
Supporting Data Analysis for

a talk to be given at Evolution 2008

University of Minnesota, June 20�24

By

Charles J. Geyer and Ruth G. Shaw

Technical Report No. 669

School of Statistics

University of Minnesota

May 14, 2008

Abstract

A solution to the problem of estimating �tness landscapes was proposed by Lande
and Arnold (1983). Another solution, which avoids problematic aspects of the Lande-
Arnold methodology, was proposed by Shaw, Geyer, Wagenius, Hangelbroek, and Et-
terson (2008), who also provided an illustrative example. Here we provide another
example using simulated data that are more suitable to aster analysis.

All analyses are done in R (R Development Core Team, 2008) using the aster

contributed package described by Geyer et al. (2007) except for analyses in the style of
Lande and Arnold (1983), which use ordinary least squares regression. Furthermore, all
analyses are done using the Sweave function in R, so this entire technical report and all
of the analyses reported in it are completely reproducible by anyone who has R with
the aster package installed and the R noweb �le specifying the document.

1 R Package Aster

We use R statistical computing environment (R Development Core Team, 2008) in our

analysis. It is free software and can be obtained from http://cran.r-project.org. Pre-

compiled binaries are available for Windows, Macintosh, and popular Linux distributions.

We use the contributed package aster. If R has been installed, but this package has not

yet been installed, do

install.packages("aster")

from the R command line (or do the equivalent using the GUI menus if on Apple Macintosh

or Microsoft Windows). This may require root or administrator privileges.

Assuming the aster package has been installed, we load it

> library(aster)

The version of the package used to make this document is 1.1-3 (which is available on

CRAN). The version of R used to make this document is 4.3.2.

This entire document and all of the calculations shown were made using the R command

Sweave and hence are exactly reproducible by anyone who has R and the R noweb (RNW)

�le from which it was created. Both the RNW �le and and the PDF document produced

from it are available at http://www.stat.umn.edu/geyer/aster. For further details on the

use of Sweave and R see Chapter 1 of the technical report by Shaw, et al. (2007a) available

at the same web site.

Not only can one exactly reproduce the results in the printable document, one can also

modify the parameters of the simulation and get di�erent results. Obvious modi�cations to

try are noted on pages 1, 4, 6, and 10 below. But, of course, anything at all can be changed

once one has the RNW �le.

Finally, we set the seeds of the random number generator so that we obtain the same

results every time. To get di�erent results, obtain the RNW �le, change this statement,

and reprocess using Sweave and LATEX. We also set the random number generator to be

the same as in the version of R used to make the PDF version of the tech report at http:

//hdl.handle.net/11299/56204. But this doesn't seem to work. The plots generated by

current versions of R don't match those in the tech report at the URL just cited. So all we

can say is that the commands are the same (as can be veri�ed by anyone checking this �le

against the RNW �le at the URL just cited) and do what they do.

> RNGversion("2.7.0")

> set.seed(42)

2 Data Structure

We simulate data because there does not, to our knowledge, exist a data set that can show

the full potential of aster analysis. Our simulated data have three important characteristics

1. (simulated) phenotypic trait measurements,

2. graphical model in which not all predecessor variables are Bernoulli, and

3. �tness is the sum of reproduction variables for many time periods.

See Shaw, et al. (2008) for an example showing the same kind of analysis we do here with

real data having feature 1 above. See Geyer et al. (2007) for an example with feature 3

above. There are, to our knowledge, no published examples with feature 2 above. Since

any or all of these features may arise in practical examples, we use this example as a good

illustration of what is possible with aster.

2.1 Graph

We use the following aster model graphical structure. This is the subgraph for a single

individual; the full graph consists of n isomorphic copies of this subgraph, one for each of n
individuals.

1
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3

Ber−−−−→ y4 survivalyBer yBer yBer yBer
y5 y6 y7 y8 any �owersy0-Poi y0-Poi y0-Poi y0-Poi
y9 y10 y11 y12 number �owersyPoi yPoi yPoi yPoi
y13 y14 y15 y16 number seedsyBer yBer yBer yBer
y17 y18 y19 y20 number germinate

Letters yj represent random variables. Arrows represent conditional distributions (more on

this below). Subgraphs for di�erent individuals di�er only in the subscripts for the yj , each
individual having a di�erent set of variables.

2.2 Variables and Their Conditional Distributions

The variables for one individual are the yj in the graph. Those in each column represent

the data for one time period. Those in each row represent the data for one kind of variable,

one �component of �tness.� The layers are

2

� y1, . . ., y4 are survival indicators (zero if dead, one if alive).

� y5, . . ., y8 are �owering indicators (zero if no �owers, one if one or more �owers).

� y9, . . ., y12 are �owering counts (number of �owers).

� y13, . . ., y16 are seed counts (number of seeds).

� y17, . . ., y20 are germination counts (number of seeds that germinate).

It is important to understand, so we emphasize this point, that everything is counted in each

time period. In the �rst time period, y1 = 1 if and only if the individual is alive, y5 = 1 if

and only if the individual has at least one �ower, y9 counts all of the �owers, y13 counts all of
the seeds produced by all of those �owers, and y17 counts all of those seeds that germinate.

It is possible to collect data on only a sample of �owers or only a sample of seeds � this is

discussed in Section 8 of a technical report by Shaw, et al. (2007b) � but we are not doing

that in this example.

