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Abstract

A solution to the problem of estimating �tness landscapes was proposed by Lande
and Arnold (1983). Another solution, which avoids problematic aspects of the Lande-
Arnold methodology, was proposed by Shaw, Geyer, Wagenius, Hangelbroek, and Et-
terson (2008). This technical report goes through Lande-Arnold theory in detail paying
careful attention to problematic aspects. The only completely new material is a theoret-
ical analysis of when the best quadratic approximation to a �tness landscape, which is
what the Lande-Arnold method estimates, is a good approximation to the actual �tness
landscape.

1 Introduction

1.1 Fitness Landscapes

By ��tness landscape� we mean the conditional expectation of �tness w given a vector
of phenotypic character variables z, considered as a function of those variables

g(z) = E(w | z). (1)

Arnold (2003) discusses this concept, calling it the �adaptive landscape for phenotypic traits�
and attributing it to Simpson (1944) who modi�ed the original �adaptive landscape� concept
of Wright (1932), which was the conditional expectation of w given a vector of genotypes.
What we are calling the ��tness landscape� has also been called the �individual selection
surface� by Phillips and Arnold (1989).

Statisticians call a conditional expectation like (1) considered as a function of the condi-
tioning variable a regression function (Lindgren, 1993, p. 95) to emphasize that the primary
objective of a regression program is to estimate the regression function (the conditional
expectation of the response variable given the predictor variables). This is clear in non-
parametric regression (Hastie and Tibshirani, 1990; Bowman and Azzalini, 1997) where the
direct objective is to estimate the regression function, whatever it may be. It is less clear
in parametric regression, whether ordinary least squares (OLS), generalized linear model
(GLM), or something else, because the attention of users is often focused on regression coef-
�cients rather than on predicted values and how well the predicted values estimate the true
unknown regression function. Nevertheless, especially when parametric and nonparametric
approaches are being compared, the only criterion by which they can be compared is how
well they estimate the regression function.

Geyer, Wagenius and Shaw (2007) introduced a new class of statistical models, called
aster models, designed speci�cally for modeling �tness. They are a generalization of GLM
that can be used to estimate �tness landscapes, if �tness satis�es the assumptions for them,
which it may do. Shaw, Geyer, Wagenius, Hangelbroek, and Etterson (2008) give examples
of several kinds of life history analysis using aster models, including two in which �tness
landscapes are estimated.

Napoleon famously said �If you want to take Vienna, take Vienna.� Our main advice
in this paper is just as direct: if you want to estimate the �tness landscape, estimate the
�tness landscape. Aster models enable us to do just that.



1.2 Lande-Arnold Analysis

Lande and Arnold (1983) o�ered a methodology that uses OLS regression to estimate
quantities related to the �tness landscape, and it has since been very widely used. It makes
only very weak assumptions about the distribution of w, but makes the strong assumption
that z is multivariate normal.

1.2.1 Parameters

First, de�ne
Q(α, β, γ) = E

{
(w − α− zTβ − 1

2z
Tγz)2

}
, (2)

where α is a scalar, β a vector, and γ a symmetric matrix. Let α1 and β1 be the values that
minimize Q(α, β, 0), which we assume to be unique, and let α2, β2, and γ2 be the values
that minimize Q(α, β, γ), which we also assume to be unique. Then

g1(z) = α1 + zTβ1 (3a)

g2(z) = α2 + zTβ2 + 1
2z

Tγ2z (3b)

are the best linear approximation and the best quadratic approximation (Phillips and Arnold,
1989) to the �tness landscape g(z), where �best� means minimizing (2).

Second, de�ne

β3 = E{∇g(z)} (4a)

γ3 = E{∇2g(z)} (4b)

where ∇g(z) denotes the vector of partial derivatives ∂g(z)/∂zi and ∇2g(z) denotes the
matrix of second partial derivatives ∂2g(z)/∂zi∂zj .

Third, de�ne

β4 = Σ−1 cov(w, z) (5a)

γ4 = Σ−1 cov(w, zzT )Σ−1 (5b)

where Σ = var(z). Each of these betas is a vector, and each of these gammas is a symmetric
matrix, in both cases the dimension being the same as for z.

We have β1 = β4 whenever these quantities are well de�ned. Under the assumption
that z is multivariate normal with non-singular variance matrix α1, β1, α2, β2, and γ2 are
uniquely de�ned and β1 = β3 = β4 and γ2 = γ3 = γ4. Under the same assumption plus the
additional assumption that E(z) = 0, we have β1 = β2 = β3 = β4. All of these identities
were shown by Lande and Arnold (1983).

Lande and Arnold (1983) do not distinguish between these di�erent betas and gammas,
because they work under the assumptions just given that make them all equal. They call any
of the betas the directional selection gradient. They call any of the gammas the stabilizing
or disruptive selection gradient. It is important to understand, however, that if z is not
multivariate normal, then all of these betas and gammas can be di�erent (except β1 = β4
holds without normality) and it is necessary to be clear about which are being discussed.

The pairs β2 and γ2 and β3 and γ3 have relationships to the �tness landscape that are
inherent in their de�nitions. The pair β4 and γ4 is loosely related to selection. In selection
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not involving di�erential reproduction, the term cov(w, z) is the change in the mean of
z before and after selection. Conversely if we suppose a quantitative genetic model with
additive genetic e�ect x that is conditionally independent of w given z, then β4 is part
of the change of mean of x before and after selection. There are similar, though looser,
connections between γ4 and the change of variance before and after selection. Details are
given in Section 2.4. Lande and Arnold (1983) argue that the betas and gammas are more
direct indicators of selection than any of these changes in means and variances due to
selection. For example, a component of z not under direct selection will nevertheless be
correlated with w if it is correlated with other components of z that are directly selected.
The betas and gammas, being more directly related to the �tness landscape, more directly
measure the e�ect of �tness on phenotype.

