messages = TRUE, warn = 0)

> ok <- exists("alpha.fruit") && exists("alpha.seed")

> if (! ok) {

+ alpha.fruit <- 3.0

+ alpha.seed <- 15.0

+ }

> print(alpha.fruit)

[1] 3

> print(alpha.seed)

[1] 15

Then we set up the aster model framework.

> vars <- c("fecund", "fruit", "seed")

> pred <- c(0,1,1)

> famlist <- list(fam.bernoulli(), fam.poisson(),

+ fam.truncated.negative.binomial(size = alpha.seed, truncation = 0),

+ fam.truncated.negative.binomial(size = alpha.fruit, truncation = 2))

> fam <- c(1,4,3)

We can now �t our �rst aster model.

> out1 <- aster(resp ~ varb + BLK, pred, fam, varb, id, root,

+ data = chamae, famlist = famlist)

> summary(out1, show.graph = TRUE)

Call:

aster.formula(formula = resp ~ varb + BLK, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = chamae, famlist = famlist)

Graphical Model:

variable predecessor

fecund root

fruit fecund

seed fecund

family

bernoulli

truncated.negative.binomial(size = 3, truncation = 2)

truncated.negative.binomial(size = 15, truncation = 0)

Estimate Std. Error z value Pr(>|z|)

4

(Intercept) -2.086e+01 1.211e-01 -172.276 <2e-16 ***

varbfruit 2.184e+01 1.213e-01 180.095 <2e-16 ***

varbseed 2.142e+01 1.241e-01 172.652 <2e-16 ***

BLK2 4.070e-04 5.242e-04 0.776 0.438

BLK4 4.808e-03 4.771e-04 10.077 <2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

The �response� resp is a numeric vector containing all the response
variables (fecund, fruit, and seed). The �predictor� varb is a fac-
tor with three levels distinguishing with resp which original response
variable an element is. The predictor BLK has not been mentioned so
far. It is block within the �eld where the plants were grown.

Now we add phenotypic variables.

> out2 <- aster(resp ~ varb + BLK + LOGLVS + LOGSLA + STG1N,

+ pred, fam, varb, id, root, data = chamae, famlist = famlist)

> summary(out2)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVS + LOGSLA +

STG1N, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.041e+01 1.234e-01 -165.320 <2e-16 ***

varbfruit 2.135e+01 1.241e-01 172.039 <2e-16 ***

varbseed 2.093e+01 1.268e-01 165.065 <2e-16 ***

BLK2 2.556e-04 5.760e-04 0.444 0.6573

BLK4 2.241e-03 5.456e-04 4.108 4e-05 ***

LOGLVS 1.091e-02 9.971e-04 10.938 <2e-16 ***

LOGSLA 7.123e-03 2.998e-03 2.376 0.0175 *

STG1N 5.751e-03 2.925e-04 19.661 <2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

One might think we should use varb * (LOGLVS + LOGSLA + STG1N)

but it turns out this is too many parameters and the Fisher informa-
tion is ill conditioned, as shown by the need to use the info.tol

argument.

> out2foo <- aster(resp ~ BLK + varb * (LOGLVS + LOGSLA + STG1N),

+ pred, fam, varb, id, root, data = chamae, famlist = famlist)

> summary(out2foo, info.tol = 1e-11)

Call:

aster.formula(formula = resp ~ BLK + varb * (LOGLVS + LOGSLA +

5

STG1N), pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.058e+01 1.578e+00 -6.702 2.06e-11 ***

BLK2 8.992e-04 5.977e-04 1.504 0.132

BLK4 2.258e-03 5.773e-04 3.912 9.17e-05 ***

varbfruit 1.151e+01 1.580e+00 7.286 3.18e-13 ***

varbseed 1.095e+01 1.618e+00 6.771 1.28e-11 ***

LOGLVS -4.550e+00 4.392e-01 -10.361 < 2e-16 ***

LOGSLA 1.627e+00 1.669e+00 0.975 0.330

STG1N 1.254e+00 1.584e-01 7.916 2.46e-15 ***

varbfruit:LOGLVS 4.571e+00 4.393e-01 10.404 < 2e-16 ***

varbseed:LOGLVS 4.591e+00 4.510e-01 10.181 < 2e-16 ***

varbfruit:LOGSLA -1.623e+00 1.671e+00 -0.971 0.331

varbseed:LOGSLA -1.666e+00 1.707e+00 -0.976 0.329

varbfruit:STG1N -1.255e+00 1.585e-01 -7.914 2.48e-15 ***

varbseed:STG1N -1.232e+00 1.627e-01 -7.575 3.60e-14 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out2, out2foo)

Analysis of Deviance Table

Model 1: resp ~ varb + BLK + LOGLVS + LOGSLA + STG1N

Model 2: resp ~ BLK + varb * (LOGLVS + LOGSLA + STG1N)

Model Df Model Dev Df Deviance P(>|Chi|)

1 8 -87067

2 14 -86235 6 831.88 < 2.2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Despite the statistically signi�cant improvement (based on the chi-
square approximation to the log likelihood ratio, which may not be
valid with such an ill-conditioned Fisher information), we do not adopt
this model (out2foo) either.

Although we cannot a�ord 9 parameters (3 levels of varb times 3
predictor variables) for the interaction, we can a�ord 6, only putting
the phenotype variables in at level fruit and seed. Because we are
�tting an unconditional aster model, the e�ects of these terms are
passed down to fecund. See the example in Geyer, et al. (2007) for
discussion of this phenomenon.

> foo <- as.numeric(as.character(chamae$varb) == "fruit")

> chamae$LOGLVSfr <- chamae$LOGLVS * foo

> chamae$LOGSLAfr <- chamae$LOGSLA * foo

6

> chamae$STG1Nfr <- chamae$STG1N * foo

> foo <- as.numeric(as.character(chamae$varb) == "seed")

> chamae$LOGLVSsd <- chamae$LOGLVS * foo

> chamae$LOGSLAsd <- chamae$LOGSLA * foo

> chamae$STG1Nsd <- chamae$STG1N * foo

> out6 <- aster(resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr +

+ LOGLVSsd + LOGSLAsd + STG1Nsd, pred, fam, varb, id, root, data = chamae,

+ famlist = famlist)

> summary(out6)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSfr + LOGSLAfr +

STG1Nfr + LOGLVSsd + LOGSLAsd + STG1Nsd, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = chamae, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.990e+01 1.275e-01 -156.165 < 2e-16 ***

varbfruit 2.084e+01 1.281e-01 162.656 < 2e-16 ***

varbseed 2.051e+01 1.341e-01 152.900 < 2e-16 ***

BLK2 5.026e-04 5.902e-04 0.852 0.3944

BLK4 2.281e-03 5.642e-04 4.042 5.3e-05 ***

LOGLVSfr 1.930e-02 1.150e-03 16.782 < 2e-16 ***

LOGSLAfr 8.938e-03 4.060e-03 2.201 0.0277 *

STG1Nfr 2.732e-04 3.415e-04 0.800 0.4237

LOGLVSsd -8.217e-02 8.101e-03 -10.143 < 2e-16 ***

LOGSLAsd -1.029e-02 2.926e-02 -0.352 0.7251

STG1Nsd 5.800e-02 3.056e-03 18.982 < 2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

When we analyzed the Minnesota-Minnesota subset alone (the
subset of these data consisting of only the Minnesota population) the
there was no statistically signi�cant e�ect of the phenotypic predictors
on seed count. In these data that e�ect is signi�cant.

> out5 <- aster(resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr,

+ pred, fam, varb, id, root, data = chamae, famlist = famlist)

> summary(out5)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSfr + LOGSLAfr +

STG1Nfr, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.045e+01 1.230e-01 -166.325 < 2e-16 ***

varbfruit 2.139e+01 1.238e-01 172.861 < 2e-16 ***

7

varbseed 2.102e+01 1.259e-01 166.924 < 2e-16 ***

BLK2 1.688e-04 5.673e-04 0.298 0.7661

BLK4 2.145e-03 5.375e-04 3.992 6.56e-05 ***

LOGLVSfr 1.286e-02 1.081e-03 11.892 < 2e-16 ***

LOGSLAfr 7.266e-03 3.254e-03 2.233 0.0255 *

STG1Nfr 5.744e-03 3.129e-04 18.357 < 2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out5, out6)

Analysis of Deviance Table

Model 1: resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr

Model 2: c("resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr + LOGLVSsd + ", " LOGSLAsd + STG1Nsd")

Model Df Model Dev Df Deviance P(>|Chi|)

1 8 -87129

2 11 -86451 3 677.77 < 2.2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

A similar test

> out4 <- aster(resp ~ varb + BLK + LOGLVSsd + LOGSLAsd + STG1Nsd,

+ pred, fam, varb, id, root, data = chamae, famlist = famlist)

> summary(out4)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSsd + LOGSLAsd +

STG1Nsd, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.001e+01 1.279e-01 -156.419 < 2e-16 ***

varbfruit 2.099e+01 1.281e-01 163.843 < 2e-16 ***

varbseed 2.044e+01 1.350e-01 151.416 < 2e-16 ***

BLK2 1.130e-03 5.948e-04 1.900 0.0575 .

