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Abstract

This technical report (TR) gives details of a data reanalysis
backing up a paper having the same authors as this TR and
having the title that is quoted in the title of this TR. Two
previous TR, 658 and 661, have the bulk of the supporting data
analysis this paper. This TR deals with one minor issue, Box-
Cox transformation of predictor variables to make them more
normal and the e�ect of such transformation on the estimation
of �tness surfaces, in particular on Figure 3 of the paper, which
is also Figure 14 of TR 661. The sole objective of this TR is to
produce the analog of that �gure using transformed predictors.
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1 Discussion

Traditionally discussion goes at the end, but since the point of this

technical report (TR) is very simple, we put it here. The job of this

TR is to produce Figure 6. This �gure is to be compared with Figure 3

in Shaw, Geyer, Wagenius, Hangelbroek, and Etterson (submitted),

which was produced as Figure 14 of TR 661 (Shaw, et al., 2007)

The only di�erence between these two �gures is that Figure 3 of

the paper uses log transformation of the two predictor variables (the

x- and y-axes of the plot) and Figure 6 of this TR uses Box-Cox

transformations.

The point of the Box-Cox transformations is that Lande-Arnold

theory (Lande and Arnold, 1983) requires joint multivariate normal-

ity of predictor variables. Aster theory does not, so as far as aster

analysis is concerned, Figure 3 of the paper with its more conven-

tional log transformation is just �ne. It did, however, occur to us that

someone might raise the issue that we are being unfair to Lande and

Arnold (1983) in not making our best e�ort to transform to multivari-

ate normality. There being no really good methods for transformation

to multivariate normality (Andrews et al., 1971; Riani, 2004), we do

Box-Cox transformation (Box and Cox, 1964; Venables and Ripley,

2002, pp. 170�172) of each predictor variable separately. This, of

course, need not even produce univariate normality of each variable

separately; it merely does the best job of any power transformation of

producing univariate normality.

In this example, there seems to be little point to the Box-Cox

transformation. Qualitatively, nothing changes.

� The aster estimate of the �tness surface still has a peak, the best

quadratic approximation (Lande-Arnold estimate) has a saddle.

� The peak of the �tness landscape is near the edge of the dis-

tribution of predictor values, hence this should not be called

�stabilizing selection� on leaf number but �directional selection.�

� The disagreement between the aster estimate (peak) and the

Lande-Arnold estimate (saddle) is entirely due to the inability

of a quadratic function to �t both a peak and a �at region.

Having to choose one or the other it chooses a saddle as its best

approximation to the �at region to the left edge of the plot.

The Box-Cox transformation might have made a di�erence in all of

these aspects, but in this particular example it did not.

2 Data and Box-Cox

We reanalyze a subset of the data analyzed by Etterson and Shaw

(2001). These data are in the chamae2 dataset in the aster con-
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tributed package to the R statistical computing environment.

> library(aster)

> data(chamae2)

The only di�erence between the analysis in this technical report

(TR) and the corresponding analysis in TR 661 is that we do a Box-

Cox transformation (Box and Cox, 1964; Venables and Ripley, 2002,

pp. 170�172) of the predictor variables called SLA and LN in the paper

but called LOGSLA and LOGLVS in the dataset.

> sla <- 10^chamae2$LOGSLA

> lvs <- 10^chamae2$LOGLVS

> library(MASS)

> out.sla <- boxcox(sla ~ 1, plotit = FALSE)

> out.lvs <- boxcox(lvs ~ 1, plotit = FALSE)

> lambda.sla <- out.sla$x[out.sla$y == max(out.sla$y)]

> lambda.lvs <- out.lvs$x[out.lvs$y == max(out.lvs$y)]

> print(lambda.sla)

[1] -0.2

> print(lambda.lvs)

[1] 0.3

> chamae2$LOGSLA <- sla^lambda.sla

> chamae2$LOGLVS <- lvs^lambda.lvs

Figure 1 (page 3) shows the Box-Cox plot for SLA. Figure 2 (page 3)

shows the Box-Cox plot for LN.

These data are already in �long� format, no need to use the reshape

function on them to do aster analysis. We will, however, need the

�wide� format for Lande-Arnold analysis. So we do that, before mak-

ing any changes (we will add newly de�ned variables) to chamae2.