1.2.2 Estimators

Lande and Arnold (1983) propose using OLS regression to estimate these quantities.
De�ne

Qn(α, β, γ) =
n∑

i=1

(wi − α− zTi β − 1
2z

T
i γzi)

2, (6)

where (wi, zi) are observed �tness and phenotype vectors for n individuals, let α̂1 and β̂1
denote the minimizers of Qn(α, β, 0), and let α̂2, β̂2, and γ̂2 denote the minimizers of (6). We
call attention to the obvious estimators β̂4 and γ̂4 obtained by plugging empirical variances
and covariances into (5a) and (5b) in place of theoretical variances and covariances. One
always has β̂1 = β̂4, an algebraic identity, but generally β̂1 6= β̂2 and γ̂2 6= γ̂4, even if the
distribution of z is multivariate normal and E(z) = 0. Lande and Arnold (1983) note that
β̂1 6= β̂2 and propose using orthogonal polynomials to force equality here. However, even if
β1 = β2, estimators are never equal to the parameters they estimate, so there is no reason
to force equality between β̂1 and β̂2. When one considers that in real data z is never exactly
multivariate normal, so β1 6= β2, it is clearly inadvisable to change the de�nitions of β̂2 and
γ̂2 so that they are no longer natural estimators of β2 and γ2.

If our inference is conditional on z, then by the Gauss-Markov theorem Lindgren (1993,
p. 510) α̂1, β̂1, α̂2, β̂2, and γ̂2 are best linear unbiased estimators (BLUE) of their cor-
responding parameters, where BLUE means they have the smallest variance of all linear
unbiased estimators. Moreover, if we de�ne the corresponding estimates of the best linear
and quadratic approximations, which are the functions

ĝ1(z) = α̂1 + zT β̂1 (7)

ĝ2(z) = α̂2 + zT β̂2 + 1
2z

T γ̂2z (8)

then ĝi(z) is the BLUE of gi(z) where BLUE means they have the smallest variance of all
linear unbiased estimators (for i = 1 and i = 2 and for all z).

These estimators, however, have no other desirable properties. When nothing is assumed
about the conditional distribution of w given z (and Lande and Arnold, 1983, make no such
assumptions) nothing can be said about the sampling distributions of the estimators β̂1, β̂2,
and γ̂2, and no con�dence intervals or hypothesis tests for them can be derived. In particular,
the con�dence intervals and hypothesis tests that are printed out by OLS software have no
validity.
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This is well understood (see Mitchell-Olds and Shaw, 1987; Stanton and Thiede, 2005,
and references cited therein). Any attempt to transform w to make it more normal, for
example, doing OLS regression of log(1+w) on z is biologically wrong (Stanton and Thiede,
2005). To estimate the �tness landscape, one must regress w (untransformed) on z because
the �tness landscape is the conditional expectation of w (untransformed) given z. Moreover,
the distribution of w often has a large atom at zero resulting from individuals that die before
reproducing, and no transformation can make that atom go away. Hence no transformation
of w can be even approximately normal.

If z fails to be multivariate normal, then the OLS estimators have no known relationship
to (4a), (4b), and (5b). One might hope for approximate equalities β1 ≈ β2 ≈ β3 ≈ β4 and
γ2 ≈ γ3 ≈ γ4 if z is only approximately multivariate normal, but the argument of Lande
and Arnold (1983) involves �rst and second partial derivatives of the probability density
function of the multivariate normal distribution and the fact that third central moments
of that distribution are zero and that fourth central moments have a relationship to the
variance matrix given by the unnumbered displayed equation in Lande and Arnold (1983)
following their equation (17). Thus one could only expect these approximate equalities if
the �rst and second partial derivatives of the probability density function and the third and
fourth central moments of z agree closely with those of a multivariate normal distribution
having mean zero and variance matrix equal to that of z. This is a very strong requirement.
Since statistical methodology for transformation to multivariate normality is rather crude
(Andrews, Gnanadesikan, and Warner, 1971; Riani, 2004), there is no way these assumptions
can be achieved in practice.

1.2.3 A Digression about the Applicability of Least Squares

Lande and Arnold (1983, pp. 1212�1213) include a curious defense of their use of OLS
regression

In view of [their equation] (4), the vector β = P−1s [our equation (5a),
hence our β4] is a set of partial regression coe�cients of relative �tness on the
characters (Kendall and Stuart, 1973, eq. 27.42). Under quite general conditions,
the method of least squares indicates that the element βi gives the slope of the
straight line that best describes the dependence of relative �tness on character
zi, after removing the residual e�ects of other characters on �tness (Kendall and
Stuart, 1973, Ch. 27.15). There is no need to assume that the actual regressions
of �tness on the characters are linear, or that the characters have a multivariate
normal distribution. For this reason, the partial regression coe�cients β provide
a general solution to the problem of measuring the forces of directional selection
acting directly on the characters.

To anyone who has taken a modern course in regression, from, say, Weisberg (2005),
the notion that there is no need to assume actual regression function has the form incorpo-
rated in the model (�no need to assume . . . that the actual regressions . . . are linear�) seems
to completely misunderstand linear regression. However, the cited reference (Kendall and
Stuart, 1973, Ch. 27.15) does seem to say something of the sort

In our discussion from [Section] 27.8 onwards we have taken the regression
relationship to be exactly linear, of type (27.18). Just as in [Section] 26.8, we now

4



consider the question of �tting regression relationships of this type to observed
populations, whose regressions are almost never exactly linear, and by the same
reasoning as there, we are led to the Method of Least Squares. [Some mathemat-
ical details of OLS regression follow.] . . . (27.44) is identical with (27.19). Thus,
as in [Section] 26.8, we reach the conclusion that the Least Squares approxima-
tion gives us the same regression coe�cients as in the case of exact linearity of
regression.

It follows that all of the results of this chapter are valid when we �t regressions
by Least Squares to observed populations.