BLK4 4.333e-03 5.544e-04 7.815 5.48e-15 ***

LOGLVSsd -4.689e-03 7.523e-03 -0.623 0.5331

LOGSLAsd 1.974e-02 2.494e-02 0.792 0.4285

STG1Nsd 5.686e-02 2.379e-03 23.896 < 2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out4, out6)

Analysis of Deviance Table

8

Model 1: resp ~ varb + BLK + LOGLVSsd + LOGSLAsd + STG1Nsd

Model 2: c("resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr + LOGLVSsd + ", " LOGSLAsd + STG1Nsd")

Model Df Model Dev Df Deviance P(>|Chi|)

1 8 -86736

2 11 -86451 3 284.05 < 2.2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

shows that the e�ect of these variables on fruit is signi�cant.
Now we consider quadratic terms. Since the variable STG1N has

only a few values

> sort(unique(chamae$STG1N))

[1] 1 2 3

> tabulate(chamae$STG1N)

[1] 3276 684 2745

there is little sense adding terms quadratic in this variable.
The test

> out7 <- aster(resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + I(LOGLVSfr^2) +

+ I(LOGSLAfr^2) + I(LOGLVSfr * LOGSLAfr) + STG1Nfr + LOGLVSsd +

+ LOGSLAsd + STG1Nsd,

+ pred, fam, varb, id, root, data = chamae, famlist = famlist)

> summary(out7, info.tol = 1e-9)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSfr + LOGSLAfr +

I(LOGLVSfr^2) + I(LOGSLAfr^2) + I(LOGLVSfr * LOGSLAfr) +

STG1Nfr + LOGLVSsd + LOGSLAsd + STG1Nsd, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = chamae, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.983e+01 1.276e-01 -155.356 < 2e-16 ***

varbfruit 2.035e+01 1.423e-01 143.038 < 2e-16 ***

varbseed 2.055e+01 1.343e-01 153.042 < 2e-16 ***

BLK2 4.353e-04 5.780e-04 0.753 0.451411

BLK4 2.571e-03 5.525e-04 4.653 3.27e-06 ***

LOGLVSfr 2.669e-01 2.684e-02 9.945 < 2e-16 ***

LOGSLAfr -2.656e-01 7.612e-02 -3.490 0.000484 ***

I(LOGLVSfr^2) -3.995e-02 4.432e-03 -9.015 < 2e-16 ***

I(LOGSLAfr^2) -9.385e-02 3.928e-02 -2.389 0.016892 *

I(LOGLVSfr * LOGSLAfr) 5.397e-02 1.847e-02 2.922 0.003482 **

STG1Nfr -1.930e-05 3.256e-04 -0.059 0.952739

9

LOGLVSsd -1.213e-01 8.734e-03 -13.887 < 2e-16 ***

LOGSLAsd 1.873e-02 2.989e-02 0.627 0.530974

STG1Nsd 5.857e-02 3.063e-03 19.122 < 2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out6, out7)

Analysis of Deviance Table

Model 1: c("resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr + LOGLVSsd + ", " LOGSLAsd + STG1Nsd")

Model 2: c("resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + I(LOGLVSfr^2) + I(LOGSLAfr^2) + ", " I(LOGLVSfr * LOGSLAfr) + STG1Nfr + LOGLVSsd + LOGSLAsd + ", " STG1Nsd")

Model Df Model Dev Df Deviance P(>|Chi|)

1 11 -86451

2 14 -86309 3 142.2 < 2.2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

shows that there appears to be a quadratic e�ect on fruit. The similar
test

> out8 <- aster(resp ~ varb + BLK + LOGLVSsd + LOGSLAsd + I(LOGLVSsd^2) +

+ I(LOGSLAsd^2) + I(LOGLVSsd * LOGSLAsd) + STG1Nsd + LOGLVSfr +

+ LOGSLAfr + STG1Nfr,

+ pred, fam, varb, id, root, data = chamae, famlist = famlist)

> summary(out8, info.tol = 1e-9)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSsd + LOGSLAsd +

I(LOGLVSsd^2) + I(LOGSLAsd^2) + I(LOGLVSsd * LOGSLAsd) +

STG1Nsd + LOGLVSfr + LOGSLAfr + STG1Nfr, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = chamae, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.986e+01 1.277e-01 -155.519 < 2e-16 ***

varbfruit 2.079e+01 1.284e-01 161.912 < 2e-16 ***

varbseed 1.915e+01 2.737e-01 69.972 < 2e-16 ***

BLK2 5.654e-04 5.918e-04 0.956 0.3393

BLK4 2.399e-03 5.682e-04 4.223 2.41e-05 ***

LOGLVSsd 8.373e-01 1.283e-01 6.523 6.87e-11 ***

LOGSLAsd -7.466e-01 4.056e-01 -1.841 0.0656 .

I(LOGLVSsd^2) -1.608e-01 2.320e-02 -6.934 4.10e-12 ***

I(LOGSLAsd^2) -1.553e-01 2.513e-01 -0.618 0.5365

I(LOGLVSsd * LOGSLAsd) 2.319e-01 1.081e-01 2.146 0.0319 *

STG1Nsd 5.481e-02 3.021e-03 18.146 < 2e-16 ***

LOGLVSfr 2.130e-02 1.072e-03 19.875 < 2e-16 ***

LOGSLAfr 4.579e-03 4.197e-03 1.091 0.2753

10

STG1Nfr 3.448e-04 3.286e-04 1.049 0.2941

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out6, out8)

Analysis of Deviance Table

Model 1: c("resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr + LOGLVSsd + ", " LOGSLAsd + STG1Nsd")

Model 2: c("resp ~ varb + BLK + LOGLVSsd + LOGSLAsd + I(LOGLVSsd^2) + I(LOGSLAsd^2) + ", " I(LOGLVSsd * LOGSLAsd) + STG1Nsd + LOGLVSfr + LOGSLAfr + ", " STG1Nfr")

Model Df Model Dev Df Deviance P(>|Chi|)

1 11 -86451

2 14 -86376 3 75.526 2.795e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

shows that there appears to also be a quadratic e�ect on seed. And

> out9 <- aster(resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + I(LOGLVSfr^2) +

+ I(LOGSLAfr^2) + I(LOGLVSfr * LOGSLAfr) + STG1Nfr + LOGLVSsd + LOGSLAsd +

+ I(LOGLVSsd^2) + I(LOGSLAsd^2) + I(LOGLVSsd * LOGSLAsd) + STG1Nsd,

+ pred, fam, varb, id, root, data = chamae, famlist = famlist)

> summary(out9, info.tol = 1e-9)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSfr + LOGSLAfr +

I(LOGLVSfr^2) + I(LOGSLAfr^2) + I(LOGLVSfr * LOGSLAfr) +

STG1Nfr + LOGLVSsd + LOGSLAsd + I(LOGLVSsd^2) + I(LOGSLAsd^2) +

I(LOGLVSsd * LOGSLAsd) + STG1Nsd, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = chamae, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.982e+01 1.278e-01 -155.119 < 2e-16 ***

varbfruit 2.040e+01 1.432e-01 142.447 < 2e-16 ***

varbseed 2.001e+01 2.822e-01 70.909 < 2e-16 ***

BLK2 4.391e-04 5.791e-04 0.758 0.448356

BLK4 2.550e-03 5.535e-04 4.607 4.09e-06 ***

LOGLVSfr 2.245e-01 2.895e-02 7.755 8.84e-15 ***

LOGSLAfr -2.437e-01 8.852e-02 -2.753 0.005905 **

I(LOGLVSfr^2) -3.347e-02 4.740e-03 -7.061 1.65e-12 ***

I(LOGSLAfr^2) -1.045e-01 4.704e-02 -2.221 0.026357 *

I(LOGLVSfr * LOGSLAfr) 3.845e-02 2.046e-02 1.880 0.060156 .

STG1Nfr 6.362e-05 3.215e-04 0.198 0.843148

LOGLVSsd 3.487e-01 1.332e-01 2.619 0.008831 **

LOGSLAsd 3.109e-02 4.538e-01 0.069 0.945379

I(LOGLVSsd^2) -8.210e-02 2.442e-02 -3.362 0.000774 ***

I(LOGSLAsd^2) 1.981e-01 2.861e-01 0.692 0.488793

11

I(LOGLVSsd * LOGSLAsd) 1.217e-01 1.156e-01 1.052 0.292609

STG1Nsd 5.695e-02 3.072e-03 18.540 < 2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out6, out7, out9)

Analysis of Deviance Table

Model 1: c("resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr + LOGLVSsd + ", " LOGSLAsd + STG1Nsd")

Model 2: c("resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + I(LOGLVSfr^2) + I(LOGSLAfr^2) + ", " I(LOGLVSfr * LOGSLAfr) + STG1Nfr + LOGLVSsd + LOGSLAsd + ", " STG1Nsd")

Model 3: c("resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + I(LOGLVSfr^2) + I(LOGSLAfr^2) + ", " I(LOGLVSfr * LOGSLAfr) + STG1Nfr + LOGLVSsd + LOGSLAsd + ", " I(LOGLVSsd^2) + I(LOGSLAsd^2) + I(LOGLVSsd * LOGSLAsd) + ", " STG1Nsd")

Model Df Model Dev Df Deviance P(>|Chi|)

1 11 -86451

2 14 -86309 3 142.203 < 2.2e-16 ***

3 17 -86293 3 16.745 0.0007974 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out6, out8, out9)

Analysis of Deviance Table

Model 1: c("resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr + LOGLVSsd + ", " LOGSLAsd + STG1Nsd")

Model 2: c("resp ~ varb + BLK + LOGLVSsd + LOGSLAsd + I(LOGLVSsd^2) + I(LOGSLAsd^2) + ", " I(LOGLVSsd * LOGSLAsd) + STG1Nsd + LOGLVSfr + LOGSLAfr + ", " STG1Nfr")

Model 3: c("resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + I(LOGLVSfr^2) + I(LOGSLAfr^2) + ", " I(LOGLVSfr * LOGSLAfr) + STG1Nfr + LOGLVSsd + LOGSLAsd + ", " I(LOGLVSsd^2) + I(LOGSLAsd^2) + I(LOGLVSsd * LOGSLAsd) + ", " STG1Nsd")

Model Df Model Dev Df Deviance P(>|Chi|)

1 11 -86451

2 14 -86376 3 75.526 2.795e-16 ***

3 17 -86293 3 83.422 < 2.2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Shows that the model that is quadratic in the e�ects on both fruit and
seed is supported by the data. There is some question about these
because the Fisher information is close to singular (as evidenced by
our need to supply the info.tol argument to the summary command),
but we will go with out9 as out �best �tting� model.

3.3 Maximum Likelihood Estimation of Size

The aster function does not calculate the correct likelihood when
the size parameters are considered unknown, because it drops terms
that do not involve the exponential family parameters. However, the
full log likelihood is easily calculated in R.