The conditional distributions of one variable given another are indicated by the text

over the arrows. An arrow yj −→ yk indicates that yk is the sum of yj independent and

identically distributed (IID) random variables with the distribution named by the text over

the arrow. The sum of zero things is zero by convention, so yj = 0 implies yk = 0.

� Ber is for Bernoulli. A random variable is Bernoulli if and only if its only possible

values are zero and one. The sum of IID Bernoullis is binomial. Thus, e. g., y17 is

binomial with sample size y13.

� 0-Poi is for zero-truncated Poisson, meaning a Poisson random variable conditioned

on being nonzero. In a graph

yj
Ber−−−−→ yk

0-Poi−−−−→ yl

the conditional distribution of yl given yj is zero-in�ated Poisson, and this is the only

way zero-in�ated Poisson can appear in an aster model.

� Poi is for Poisson. The sum of IID Poisson is again Poisson, thus, e. g., the conditional

distribution of y13 given y9 is Poisson with mean that is y9 times a constant (which is

a function of the parameters of the model).

2.3 Fitness

In this model �tness (more pedantically, the best surrogate of �tness) is the sum of the

variables in the bottom layer, y17 + y18 + y19 + y20, the total lifetime (more pedantically,

the total over the four time periods) number of seeds produced that germinate. Expected

�tness is the sum of the corresponding mean value parameters µ17 + µ18 + µ19 + µ20, where
µj = E(yj).

Readers may ask, why only those variables, don't the other components of �tness count

too? They do count. A seed can't germinate if it doesn't exist, there can't be seeds if there

weren't �owers, and there can't be �owers if the individual is dead. The total number of

seeds that germinate incorporates all earlier components of �tness. Moreover, statistical

3

theory says the other components of �tness do �count� even though they aren't counted

explicitly. Maximum likelihood estimation uses all the data to calculate the most e�cient

possible estimates.

2.4 Setup

The following R statements set up this graphical structure

> pred <- seq(1, 20) - 4

> pred[1:4] <- 0:3

> fam <- rep(c(1, 1, 3, 2, 1), each = 4)

> matrix(pred, 5, 4, byrow = TRUE)

[,1] [,2] [,3] [,4]

[1,] 0 1 2 3

[2,] 1 2 3 4

[3,] 5 6 7 8

[4,] 9 10 11 12

[5,] 13 14 15 16

> matrix(fam, 5, 4, byrow = TRUE)

[,1] [,2] [,3] [,4]

[1,] 1 1 1 1

[2,] 1 1 1 1

[3,] 3 3 3 3

[4,] 2 2 2 2

[5,] 1 1 1 1

pred and fam are displayed as matrices so they have the same layout as the graph.

3 Data Simulation

3.1 Flat Fitness Landscape

We �rst simulate data with the following parameters

> psurv <- 0.9

> pflow <- 0.8

> mflow <- 5

> mseed <- 10

> pgerm <- 0.1

Anyone wishing to see the results of changing these parameters can obtain the R noweb

(RNW) �le from which this document was created (http://www.stat.umn.edu/geyer/

aster), change these parameters and rerun.

The meaning of these parameters is

4

� psurv is the conditional mean value parameter for Bernoulli distributions in the �rst

(survival) layer (of y1, . . ., y4 given their predecessors).

� pflow is the conditional mean value parameter for Bernoulli distributions in the second

(any �owers) layer (of y5, . . ., y8 given their predecessors).

� mflow is the conditional mean value parameter before truncation for zero-truncated

Poisson distributions in the third (number �owers) layer (of y9, . . ., y12 given their

predecessors). See below for meaning of �before truncation.�

� mseed is the conditional mean value parameter for Poisson distributions in the fourth

(number seeds) layer (of y13, . . ., y16 given their predecessors).

� pgerm is the conditional mean value parameter for Bernoulli distributions in the bottom

(number germinate) layer (of y17, . . ., y20 given their predecessors).

We now explain the meaning of �before truncation� in the de�nition of mflow. Referring

to the discussion of truncated Poisson distributions on the help page ?families we see that if

a Poisson distribution having (untruncated) mean mflow is zero-truncated, the corresponding

conditional mean is

> beta.flow <- ppois(1, mflow, lower.tail = FALSE) / dpois(1, mflow)

> mflow + 1 / (1 + beta.flow)

[1] 5.033918

Hence the conditional mean after truncation 5.0339 is slightly more than the conditional

mean before truncation mflow = 5.
Some facts that are perhaps not completely obvious

� The conditional distribution of y9 given y1 is zero-in�ated Poisson (and similarly for

y10 given y2, etc.)

� The conditional distribution of y13 given y9 is Poisson with mean y9 × mflow (and

similarly for y14 given y10, etc.)

� The conditional distribution of y17 given y13 is binomial with sample size y13 and

success probability pgerm (and similarly for y18 given y14, etc.)

Unconditional mean value parameters are found by multiplying conditional ones (in an

aster model, not in general).