Thus Kendall and Stuart (1973) do seem to also argue that it is not necessary to assume
�the regression relationship [is] exactly linear� but what is their argument? Actually, they
have two. The argument of their Section 26.8, which is referred to in their Section 27.15
cited by Lande and Arnold and quoted above, culminates in

We have thus reached the conclusion that the calculation of an approximate
regression line by the Method of Least Squares gives results which are the same
as the correct ones in the case of exact linearity of regression.

which is echoed in their Section 27.15. This essentially says that when the regression function
is exactly linear, that is, specialized to �tness landscapes, when g = g1, then OLS does the
right thing, but this is not in dispute. What about when the �tness landscape is not linear,
when g 6= g1, what does this argument say about that case? Nothing!

The second argument of Section 27.15 of Kendall and Stuart (1973) is in the part
�. . . (27.44) is identical with (27.19)� in our quotation above that makes no sense with-
out reference to a large amount of the notation of Kendall and Stuart, which we do not wish
to repeat. The gist of this argument is that when the regression function is linear it is given
by their equation (27.18), which in our notation is

g(z) = E(w | z) = α+ β1z1 + · · ·βkzk (9)

(except that Kendall and Stuart are assuming α = 0 at this point), and the terminology
Kendall and Stuart use for the βi is partial regression coe�cients, introduced just before
the cited equation (27.18). In the case where the response w and the predictors zi are
jointly multivariate normal, the partial regression coe�cients are given by equation (27.19)
in Kendall and Stuart as a function of second moments of the distribution. In the case
where they are not jointly multivariate normal (27.19) is taken to be the de�nition of partial
regression coe�cients in the last sentence of Section 27.8 in Kendall and Stuart. Now
returning to Section 27.15 in Kendall and Stuart, their equation (27.44) gives the de�nition of
the OLS regression coe�cients, also as a function of second moments of the joint distribution
of response and predictors, their equation (27.44). This agreement between OLS estimates
and partial regression coe�cients is the second argument of Kendall and Stuart.

But this second argument also misses the point. The arbitrary de�nition of partial
regression coe�cients in the case where the response and predictors are not jointly multi-
variate normal decouples them from any relationship with conditional expectation. Thus
OLS does indeed estimate �partial regression coe�cients� but, when the regression function
fails to be linear, so (9) does not hold, these estimates β have nothing to do with the re-
gression function. Returning to �tness landscapes, when the actual �tness landscape g(z) is
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not linear and so not equal to its best linear approximation g1(z), then the slope β1 of the
approximation need have no connection with the actual �tness landscape. One would think
this is obvious. If β1 tells us everything we need to know about the actual �tness landscape,
why even consider the best quadratic approximation? Perhaps because this argument is
wrongheaded?

The current edition of Kendall and Stuart (Stuart et al., 1999) seems to agree with us.
Sections 28.12 and 28.13 in the sixth edition correspond to Section 27.15 in the third edition
cited by Lande and Arnold. Section 28.13 says

Although there is a di�erence in interpretation between the linear regressions
in [Section] 28.9 and 28.12, we see that the functional form of β is the same and
that the LS estimators derived from (28.32) or (28.34) are the same as the ML
estimators we obtain from the multinormal case. It follows that the results of
this chapter apply whenever the least squares argument can be invoked. In
particular, the approximate linear regression derived in [Section] 28.12 is often
considered to be the regression function, without further quali�cation; this may
be a questionable assumption.

The equivalence is also used to justify the use of partial correlations, whatever
the underlying distribution. However, it should be noted that whereas zero
partial correlations imply conditional independence for the multinormal, this is
not true in general.

We take �may be a questionable assumption� and �however, it should be noted� to be aca-
demic weasel wording for wrong or at least wrongheaded.

We consider this Section 27.15 of Kendall and Stuart (1973), the one cited by Lande and
Arnold (1983), to be the tail end of a century of excuses for using the normal distribution
in situations where it was inappropriate. It is hard to imagine a statistician trained after
1973 saying something like what Kendall and Stuart (1973) say. Since 1973 we have had
the nonparametrics revolution, which deals with arbitrary regression functions, and the
robustness revolution, which deals with non-normal response, and the categorical and GLM
revolutions, which deal with discrete response, and the bootstrap revolution, which deals
with arbitrary data. No statistician trained in all of these wants an excuse for not using any
of them and sticking with what was available in 1973.

In this technical report we are particularly focused on using aster models to improve
estimation of �tness landscapes, but even if one were to reject our approach, there are many
other areas of modern statistics that can potentially contribute to this area. There is no
reason to limit oneself to methods available in 1973.

2 Lande-Arnold Theory

2.1 Best Quadratic Approximation

The best quadratic approximation to the �tness landscape is given by (3b) when α2, β2,
and γ2 are as de�ned in the accompanying text. The reason why this approximation is given
this name is explained in Section 2.1.3 below.
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2.1.1 Existence and Uniqueness of Solutions

By linearity and monotonicity of expectation, the function Q(α, β, γ) de�ned by (2) is
a convex quadratic function of its arguments assuming second moments of w and fourth
moments of z exist. This means solutions α2, β2, and γ2 exist. Solutions will be unique if
the linear equations that determine a solution, obtained by setting (10a), (10b), and (10c)
equal to zero, have unique solutions.