> chamae2w <- reshape(chamae2, direction = "wide", timevar = "varb",

+ v.names = "resp", varying = list(levels(chamae2$varb)))

> names(chamae2w)

[1] "id" "root" "STG1N" "LOGLVS" "LOGSLA" "BLK" "fecund"

[8] "fruit"

3 Aster Analysis

We need to choose the non-exponential-family parameter (size) for

the negative binomial distribution, since the aster package only does

maximum likelihood for exponential family parameters. We start with
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Figure 1: Box-Cox Plot for SLA.
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Figure 2: Box-Cox Plot for LN.
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the following value, which was chosen with knowledge of the maximum

likelihood estimate for this parameter, which we �nd in Section 3.1.

The value that is found then is written out to a �le and loaded here

if the �le exists, so after several runs (of Sweave) we are reading

in here the maximum likelihood value of this non-exponential-family

parameter.

> options(show.error.messages = FALSE, warn = -1)

> try(load("chamae2-alpha.rda"))

> options(show.error.messages = TRUE, warn = 0)

> ok <- exists("alpha.fruit")

> if (! ok) {

+ alpha.fruit <- 3.0

+ }

> print(alpha.fruit)

[1] 3

Then we set up the aster model framework.

> vars <- c("fecund", "fruit")

> pred <- c(0, 1)

> famlist <- list(fam.bernoulli(),

+ fam.truncated.negative.binomial(size = alpha.fruit, truncation = 0))

> fam <- c(1,2)

We make up new predictors that apply only to the variable fruit.

> foo <- as.numeric(as.character(chamae2$varb) == "fruit")

> chamae2$LOGLVSfr <- chamae2$LOGLVS * foo

> chamae2$LOGSLAfr <- chamae2$LOGSLA * foo

> chamae2$STG1Nfr <- chamae2$STG1N * foo

Now we �t the model called out7 in TR 661, which is the one used

for �tness surface estimation. The only di�erence is that here we have

transformed the predictor variables.

> out7 <- aster(resp ~ varb + BLK + LOGLVSfr + LOGSLAfr + I(LOGLVSfr^2) +

+ I(LOGSLAfr^2) + I(LOGLVSfr * LOGSLAfr) + STG1Nfr,

+ pred, fam, varb, id, root, data = chamae2, famlist = famlist)

> summary(out7, info.tol = 1e-10)

Call:

aster.formula(formula = resp ~ varb + BLK + LOGLVSfr + LOGSLAfr +

I(LOGLVSfr^2) + I(LOGSLAfr^2) + I(LOGLVSfr * LOGSLAfr) +

STG1Nfr, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = chamae2, famlist = famlist)
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Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.777e+00 1.466e-01 -46.223 < 2e-16 ***

varbfruit 6.887e+00 2.263e-01 30.437 < 2e-16 ***

BLK2 -3.075e-03 4.474e-04 -6.873 6.30e-12 ***

BLK4 -3.288e-05 4.136e-04 -0.079 0.9366

LOGLVSfr 4.822e-02 7.043e-03 6.847 7.55e-12 ***

LOGSLAfr 1.011e+00 2.246e-01 4.504 6.67e-06 ***

I(LOGLVSfr^2) -1.914e-03 1.598e-04 -11.975 < 2e-16 ***

I(LOGSLAfr^2) -3.296e-01 7.962e-02 -4.140 3.47e-05 ***

I(LOGLVSfr * LOGSLAfr) -1.317e-02 4.856e-03 -2.712 0.0067 **

STG1Nfr -1.448e-03 2.054e-04 -7.050 1.79e-12 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

3.1 Maximum Likelihood Estimation of Size

The aster function does not calculate the correct likelihood when

the size parameters are considered unknown, because it drops terms

that do not involve the exponential family parameters. However, the

full log likelihood is easily calculated in R.

> x <- out7$x

> logl <- function(alpha.fruit, theta, x) {

+ x.fecund <- x[ , 1]

+ theta.fecund <- theta[ , 1]

+ p.fecund <- 1 / (1 + exp(- theta.fecund))

+ logl.fecund <- sum(dbinom(x.fecund, 1, p.fecund, log = TRUE))

+ x.fruit <- x[x.fecund == 1, 2]

+ theta.fruit <- theta[x.fecund == 1, 2]

+ p.fruit <- (- expm1(theta.fruit))

+ logl.fruit <- sum(dnbinom(x.fruit, size = alpha.fruit,

+ prob = p.fruit, log = TRUE) - pnbinom(0, size = alpha.fruit,

+ prob = p.fruit, lower.tail = FALSE, log = TRUE))

+ logl.fecund + logl.fruit

+ }

We then calculate the pro�le likelihood for the size parameter alpha.fruit

maximizing over the other parameters, evaluating the pro�le log like-

lihood on a grid of points. We do not do this if the results would be

the same as we got last time and have stored in the variable logl.seq.