> xi <- matrix(c(psurv, pflow, mflow, mseed, pgerm), 5, 4)

> xi

[,1] [,2] [,3] [,4]

[1,] 0.9 0.9 0.9 0.9

[2,] 0.8 0.8 0.8 0.8

[3,] 5.0 5.0 5.0 5.0

[4,] 10.0 10.0 10.0 10.0

[5,] 0.1 0.1 0.1 0.1

5

> mu <- xi

> mu[1,] <- cumprod(mu[1,])

> mu <- apply(mu, 2, cumprod)

> mu

[,1] [,2] [,3] [,4]

[1,] 0.90 0.810 0.7290 0.65610

[2,] 0.72 0.648 0.5832 0.52488

[3,] 3.60 3.240 2.9160 2.62440

[4,] 36.00 32.400 29.1600 26.24400

[5,] 3.60 3.240 2.9160 2.62440

Thus expected �tness � lifetime expected number of germinating seeds � in this model

(with �at �tness landscape) is

> sum(mu[5,])

[1] 12.3804

The following are the conditional canonical parameters corresponding to the conditional

mean value parameters de�ned above.

> theta.surv <- log(psurv) - log(1 - psurv)

> theta.flow <- log(pflow) - log(1 - pflow)

> theta.nflow <- log(mflow)

> theta.nseed <- log(mseed)

> theta.germ <- log(pgerm) - log(1 - pgerm)

> theta <- matrix(c(theta.surv, theta.flow, theta.nflow, theta.nseed,

+ theta.germ), 5, 4)

> theta

[,1] [,2] [,3] [,4]

[1,] 2.197225 2.197225 2.197225 2.197225

[2,] 1.386294 1.386294 1.386294 1.386294

[3,] 1.609438 1.609438 1.609438 1.609438

[4,] 2.302585 2.302585 2.302585 2.302585

[5,] -2.197225 -2.197225 -2.197225 -2.197225

Now we are ready to simulate some data. First we set the number of individuals.

> nind <- 500

(This too can be changed by anyone who has obtained the RNW source for this document.)

Referring to the help page ?raster we see that to simulate data on n individuals, each

having the same graph with k nodes (variables), we hand the raster function an n×k matrix

theta whose rows are the conditional canonical parameter vectors for each individual. In

this case, since the �tness surface is �at, each individual has the same parameter vector.

6

> theta.mat <- matrix(as.vector(t(theta)), nind, length(theta), byrow = TRUE)

> y <- raster(theta.mat, pred, fam, root = theta.mat^0)

> dim(y)

[1] 500 20

We also simulate a bivariate normal trait vector

> library(MASS)

> z <- mvrnorm(nind, mu = c(0, 0), Sigma = matrix(c(1, 0.5, 0.5, 1), 2, 2))

> dim(z)

[1] 500 2

We then combine this in the usual way (see help page ?aster) to make a data frame

ready for aster analysis

> data.flat <- cbind(y, z)

> vars <- outer(c("isurv", "iflow", "nflow", "nseed", "ngerm"), 1:4, paste,

+ sep = "")

> vars

[,1] [,2] [,3] [,4]

[1,] "isurv1" "isurv2" "isurv3" "isurv4"

[2,] "iflow1" "iflow2" "iflow3" "iflow4"

[3,] "nflow1" "nflow2" "nflow3" "nflow4"

[4,] "nseed1" "nseed2" "nseed3" "nseed4"

[5,] "ngerm1" "ngerm2" "ngerm3" "ngerm4"

> vars <- as.vector(t(vars))

> colnames(data.flat) <- c(vars, "z1", "z2")

> data.flat <- as.data.frame(data.flat)

> redata.flat <- reshape(data.flat, varying = list(vars), direction = "long",

+ timevar = "varb", times = as.factor(vars), v.names = "resp")

> redata.flat <- data.frame(redata.flat, root = 1)

> names(redata.flat)

[1] "z1" "z2" "varb" "resp" "id" "root"

We are now ready to �t our �rst aster model

> out1 <- aster(resp ~ varb + 0, pred, fam, varb, id, root,

+ data = redata.flat, type = "conditional")

> summary(out1)

Call:

aster.formula(formula = resp ~ varb + 0, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = redata.flat,

7

type = "conditional")

Estimate Std. Error z value Pr(>|z|)

varbiflow1 1.219690 0.113247 10.77 <2e-16 ***

varbiflow2 1.233090 0.121140 10.18 <2e-16 ***

varbiflow3 1.389809 0.132640 10.48 <2e-16 ***

varbiflow4 1.445954 0.142318 10.16 <2e-16 ***

varbisurv1 2.050519 0.140717 14.57 <2e-16 ***

varbisurv2 1.995855 0.146397 13.63 <2e-16 ***

varbisurv3 2.348570 0.179501 13.08 <2e-16 ***

varbisurv4 2.184802 0.175792 12.43 <2e-16 ***

varbnflow1 1.671257 0.023701 70.51 <2e-16 ***

varbnflow2 1.630806 0.025788 63.24 <2e-16 ***

varbnflow3 1.604615 0.026933 59.58 <2e-16 ***

varbnflow4 1.622221 0.027978 57.98 <2e-16 ***

varbngerm1 -2.226307 0.024942 -89.26 <2e-16 ***

varbngerm2 -2.237824 0.027171 -82.36 <2e-16 ***

varbngerm3 -2.253404 0.028674 -78.59 <2e-16 ***

varbngerm4 -2.219203 0.029260 -75.84 <2e-16 ***

varbnseed1 2.302749 0.007396 311.37 <2e-16 ***

varbnseed2 2.304452 0.008020 287.36 <2e-16 ***

varbnseed3 2.292662 0.008410 272.62 <2e-16 ***

varbnseed4 2.303267 0.008701 264.71 <2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

All of the estimates are about what they are supposed to be (statistics works, no surprise).