2.1.2 Solutions

To �nd the solutions we need

∂Q(α, β, γ)

∂α
= −2E

{
w − α− zTβ − 1

2z
Tγz

}
(10a)

∂Q(α, β, γ)

∂βi
= −2E

{
(w − α− zTβ − 1

2z
Tγz)zi

}
(10b)

∂Q(α, β, γ)

∂γjk
= −E

{
(w − α− zTβ − 1

2z
Tγz)zjzk

}
(10c)

Predictors Centered Lande and Arnold (1983) assume that z is multivariate normal
with mean vector zero and non-singular variance matrix Σ. Note that (10b) involves third
moments of z and (10c) involves fourth moments. By symmetry the odd moments are zero.
The second moments are components of the matrix Σ. The fourth moments are given by
equation (26) in Anderson (2003)

E(zizjzkzl) = σijσkl + σikσjl + σilσjk (11)

where the little sigmas are the components of Σ.
Say E(w) = η. Setting (10a) equal to zero gives

η − α− 1
2 tr(γΣ) = 0

(the term involving only �rst moments of z drops out) and solving for α gives

α = η − 1
2 tr(γΣ) (12)

Setting (10b) equal to zero gives

E
{

(w − zTβ)zi
}

= 0

(the terms involving only �rst and third moments of z drop out). Rewriting this in vector
form gives

cov(w, z) = E(zzTβ) = Σβ

and solving for β gives
β = Σ−1 cov(w, z) (13)

Setting (10c) equal to zero gives

E
{

(w − α− 1
2z

Tγz)zjzk
}

= 0
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(the terms involving only third moments of z drop out). Plugging in (12) gives

E
{

(w − η + 1
2 tr(γ,Σ)− 1

2z
Tγz)zjzk

}
= 0 (14)

By (11)

E
{

(zTγz)zjzk
}

=
∑
il

γilE(zizjzkzl)

=
∑
il

γil
[
σijσkl + σikσjl + σilσjk

]
= 2(ΣγΣ)jk + tr(γΣ)σjk

where the �rst term on the last line means the j, k term of the matrix ΣγΣ. Plugging this
back into (14) gives

E
{

(w − η)zjzk
}
− (ΣγΣ)jk = 0

Rewriting this in vector form gives

cov(w, zzT ) = ΣγΣ

and solving for γ gives
γ = Σ−1 cov(w, zzT )Σ−1 (15)

Equations (13) and (15) appear in Lande and Arnold (1983).
Equations (13) and (15) are the completion of proofs that β2 = β4 and γ2 = γ4 in

the notation of Section 1.2. Note that the assumptions required for this are that z be
multivariate normal with mean vector zero and non-singular variance matrix.

Predictors Not Centered Now we investigate what would happen if we did not assume
E(z) = 0 but did still assume z was multivariate normal with non-singular variance matrix
Σ. Say E(z) = µ. Then y = z − µ is as z was before. The best quadratic approximation to

h(y) = E(w | y)

is
hquad(y) = α′ + yTβ′ + 1

2y
Tγ′y

where α′ is given by (12) and β′ and γ′ are given by (13) and (15) with z replaced by y. By
translation equivariance

gquad(z) = hquad(z − µ)

= α′ + (z − µ)Tβ′ + 1
2(z − µ)Tγ′(z − µ)

= α′ − µTβ′ + 1
2µ

Tγ′µ+ zTβ′ − zTγ′µ+ 1
2z

Tγ′z

from which we see that

α2 = α′ − µTβ′ + 1
2µ

Tγ′µ (16a)

β2 = β′ − γ′µ (16b)

γ2 = γ′ (16c)

So the values of α and β change depending on whether or not z is centered at zero, but the
value of γ does not change. If we think geometrically, the relation gquad(z) = hquad(z − µ)
says the two quadratic approximations are essentially the same when we take the shift of
the domain into account.
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2.1.3 Another Formulation

In this section we consider why the minimizer of the function Q(α, β, γ) de�ned by (2)
is called the best quadratic approximation to the �tness landscape g(z). That name should
be given to (3b) when α2, β2, and γ2 are as de�ned to be the minimizers of

Q̃(α, β, γ) = E
{(
g(z)− α− zTβ − 1

2z
Tγz

)2}
(17)

so that E
{(
g(z)− g2(z)

)2}
is as small as possible. However, there is no di�erence between

these two de�nitions of the best quadratic approximation because

Q(α, β, γ) = E
{

(w − α− zTβ − 1
2z

Tγz)2
}

= E
{(
w − g(z) + g(z)− α− zTβ − 1

2z
Tγz

)2}
= E

{(
w − g(z)

)2}
+ 2E

{(
w − g(z)

)(
g(z)− α− zTβ − 1

2z
Tγz

)}
+ E

{(
g(z)− α− zTβ − 1

2z
Tγz

)2}
= E

{(
w − g(z)

)2}
+ Q̃(α, β, γ)

because

E
{(
w − g(z)

)(
g(z)− α− zTβ − 1

2z
Tγz

)}
= E

[
E
{(
w − g(z)

)(
g(z)− α− zTβ − 1

2z
Tγz

) ∣∣ z}]
= E

[(
g(z)− α− zTβ − 1

2z
Tγz

)
E
{
w − g(z)

∣∣ z}]
is zero because E

{
w − g(z)

∣∣ z} = 0. Thus Q(α, β, γ) and Q̃(α, β, γ) are minimized at
exactly the same values.

2.2 Best Linear Approximation

The best linear approximation is given by (3a) when α1 and β1 are as de�ned in the
accompanying text. The reason why this approximation is given this name is explained in
Section 2.1.3 above.

2.2.1 Existence and Uniqueness of Solutions

By linearity and monotonicity of expectation, the function Q(α, β, 0) obtained by con-
straining γ = 0 in (2) is a convex quadratic function of its arguments assuming second
moments of w and z exist. This means solutions α1 and β1 exist. Solutions will be unique
if the linear equations that determine a solution, obtained by setting (18a) and (18b) equal
to zero, have unique solutions.