> ok <- exists("alpha.fruit.save") && (alpha.fruit.save == alpha.fruit) &&

+ exists("coef.save") && isTRUE(all.equal(coef.save, coefficients(out7)))

> print(ok)

[1] FALSE
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> alpha.fruit.seq <- seq(1.5, 4.5, 0.25)

> if (! ok) {

+ logl.seq <- double(length(alpha.fruit.seq))

+ for (i in 1:length(alpha.fruit.seq)) {

+ famlist.seq <- famlist

+ famlist.seq[[2]] <- fam.truncated.negative.binomial(size =

+ alpha.fruit.seq[i], truncation = 0)

+ out7.seq <- aster(out7$formula, pred, fam, varb, id, root,

+ data = chamae2, famlist = famlist.seq, parm = out7$coefficients)

+ theta.seq <- predict(out7.seq, model.type = "cond",

+ parm.type = "canon")

+ dim(theta.seq) <- dim(x)

+ logl.seq[i] <- logl(alpha.fruit.seq[i], theta.seq, x)

+ }

+ }

> ##### interpolate #####

> alpha.foo <- seq(min(alpha.fruit.seq), max(alpha.fruit.seq), 0.01)

> logl.foo <- spline(alpha.fruit.seq, logl.seq, n = length(alpha.foo))$y

> imax <- seq(along = alpha.foo)[logl.foo == max(logl.foo)]

> alpha.fruit.save <- alpha.fruit

> alpha.fruit <- alpha.foo[imax]

> coef.save <- coefficients(out7)

> ##### save #####

> if (! ok) {

+ save(alpha.fruit, alpha.fruit.save, coef.save, logl.seq,

+ file = "chamae2-alpha.rda", ascii = TRUE)

+ }

At the end of this chunk we save the maximum likelihood estimate in

a �le which is read in at the beginning of this document. We also save

some extra information so there is no need to do this step every time

if there is no change in the alpha.

Figure 3 (page 7) shows the pro�le log likelihood for the size pa-

rameter.

3.2 The Fitness Landscape

We calculate for just one value of BLK and STG1N.

> theblk <- "1"

> thestg <- 1

Figure 4 (page 8) shows the scatter plots of the two phenotypic

variables (LOGLVS and LOGSLA, labeled LN and SLA because that is

what they are called in the paper). It is made by the following code.

> xlab <- quote(LN^2)

> xlab[[3]] <- lambda.lvs
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Figure 3: Pro�le log likelihood for size parameter for the (zero-

truncated) negative binomial distribution of fruit. Hollow dots are

points at which the log likelihood was evaluated exactly. Curve is the

interpolating spline. Solid dot is maximum likelihood estimate.
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Figure 4: Scatterplot of phenotypic variables.

> xlab <- as.expression(xlab)

> ylab <- quote(SLA^2)

> ylab[[3]] <- lambda.sla

> ylab <- as.expression(ylab)

> plot(chamae2w$LOGLVS, chamae2w$LOGSLA, xlab = xlab, ylab = ylab)

The point of making the plot Figure 4 is that we want to add

contour lines showing the estimated �tness landscape. To do that we

�rst start with a grid of points across the �gure.

> ufoo <- par("usr")

> nx <- 101

> ny <- 101

> z <- matrix(NA, nx, ny)

> x <- seq(ufoo[1], ufoo[2], length = nx)

> y <- seq(ufoo[3], ufoo[4], length = ny)

> xx <- outer(x, y^0)

> yy <- outer(x^0, y)

> xx <- as.vector(xx)

> yy <- as.vector(yy)

> n <- length(xx)

Then we create an appropriate newdata argument for the predict.aster

function to �predict� at these points
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> newdata <- data.frame(

+ BLK = factor(rep(theblk, n), levels = levels(chamae2$BLK)),

+ STG1N = rep(thestg, n), LOGLVS = xx, LOGSLA = yy, fecund = rep(1, n),

+ fruit = rep(3, n))

> renewdata <- reshape(newdata, varying = list(vars), direction = "long",

+ timevar = "varb", times = as.factor(vars), v.names = "resp")

> renewdata <- data.frame(renewdata, root = 1)

> foo <- as.numeric(as.character(renewdata$varb) == "fruit")

> renewdata$LOGLVSfr <- renewdata$LOGLVS * foo

> renewdata$LOGSLAfr <- renewdata$LOGSLA * foo

> renewdata$STG1Nfr <- renewdata$STG1N * foo

Then we predict the unconditional mean value parameter τ , for which
the �fruit� component is expected �tness.