We now need to switch to an unconditional aster model because that's what we need to

model �tness (Shaw, et al., 2008).

> out2 <- aster(resp ~ varb + 0, pred, fam, varb, id, root,

+ data = redata.flat)

> # summary(out2)

3.2 A Digression on Aster Model Theory

We take a break from computing to re-explain a theoretical issue. Our previous attempt

was Section 3.10 of Shaw, et al. (2007a). This time we use a slightly di�erent argument

based on the inequality

(µ− µ′)T (ϕ−ϕ′) > 0 (1)

which holds whenever ϕ and ϕ′ are two distinct values of the linear predictor vector of

an unconditional aster model and µ and µ′ are the corresponding mean value parameter

vectors (Barndor�-Nielsen, 1978, Equation 28, p. 121). A function that maps vector to

vectors and has property (1) is called strictly monotone (Rockafellar and Wets, 2004, Def-

inition 12.1). This is the multivariate analog of strictly increasing functions that map real

numbers to real numbers. Using this terminology, the mapping from the linear predictor

8

parameter of an unconditional aster model to the unconditional mean value parameter is

always strictly monotone. There is an analogous monotonicity relation for conditional aster

models (Appendix B), but it is not useful in modeling �tness landscapes.

We consider the situation, which is the most common one, where �tness (or to be more

pedantic the best surrogate of �tness) is the sum of data on a subset G of nodes of the

graph. That is the situation in our example where G is the bottom layer, the germination

nodes. Observed �tness is
∑

j∈G yj , and expected �tness is
∑

j∈G µj , where µj = E(yj)
denotes components of the mean value parameter vector µ.

These models are unconditional aster models in which the linear predictor for each

germination node has the form

ϕj(x, z) = aj(x) + q(z), (2a)

that is, the linear predictor ϕj for germination node j is the same function q(z) of trait values
z plus a possibly di�erent function aj(x) of other covariates x. At other (non-germination,

not bottom layer of graph) nodes the linear predictor is

ϕj(x, z) = aj(x) (2b)

(does not actually depend on trait values z despite the notation). In applications the func-

tions aj(x) and q(z) also depend on the regression coe�cients, hence are estimated rather

than known, but this does not matter for the issue under discussion, so is not indicated in

the notation.

Now if we consider the di�erence of linear predictor values for two individuals having

di�erent trait values z and z′ but the same values x of other covariates, we get

ϕj(x, z)− ϕj(x, z
′) =

{
q(z)− q(z′), j ∈ G
0, otherwise

(3)

Let µ(x, z) denote the corresponding mean value parameter vectors and µj(x, z) their
components. In this particular case (1) becomes(

µ(x, z)− µ(x, z′)
)T (

ϕ(x, z)−ϕ(x, z′)
)
> 0 (4)

and written out in coordinates this is∑
j∈J

(
µj(x, z)− µj(x, z′)

)(
ϕj(x, z)− ϕj(x, z

′)
)
> 0

where J is the set of all nodes. Using (3), this becomes(
q(z)− q(z′)

)∑
j∈G

(
µj(x, z)− µj(x, z′)

)
> 0

or

q(z) > q(z′) implies
∑
j∈G

µj(x, z) >
∑
j∈G

µj(x, z
′) (5)

The sums on the right-hand side are expected �tness (unconditional expected number of

germinated seeds summed over the four time periods). So this says, in short, that expected

9

�tness is a strictly monotone function of q(z). There exists a strictly increasing function Fx

such that expected �tness is Fx[q(z)].
We reiterate that it is important that we compare individuals having di�erent trait

values z but the same values x of other covariates. Thus we treat z as a vector variable here
and x as a �xed vector constant. The strictly increasing function Fx depends on which x
value we �x, but this does not really matter since we do not have an explicit representation

of this function anyway. The important fact is that it is monotone so facts about �tness

transformed to the linear predictor scale, i. e., facts about q(z), imply facts about �tness

itself, i. e., µ(x, z).
Fitness itself, being bounded below by zero, is hard to model sensibly, and we know that

in generalized linear models, much less in aster models, which generalize them, it makes no

sense to model means directly. We have to work on the linear predictor scale to do any

modeling at all. Thus it is crucial that whatever function q(z) we use on the linear predictor

scale maps monotonely to the mean value scale. Without this monotonicity property, we

couldn't interpret q(z): we wouldn't know that when q(z) is high then �tness is high and

vice versa.

We emphasize that the argument here applies to any aster model in which �tness is

deemed
∑

j∈G µj(z). G can be any set of nodes; they don't have to be thought of as the

�bottom layer� of the graph; they don't have to be somehow similar. This argument is

further generalized in Appendix A.

3.3 Fitness Landscape Quadratic on Linear Predictor Scale

Following Lande and Arnold (1983) we use a quadratic function q(z) to model �tness.

Unlike them, we make �tness quadratic on the linear predictor scale rather than on the

mean value scale. Figure 1 shows the scatter plot of the two (simulated) phenotypic traits

z1 and z2.
We center our quadratic function q(z) somewhat o�-center in the scatter plot point cloud

> c1 <- 2.0

> c2 <- 0.5

> a11 <- -1

> a22 <- -0.5

> a12 <- 0.5

> b0 <- 0.10

> b1 <- 0.045

Anyone wishing to see the results of changing these parameters can obtain the R noweb

(RNW) �le from which this document was created change these parameters and rerun.