2.2.2 Solutions

To �nd the solutions we need

∂Q(α, β, 0)

∂α
= −2E

{
w − α− zTβ

}
(18a)

∂Q(α, β, 0)

∂βi
= −2E

{
(w − α− zTβ)zi

}
(18b)
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In this section we make no assumptions about the distribution of z (other than existence
and non-singularity of certain moments). Setting (18a) equal to zero gives

η − α− µTβ = 0

where µ = E(z), and solving for α gives

α = η − µTβ (19)

Setting (18b) equal to zero gives

E
{

(w − α− zTβ)zi
}

= 0

Rewriting this in vector form gives

E(wz)− αµ− E(zzT )β = 0

Plugging in (19) gives

E(wz)− ηµ−
[
E(zzT )− µµT

]
β = cov(w, z)− Σβ = 0

and solving for β gives (13).
This completes the proof that β1 = β4 in the notation of Section 1.2. Note that no

assumptions about the distribution of z were used except for the existence of second moments
and non-singularity of Σ.

2.3 Selection Gradients

Now we look at another part of the argument of Lande and Arnold (1983). De�ne β3
and γ3 by (4a) and (4b). By integration by parts, an argument called Stein's lemma (Stein,
1981) by statisticians, we have

β3 = −
∫
g(z)∇f(z) dz

= Σ−1
∫
zg(z)f(z) dz

= Σ−1 cov{g(z), z}

which agrees with (13) by use of the iterated expectation theorem. Throughout this section
we assume z is multivariate normal with non-singular variance matrix Σ but make no other
assumptions about the marginal distribution of z. We do need some weak assumptions about
the conditional distribution of w given z. The assumption used by Lande and Arnold (1983),
that g(z) is a bounded function, is overly strong; see Stein (1981) for minimal conditions.
Also

γ3 =

∫
g(z)∇2f(z) dz

=

∫ [
Σ−1zzTΣ−1 − Σ1

]
g(z)f(z) dz

= Σ−1 cov{g(z), zzT }Σ−1
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which agrees with (15) by use of the iterated expectation theorem.
This completes the proof that β3 = β4 and γ3 = γ4 in the notation of Section 1.2. Note

that the assumptions required for this are that z be multivariate normal with non-singular
variance matrix.

Also note that this argument does not need the assumption E(z) = 0. It is clear from
geometric considerations that β3 and γ3 de�ned by (4a) and (4b) would not change if the
domain (the space where z takes values) is shifted by µ. The relation g(z) = h(z − µ)
implies ∇g(z) = ∇h(z − µ) and ∇2g(z) = ∇2h(z − µ). Hence E{∇g(z)} = E{∇h(y)} and
E{∇2g(z)} = E{∇2h(y)}, where y = z − µ.

Hence in this section shifting the mean does not change the values of β3 and γ3, but in
Section 2.1.2 shifting the mean does change the value of β2. Thus we have β2 = β3 only
when E(z) = 0, which, presumably, is one reason why Lande and Arnold (1983) made this
assumption, the other reason being to make β1 = β2.

2.4 Selection Di�erentials

In this section we assume E(w) = 1 instead of E(w) = η we had before. This assumption
is announced by calling w relative �tness. The remainder of this chapter only concerns β4
and γ4 de�ned by (5a) and (5b) and their relationship to selection.

2.4.1 Directional Selection

Phenotypic The di�erence between the average value of z before selection and �after
selection but before reproduction� (Lynch and Walsh, 1998, p. 46) is

E(wz)− E(z) = cov(w, z). (20)

Note that this quantity appears in (13). Lynch and Walsh (1998) call (20) the Robertson-
Price identity, and Lande and Arnold (1983) call it �a multivariate generalization of the
results of Robertson (1966) [cited in Price (1972)] and Price (1970, 1972).� It is not clear
what the phrase �after selection but before reproduction� can mean in natural populations
where selection includes di�erential reproduction, but the mathematical meaning of the left
hand side of (20) is clear: the di�erence between the weighted average of phenotype values,
weighted according to relative �tness, and the unweighted average. That this may be an
important quantity for describing selection, we do not dispute, whether or not it corresponds
in reality to a di�erence of average phenotype values at any two speci�ed points in the life
cycle.

In fact what Price (1972) calls �type I selection� is more general than what is discussed
by Lande and Arnold (1983) and Lynch and Walsh (1998), it being �a far broader problem
category than one might at �rst assume� but �intended mainly for use in deriving general
relations and constructing theories, and to clarify understanding of selection phenomena,
rather than for numerical calculation� (both quotations from Price, 1972). The reason for
the discrepancy between the narrow applicability of the theory in Lande and Arnold (1983)
and the broad applicability of Price (1972) is that the theory in Price (1972) is more general:
our (20) corresponds to (A 13) in Price (1972) but this is only a limited special case of his
(A 11) which contains an extra term on the right-hand side. This extra term, which is hard
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to estimate, accounts of the theory of (A 11) being not for numerical calculation, where the
limited special case can be so used.

Genetic Now suppose a quantitative genetic model

z = x+ e

where x is the vector of additive genetic e�ects, e is everything else (environmental, non-
additive genetic, and gene-environment interaction e�ects), and x and e are assumed to be
independent with

x ∼ Normal(µ,G)

e ∼ Normal(0, E)

where G is the �G matrix� (additive genetic variance-covariance matrix) and E is another
variance-covariance matrix. This makes the regression of breeding values x on phenotypic
characters z linear and homoscedastic (Lande and Arnold, 1983, equation (3b)). More
precisely, the conditional distribution of x given z is multivariate normal with

E(x | z) = µ+GΣ−1(z − µ) (21a)

var(x | z) = G−GΣ−1G (21b)

(Anderson, 2003, equations (5) and (6) of Section 2.5).
We also need to assume that x and w are conditionally independent given z, which is a

very strong assumption. An equivalent way to state this is that the conditional distribution
of w given x and z does not actually depend on x, that is, genotypic characters x in�uence
�tness only through the values of the phenotypic characters z.