12

> x <- out9$x

> logl <- function(alpha.fruit, alpha.seed, theta, x) {

+ x.fecund <- x[, 1]

+ theta.fecund <- theta[, 1]

+ p.fecund <- 1 / (1 + exp(- theta.fecund))

+ logl.fecund <- sum(dbinom(x.fecund, 1, p.fecund, log = TRUE))

+ x.fruit <- x[x.fecund == 1, 2]

+ theta.fruit <- theta[x.fecund == 1, 2]

+ p.fruit <- (- expm1(theta.fruit))

+ logl.fruit <- sum(dnbinom(x.fruit, size = alpha.fruit,

+ prob = p.fruit, log = TRUE) - pnbinom(2, size = alpha.fruit,

+ prob = p.fruit, lower.tail = FALSE, log = TRUE))

+ x.seed <- x[x.fecund == 1, 3]

+ theta.seed <- theta[x.fecund == 1, 3]

+ p.seed <- (- expm1(theta.seed))

+ logl.seed <- sum(dnbinom(x.seed, size = alpha.seed,

+ prob = p.seed, log = TRUE) - pnbinom(0, size = alpha.seed,

+ prob = p.seed, lower.tail = FALSE, log = TRUE))

+ logl.fecund + logl.fruit + logl.seed

+ }

We then calculate the pro�le likelihood for the two size parameters
(alpha.fruit and alpha.seed), maximizing over the other parame-
ters. Evaluating the pro�le log likelihood on a grid of points. We do
not do this if the results would be the same as we got last time and
have stored in the variable logl.seq.

> ok <- exists("alpha.fruit.save") && (alpha.fruit.save == alpha.fruit) &&

+ exists("alpha.seed.save") && (alpha.seed.save == alpha.seed) &&

+ exists("coef.save") && isTRUE(all.equal(coef.save, coefficients(out9)))

> print(ok)

[1] FALSE

> alpha.fruit.seq <- seq(1.5, 3.5, 0.25)

> alpha.seed.seq <- seq(10, 30, 0.5)

> if (! ok) {

+ logl.seq <- matrix(NA, nrow = length(alpha.fruit.seq),

+ ncol = length(alpha.seed.seq))

+ for (i in 1:length(alpha.fruit.seq)) {

+ for (j in 1:length(alpha.seed.seq)) {

+ famlist.seq <- famlist

+ famlist.seq[[3]] <- fam.truncated.negative.binomial(size =

+ alpha.seed.seq[j], truncation = 0)

+ famlist.seq[[4]] <- fam.truncated.negative.binomial(size =

+ alpha.fruit.seq[i], truncation = 2)

+ out9.seq <- aster(out9$formula, pred, fam, varb, id, root,

13

+ data = chamae, famlist = famlist.seq, parm = out9$coefficients)

+ theta.seq <- predict(out9.seq, model.type = "cond",

+ parm.type = "canon")

+ dim(theta.seq) <- dim(x)

+ logl.seq[i, j] <- logl(alpha.fruit.seq[i], alpha.seed.seq[j],

+ theta.seq, x)

+ }

+ }

+ }

> ##### interpolate #####

> alpha.fruit.interp <- seq(min(alpha.fruit.seq), max(alpha.fruit.seq), 0.01)

> alpha.seed.interp <- seq(min(alpha.seed.seq), max(alpha.seed.seq), 0.01)

> logl.foo <- matrix(NA, nrow = length(alpha.fruit.interp),

+ ncol = length(alpha.seed.seq))

> for (i in 1:length(alpha.seed.seq))

+ logl.foo[, i] <- spline(alpha.fruit.seq, logl.seq[, i],

+ n = length(alpha.fruit.interp))$y

> logl.bar <- matrix(NA, nrow = length(alpha.fruit.interp),

+ ncol = length(alpha.seed.interp))

> for (i in 1:length(alpha.fruit.interp))

+ logl.bar[i,] <- spline(alpha.seed.seq, logl.foo[i,],

+ n = length(alpha.seed.interp))$y

> imax.fruit <- row(logl.bar)[logl.bar == max(logl.bar)]

> imax.seed <- col(logl.bar)[logl.bar == max(logl.bar)]

> alpha.fruit.save <- alpha.fruit

> alpha.seed.save <- alpha.seed

> alpha.fruit <- alpha.fruit.interp[imax.fruit]

> alpha.seed <- alpha.seed.interp[imax.seed]

> coef.save <- coefficients(out9)

> ##### save #####

> if (! ok) {

+ save(alpha.fruit, alpha.seed, alpha.fruit.save, alpha.seed.save,

+ coef.save, logl.seq, file = "chamae-alpha.rda", ascii = TRUE)

+ }

At the end of this chunk we save the maximum likelihood estimates
in a �le which is read in at the beginning of this document. We also
save some extra information so there is no need to do this step every
time if there is no change in the alphas.

Figure 2 (page 15) shows the pro�le log likelihood for the size
parameters.

3.4 The Fitness Landscape

If we had �aster-friendly� data in which expected �tness was a
mean value parameter of the aster model, we could immediately cal-

14

size parameter for fruit

si
ze

 p
ar

am
et

er
 fo

r
se

ed

 −90

 −
90

 −80

 −70

 −60

 −60 −50 −50 −40 −40

 −40

 −30

 −30

 −20

 −10

 −5

 −2

1.5 2.0 2.5 3.0 3.5

10
15

20
25

30

Figure 2: Pro�le log likelihood for size parameters for the negative
binomial distributions of fruit and seed. Solid dot is maximum likeli-
hood estimate.

15

1.0 1.5 2.0 2.5 3.0

−
0.

9
−

0.
8

−
0.

7
−

0.
6

−
0.

5
−

0.
4

log(LN)

lo
g(

S
LA

)

Figure 3: Scatterplot of phenotypic variables.

culate the �tness landscape using the predict function (as in Chapter 3
of TR 658). Unfortunately, �tness, which in this example we take to
be the product of fruit and seed divided by 3 (because seeds were
counted for three fruits), has expectation that is not a mean value
parameter (because the expectation of a product is not the product of
the expectations). Nevertheless, we can calculate its expectation by
simulation (Monte Carlo).

We calculate for just one value of BLK and STG1N.

> theblk <- "1"

> thestg <- 1

Figure 3 (page 16) shows the scatter plots of the two phenotypic
variables (LOGLVS and LOGSLA, labeled LN and SLA because that is
what they are called in the paper). It is made by the following code.

> plot(chamaew$LOGLVS, chamaew$LOGSLA, xlab = "log(LN)", ylab = "log(SLA)")

The point of making the plot Figure 3 is that we want to add
contour lines showing the estimated �tness landscape. To do that we
�rst start with a grid of points across the �gure.

> ufoo <- par("usr")

> nx <- 101

16

> ny <- 101

> z <- matrix(NA, nx, ny)

> x <- seq(ufoo[1], ufoo[2], length = nx)

> y <- seq(ufoo[3], ufoo[4], length = ny)

> xx <- outer(x, y^0)

> yy <- outer(x^0, y)

> xx <- as.vector(xx)

> yy <- as.vector(yy)

> n <- length(xx)

Then we create an appropriate newdata argument for the predict.aster
function to �predict� at these points

> newdata <- data.frame(BLK = factor(rep(theblk, n), levels = levels(chamae$BLK)),

+ STG1N = rep(thestg, n), LOGLVS = xx, LOGSLA = yy, fecund = rep(1, n),

+ fruit = rep(3, n), seed = rep(5, n))

> renewdata <- reshape(newdata, varying = list(vars), direction = "long",

+ timevar = "varb", times = as.factor(vars), v.names = "resp")

> renewdata <- data.frame(renewdata, root = 1)

> foo <- as.numeric(as.character(renewdata$varb) == "fruit")

> renewdata$LOGLVSfr <- renewdata$LOGLVS * foo

> renewdata$LOGSLAfr <- renewdata$LOGSLA * foo

> renewdata$STG1Nfr <- renewdata$STG1N * foo

> foo <- as.numeric(as.character(renewdata$varb) == "seed")

> renewdata$LOGLVSsd <- renewdata$LOGLVS * foo

> renewdata$LOGSLAsd <- renewdata$LOGSLA * foo

> renewdata$STG1Nsd <- renewdata$STG1N * foo

Then we predict the conditional canonical parameter θ which is needed
for simulation using the raster function.

> theta <- predict(out9, newdata = renewdata, varvar = varb, idvar = id,

+ root = root, model.type = "conditional", parm.type = "canonical")

> theta <- matrix(theta, nrow = nrow(newdata), ncol = ncol(out9$x))

Then we carry out a Monte Carlo approximation of the �tness land-
scape. Because this function may take a lot of time to run, we store
the results in the current working directory, and simply load them if
they exist.

> root <- matrix(1, nrow(theta), ncol(theta))

> nsim <- 5e5

> options(show.error.messages = FALSE, warn = -1)

> try(load("zzz.rda"))

> options(show.error.messages = TRUE, warn = 0)

> ok <- exists("zfit") && exists("stime") && exists("nsim.save") &&

+ (nsim == nsim.save) && exists("theta.save") &&

+ isTRUE(all.equal(theta.save, theta))

17

1.0 1.5 2.0 2.5 3.0

−
0.

9
−

0.
8

−
0.

7
−

0.
6

−
0.

5
−

0.
4

log(LN)

lo
g(

S
LA

)

 5
0

 50

 100

 150

 200

 250

 300

 5

 5

 1
0

 1
0

 2
5

 2
5

Figure 4: Scatterplot of phenotypic variables with contours of �tness
landscape estimated by Monte Carlo.

> if (! ok) {

+ zfit <- double(n)

+ stime <- system.time(

+ for (isim in 1:nsim) {

+ xnew <- raster(theta, pred, fam, root = root, famlist = famlist)

+ zfit <- zfit + xnew[, 2] * xnew[, 3] / 3

+ }

+)

+ zfit <- zfit / nsim

+ nsim.save <- nsim

+ theta.save <- theta

+ save(zfit, nsim.save, theta.save, stime, file = "zzz.rda")

+ }

The vector zfit is the Monte Carlo estimate; Figure 4 (page 18),
which is made by the following code, shows it.