Then we de�ne

q(z) = b0 + b1
(
a11(z1 − c1)2 + a12(z1 − c1)(z2 − c2) + a22(z2 − c2)2

)
= b0 + b1

[
(a11c

2
1 + a12c1c2 + a22c

2
2)− (2a11c1 + a12c2)z1 − (2a22c2 + a12c1)z2

+ a11z
2
1 + a22z

2
2 + 2a12z1z2

]
Note that because a11 and a22 are both negative, this is a case of stabilizing selection. Since

this is a simulation, we know the �simulation truth� parameter values, so there is no question

about what the estimates should be estimating.

10

z1

z2

Figure 1: Scatterplot of simulated phenotypic traits z1 and z2.

11

First we need to set up the model structure for the quadratic model. To do that we �t

the desired model to the data we have now. The parameter values are not interesting, but

the structure of the parameter vector (the meaning of each regression coe�cient) is what

we need.

To do this we need to play a trick on the R formula mini-language. We want the trait

values z to not count except for germination nodes. Thus we set them to zero for other

nodes.

> layer <- substr(as.character(redata.flat$varb), 1, 5)

> unique(layer)

[1] "isurv" "iflow" "nflow" "nseed" "ngerm"

> redata.curve <- redata.flat

> redata.curve$z1[layer != "ngerm"] <- 0

> redata.curve$z2[layer != "ngerm"] <- 0

We then �t the model of interest

> out3 <- aster(resp ~ varb + 0 + z1 + z2 + I(z1^2) + I(z1*z2) + I(z2^2),

+ pred, fam, varb, id, root, data = redata.curve)

> # summary(out3)

Now we adjust the coe�cients to follow our quadratic model

> coef <- out3$coef

> const <- b0 + b1 * (a11 * c1^2 + a12 * c1 * c2 + a22 * c2^2)

> coef["varbngerm1"] <- coef["varbngerm1"] + const

> coef["varbngerm2"] <- coef["varbngerm2"] + const

> coef["varbngerm3"] <- coef["varbngerm3"] + const

> coef["varbngerm4"] <- coef["varbngerm4"] + const

> coef["z1"] <- b1 * (- a11 * 2 * c1 - a12 * c2)

> coef["z2"] <- b1 * (- a22 * 2 * c2 - a12 * c1)

> coef["I(z1^2)"] <- b1 * a11

> coef["I(z1 * z2)"] <- b1 * a12

> coef["I(z2^2)"] <- b1 * a22

> beta.true <- coef

Then we plug this back into the out3 structure because we need it as an argument to

the predict function.

> out3$coefficients <- beta.true

> mu.true <- predict(out3)

> phi.true <- predict(out3, parm.type = "canonical")

> theta.true <- predict(out3, parm.type = "canonical",

+ model.type = "conditional")

> # dim(mu.true)

> # dim(theta.true)

12

> # length(mu.true)

> # length(theta.true)

> # length(layer)

> sum(mu.true[layer == "ngerm"]) / nind

[1] 7.967088

Now we are ready to simulate the data of interest.

> theta.mat <- matrix(theta.true, nrow = nind)

> y <- raster(theta.mat, pred, fam, root = theta.mat^0)

> dim(y)

[1] 500 20

> dim(redata.curve)

[1] 10000 6

> redata.curve$resp <- as.vector(y)

Now we have simulated the data we want and put it in its proper location in the proper

order.

So now we are ready to �t some models to these data.

> out4 <- aster(resp ~ varb + 0,

+ pred, fam, varb, id, root, data = redata.curve)

> out5 <- aster(resp ~ varb + 0 + z1 + z2,

+ pred, fam, varb, id, root, data = redata.curve)

> out6 <- aster(resp ~ varb + 0 + z1 + z2 + I(z1^2) + I(z1*z2) + I(z2^2),

+ pred, fam, varb, id, root, data = redata.curve)

> anova(out4, out5, out6)

Analysis of Deviance Table

Model 1: resp ~ varb + 0

Model 2: resp ~ varb + 0 + z1 + z2

Model 3: resp ~ varb + 0 + z1 + z2 + I(z1^2) + I(z1 * z2) + I(z2^2)

Model Df Model Dev Df Deviance P(>|Chi|)

1 20 84180

2 22 84412 2 231.827 < 2.2e-16 ***

3 25 84505 3 93.041 < 2.2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

The P -value for the comparison of �Model 2� in which q(z) is linear in z and �Model 3� in

which q(z) is quadratic in z shows that the �t of Model 3 is highly statistically signi�cantly

better than that of Model 2 (P = 4.9×10−20) but not so signi�cant that statistical analysis
seems unnecessary. We take this data set as our simulated data.