Then the di�erence of genotypic values before selection and after selection but before
reproduction is

E(wx)− E(x) = E{E(wx | z)} − µ
= E{E(w | z)E(x | z)} − µ
= E{E(w | z)[µ+GΣ−1(z − µ)]} − µ
= E{E(w[µ+GΣ−1(z − µ)] | z)} − µ
= E{w[µ+GΣ−1(z − µ)]} − µ
= GΣ−1 cov(w, z)

(22)

which is equation (6a) in Lande and Arnold (1983). The conditional independence of x and
w given z is the second equality in (22). Note that the right-hand side here is again related
to (13).

2.4.2 Stabilizing and Disruptive Selection

Phenotypic If we play the same game with variance instead of means, the variance �after
selection, but before reproduction� is

E{w(z − ζ)(z − ζ)T }
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where ζ = E(wz) is the mean �after selection but before reproduction�. To follow Lande and
Arnold (1983) we need a notation for (20). They use s = cov(w, z) and we will follow them.
Thus we are using Greek letters for all parameters except for E, G and s. Then ζ = µ+ s,
and

E{w(z − ζ)(z − ζ)T } = E{w(z − µ− s)(z − µ− s)T }
= E{w(z − µ)(z − µ)T } − 2E{w(z − µ)}sT + ssT

= E{w(z − µ)(z − µ)T } − ssT

and the stabilizing or disruptive selection di�erential is

E{w(z − ζ)(z − ζ)T } − var(z) = E{w(z − µ)(z − µ)T } − ssT − Σ

= cov{w, (z − µ)(z − µ)T } − ssT
(23)

which is equation (13a) in Lande and Arnold (1983). In the case µ = 0, note that (23)
contains cov(w, zzT ) which also appears in (15), which was derived under the assumption
µ = 0.

Genetic If we play the same game with genotypes x rather than phenotypes z, the quantity
we want to obtain is

E{w(x− ξ)(x− ξ)T } − var(x) (24)

where
ξ = E(wx) = µ+GΣ−1 cov(w, z) = µ+GΣ−1s. (25)

Now

E{w(x− ξ)(x− ξ)T } = E{w(x− ξ)(x− ξ)T | z}
= E{E(w | z)E[(x− ξ)(x− ξ)T | z]}
= E{wE[(x− ξ)(x− ξ)T | z]}

(26)

The conditional independence of x and w given z is the second equality in (26). And

E[(x− ξ)(x− ξ)T | z] = var(x | z) + E(x− ξ | z)E(x− ξ | z)T

where var(x | z) is given by (21b) and from (21a) and (25) we have

E(x− ξ | z) = µ+GΣ−1(z − µ)− ξ
= µ+GΣ−1(z − µ)− (µ+GΣ−1s)

= GΣ−1(z − µ− s)
= GΣ−1(z − ζ)

Hence
E[(x− ξ)(x− ξ)T | z] = G−GΣ−1G+GΣ−1(z − ζ)(z − ζ)TΣ−1G
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and (24) becomes

E{w(x− ξ)(x− ξ)T } − var(x)

= E{wE[(x− ξ)(x− ξ)T | z]} −G
= E{w[G−GΣ−1G+GΣ−1(z − ζ)(z − ζ)TΣ−1G]} −G
= −GΣ−1G+GΣ−1E{w(z − ζ)(z − ζ)T }Σ−1G
= −GΣ−1G+GΣ−1

[
cov{w, (z − µ)(z − µ)T } − ssT + Σ

]
Σ−1G

= GΣ−1
[
cov{w, (z − µ)(z − µ)T } − ssT

]
Σ−1G

(27)

where the next to last equality plugs in (23). This agrees with equation (12) of Lande and
Arnold (1983).

2.4.3 Discussion of Selection Di�erentials

The phenotypic directional selection di�erential (20) is part of the formula for β4 given
by (5a). Conversely, the formula for β4 is part of the formula for the genetic directional
selection di�erential given by (22).

The phenotypic stabilizing or disruptive selection di�erential (23) has some relationship
to the formula for γ4 given by (5b), although the relationship is rather vague: the covariance
term in (23) is equal to the covariance term in (5b) in the case E(z) = 0, but the other
parts of these expressions di�er. Conversely, the formula for γ4 is part of the formula for
the genetic stabilizing or disruptive selection di�erential given by (27) in the case E(z) = 0.

As seen from our use of �part of the formula� in three cases and and even vaguer relation-
ship in the fourth case, the connection between β4 and γ4 and these selection di�erentials
is rather vague. Moreover, Lande and Arnold (1983) argue that the betas and gammas are
more direct indicators of selection than these selection di�erentials. Consider the pheno-
typic directional selection di�erential cov(w, z). A component of z that is not under direct
selection will nevertheless be correlated with w if it is correlated with other components of z
that are under direct selection. Conversely, if a component of z, say zk, is not under direct
selection, then the �tness landscape g(z) is not a function of zk and ∂g(z)/∂zk = 0 and the
k-th component of β3 given by (4a) will be zero.

From our point of view, this last argument tells us we should focus on the �tness land-
scape itself. The various betas and gammas do not provide as much information as good
estimates of the �tness landscape. Nor do the selection di�erentials discussed in this section.

3 Lande-Arnold Analysis versus Fitness Landscapes

3.1 Multivariate

Suppose z is multivariate normal with mean vector µ1 and variance matrix (variance-
covariance matrix, dispersion matrix) Σ1. The density of z is

f(z) = c1 exp
{
−1

2(z − µ1)′Σ−11 (z − µ1)
}

(28)
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where c1 is a constant. Suppose, for reasons of mathematical convenience (to obtain an
example we can analyze) the relative �tness landscape has the same form

g(z) = c2 exp
{
−1

2(z − µ2)′Σ−12 (z − µ2)
}

(29)

where c2 is another constant, Σ2 is a symmetric matrix, not necessarily positive de�nite
(more on this below), and and µ2 is an arbitrary vector. Then

f(z)g(z) = c3 exp
{
−1

2(z − µ3)′Σ−13 (z − µ3)
}

(30)

where

Σ−13 = Σ−11 + Σ−12 (31a)

µ3 = Σ3(Σ
−1
1 µ1 + Σ−12 µ2) (31b)

and c3 is another constant. In order that g(z) be the relative �tness landscape, f(z)g(z)
must integrate to one, so c3 is the normalizing constant of the multivariate normal density
with mean vector µ3 and variance matrix Σ3. Also Σ3 must be positive de�nite. This places
a complicated requirement on Σ2 via (31a). Although, Σ2 need not be positive de�nite, it
must combine with Σ1 to produce a positive de�nite Σ3.