> plot(chamaew$LOGLVS, chamaew$LOGSLA, xlab = "log(LN)", ylab = "log(SLA)", pch = ".")

> zfit <- matrix(zfit, nrow = length(x))

> contour(x, y, zfit, add = TRUE)

> contour(x, y, zfit, levels = c(5, 10, 25), add = TRUE)

18

The time spent doing the Monte Carlo calculation of the likelihood
surface was

> secs <- floor(stime[1])

> mins <- floor(secs / 60)

> secs <- secs - mins * 60

> hrs <- floor(mins / 60)

> mins <- mins - hrs * 60

0 hours, 14 minutes, and 24 seconds. We could easily use an even
larger Monte Carlo sample size to get smoother curves in this �gure.

3.5 Lande-Arnold Analysis

In contrast to the aster analysis, the Lande-Arnold analysis is very
simple.

> chamaew$fit <- chamaew$fruit * chamaew$seed / 3

> lout <- lm(fit ~ LOGLVS + LOGSLA + STG1N + I(LOGLVS^2) +

+ I(LOGLVS * LOGSLA) + I(LOGSLA^2), data = chamaew)

> summary(lout)

Call:

lm(formula = fit ~ LOGLVS + LOGSLA + STG1N + I(LOGLVS^2) + I(LOGLVS *

LOGSLA) + I(LOGSLA^2), data = chamaew)

Residuals:

Min 1Q Median 3Q Max

-2143.9 -548.5 -227.9 188.3 7900.6

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7134.23 2113.14 -3.376 0.000748 ***

LOGLVS 906.60 1077.93 0.841 0.400407

LOGSLA -13003.71 4797.30 -2.711 0.006767 **

STG1N 524.26 24.53 21.375 < 2e-16 ***

I(LOGLVS^2) 437.02 221.02 1.977 0.048125 *

I(LOGLVS * LOGSLA) 2620.24 1235.00 2.122 0.033977 *

I(LOGSLA^2) -5397.98 3278.27 -1.647 0.099782 .

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1057 on 2228 degrees of freedom

Multiple R-squared: 0.2012, Adjusted R-squared: 0.1991

F-statistic: 93.54 on 6 and 2228 DF, p-value: < 2.2e-16

The information contained in the printout of summary(lout) with the
exception of the Estimate column is invalid because the OLS model

19

assumptions are not satis�ed, as acknowledged by Etterson and Shaw
(2001) and Etterson (2004). All we know about the statistical prop-
erties of these estimators is that they are best linear unbiased by the
Gauss-Markov theorem (Lindgren, 1993, p. 510). We know nothing
about their sampling distribution except what we could learn by sim-
ulating the aster model. Therefore measures of statistical signi�cance
including standard errors (Std. Error column), t-statistics (t value

column), and P -values (Pr(>|t|) column) are erroneous.
Figure 5 (page 21), which is made by the following code, shows

the best quadratic approximation to the �tness landscape �t above by
multiple regression together with the estimate from the aster model
from Figure 4. It is made by the following code, �rst the prediction

> zzols <- predict(lout, newdata = data.frame(LOGLVS = xx, LOGSLA = yy,

+ STG1N = rep(thestg, length(xx))))

> plot(chamaew$LOGLVS, chamaew$LOGSLA, xlab = "log(LN)", ylab = "log(SLA)", pch = ".")

> contour(x, y, zfit, add = TRUE)

> contour(x, y, zfit, levels = c(5, 10, 25), add = TRUE)

> zzols <- matrix(zzols, nrow = length(x))

> contour(x, y, zzols, add = TRUE, lty = "dotted")

Note that �tness is a positive quantity. Hence the negative con-
tours in the best quadratic approximation are nonsense, although they
are the inevitable result of approximating a surface that is not close to
quadratic with a quadratic function. Note also that the best quadratic
approximation has a saddle point and no maximum, whereas it ap-
pears that the actual �tness landscape does have a maximum, albeit
near the edge of the distribution of phenotypes. Apparently, the sad-
dle point is the result of the quadratic function trying to be nearly �at
on the left hand side of the �gure (a quadratic function cannot have
an asymptote; the saddle point is the next best thing). A quadratic
function cannot have both a saddle point and a maximum; it has to
choose one or the other. Unfortunately, least squares makes the wrong
choice from the biological point of view. It is more important to get
the maximum right than the �at spot (where �tness is close to zero).

3.6 Goodness of Fit

In this section we examine three issues. Is the assumed condi-
tional independence of fruit and seed given fecund == 1 correct?
Are the assumed conditional distributions for fruit and seed given
fecund == 1 correct?

3.6.1 Conditional Independence of Fruit and Seed

We tackle the easiest �rst. Easy in a sense because impossible. We
cannot test for independence. The best we can do is a nonparametric

20

1.0 1.5 2.0 2.5 3.0

−
0.

9
−

0.
8

−
0.

7
−

0.
6

−
0.

5
−

0.
4

log(LN)

lo
g(

S
LA

)

 5
0

 50

 100

 150

 200

 250

 300

 5

 5

 1
0

 1
0

 2
5

 2
5

 −2000

 −1500

 −1000

 −500

 −500

 0

 500

 1000
 1500

 2000

Figure 5: Scatterplot of phenotypic variables with contours of �tness
landscape estimated by Monte Carlo (solid) and the best quadratic
approximation (dotted).

21

test for lack of correlation.

> woof <- chamaew$fruit[chamaew$fecund == 1]

> meow <- chamaew$seed[chamaew$fecund == 1]

> cout <- cor.test(woof, meow, method = "kendall")

> print(cout)

Kendall's rank correlation tau

data: woof and meow

z = 4.0141, p-value = 5.967e-05

alternative hypothesis: true tau is not equal to 0

sample estimates:

tau

0.08651135

The correlation (Kendall's tau) is statistically signi�cantly di�erent
from zero, but perhaps, at 0.087 not practically signi�cant. In any
case, having no way put dependence in our aster model (other than
the dependence induced by the predecessor-successor relationships in-
dicated by the graphical model), we proceed as if not practically sig-
ni�cant. Figure 6 (page 23) shows the scatter plot of the �tted mean
value parameter (for each individual) versus the observed value for
fruit count.

3.6.2 Conditional of Fruit given Nonzero Fitness

Residual analysis of generalized linear models (GLM) is tricky.
(Our aster model becomes a GLM when we consider only the condi-
tional distribution associated with one arrow.) Many di�erent residu-
als have been proposed (Davison and Snell, 1991). We start with the
simplest, so called Pearson residuals.

> xi.hat <- predict(out9, model.type = "cond", parm.type = "mean")

> xi.hat <- matrix(xi.hat, nrow = nrow(out9$x), ncol = ncol(out9$x))

> range(woof)

[1] 3 781

> nwoof <- length(woof)

> woof.theta <- theta[chamaew$fecund == 1, 2]

> woof.xi <- xi.hat[chamaew$fecund == 1, 2]

> wgrad <- double(nwoof)

> winfo <- double(nwoof)

> for (i in 1:nwoof) {

+ wgrad[i] <- famfun(famlist[[4]], deriv = 1, woof.theta[i])

22

0 200 400 600 800

0
10

20
30

40
50

fruit

se
ed

Figure 6: Scatter plot fruit count versus seed count conditioned on
nonzero �tness.

23

50 100 150 200 250 300

−
10

0
10

20
30

fitted values

P
ea

rs
on

 r
es

id
ua

ls

Figure 7: Pearson residuals for fruit count given nonzero �tness plot-
ted against �tted values.

+ winfo[i] <- famfun(famlist[[4]], deriv = 2, woof.theta[i])

+ }

> all.equal(woof.xi, wgrad)

[1] "Mean relative difference: 0.5246045"

> pearson <- (woof - woof.xi) / sqrt(winfo)

Figure 7 (page 24) shows the scatter plot of the Pearson residuals for
fruit count plotted against the expected fruit count given that fruit
count is nonzero (for each individual) for individuals with nonzero
�tness only.

Figure 7 is not perfect. There are 22 individuals with Pearson
residual greater than 10 in absolute value and an additional 56 in-
dividuals with Pearson residual between 5 and 10 in absolute value
(out of 994 total residuals). One does not expect Pearson residuals
for a generalized linear model, much less an aster model, to behave as
well for normal-theory linear models, but the lack of �t here is a bit
worrying. The large positive �outliers� (which are not outliers in the
sense of being bad data) indicate that our negative binomial model
does not perfectly model these data (the negative binomial model is,

24

however, an enormous improvement over the Poisson model, which is
not shown).

3.6.3 Conditional of Seed given Nonzero Fitness

Now we do the analogous plot of the conditional distribution of
seed given nonzero �tness.

> range(meow)

[1] 2 53

> nmeow <- length(meow)

> meow.theta <- theta[chamaew$fecund == 1, 3]

> meow.xi <- xi.hat[chamaew$fecund == 1, 3]

> wgrad <- double(nmeow)

> winfo <- double(nmeow)

> for (i in 1:nmeow) {

+ wgrad[i] <- famfun(famlist[[3]], deriv = 1, meow.theta[i])

+ winfo[i] <- famfun(famlist[[3]], deriv = 2, meow.theta[i])

+ }

> all.equal(meow.xi, wgrad)

[1] "Mean relative difference: 0.246243"

> pearson <- (meow - meow.xi) / sqrt(winfo)

Figure 8 (page 26) shows the scatter plot of the Pearson residuals for
seed count plotted against the expected seed count given that fruit
count is nonzero (for each individual) for individuals with nonzero
�tness only. There are no obvious problem with Figure 8. Certainly,
it is much less troubling than Figure 7.

3.7 OLS Diagnostic Plots

Although unnecessary because we know the assumptions justifying
OLS are badly violated, here are some diagnostic plots for the OLS
regression.

Figure 9 (page 27) shows the plot of residuals versus �tted values
made by the R statement

> plot(lout, which = 1, add.smooth = FALSE, id.n = 0,

+ sub.caption = "", caption = "")

Figure 10 (page 27) shows the Normal Q-Q (quantile-quantile) plot
made by the R statement

> plot(lout, which = 2, id.n = 0, sub.caption = "")

Clearly the errors are highly non-normal.

