
Model Selection in Estimation of Fitness Landscapes

By

Charles J. Geyer and Ruth G. Shaw

Technical Report No. 671

School of Statistics

University of Minnesota

July, 10, 2008

Revised July 6, 2009

Abstract

A solution to the problem of estimating �tness landscapes was proposed by Lande
and Arnold (1983). Another solution, which avoids problematic aspects of the Lande-
Arnold methodology, was proposed by Shaw, Geyer, Wagenius, Hangelbroek, and Et-
terson (2008), who also provided an illustrative example involving real data. An earlier
technical report (Geyer and Shaw, 2008) gave an example that was simpler in some
ways (the data are simulated from the aster model so there are no issues making the
data �t the model one has with real data) and much more complicated in others (each
individual has �ve measured components of �tness over four time periods, 20 variables
in all) and illustrates the full richness possible in aster analysis of �tness landscapes.
The one issue that technical report did not deal with is model selection. When many
phenotypic variables are measured, one often does not know which to put in the model.
Lande and Arnold (1983) proposed using principal components regression as a method
of dimension reduction, but this method is known to have no theoretical basis. Much
of late 20th century and 21st century statistics is about model selection and model
averaging, and we apply some of this methodology (which does have strong theoretical
basis) to estimation of �tness landscapes using another simulated data set.

All analyses are done in R (R Development Core Team, 2008) using the aster con-
tributed package described by Geyer, Wagenius and Shaw (2007) except for analyses in
the style of Lande and Arnold (1983), which use ordinary least squares regression. Fur-
thermore, all analyses are done using the Sweave function in R, so this entire technical
report and all of the analyses reported in it are completely reproducible by anyone who
has R with the aster package installed and the R noweb �le specifying the document.

This revision corrects major errors in the frequentist model averaging calculations
(Section 8) in the �rst version of the technical report.

1 R Package Aster

We use R statistical computing environment (R Development Core Team, 2008) in our

analysis. It is free software and can be obtained from http://cran.r-project.org. Pre-

compiled binaries are available for Windows, Macintosh, and popular Linux distributions.

We use the contributed package aster. If R has been installed, but this package has not

yet been installed, do

install.packages("aster")

from the R command line (or do the equivalent using the GUI menus if on Apple Macintosh

or Microsoft Windows). This may require root or administrator privileges.

Assuming the aster package has been installed, we load it

> library(aster)

The version of the package used to make this document is 1.1-3 (which is available on

CRAN). The version of R used to make this document is 4.3.2.

This entire document and all of the calculations shown were made using the R command

Sweave and hence are exactly reproducible by anyone who has R and the R noweb (RNW)

�le from which it was created. Both the RNW �le and and the PDF document produced

from it are available at http://www.stat.umn.edu/geyer/aster. For further details on the

use of Sweave and R see Chapter 1 of the technical report by Shaw, et al. (2007) available

at the same web site.

Not only can one exactly reproduce the results in the printable document, one can also

modify the parameters of the simulation and get di�erent results. Obvious modi�cations to

try are noted on pages 3, 4, 11, and 14 below. But, of course, anything at all can be changed

once one has the RNW �le.

2 Simulate Data from Conditional Model

2.1 Overview

It is hard to make up an unconditional aster model because the unconditional parame-

terization is so unintuitive. Thus we proceed in two steps.

� First we simulate data using a conditional aster model with parameters we understand.

� Then we �t an unconditional aster model to these data, and simulate data using the

�tted unconditional model.

Also it is hard to make up a �tness landscape, because we model it on the canonical

parameter scale and these have no simple connection to the mean value parameter scale.

Thus we also proceed in two steps here.

� First we simulate data having a �at �tness landscape.

� Then we �t models having a non-�at �tness landscapes, which we adjust in strength

to be moderately statistically signi�cant.

The way these two issues interleave is as follows.

1. We simulate data using a conditional model having a �at �tness landscape.

2. We simulate data using an unconditional model having a �at �tness landscape.

3. We simulate data using unconditional models having a non-�at �tness landscapes.

In Section 2 we only do the �rst step.