Here are the regression coe�cients

13

> # names(out6$coefficients) <- names.coef

> summary(out6)

Call:

aster.formula(formula = resp ~ varb + 0 + z1 + z2 + I(z1^2) +

I(z1 * z2) + I(z2^2), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = redata.curve)

Estimate Std. Error z value Pr(>|z|)

varbiflow1 -3.4151494 0.1814003 -18.827 < 2e-16 ***

varbiflow2 -3.2330504 0.1994726 -16.208 < 2e-16 ***

varbiflow3 -3.0740245 0.2173662 -14.142 < 2e-16 ***

varbiflow4 -3.4047664 0.2347944 -14.501 < 2e-16 ***

varbisurv1 -0.2169297 0.1661167 -1.306 0.191591

varbisurv2 -0.1538461 0.2139998 -0.719 0.472198

varbisurv3 -0.3600537 0.2692931 -1.337 0.181212

varbisurv4 1.3485540 0.2372084 5.685 1.31e-08 ***

varbnflow1 -7.3091694 0.0914583 -79.918 < 2e-16 ***

varbnflow2 -7.2954965 0.1024374 -71.219 < 2e-16 ***

varbnflow3 -7.2798641 0.1068054 -68.160 < 2e-16 ***

varbnflow4 -7.1941175 0.1078490 -66.705 < 2e-16 ***

varbngerm1 -2.2548470 0.0303887 -74.200 < 2e-16 ***

varbngerm2 -2.2487709 0.0339088 -66.318 < 2e-16 ***

varbngerm3 -2.2878884 0.0358393 -63.837 < 2e-16 ***

varbngerm4 -2.2884514 0.0362105 -63.199 < 2e-16 ***

varbnseed1 2.8864625 0.0092277 312.805 < 2e-16 ***

varbnseed2 2.8791985 0.0103941 277.002 < 2e-16 ***

varbnseed3 2.8817339 0.0108274 266.151 < 2e-16 ***

varbnseed4 2.8807098 0.0109481 263.124 < 2e-16 ***

z1 0.1838723 0.0155556 11.820 < 2e-16 ***

z2 0.0005894 0.0108202 0.054 0.956555

I(z1^2) -0.0622047 0.0090661 -6.861 6.83e-12 ***

I(z1 * z2) 0.0215226 0.0122235 1.761 0.078281 .

I(z2^2) -0.0286377 0.0079081 -3.621 0.000293 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

3.4 Data for Lande-Arnold Analysis

These data can also be used for Lande-Arnold analysis, the comparison of the two

methodologies being the main point of this technical report, but they must be reshaped

for that. We need a data frame with three variables of length nind. The response is ob-

served �tness

> yfit <- redata.curve$resp[redata.curve$varb == "ngerm1"] +

+ redata.curve$resp[redata.curve$varb == "ngerm2"] +

14

+ redata.curve$resp[redata.curve$varb == "ngerm3"] +

+ redata.curve$resp[redata.curve$varb == "ngerm4"]

and the predictors z1 and z2 can be taken from the data frame data.flat

> ladata <- data.frame(y = yfit, z1 = data.flat$z1, z2 = data.flat$z2)

Now we �t a quadratic model to these data using ordinary least squares (OLS).

> lout <- lm(y ~ z1 + z2 + I(z1^2) + I(z1*z2) + I(z2^2), data = ladata)

> # lame.coef <- names(coefficients(lout))

> # lame.coef <- sub("poly([^)]*)", "poly.", lame.coef, extended = FALSE)

> # names(lout$coefficients) <- lame.coef

> summary(lout)

Call:

lm(formula = y ~ z1 + z2 + I(z1^2) + I(z1 * z2) + I(z2^2), data = ladata)

Residuals:

Min 1Q Median 3Q Max

-19.794 -4.985 -1.077 3.699 26.550

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.1258 0.4578 19.933 < 2e-16 ***

z1 5.1619 0.3573 14.446 < 2e-16 ***

z2 -0.1525 0.3694 -0.413 0.67993

I(z1^2) -0.5958 0.2819 -2.113 0.03507 *

I(z1 * z2) 0.9167 0.4517 2.030 0.04292 *

I(z2^2) -0.9999 0.3134 -3.190 0.00151 **

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 7.113 on 494 degrees of freedom

Multiple R-squared: 0.358, Adjusted R-squared: 0.3515

F-statistic: 55.09 on 5 and 494 DF, p-value: < 2.2e-16

3.5 Write Data

For use as a teaching tool, we write these data out for inclusion in a future version of

the aster package. We also write out the simulation truth parameter values, and the graph

and family structure. We also remove all other R objects so we know what we do henceforth

depends only on the saved data.

> redata <- redata.curve

> save(redata, ladata, beta.true, mu.true, phi.true, theta.true,

+ pred, fam, vars, file = "sim.rda")

> rm(list = ls())

> ls(all.names = TRUE)

15

[1] ".Random.seed"

> load("sim.rda")

4 Estimation of Fitness Landscape

4.1 Plot Fitness Landscape

First we make a grid of points on which to evaluate �tness. The plot here is just to get

the right size for the plot to be stu�ed into vector ufoo. We don't show the plot. It is the

same as Figure 1 above.