25

20 25 30 35

−
4

−
2

0
2

4

fitted values

P
ea

rs
on

 r
es

id
ua

ls

Figure 8: Pearson residuals for seed count given nonzero �tness plotted
against �tted values.

26

−1000 −500 0 500 1000 1500 2000

−
20

00
0

20
00

40
00

60
00

80
00

Fitted values

R
es

id
ua

ls

Figure 9: Residuals versus Fitted plot for OLS �t with blocks.

−3 −2 −1 0 1 2 3

−
2

0
2

4
6

8

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

Figure 10: Normal Q-Q plot for OLS �t with blocks.

27

4 Analysis involving a Single Component of

Fitness

Before doing anything, we remove all the variables generated in
the preceding analyses.

> rm(list = ls())

> ls(all.names = TRUE)

[1] ".Random.seed"

4.1 Data

We reanalyze a subset of the data analyzed by Etterson and Shaw
(2001). These data are in the chamae2 dataset in the aster con-
tributed package to the R statistical computing environment. This
dataset is restricted to the Minnesota site of the original (larger) data.

These data are already in �long� format, no need to use the reshape
function on them to do aster analysis. We will, however, need the
�wide� format for Lande-Arnold analysis. So we do that, before mak-
ing any changes (we will add newly de�ned variables) to chamae2.

> library(aster)

> data(chamae2)

> chamae2w <- reshape(chamae2, direction = "wide", timevar = "varb",

+ v.names = "resp", varying = list(levels(chamae2$varb)))

> names(chamae2w)

[1] "id" "root" "STG1N" "LOGLVS" "LOGSLA" "BLK" "fecund"

[8] "fruit"

We model fruit count as having a zero-in�ated negative binomial
distribution. The zero in�ation allows for excess (or de�cit) of indi-
viduals having zero fruit (over and above the small number of zeros
that would occur if the distribution were pure negative binomial). In
an aster model this is done by having a Bernoulli node followed by a
zero-truncated negative binomial node (each individual having a sim-
ple graph with two nodes). This means the event that an individual
has one or more fruits is modeled as Bernoulli, and the distribution of
the number of fruit given that the number is at least one is modeled
as zero-truncated negative binomial.

5 Aster Analysis

We need to choose the non-exponential-family parameter (size) for
the negative binomial distribution, since the aster package only does
maximum likelihood for exponential family parameters. We start with

28

the following value, which was chosen with knowledge of the maximum
likelihood estimate for this parameter, which we �nd in Section 5.1.
The value that is found then is written out to a �le and loaded here
if the �le exists, so after several runs (of Sweave) we are reading
in here the maximum likelihood value of this non-exponential-family
parameter.

> options(show.error.messages = FALSE, warn = -1)

> try(load("chamae2-alpha.rda"))

> options(show.error.messages = TRUE, warn = 0)

> ok <- exists("alpha.fruit")

> if (! ok) {

+ alpha.fruit <- 3.0

+ }

> print(alpha.fruit)

[1] 2.51

Then we set up the aster model framework.

> vars <- c("fecund", "fruit")

> pred <- c(0, 1)

> famlist <- list(fam.bernoulli(),

+ fam.truncated.negative.binomial(size = alpha.fruit, truncation = 0))

> fam <- c(1,2)

We can now �t our �rst aster model.

> out1 <- aster(resp ~ varb + BLK, pred, fam, varb, id, root,

+ data = chamae2, famlist = famlist)

> summary(out1, show.graph = TRUE)

Call:

aster.formula(formula = resp ~ varb + BLK, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = chamae2, famlist = famlist)

Graphical Model:

variable predecessor

fecund root

fruit fecund

family

bernoulli

truncated.negative.binomial(size = 2.51, truncation = 0)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.6045304 0.1355057 -48.740 < 2e-16 ***

varbfruit 7.5915205 0.1355518 56.005 < 2e-16 ***

29

BLK2 -0.0010722 0.0004343 -2.469 0.0136 *

BLK4 0.0021980 0.0003878 5.668 1.44e-08 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

The �response� resp is a numeric vector containing all the response
variables (fecund and fruit). The �predictor� varb is a factor with
two levels distinguishing with resp which original response variable
an element is. The predictor BLK is block within the �eld where the
plants were grown.

Now we add phenotypic variables.

> out2 <- aster(resp ~ varb + BLK + LOGLVS + LOGSLA + STG1N,

+ pred, fam, varb, id, root, data = chamae2, famlist = famlist)

> summary(out2, info.tol = 1e-9)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVS + LOGSLA +

STG1N, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae2, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.1663282 0.1362857 -45.246 < 2e-16 ***

varbfruit 7.1098537 0.1365495 52.068 < 2e-16 ***

BLK2 -0.0023311 0.0004215 -5.530 3.20e-08 ***

BLK4 -0.0006305 0.0004080 -1.545 0.12230

LOGLVS 0.0161360 0.0004771 33.821 < 2e-16 ***

LOGSLA -0.0067775 0.0024641 -2.750 0.00595 **

STG1N -0.0011344 0.0001966 -5.771 7.89e-09 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

An alternative model with the same number of parameters as
out2 puts in the regression coe�cients only at the ��tness� level (here
fruit). This is similar to the example in Geyer, et al. (2007). Because
we are �tting an unconditional aster model, the e�ects of these terms
are passed down to fecund.

> foo <- as.numeric(as.character(chamae2$varb) == "fruit")

> chamae2$LOGLVSfr <- chamae2$LOGLVS * foo

> chamae2$LOGSLAfr <- chamae2$LOGSLA * foo

> chamae2$STG1Nfr <- chamae2$STG1N * foo

> out6 <- aster(resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr,

+ pred, fam, varb, id, root, data = chamae2, famlist = famlist)

> summary(out6, info.tol = 1e-9)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSfr + LOGSLAfr +

30

STG1Nfr, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae2, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.1263979 0.1364738 -44.891 < 2e-16 ***

varbfruit 7.0699154 0.1367763 51.690 < 2e-16 ***

BLK2 -0.0023306 0.0004215 -5.530 3.21e-08 ***

BLK4 -0.0006308 0.0004080 -1.546 0.12212

LOGLVSfr 0.0161366 0.0004771 33.819 < 2e-16 ***

LOGSLAfr -0.0067875 0.0024647 -2.754 0.00589 **

STG1Nfr -0.0011349 0.0001966 -5.772 7.85e-09 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

It is not possible to compare out2 and out6 by standard methods
(likelihood ratio test) because the models are not nested. They seem
to �t equally well, and out6more directly models the relation of �tness
(here de�ned as fruit) to phenotypic variables.

Now we consider quadratic terms. Since the variable STG1N has
only a few values

> sort(unique(chamae2$STG1N))

[1] 1 2 3

> tabulate(chamae2$STG1N)

[1] 2188 456 1834

there is little sense adding terms quadratic in this variable.
The test

> out7 <- aster(resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + I(LOGLVSfr^2) +

+ I(LOGSLAfr^2) + I(LOGLVSfr * LOGSLAfr) + STG1Nfr,

+ pred, fam, varb, id, root, data = chamae2, famlist = famlist)

> summary(out7, info.tol = 1e-9)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSfr + LOGSLAfr +

I(LOGLVSfr^2) + I(LOGSLAfr^2) + I(LOGLVSfr * LOGSLAfr) +

STG1Nfr, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae2, famlist = famlist)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.637e+00 1.462e-01 -38.555 < 2e-16 ***

varbfruit 6.296e+00 1.558e-01 40.410 < 2e-16 ***

BLK2 -2.596e-03 4.114e-04 -6.309 2.80e-10 ***

31

BLK4 -7.296e-06 3.805e-04 -0.019 0.984704

LOGLVSfr 1.669e-01 1.537e-02 10.856 < 2e-16 ***

LOGSLAfr -2.382e-01 5.371e-02 -4.435 9.19e-06 ***

I(LOGLVSfr^2) -2.398e-02 2.458e-03 -9.758 < 2e-16 ***

I(LOGSLAfr^2) -1.099e-01 3.059e-02 -3.593 0.000326 ***

I(LOGLVSfr * LOGSLAfr) 2.848e-02 1.214e-02 2.347 0.018921 *

STG1Nfr -1.250e-03 1.890e-04 -6.617 3.67e-11 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out6, out7)

Analysis of Deviance Table

Model 1: resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + STG1Nfr

Model 2: c("resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + I(LOGLVSfr^2) + I(LOGSLAfr^2) + ", " I(LOGLVSfr * LOGSLAfr) + STG1Nfr")

Model Df Model Dev Df Deviance P(>|Chi|)

1 7 -58400

2 10 -58187 3 213.22 < 2.2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

shows that there appears to be a quadratic e�ect on fruit.

5.1 Maximum Likelihood Estimation of Size

The aster function does not calculate the correct likelihood when
the size parameters are considered unknown, because it drops terms
that do not involve the exponential family parameters. However, the
full log likelihood is easily calculated in R.

> x <- out7$x

> logl <- function(alpha.fruit, theta, x) {

+ x.fecund <- x[, 1]

+ theta.fecund <- theta[, 1]

+ p.fecund <- 1 / (1 + exp(- theta.fecund))

+ logl.fecund <- sum(dbinom(x.fecund, 1, p.fecund, log = TRUE))

+ x.fruit <- x[x.fecund == 1, 2]

+ theta.fruit <- theta[x.fecund == 1, 2]

+ p.fruit <- (- expm1(theta.fruit))

+ logl.fruit <- sum(dnbinom(x.fruit, size = alpha.fruit,

+ prob = p.fruit, log = TRUE) - pnbinom(0, size = alpha.fruit,

+ prob = p.fruit, lower.tail = FALSE, log = TRUE))

+ logl.fecund + logl.fruit

+ }

32

We then calculate the pro�le likelihood for the size parameter alpha.fruit
maximizing over the other parameters, evaluating the pro�le log like-
lihood on a grid of points. We do not do this if the results would be
the same as we got last time and have stored in the variable logl.seq.