> tau <- predict(out7, newdata = renewdata, varvar = varb, idvar = id,

+ root = root)

> tau <- matrix(tau, nrow = nrow(newdata), ncol = ncol(out7$x))

> dimnames(tau) <- list(NULL, vars)

> zfit <- tau[ , "fruit"]

Figure 5 (page 10), which is made by the following code, shows it.

> plot(chamae2w$LOGLVS, chamae2w$LOGSLA, xlab = xlab, ylab = ylab, pch = ".")

> zfit <- matrix(zfit, nrow = length(x))

> contour(x, y, zfit, add = TRUE)

> contour(x, y, zfit, levels = c(5, 10, 25), add = TRUE)

3.3 Lande-Arnold Analysis

In contrast to the aster analysis, the Lande-Arnold analysis is very

simple.

> lout <- lm(fruit ~ LOGLVS + LOGSLA + STG1N + I(LOGLVS^2) +

+ I(LOGLVS * LOGSLA) + I(LOGSLA^2), data = chamae2w)

> summary(lout)

Call:

lm(formula = fruit ~ LOGLVS + LOGSLA + STG1N + I(LOGLVS^2) +

I(LOGLVS * LOGSLA) + I(LOGSLA^2), data = chamae2w)

Residuals:

Min 1Q Median 3Q Max

-484.81 -67.74 -11.65 53.89 697.87

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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Figure 5: Scatterplot of phenotypic variables with contours of �tness

landscape estimated by the aster model.
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(Intercept) -5691.028 1705.142 -3.338 0.000859 ***

LOGLVS -12.787 81.954 -0.156 0.876026

LOGSLA 8126.090 2476.600 3.281 0.001050 **

STG1N -17.479 2.832 -6.171 8.03e-10 ***

I(LOGLVS^2) 11.471 1.993 5.757 9.76e-09 ***

I(LOGLVS * LOGSLA) -21.767 60.657 -0.359 0.719740

I(LOGSLA^2) -2849.604 908.744 -3.136 0.001736 **

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 122.2 on 2232 degrees of freedom

Multiple R-squared: 0.3562, Adjusted R-squared: 0.3545

F-statistic: 205.8 on 6 and 2232 DF, p-value: < 2.2e-16

Figure 6 (page 12), which is made by the following code, shows

the best quadratic approximation to the �tness landscape �t above by

multiple regression together with the estimate from the aster model

from Figure 5. It is made by the following code, �rst the prediction

> zzols <- predict(lout, newdata = data.frame(LOGLVS = xx, LOGSLA = yy,

+ STG1N = rep(thestg, length(xx))))

> plot(chamae2w$LOGLVS, chamae2w$LOGSLA, xlab = xlab, ylab = ylab, pch = ".")

> contour(x, y, zfit, add = TRUE)

> contour(x, y, zfit, levels = c(5, 10, 25), add = TRUE)

> zzols <- matrix(zzols, nrow = length(x))

> contour(x, y, zzols, add = TRUE, lty = "dotted")

Note that �tness is a positive quantity. Hence the negative con-

tours in the best quadratic approximation are nonsense, although they

are the inevitable result of approximating a surface that is not close to

quadratic with a quadratic function. Note also that the best quadratic

approximation has a saddle point and no maximum, whereas it ap-

pears that the actual �tness landscape does have a maximum, albeit

near the edge of the distribution of phenotypes. Apparently, the sad-

dle point is the result of the quadratic function trying to be nearly �at

on the left hand side of the �gure (a quadratic function cannot have

an asymptote; the saddle point is the next best thing). A quadratic

function cannot have both a saddle point and a maximum; it has to

choose one or the other. Unfortunately, least squares makes the wrong

choice from the biological point of view. It is more important to get

the maximum right than the �at spot (where �tness is close to zero).
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Figure 6: Scatterplot of phenotypic variables with contours of �tness

landscape estimated by the aster model (solid) and the best quadratic

approximation (dotted).
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