2.2 Graphical Model

We make a graphical model based on consecutive time periods (call them years for

concreteness). Data are �observed� over 10 years. For each individual we observe in year i
three random variables Ui, Vi, andWi. All random variables on one individual are connected

by the graph shown in Figure 1. The variables Ui and Vi are Bernoulli (zero-or-one valued);
the variables Wi are nonnegative-integer-valued. The Vi are redundant: Vi = 1 if and only

if Wi > 0. The variables Ui indicate survival through the i-th year; the variables Wi count

o�spring produced in the i-th year. Hence the variables Vi indicate successful reproduction
in the i-year (one or more o�spring). We model the Wi as zero-truncated Poisson given Vi.

If one likes to think of it that way, one can ignore Vi and say that Wi is zero-in�ated

Poisson given Ui, but the aster way to think about this requires three variables Ui, Vi, and
Wi because that �ts the required exponential family structure.

In these data, the variable
∑

iWi is considered �tness (total number of o�spring over

the course of the study, which will include most of the lifespan).

2

1 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10- - - - - - - - - -

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
? ? ? ? ? ? ? ? ? ?

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

? ? ? ? ? ? ? ? ? ?

Figure 1: Graph for the example. ui indicate survival, wi count number of o�spring, vi
indicate wi > 0.

2.3 Simulation

We set the seeds of the random number generator so that we obtain the same results every

time. To get di�erent results, obtain the RNW �le, change this statement, and reprocess

using Sweave and LATEX.

> RNGversion("2.5.0")

> set.seed(42)

We also set up some parameters of the simulation. These can also be changed.

> nind <- 350

> ntime <- 10

> psurv <- 0.8

> prepr <- 0.7

> mpois <- 3

> theta.surv <- log(psurv) - log(1 - psurv)

> theta.repr <- log(prepr) - log(1 - prepr)

> theta.pois <- log(mpois)

> tau.pois <- mpois / (1 - exp(- mpois))

For a �rst pass we set mean survival per unit time to be psurv = 0.8 and mean reproduction

indicator per unit time to be prepr = 0.7. For number of o�spring in a time period given

any o�spring in that time period, the easiest thing to specify is the mean of the untruncated

Poisson random variable that when truncated is the distribution we want. This untruncated

mean is mpois = 3. The mean of the corresponding zero-truncated distribution is τ = 3.157.

> vars <- as.vector(outer(c("u", "v", "w"), 1:10, paste, sep = ""))

> vtype <- as.factor(substr(as.character(vars), 1, 1))

> fam <- rep(1, length(vars))

> fam[vtype == "w"] <- 3

> pred <- seq(along = vars) - 1

> pred[vtype == "u"] <- seq(along = vars)[vtype == "u"] - 3

> pred[1] <- 0

Simulate data.

3

> root <- matrix(1, nrow = nind, ncol = length(vars))

> theta <- root

> theta[, vtype == "u"] <- theta.surv

> theta[, vtype == "v"] <- theta.repr

> theta[, vtype == "w"] <- theta.pois

> x <- raster(theta, pred, fam, root)

> dimnames(x) <- list(NULL, vars)

> dat <- as.data.frame(x)

> dat <- as.list(dat)

> dat[["root"]] <- rep(1, nind)

Now we add some covariates. These will play the role of phenotypic variables in the

Lande-Arnold analysis and the competing aster analysis. Lande-Arnold analysis requires

that these be jointly multivariate normal and centered at zero. Aster analysis does not.

For fair comparison, we make these covariates satisfy the conditions required for Lande-

Arnold analysis. In addition, we make them have the same variance, and we make all pairs

of them have correlation 1/2. The reason for the correlation is that this makes some of the

modeling issues more di�cult. Of course, all of this can be changed if one has the RNW �le

for this document.