Now let us assume µ1 = 0 so that from the theory in the preceding chapter we have
β1 = β2 = β3 = β4 and γ2 = γ3 = γ4 so we need not distinguish which betas and gammas
we mean and shall just write β and γ with no subscripts for the rest of this chapter.

Di�erentiating (29) we get

∇g(z) = −g(z)Σ−12 (z − µ2) (32a)

∇2g(z) = g(z)Σ−12 (z − µ2)(z − µ2)′Σ−12 − g(z)Σ−12 (32b)

Then using the formulas (4a) and (4b) and the fact that (30) is a normal probability density
we can now calculate

β = −Σ−12 (µ3 − µ2) (33a)

γ = Σ−12 Σ3Σ
−1
2 + Σ−12 (µ2 − µ3)(µ2 − µ3)′Σ−12 − Σ−12 (33b)

It should be clear from the complexity of these formulas that the relationship between the
function g(z) and β and γ is anything but simple.

Whether the �tness landscape g(z) has a maximum, a minimum, or a saddle point at
µ2 depends on the signature (the numbers of positive, negative, and zero eigenvalues) of
the matrix Σ2. If the matrix γ is to provide the same information, it must have the same
signature, and this need not happen.

3.2 Univariate

Let us simplify to the case where z is univariate. We keep the assumption µ1 = 0. Also
we replace Σi by vi. Here v is for �variance� but recall that v2 is not required to be positive,
although v1 and v3 are required to be positive. Then (33a) and (33b) become

β = −µ3 − µ2
v2

(34a)

γ =
v3 − v2 + (µ2 − µ3)2

v22
=
v3 − v2
v22

+ β2 (34b)
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and (31a) and (31b) become

1

v3
=

1

v1
+

1

v2
(35a)

µ3 =
v3µ2
v2

(35b)

(recall µ1 = 0). Plugging (35a) and (35b) into (34a) and (34b) gives

β =
µ2

v1 + v2
(36a)

γ = − 1

v1 + v2
+ β2 (36b)

Clearly, in this simple case β has the �right sign� (same as µ2), but γ need not have the
right sign (same as v2).

This is just a particular, easy to analyze, special case. In general, if one does not know
the functional form of the �tness landscape g(z), one has no knowledge of the relationship
between g(z) and β and γ even when we assume that z is multivariate normal with mean
zero so all of the betas are equal and all of the gammas are equal. In even more generality,
when one does not know the distribution of z, one has no knowledge of the relationship
between g(z) and any of the four betas and three gammas, none of which are equal except
β1 = β4.

3.3 Normalizing Constants

We were a bit cavalier in the preceding two sections about the constants c1, c2, and
c3. They are not needed to calculate α, β, and γ and the best quadratic approximation.
However, if we want to compare the best quadratic approximation with the actual �tness
landscape g(z), then we need to know c2. So we calculate that here.

First, from the de�nition of the normal density

c1 = (2π)−d/2 det(Σ1)
−1/2

c3 = (2π)−d/2 det(Σ3)
−1/2

where d is the dimension of z and det indicates the determinant.
Hence, combining (28), (29), and (30), we obtain

c3 exp
{
−1

2(z − µ3)′Σ−13 (z − µ3)
}

= c1c2 exp
{
−1

2(z − µ1)′Σ−11 (z − µ1)− 1
2(z − µ2)′Σ−12 (z − µ2)

}
This must hold for all z, hence for z = 0, that is,

c3 exp
{
−1

2µ
′
3Σ
−1
3 µ3

}
= c1c2 exp

{
−1

2µ
′
1Σ
−1
1 µ1 − 1

2µ
′
2Σ
−1
2 µ2

}
Hence

c2 =
c3
c1

exp
{
−1

2µ
′
3Σ
−1
3 µ3 + 1

2µ
′
1Σ
−1
1 µ1 + 1

2µ
′
2Σ
−1
2 µ2

}
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which simpli�es in the univariate case with µ1 = 0 to

c2 =

√
v1
v3

exp
{
−µ23/2v3 + µ22/2v2

}
which, plugging in (35b), further simpli�es to

c2 =

√
v1
v3

exp
{
µ22(v2 − v3)/2v22

}
(37)

3.4 Examples

We give a few examples of the theory in the preceding sections. First example

> v1 <- 1

> mu2 <- 0

> v2 <- 2

> beta <- mu2 / (v1 + v2)

> gamma <- beta^2 - 1 / (v1 + v2)

> alpha <- 1 - gamma * v1 / 2

> v3 <- 1 / (1 / v1 + 1 / v2)

> c2 <- sqrt(v1 / v3) * exp(mu2^2 * (v2 - v3) / (2 * v2^2))

> # c2 <- sqrt(v1 / v3) * exp(mu2^2 / (2 * (v1 + v2)))

Figure 1 (page 18) is made by the following code

> zlim <- 3

> foo <- function(z) alpha + beta * z + gamma * z^2 / 2

> bar <- function(z) c2 * exp(- (z - mu2)^2 / (2 * v2))

> zzzz <- seq(-zlim, zlim, 0.01)

> ylim <- c(min(foo(zzzz), bar(zzzz)), max(foo(zzzz), bar(zzzz)))