> ok <- exists("alpha.fruit.save") && (alpha.fruit.save == alpha.fruit) &&

+ exists("coef.save") && isTRUE(all.equal(coef.save, coefficients(out7)))

> print(ok)

[1] FALSE

> alpha.fruit.seq <- seq(1.5, 4.5, 0.25)

> if (! ok) {

+ logl.seq <- double(length(alpha.fruit.seq))

+ for (i in 1:length(alpha.fruit.seq)) {

+ famlist.seq <- famlist

+ famlist.seq[[2]] <- fam.truncated.negative.binomial(size =

+ alpha.fruit.seq[i], truncation = 0)

+ out7.seq <- aster(out7$formula, pred, fam, varb, id, root,

+ data = chamae2, famlist = famlist.seq, parm = out7$coefficients)

+ theta.seq <- predict(out7.seq, model.type = "cond",

+ parm.type = "canon")

+ dim(theta.seq) <- dim(x)

+ logl.seq[i] <- logl(alpha.fruit.seq[i], theta.seq, x)

+ }

+ }

> ##### interpolate #####

> alpha.foo <- seq(min(alpha.fruit.seq), max(alpha.fruit.seq), 0.01)

> logl.foo <- spline(alpha.fruit.seq, logl.seq, n = length(alpha.foo))$y

> imax <- seq(along = alpha.foo)[logl.foo == max(logl.foo)]

> alpha.fruit.save <- alpha.fruit

> alpha.fruit <- alpha.foo[imax]

> coef.save <- coefficients(out7)

> ##### save #####

> if (! ok) {

+ save(alpha.fruit, alpha.fruit.save, coef.save, logl.seq,

+ file = "chamae2-alpha.rda", ascii = TRUE)

+ }

At the end of this chunk we save the maximum likelihood estimate in
a �le which is read in at the beginning of this document. We also save
some extra information so there is no need to do this step every time
if there is no change in the alpha.

Figure 11 (page 34) shows the pro�le log likelihood for the size
parameter.

33

1.5 2.0 2.5 3.0 3.5 4.0 4.5

−
25

0
−

20
0

−
15

0
−

10
0

−
50

0

α

lo
g

lik
el

ih
oo

d

Figure 11: Pro�le log likelihood for size parameter for the (zero-
truncated) negative binomial distribution of fruit. Hollow dots are
points at which the log likelihood was evaluated exactly. Curve is the
interpolating spline. Solid dot is maximum likelihood estimate.

34

1.0 1.5 2.0 2.5 3.0

−
0.

9
−

0.
8

−
0.

7
−

0.
6

−
0.

5
−

0.
4

log(LN)

lo
g(

S
LA

)

Figure 12: Scatterplot of phenotypic variables.

5.2 The Fitness Landscape

We calculate for just one value of BLK and STG1N.

> theblk <- "1"

> thestg <- 1

Figure 12 (page 35) shows the scatter plots of the two phenotypic
variables (LOGLVS and LOGSLA, labeled LN and SLA because that is
what they are called in the paper). It is made by the following code.

> plot(chamae2w$LOGLVS, chamae2w$LOGSLA, xlab = "log(LN)", ylab = "log(SLA)")

The point of making the plot Figure 12 is that we want to add
contour lines showing the estimated �tness landscape. To do that we
�rst start with a grid of points across the �gure.

> ufoo <- par("usr")

> nx <- 101

> ny <- 101

> z <- matrix(NA, nx, ny)

> x <- seq(ufoo[1], ufoo[2], length = nx)

> y <- seq(ufoo[3], ufoo[4], length = ny)

> xx <- outer(x, y^0)

35

> yy <- outer(x^0, y)

> xx <- as.vector(xx)

> yy <- as.vector(yy)

> n <- length(xx)

Then we create an appropriate newdata argument for the predict.aster
function to �predict� at these points

> newdata <- data.frame(

+ BLK = factor(rep(theblk, n), levels = levels(chamae2$BLK)),

+ STG1N = rep(thestg, n), LOGLVS = xx, LOGSLA = yy, fecund = rep(1, n),

+ fruit = rep(3, n))

> renewdata <- reshape(newdata, varying = list(vars), direction = "long",

+ timevar = "varb", times = as.factor(vars), v.names = "resp")

> renewdata <- data.frame(renewdata, root = 1)

> foo <- as.numeric(as.character(renewdata$varb) == "fruit")

> renewdata$LOGLVSfr <- renewdata$LOGLVS * foo

> renewdata$LOGSLAfr <- renewdata$LOGSLA * foo

> renewdata$STG1Nfr <- renewdata$STG1N * foo

Then we predict the unconditional mean value parameter τ , for which
the �fruit� component is expected �tness.

> tau <- predict(out7, newdata = renewdata, varvar = varb, idvar = id,

+ root = root)

> tau <- matrix(tau, nrow = nrow(newdata), ncol = ncol(out7$x))

> dimnames(tau) <- list(NULL, vars)

> zfit <- tau[, "fruit"]

Figure 13 (page 37), which is made by the following code, shows
it.

> plot(chamae2w$LOGLVS, chamae2w$LOGSLA, xlab = "log(LN)", ylab = "log(SLA)", pch = ".")

> zfit <- matrix(zfit, nrow = length(x))

> contour(x, y, zfit, add = TRUE)

> contour(x, y, zfit, levels = c(5, 10, 25), add = TRUE)

5.3 Lande-Arnold Analysis

In contrast to the aster analysis, the Lande-Arnold analysis is very
simple.

> lout <- lm(fruit ~ LOGLVS + LOGSLA + STG1N + I(LOGLVS^2) +

+ I(LOGLVS * LOGSLA) + I(LOGSLA^2), data = chamae2w)

> summary(lout)

Call:

lm(formula = fruit ~ LOGLVS + LOGSLA + STG1N + I(LOGLVS^2) +

36

1.0 1.5 2.0 2.5 3.0

−
0.

9
−

0.
8

−
0.

7
−

0.
6

−
0.

5
−

0.
4

log(LN)

lo
g(

S
LA

)

 5
0

 1
00

 150

 150 200

 250

 300

 350

 400

 450

 500

 550

 5

 1
0 2
5

Figure 13: Scatterplot of phenotypic variables with contours of �tness
landscape estimated by the aster model.

37

I(LOGLVS * LOGSLA) + I(LOGSLA^2), data = chamae2w)

Residuals:

Min 1Q Median 3Q Max

-460.02 -67.90 -10.54 55.77 738.74

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -19.220 244.336 -0.079 0.937309

LOGLVS -770.292 124.674 -6.178 7.67e-10 ***

LOGSLA -2066.538 554.420 -3.727 0.000198 ***

STG1N -17.364 2.835 -6.125 1.07e-09 ***

I(LOGLVS^2) 248.174 25.512 9.728 < 2e-16 ***

I(LOGLVS * LOGSLA) 153.662 142.506 1.078 0.281025

I(LOGSLA^2) -1150.074 379.128 -3.033 0.002445 **

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 122.3 on 2232 degrees of freedom

Multiple R-squared: 0.3557, Adjusted R-squared: 0.3539

F-statistic: 205.4 on 6 and 2232 DF, p-value: < 2.2e-16

The information contained in the printout of summary(lout) with the
exception of the Estimate column is invalid because the OLS model
assumptions are not satis�ed, as acknowledged by Etterson and Shaw
(2001) and Etterson (2004). All we know about the statistical prop-
erties of these estimators is that they are best linear unbiased by the
Gauss-Markov theorem (Lindgren, 1993, p. 510). We know nothing
about their sampling distribution except what we could learn by sim-
ulating the aster model. Therefore measures of statistical signi�cance
including standard errors (Std. Error column), t-statistics (t value

column), and P -values (Pr(>|t|) column) are erroneous.
Figure 14 (page 39), which is made by the following code, shows

the best quadratic approximation to the �tness landscape �t above by
multiple regression together with the estimate from the aster model
from Figure 13. It is made by the following code, �rst the prediction

> zzols <- predict(lout, newdata = data.frame(LOGLVS = xx, LOGSLA = yy,

+ STG1N = rep(thestg, length(xx))))

> plot(chamae2w$LOGLVS, chamae2w$LOGSLA, xlab = "log(LN)", ylab = "log(SLA)", pch = ".")

> contour(x, y, zfit, add = TRUE)

> contour(x, y, zfit, levels = c(5, 10, 25), add = TRUE)

> zzols <- matrix(zzols, nrow = length(x))

> contour(x, y, zzols, add = TRUE, lty = "dotted")

Note that �tness is a positive quantity. Hence the negative con-
tours in the best quadratic approximation are nonsense, although they

38

1.0 1.5 2.0 2.5 3.0

−
0.

9
−

0.
8

−
0.

7
−

0.
6

−
0.

5
−

0.
4

log(LN)

lo
g(

S
LA

)

 5
0

 1
00

 150

 150 200

 250

 300

 350

 400

 450

 500

 550

 5

 1
0 2
5 −100

 0

 100

 100

 200

 200

 300

 400

 500

 600
 700

Figure 14: Scatterplot of phenotypic variables with contours of �tness
landscape estimated by the aster model (solid) and the best quadratic
approximation (dotted).

39

are the inevitable result of approximating a surface that is not close to
quadratic with a quadratic function. Note also that the best quadratic
approximation has a saddle point and no maximum, whereas it ap-
pears that the actual �tness landscape does have a maximum, albeit
near the edge of the distribution of phenotypes. Apparently, the sad-
dle point is the result of the quadratic function trying to be nearly �at
on the left hand side of the �gure (a quadratic function cannot have
an asymptote; the saddle point is the next best thing). A quadratic
function cannot have both a saddle point and a maximum; it has to
choose one or the other. Unfortunately, least squares makes the wrong
choice from the biological point of view. It is more important to get
the maximum right than the �at spot (where �tness is close to zero).

5.4 Goodness of Fit

In this section we examine goodness of �t to the assumed con-
ditional distributions for fruit given fecund == 1 by looking at a
residual plot.