> par(mar = c(2, 2, 1, 1) + 0.1)

> plot(ladata$z1, ladata$z2, xlab = "", ylab = "", pch = 20,

+ axes = FALSE)

> ufoo <- par("usr")

> nx <- 101

> ny <- 101

> xfoo <- seq(ufoo[1], ufoo[2], length = nx)

> yfoo <- seq(ufoo[3], ufoo[4], length = ny)

Then we make a data frame like redata with these predictor values

> xx <- outer(xfoo, yfoo^0)

> yy <- outer(xfoo^0, yfoo)

> xx <- as.vector(xx)

> yy <- as.vector(yy)

> nn <- length(xx)

> foo <- rep(1, nn)

> bar <- list(z1 = xx, z2 = yy, root = foo)

> for (lab in levels(redata$varb)) {

+ bar[[lab]] <- foo

+ ##### response doesn't matter for prediction #####

+ }

> bar <- as.data.frame(bar)

> rebar <- reshape(bar, varying = list(vars), direction = "long",

+ timevar = "varb", times = as.factor(vars), v.names = "resp")

We also have to zero out some non-bottom-layer elements of z1 and z2, just like with the

�real� (simulated) data

> barlayer <- substr(as.character(rebar$varb), 1, 5)

> rebar$z1[barlayer != "ngerm"] <- 0

> rebar$z2[barlayer != "ngerm"] <- 0

and we are �nally ready to �t data and make a prediction. We must redo out6 because we

threw it away. (The following can be the example for these data when added to the aster

package.)

16

> out6 <- aster(resp ~ varb + 0 + z1 + z2 + I(z1^2) + I(z1*z2) + I(z2^2),

+ pred, fam, varb, id, root, data = redata)

Then we predict at the new points.

> pbar <- predict(out6, newdata = rebar, varvar = varb, idvar = id,

+ root = root)

> pbar <- matrix(pbar, nrow = nrow(bar))

> pbar <- pbar[, grep("germ", vars)]

> zz <- apply(pbar, 1, sum)

> zz <- matrix(zz, nx, ny)

While we are at it, �gure out the point where �tness is maximized

> Afoo <- matrix(NA, 2, 2)

> Afoo[1, 1] <- out6$coef["I(z1^2)"]

> Afoo[2, 2] <- out6$coef["I(z2^2)"]

> Afoo[1, 2] <- out6$coef["I(z1 * z2)"] / 2

> Afoo[2, 1] <- out6$coef["I(z1 * z2)"] / 2

> bfoo <- rep(NA, 2)

> bfoo[1] <- out6$coef["z1"]

> bfoo[2] <- out6$coef["z2"]

> # Afoo

> # bfoo

> cfoo <- solve(- 2 * Afoo, bfoo)

> cfoo

[1] 1.5826258 0.6050009

The R statements make Figure 2 (page 18)

> par(mar = c(2, 2, 1, 1) + 0.1)

> plot(ladata$z1, ladata$z2, xlab = "", ylab = "", pch = 20,

+ axes = FALSE)

> title(xlab = "z1", line = 1)

> title(ylab = "z2", line = 1)

> box()

> contour(xfoo, yfoo, zz, add = TRUE, col = "blue", labcex = 1, lwd = 2)

> points(cfoo[1], cfoo[2], col = "blue", pch = 19)

4.2 Compare with Simulation Truth Fitness Landscape

We also want to compare with the simulation truth.

> out6.true <- out6

> out6.true$coefficients <- beta.true

> pbar.true <- predict(out6.true, newdata = rebar, varvar = varb, idvar = id,

+ root = root)

17

z1

z2

 2

 4

 4

 6
 8

 10

 12

 14

 16

 18

Figure 2: Scatterplot of z1 versus z2 with contours of the �tness landscape as estimated by

the aster model (blue).

18

> pbar.true <- matrix(pbar.true, nrow = nrow(bar))

> pbar.true <- pbar.true[, grep("germ", vars)]

> zz.true <- apply(pbar.true, 1, sum)

> zz.true <- matrix(zz.true, nx, ny)

While we are at it, �gure out the point where �tness is maximized

> Abar <- matrix(NA, 2, 2)

> Abar[1, 1] <- beta.true["I(z1^2)"]

> Abar[2, 2] <- beta.true["I(z2^2)"]

> Abar[1, 2] <- beta.true["I(z1 * z2)"] / 2

> Abar[2, 1] <- beta.true["I(z1 * z2)"] / 2

> bbar <- rep(NA, 2)

> bbar[1] <- beta.true["z1"]

> bbar[2] <- beta.true["z2"]

> # Abar

> # bbar

> cbar <- solve(- 2 * Abar, bbar)

> cbar

[1] 2.0 0.5

The R statements make Figure 3 (page 20)

> par(mar = c(2, 2, 1, 1) + 0.1)

> plot(ladata$z1, ladata$z2, xlab = "", ylab = "", pch = 20,

+ axes = FALSE)

> title(xlab = "z1", line = 1)

> title(ylab = "z2", line = 1)

> box()

> contour(xfoo, yfoo, zz.true, add = TRUE, col = "green3", labcex = 1, lwd = 2)

> # contour(xfoo, yfoo, zz, add = TRUE, levels = lev, col = "blue")

> points(cbar[1], cbar[2], col = "green3", pch = 19)

4.3 Compare with Lande-Arnold Estimate of Fitness Landscape

We also want to compare with the Lande-Arnold estimate, which is the best linear

unbiased estimator of the best quadratic approximation to the �tness landscape. (We need

to re�t the Lande-Arnold estimate because we threw it away.)

> lout <- lm(y ~ z1 + z2 + I(z1^2) + I(z1*z2) + I(z2^2), data = ladata)

> zz.la <- predict(lout, newdata = bar)

> zz.la <- matrix(zz.la, nx, ny)

While we are at it, �gure out the point where �tness is maximized

19

z1

z2

 2 2 4

 6

 8

 10
 12

 14

 16

 18

Figure 3: Scatterplot of z1 versus z2 with contours of the simulation truth �tness landscape

(green).