> curve(foo, col = "magenta", ylab = "relative fitness", xlab = "z",

+ from = -3, to = 3, ylim = ylim, lwd = 2)

> curve(bar, col = "green3", add = TRUE, lwd = 2)

Second example

> v1 <- 1

> mu2 <- 1

> v2 <- 2

> beta <- mu2 / (v1 + v2)

> gamma <- beta^2 - 1 / (v1 + v2)

> alpha <- 1 - gamma * v1 / 2

> v3 <- 1 / (1 / v1 + 1 / v2)

> c2 <- sqrt(v1 / v3) * exp(mu2^2 * (v2 - v3) / (2 * v2^2))

> # c2 <- sqrt(v1 / v3) * exp(mu2^2 / (2 * (v1 + v2)))

Figure 2 (page 19) is made by the following code
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Figure 1: Fitness landscape (green) and its best quadratic approximation (magenta).
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Figure 2: Fitness landscape (green) and its best quadratic approximation (magenta).

> foo <- function(z) alpha + beta * z + gamma * z^2 / 2

> bar <- function(z) c2 * exp(- (z - mu2)^2 / (2 * v2))

> ylim <- c(min(foo(zzzz), bar(zzzz)), max(foo(zzzz), bar(zzzz)))

> curve(foo, col = "magenta", ylab = "relative fitness", xlab = "z",

+ from = -3, to = 3, ylim = ylim, lwd = 2)

> curve(bar, col = "green3", add = TRUE, lwd = 2)

Third example

> v1 <- 1

> mu2 <- 2

> v2 <- 2

> beta <- mu2 / (v1 + v2)

> gamma <- beta^2 - 1 / (v1 + v2)

> alpha <- 1 - gamma * v1 / 2

> v3 <- 1 / (1 / v1 + 1 / v2)
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Figure 3: Fitness landscape (green) and its best quadratic approximation (magenta).

> c2 <- sqrt(v1 / v3) * exp(mu2^2 * (v2 - v3) / (2 * v2^2))

> # c2 <- sqrt(v1 / v3) * exp(mu2^2 / (2 * (v1 + v2)))

Figure 3 (page 20) is made by the following code

> foo <- function(z) alpha + beta * z + gamma * z^2 / 2

> bar <- function(z) c2 * exp(- (z - mu2)^2 / (2 * v2))

> ylim <- c(min(foo(zzzz), bar(zzzz)), max(foo(zzzz), bar(zzzz)))

> curve(foo, col = "magenta", ylab = "relative fitness", xlab = "z",

+ from = -3, to = 3, ylim = ylim, lwd = 2)

> curve(bar, col = "green3", add = TRUE, lwd = 2)

4 Discussion

The main goal of the authors is, admittedly, to foster their own approach to estimation
of �tness landscapes (Shaw, et al., 2008), but the main goal of this particular document is
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to delve deeply into the theory of Lande-Arnold analysis to see what it does and what it
cannot possibly do, not without being changed into something completely di�erent.

We, of course, emphasize quite di�erent points from those emphasized by Lande and
Arnold (1983). We stress the following. Lande and Arnold (1983) introduce β the direc-

tional selection gradient and γ the stabilizing or disruptive selection gradient, but we point
out that they really de�ne four betas and three gammas, and they are quite distinct except
when the phenotypic covariates are exactly multivariate normal. Since there is no existing
methodology for transforming data to exact multivariate normality, these betas and gammas
are best thought of as distinct parameters. Partly because it directly competes with aster
analysis, we �nd the notion of best quadratic approximation Phillips and Arnold (1989),
which involves β2 and γ2, the interpretation of Lande-Arnold analysis that is most interest-
ing. This does also seem to be the interpretation of interest to most of the huge literature
citing Lande and Arnold (1983).

As we show in Section 3, if one looks carefully at how best quadratic approximation
(BQA) actually approximates functions that are possible �tness landscapes, one sees that,
although BQA is not uniformly bad, it can be very bad approximation in some circumstances.
Since the Lande-Arnold method estimates the BQA of the �tness landscape rather than the
�tness landscape itself and since the BQA can be a badly biased approximation of the �tness
landscape, one can never know from looking at the BQA alone (much less its OLS estimate)
what features of the BQA are re�ective of the actual �tness landscape and what features of
the BQA are approximation artifacts. Thus one can never know how safe it is to interpret
a particular aspect of the BQA as re�ecting the underlying biology, since it may be only an
artifact of the bias of the BQA.

This is not a mere theoretical quibble. To date only one real data set has been analyzed
using both the Lande-Arnold method and the newer aster method (Shaw, et al., 2008), and
in this example Lande-Arnold analysis indicates distruptive selection for one phenotypic
character whereas aster analysis indicates stabilizing selection for that character. This is
exactly what is illustrated in Figure 3 where the true �tness landscape (green curve) has a
maximum near the right side of the �gure and the BQA (magenta curve) has a minimum
somewhere o� the left side of the plot. In the terminology of Lande and Arnold, the BQA
indicates disruptive selection whereas the actual �tness landscape exhibits only stabilizing
selection: by construction, the �tness landscape has a single local maximum, which is also
the global maximum, at z = 2, what else can one call this? Of course, the selection is mainly
directional, but between stabilizing and disruptive, stabilizing is the correct choice.

Section 3 gives a large family of examples, multivariate as well as univariate, that one
can play with to see exactly what biases BQA induces in various situations. So long as
no one had looked at the biases of BQA in detail, it was possible to maintain the illusion
that BQA usually was good enough approximation. Now that the issue has been raised
and thoroughly explored, the illusion has been destroyed. Now one must consider in each
application of the Lande-Arnold method how bad the biases of BQA may be. Furthermore,
to the extent that one is interested in the other parameters, that we called β3 and γ3 and
β4 and γ4, one must consider how di�erent they may be from β2 and γ2, which are what the
Lande-Arnold procedure estimate unbiasedly.
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