Residual analysis of generalized linear models (GLM) is tricky.
(Our aster model becomes a GLM when we consider only the condi-
tional distribution associated with one arrow.) Many di�erent residu-
als have been proposed (Davison and Snell, 1991). We start with the
simplest, so called Pearson residuals.

> xi.hat <- predict(out7, model.type = "cond", parm.type = "mean")

> xi.hat <- matrix(xi.hat, nrow = nrow(out7$x), ncol = ncol(out7$x))

> theta.hat <- predict(out7, model.type = "cond", parm.type = "canon")

> theta.hat <- matrix(theta.hat, nrow = nrow(out7$x), ncol = ncol(out7$x))

> woof <- chamae2w$fruit[chamae2w$fecund == 1]

> range(woof)

[1] 1 1390

> nwoof <- length(woof)

> woof.theta <- theta.hat[chamae2w$fecund == 1, 2]

> woof.xi <- xi.hat[chamae2w$fecund == 1, 2]

> wgrad <- double(nwoof)

> winfo <- double(nwoof)

> for (i in 1:nwoof) {

+ wgrad[i] <- famfun(famlist[[2]], deriv = 1, woof.theta[i])

+ winfo[i] <- famfun(famlist[[2]], deriv = 2, woof.theta[i])

+ }

> all.equal(woof.xi, wgrad)

[1] TRUE

40

100 200 300 400 500 600

0
2

4
6

8

fitted values

P
ea

rs
on

 r
es

id
ua

ls

Figure 15: Pearson residuals for fruit count given nonzero �tness plot-
ted against �tted values.

> pearson <- (woof - woof.xi) / sqrt(winfo)

Figure 15 (page 41) shows the scatter plot of the Pearson residuals for
fruit count plotted against the expected fruit count given that fruit
count is nonzero (for each individual) for individuals with nonzero
�tness only.

Figure 15 is not perfect. There are 4 individuals with Pearson
residual greater than 5 and an additional 9 individuals with Pearson
residual between 3 and 5 (out of 2179 total residuals). There are 0
individuals with Pearson residual less than −3. One does not expect
Pearson residuals for a generalized linear model, much less an aster
model, to behave as well for normal-theory linear models, but the
lack of �t here is a bit worrying. The large positive �outliers� (which
are not outliers in the sense of being bad data) indicate that our
negative binomial model does not perfectly model these data (the
negative binomial model is, however, an enormous improvement over
the Poisson model, which is not shown).

5.5 OLS Diagnostic Plots

Although unnecessary because we know the assumptions justifying
OLS are badly violated, here are some diagnostic plots for the OLS

41

0 200 400 600

−
40

0
−

20
0

0
20

0
40

0
60

0

Fitted values

R
es

id
ua

ls

Figure 16: Residuals versus Fitted plot for OLS �t with blocks.

regression.
Figure 16 (page 42) shows the plot of residuals versus �tted values

made by the R statement

> plot(lout, which = 1, add.smooth = FALSE, id.n = 0,

+ sub.caption = "", caption = "")

Figure 17 (page 43) shows the Normal Q-Q (quantile-quantile) plot
made by the R statement

> plot(lout, which = 2, id.n = 0, sub.caption = "")

Clearly the errors are highly non-normal.

6 Discussion

Our two analyses, Section 3 and Section 4 are quite similar. The
main results are similar: Figure 4 resembles Figure 13 and Figure 5
resembles Figure 14. The details are di�erent, but the �big picture� is
the same.

The main di�erence and the reason for doing the second analysis is
to illustrate the analysis of an �aster-friendly� model where some linear
combination of �tness components is deemed �tness, which leads to
two important simpli�cations of the analysis

42

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4
6

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

Figure 17: Normal Q-Q plot for OLS �t with blocks.

� no Monte Carlo calculation is necessary to obtain expected �t-
ness, and

� there is a canonical statistic that is a monotone function of �t-
ness so it is only necessary to have one quadratic function of
phenotypes in the model.

In contrast, the analysis in Section 3 had both complications. We
needed Monte Carlo approximation of the �tness landscape, and we
needed two quadratic functions, one for the canonical parameter cor-
responding to fruit and the other for the canonical parameter corre-
sponding to seed.

In conclusion, the analysis is simpler when the data are �aster-
friendly� but it can be done even when not.

7 Diagnostic Plots for Paper

Here we just put Figure 15 and Figure 16 in one plot.

43

0
2

4
6

8

A

−
4

−
2

0
2

4
6

B

Figure 18: Diagnostic Plots. A: Pearson residuals for fruit count
given nonzero �tness plotted against �tted values. B: standardized
OLS residuals for fruit count plotted against �tted values.

44

8 Subsampling a Component of Fitness

Before doing anything, we remove all the variables generated in
the preceding analyses.

> rm(list = ls())

> ls(all.names = TRUE)

[1] ".Random.seed"

8.1 Introduction

We investigate an aster model with graph 1→ reprod→ fruit→
samp→ seed, where

� reprod is Bernoulli,

� fruit is zero-truncated Poisson conditional on reprod == 1,

� samp is binomial with sample size fruit and known success
probability p, and

� fruit is Poisson with mean samp × µ, where µ is an unknown
parameter (mean value parameter).

Each of these speci�es a one-parameter exponential family whether
the parameter was speci�cally mentioned or not. Each of these is in
aster model form in which the predecessor plays the role of sample
size, whether it was described as sample size or not.

The somewhat odd thing about this proposal is that the param-
eter p is known and is a conditional mean value parameter, but we
intend to use an unconditional aster model and treat the unconditional
canonical parameter as unknown. Nevertheless, we try an example to
see how it works. (With modi�cation to the aster code, we could treat
p as known, but the current code cannot handle this.)

Because this model is a bit odd, we start with the simpler model
with graph 1 → reprod → fruit → seed which has no sampling so
seeds are counted for all fruits rather than just for a sample. This
model is acknowledged to be the Right Thing (with a capital R and
a capital T) but may not be feasible because counting seeds for all
fruits may be too much work.

8.2 The Models

First we set the �simulation truth� parameter values. Since uncon-
ditional parameterizations are di�cult to imagine, we set conditional
mean value parameters.

45

> nind <- 1000

> preprod <- 0.75

> mfruit <- 100

> psamp <- 1 / 10

> mseed <- 10

Then we set up the aster model structures.

> fam <- c(1, 3, 1, 2)

> pred <- c(0, 1, 2, 3)

> vars <- c("reprod", "fruit", "samp", "seed")

> Fam <- fam[-3]

> Pred <- pred[-4]

> Vars <- vars[-3]

8.2.1 Simulate Data without Dependence on Covariates

> set.seed(42)

> Reprod <- sample(c(0, 1), nind, replace = TRUE,

+ prob = c(1 - preprod, preprod))

> Fruit <- rpois(nind, lambda = mfruit)

> Fruit <- Fruit * Reprod

> Seed <- rpois(nind, lambda = mseed * Fruit)

> zbase <- rnorm(nind)

> z1 <- zbase + rnorm(nind)

> z2 <- zbase + rnorm(nind)

> Dat <- data.frame(reprod = Reprod, fruit = Fruit, seed = Seed,

+ z1, z2, root = rep(1, nind))

> names(Dat)

[1] "reprod" "fruit" "seed" "z1" "z2" "root"

> Redata <- reshape(Dat, varying = list(Vars), direction = "long",

+ timevar = "varb", times = as.factor(Vars), v.names = "resp")

> names(Redata)

[1] "z1" "z2" "root" "varb" "resp" "id"

There is one further step. We need to zero out the phenotype
values except those associated with seed since that is the variable
that directly contributes to �tness.

> wind <- grep("seed", as.character(Redata$varb))

> for (labz in grep("z", names(Redata), value = TRUE)) {

+ Redata[[labz]][- wind] <- 0

+ }

Now �t a model.

46

> library(aster)

> out1 <- aster(resp ~ varb, Pred, Fam, varb, id, root, data = Redata,

+ type = "conditional")

> summary(out1)

Call:

aster.formula(formula = resp ~ varb, pred = Pred, fam = Fam,

varvar = varb, idvar = id, root = root, data = Redata, type = "conditional")

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.605687 0.003641 1265.01 <2e-16 ***

varbreprod -3.485626 0.073516 -47.41 <2e-16 ***

varbseed -2.301077 0.003818 -602.66 <2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Check conditional mean value parameters.

> Renewdata <- Redata[Redata$id == 1,]

> Renewdata$resp <- 1

> pout1 <- predict(out1, varvar = varb, idvar = id, root = root,

+ newdata = Renewdata, model.type = "conditional")

> pout1

[1] 0.75400 100.05172 10.02027

We recover the �simulation truth� to high accuracy.

8.2.2 Simulate Data with Dependence on Covariates

First we �t the model we want to use to the data we have. The
�tted parameters will make no sense, because the �tness landscape is
�at for the data we have, but we can use the model structure.

> out2 <- aster(resp ~ varb + z1 + z2 + I(z1^2) + I(z2^2) + I(z1 * z2),

+ Pred, Fam, varb, id, root, data = Redata)

> summary(out2, info.tol = 1e-12)

Call:

aster.formula(formula = resp ~ varb + z1 + z2 + I(z1^2) + I(z2^2) +

I(z1 * z2), pred = Pred, fam = Fam, varvar = varb, idvar = id,

root = root, data = Redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.415e+00 1.209e-02 -365.251 <2e-16 ***

varbreprod -9.397e+01 3.754e-01 -250.323 <2e-16 ***

varbseed 6.719e+00 1.319e-02 509.493 <2e-16 ***

47

z1 3.639e-05 5.928e-05 0.614 0.539

z2 2.008e-05 6.230e-05 0.322 0.747

I(z1^2) 7.588e-06 3.396e-05 0.223 0.823

I(z2^2) 3.332e-05 3.664e-05 0.909 0.363

I(z1 * z2) -4.517e-05 5.673e-05 -0.796 0.426

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

We now want to make up a quadratic function of z. We just take
the one from the third paper (about aster vs. Lande-Arnold) currently
being written.