20

> beta.la <- lout$coefficients

> Alob <- matrix(NA, 2, 2)

> Alob[1, 1] <- beta.la["I(z1^2)"]

> Alob[2, 2] <- beta.la["I(z2^2)"]

> Alob[1, 2] <- beta.la["I(z1 * z2)"] / 2

> Alob[2, 1] <- beta.la["I(z1 * z2)"] / 2

> blob <- rep(NA, 2)

> blob[1] <- beta.la["z1"]

> blob[2] <- beta.la["z2"]

> # Alob

> # blob

> clob <- solve(- 2 * Alob, blob)

> clob

[1] 6.602214 2.950372

The R statements make Figure 4 (page 22)

> par(mar = c(2, 2, 1, 1) + 0.1)

> plot(ladata$z1, ladata$z2, xlab = "", ylab = "", pch = 20,

+ axes = FALSE)

> title(xlab = "z1", line = 1)

> title(ylab = "z2", line = 1)

> box()

> contour(xfoo, yfoo, zz.la, add = TRUE, col = "red", labcex = 1, lwd = 2)

> # contour(xfoo, yfoo, zz, add = TRUE, levels = lev, col = "blue")

> points(clob[1], clob[2], col = "red", pch = 19)

A A Generalization of the Argument in Section 3.2

The argument in Section 3.2 can be further generalized. Rewrite (2a) and (2b) as

ϕj =

{
aj(x) + bj(x)q(z), j ∈ G
aj(x), j /∈ G

where bj(x) are arbitrary functions of the �other� covariates. Follow the same argument and

the conclusion (5) becomes

q(z) ≥ q(z′) implies
∑
j∈G

bj(x)µj(x, z) ≥
∑
j∈G

bj(x)µj(x, z
′).

It is important that the comparison is between individuals with di�erent values z and z′ of
phenotypic covariates but the same value x of other covariates.

In short, �tness, now de�ned as an arbitrary linear combination of unconditional expec-

tations of nodes, is still a monotone function of q(z). This would be useful, for example, if

one wanted to take account of population growth rate λ when �tness would be de�ned as∑
j∈G λ

−tjµj(x, z), where tj is the time at which the j-th node is observed.

21

z1

z2

 −
20

 −

15

 −
10

 −5 0

 5

 10

 15

 20

Figure 4: Scatterplot of z1 versus z2 with contours of the best quadratic approximation of

the �tness landscape as estimated by the Lande-Arnold method (red).

22

B Monotonicity in Conditional Aster Models

So-called conditional aster models may be of some use in some situations, but they are

not useful in this context. They too have a monotonicity property, but between the linear

predictor and the conditional mean vector ξ having components de�ned by

E(yj | yp(j)) = yp(j)ξj

where p(j) denotes the predecessor of j, all arrows in the graph going

yp(j) −→ yj

for various values of j.
Conditional aster models actually satisfy a much stronger monotonicity property than

unconditional aster models, because ξj is a function of θj only (does not depend on the other

components of θ) and the map θj 7→ ξj is strictly increasing. This does imply

(ξ − ξ′)T (θ − θ′) > 0, (6)

when θ 6= θ′, which is just like (4) except that here conditional means replace unconditional

means and the linear predictor vectors are those for the conditional model.

However, this property is of no use in modeling �tness. The conditional means do deter-

mine the unconditional means and hence determine expected �tness, but the relationship is

nonlinear and hence (6) cannot be used to argue analogously to the argument proceeding

from (1). Hence when a conditional model is used there is no monotone relationship be-

tween expected �tness and the function q(z) used on the linear predictor scale. Thus, in the

context of estimating �tness landscapes, conditional aster models are of no use whatsoever.

References

Barndor�-Nielsen, O. E. (1978). Information and Exponential Families. Chichester: John

Wiley.

Brown, L. D. (1986). Fundamentals of Statistical Exponential Families: with Applications

in Statistical Decision Theory. Hayward, CA: Institute of Mathematical Statistics.

Geyer, C. J., Wagenius, S. and Shaw, R. G. (2007). Aster models for life history analysis.

Biometrika, 94, 415�426.

Lande, R. and Arnold, S. J. (1983). The measurement of selection on correlated characters.

Evolution, 37, 1210�1226.

R Development Core Team (2008). R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

Rockafellar, R. T. and Wets, R. J.-B. (2004). Variational Analysis, corr. 2nd printing. Berlin:

Springer-Verlag.

23

Shaw, R. G., Geyer, C. J., Wagenius, S., Hangelbroek, H. H., and Etterson, J. R. (2008).

Unifying life history analysis for inference of �tness and population growth. American

Naturalist, in press. http://www.stat.umn.edu/geyer/aster/

Shaw, R. G., Geyer, C. J., Wagenius, S., Hangelbroek, H. H., and Etterson, J. R. (2007a).

Supporting data analysis for �Unifying life history analysis for inference of �tness and

population growth�. University of Minnesota School of Statistics Technical Report No. 658

http://www.stat.umn.edu/geyer/aster/

Shaw, R. G., Geyer, C. J., Wagenius, S., Hangelbroek, H. H., and Etterson, J. R. (2007b).

More Supporting data analysis for �Unifying life history analysis for inference of �tness

and population growth�. University of Minnesota School of Statistics Technical Report

No. 661 http://www.stat.umn.edu/geyer/aster/

24