> # z1 <- Dat$z1

> # z2 <- Dat$z2

> ascal <- 0.001

> quad <- ascal * ((z1 + z2) - (z1^2 + z2^2) + z1 * z2)

> con <- mean(quad)

> mean(quad - con)

[1] 1.277715e-19

Now we change the coe�cients in out2 to be the ones for this
quadratic model. Then convert to canonical parameters and use the
raster function to simulate new data.

> fake <- out2

> fake$coefficients[3] <- fake$coefficients[3] - con

> fake$coefficients[4:5] <- ascal

> fake$coefficients[6:7] <- (- ascal)

> fake$coefficients[8] <- ascal

> fake$coefficients <- round(fake$coefficients, 3)

> fake$coefficients

(Intercept) varbreprod varbseed z1 z2

-4.415 -93.971 6.722 0.001 0.001

I(z1^2) I(z2^2) I(z1 * z2)

-0.001 -0.001 0.001

> theta <- predict(fake, model.type = "conditional", parm.type = "canonical")

> theta <- matrix(theta, nrow = nrow(fake$x), ncol = ncol(fake$x))

> root <- matrix(1, nrow = nind, ncol = length(Vars))

> xnew <- raster(theta, Pred, Fam, root)

Now we need to reshape these new data just like we did the old.

> dimnames(xnew) <- list(NULL, Vars)

> dnew <- as.data.frame(xnew)

> renew <- reshape(dnew, varying = list(Vars), direction = "long",

+ timevar = "varb", times = as.factor(Vars), v.names = "resp1")

> Redata$resp1 <- renew$resp1

48

Now we �t the model we want to use to this new data simulated
from this model.

> out3 <- aster(resp1 ~ varb + z1 + z2 + I(z1^2) + I(z2^2) + I(z1 * z2),

+ Pred, Fam, varb, id, root, data = Redata)

> sout3 <- summary(out3, info.tol = 1e-11)

> print(sout3)

Call:

aster.formula(formula = resp1 ~ varb + z1 + z2 + I(z1^2) + I(z2^2) +

I(z1 * z2), pred = Pred, fam = Fam, varvar = varb, idvar = id,

root = root, data = Redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.406e+00 1.296e-02 -340.030 <2e-16 ***

varbreprod -9.454e+01 4.318e-01 -218.969 <2e-16 ***

varbseed 6.713e+00 1.414e-02 474.788 <2e-16 ***

z1 8.742e-04 9.461e-05 9.240 <2e-16 ***

z2 1.104e-03 1.087e-04 10.162 <2e-16 ***

I(z1^2) -8.313e-04 7.219e-05 -11.514 <2e-16 ***

I(z2^2) -9.147e-04 7.947e-05 -11.511 <2e-16 ***

I(z1 * z2) 8.657e-04 1.039e-04 8.331 <2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Pretty close agreement.

8.2.3 Simulate Data with Sampling

We don't simulate using raster because we know our model is a
bit odd and doesn't �t the data. Instead we just subsample directly.
Without subsampling seed is Poisson(fruit ·µ) where µ is the mean
number of seeds per fruit (µ varies from individual to individual, but
that is irrelevant to subsampling, which works on one individual at a
time). With subsampling samp is binomial(fruit, p) where p is the
subsampling fraction (p does not vary among individuals), and seed is
Poisson(samp ·µ). It can be shown that if we de�ne q = samp/fruit,
(and q = 0 if samp = fruit = 0, so q varies from individual to
individual), then we can set seed to be binomial(fruit, q) and this
will have the required Poisson distribution.

> reprod <- Redata$resp1[as.character(Redata$varb) == "reprod"]

> fruit <- Redata$resp1[as.character(Redata$varb) == "fruit"]

> samp <- rbinom(nind, size = fruit, prob = psamp)

> oldseed <- Redata$resp1[as.character(Redata$varb) == "seed"]

> pseed <- samp / fruit

> pseed[samp == 0] <- 0

49

> seed <- rbinom(nind, size = oldseed, prob = pseed)

> dat2 <- data.frame(reprod, fruit, samp, seed, z1, z2, root = rep(1, nind))

> redata <- reshape(dat2, varying = list(vars), direction = "long",

+ timevar = "varb", times = as.factor(vars), v.names = "resp")

> names(redata)

[1] "z1" "z2" "root" "varb" "resp" "id"

> wind <- grep("seed", as.character(redata$varb))

> for (labz in grep("z", names(redata), value = TRUE)) {

+ redata[[labz]][- wind] <- 0

+ }

Now �t this model.

> out4 <- aster(resp ~ varb + z1 + z2 + I(z1^2) + I(z2^2) + I(z1 * z2),

+ pred, fam, varb, id, root, data = redata)

> sout4 <- summary(out4, info.tol = 1e-11)

> print(sout4)

Call:

aster.formula(formula = resp ~ varb + z1 + z2 + I(z1^2) + I(z2^2) +

I(z1 * z2), pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.216e+00 4.107e-03 1269.956 < 2e-16 ***

varbreprod -1.050e+02 4.142e-01 -253.395 < 2e-16 ***

varbsamp -1.642e+01 4.220e-02 -388.989 < 2e-16 ***

varbseed -2.909e+00 5.730e-03 -507.784 < 2e-16 ***

z1 6.121e-03 7.850e-04 7.797 6.32e-15 ***

z2 8.656e-03 8.911e-04 9.714 < 2e-16 ***

I(z1^2) -5.794e-03 5.486e-04 -10.561 < 2e-16 ***

I(z2^2) -6.593e-03 6.150e-04 -10.720 < 2e-16 ***

I(z1 * z2) 5.633e-03 8.446e-04 6.669 2.57e-11 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> names(sout4)

[1] "coefficients" "iter" "converged" "deviance"

[5] "gradient" "hessian" "newton" "rank"

[9] "x" "root" "pred" "fam"

[13] "modmat" "type" "famlist" "fisher"

[17] "origin" "call" "formula" "terms"

[21] "data" "xlevels"

Compare estimates with and without sampling.

50

> foo <- sout3$coefficients[, "Estimate"]

> foo <- foo[grep("z", names(foo))]

> bar <- sout4$coefficients[, "Estimate"]

> bar <- bar[grep("z", names(bar))]

> baz <- cbind(foo, bar)

> dimnames(baz)[[2]] <- c("without samp.", "with samp.")

> baz <- round(baz, 6)

> print(baz)

without samp. with samp.

z1 0.000874 0.006121

z2 0.001104 0.008656

I(z1^2) -0.000831 -0.005794

I(z2^2) -0.000915 -0.006593

I(z1 * z2) 0.000866 0.005633

And compare standard errors with and without sampling.

> foo <- sout3$coefficients[, "Std. Error"]

> foo <- foo[grep("z", names(foo))]

> bar <- sout4$coefficients[, "Std. Error"]

> bar <- bar[grep("z", names(bar))]

> baz <- cbind(foo, bar)

> dimnames(baz)[[2]] <- c("without samp.", "with samp.")

> baz <- round(baz, 7)

> print(baz)

without samp. with samp.

z1 0.0000946 0.0007850

z2 0.0001087 0.0008911

I(z1^2) 0.0000722 0.0005486

I(z2^2) 0.0000795 0.0006150

I(z1 * z2) 0.0001039 0.0008446

Clearly, standard errors are several times larger with sampling.
The estimates also seem larger in absolute value but seem to have
increased proportionally. So there may be some bias due to subsam-
pling. This needs more investigation, but that will have to wait until
we have a real experiment with this subsampling design.

Actually, this �bias� may be an illusion. The models being com-
pared are di�erent, and there is no reason their canonical parameters
should be comparable (canonical parameters are meaningless). Let
us do the same comparison with mean value parameters, or, better
yet, with expected �tness, which is a certain particular mean value
parameter (expected seed count).

> pout3 <- predict(out3, se.fit = TRUE, info.tol = 1e-9)

> fit3 <- pout3$fit[as.character(out3$data$varb) == "seed"]

51

0 200 400 600 800 1000

0
20

40
60

80
10

0

fit3

fit
4

Figure 19: Scatterplot of expected seed count with and without sub-
sampling. Line has intercept zero and slope the sampling fraction.

> se3 <- pout3$se.fit[as.character(out3$data$varb) == "seed"]

> pout4 <- predict(out4, se.fit = TRUE)

> fit4 <- pout4$fit[as.character(out4$data$varb) == "seed"]

> se4 <- pout4$se.fit[as.character(out4$data$varb) == "seed"]

Figure 19 (page 52) shows the scatter plot of expected seed count
(for all individuals) without subsampling (horizontal axis) and with
(vertical axis). The line is what should happen if the only e�ect of
subsampling was to reduce the expected value proportional to the
sampling fraction. It is made by the following code.

> plot(fit3, fit4)

> abline(0, psamp)

We can see from Figure 19 that the subsampling does have some e�ect,
and does produce some bias, although nowhere near as large as it
appears to be from our (incorrect) comparison of canonical parameter
values. It is clear that, on average, there is no bias, but that some
parts of the �tness surface are distorted somewhat by the subsampling.

52

References

Davison, A. C., and Snell, E. J. (1991). Residuals and diagnostics.
In Statistical Theory and Modelling: In honour of Sir David Cox,

FRS. D. V. Hinkley, N. Reid, E. J. Snell (eds.) Chapman & Hall.

Etterson, J. R. (2004) Evolutionary potential of Chamaecrista fasci-

culata in relation to climate change. I. Clinal patterns of selection
along an environmental gradient in the great plains. Evolution, 58,
1446�1458.

Etterson, J. R., and Shaw, R. G. (2001). Constraint to adaptive
evolution in response to global warming. Science, 294, 151�154.

Geyer, C. J., Wagenius, S. and Shaw, R. G. (2007). Aster models for
life history analysis. Biometrika, 94 415�426.

Lande, R. and Arnold, S. J. (1983). The measurement of selection on
correlated characters. Evolution, 37, 1210�1226.

Lindgren, B. W. (1993). Statistical Theory, 4th ed. New York: Chap-
man & Hall.

R Development Core Team (2006). R: A language and environment
for statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. http://www.R-project.org.

53