> npheno <- 10

> zbase <- rnorm(nind)

> for (i in 1:npheno) {

+ labz <- paste("z", i, sep = "")

+ dat[[labz]] <- zbase + rnorm(nind)

+ }

Reshape the data

> names(dat)

[1] "u1" "v1" "w1" "u2" "v2" "w2" "u3" "v3"

[9] "w3" "u4" "v4" "w4" "u5" "v5" "w5" "u6"

[17] "v6" "w6" "u7" "v7" "w7" "u8" "v8" "w8"

[25] "u9" "v9" "w9" "u10" "v10" "w10" "root" "z1"

[33] "z2" "z3" "z4" "z5" "z6" "z7" "z8" "z9"

[41] "z10"

> dat <- as.data.frame(dat)

> redata <- reshape(dat, varying = list(vars), direction = "long",

+ timevar = "varb", times = as.factor(vars), v.names = "resp")

There is one further step. We wish to make inferences about overall �tness, taking advan-

tage of the monotonicity property of unconditional aster models, as explained in Section 3.2

of Geyer and Shaw (2008). This requires that we model only the Wi as dependent on the

phenotypic traits. To accomplish this, we set to zero all the phenotype values except those

associated with the Wi, the life history variables that directly re�ect �tness.

4

> wind <- grep("w", as.character(redata$varb))

> for (labz in grep("z", names(redata), value = TRUE)) {

+ redata[[labz]][- wind] <- 0

+ }

3 Fit Initial Data

3.1 Overview

We have now simulated our �initial data� so we have now done step 1 of the overview

in Section 2.1. However, we still do a few checks to see that these data make sense (of

course, they must unless the aster software is buggy, but we check anyway); we do this in

Section 3.2.

In Section 3.3 we start on what we called step 2 in the overview in Section 2.1. First we

�t an unconditional aster model to the data we just checked was reasonable (Section 3.2).

Then we �predict� the mean value parameters and see whether they make sense (according

to our intuition). They sort of make sense, but we think we can do better, so we �t a

more elaborate unconditional model adding a term uyear to the model formula, which lets

mortality be a linear function of year on the canonical parameter scale. We again �predict�

the mean value parameters and see whether they make sense, and this time decide they

are good enough (according to our intuition). That �nishes what we called step 2 in the

overview in Section 2.1, and also �nishes Section 3. We continue our overview in Section 4.

3.2 Conditional Models

Fit the aster model (the one used to generate the data).

> redata$vtype <- as.factor(substr(as.character(redata$varb), 1, 1))

> out2 <- aster(resp ~ vtype + 0, pred, fam, varb, id, root,

+ data = redata, type = "conditional")

> summary(out2)

Call:

aster.formula(formula = resp ~ vtype + 0, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = redata, type = "conditional")

Estimate Std. Error z value Pr(>|z|)

vtypeu 1.36644 0.06323 21.61 <2e-16 ***

vtypev 0.76870 0.06127 12.55 <2e-16 ***

vtypew 1.10173 0.02110 52.22 <2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

For comparison, these should be

> theta.surv

[1] 1.386294

5

> theta.repr

[1] 0.8472979

> theta.pois

[1] 1.098612

For further comparison, the likelihood ratio test with this model as the alternative hy-

pothesis and the simulation truth for the point null hypothesis can be calculated as follows.

> mout2true <- mlogl(c(theta.surv, theta.repr, theta.pois), pred, fam, out2$x,

+ out2$root, out2$modmat, type = out2$type, origin = out2$origin)

> dev2true <- 2 * mout2true$value - out2$deviance

> dev2true

[1] 1.772433

> 1 - pchisq(dev2true, df = 3)

[1] 0.6209522

Great! Statistics works. When we simulate data from a model and estimate the parame-

ters in that model, the maximum likelihood estimates are close to the simulation truth, and

the log likelihood ratio test statistic comparing the MLE to the simulation truth parameter

value is not signi�cant.

3.3 Unconditional Models

The next step is to switch to unconditional models.

> out3 <- aster(resp ~ vtype + 0, pred, fam, varb, id, root,

+ data = redata)

> summary(out3)

Call:

aster.formula(formula = resp ~ vtype + 0, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

vtypeu 0.06193 0.04507 1.374 0.169

vtypev -1.64875 0.09005 -18.310 <2e-16 ***

vtypew 1.10173 0.02096 52.560 <2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

6

We have no intuition about whether this model makes sense. We must switch to uncon-

ditional models in order to model �tness, but is this particular unconditional model sensible?

To check that out we look at conditional mean value parameters. Do they still make sense?

We originally simulated a conditional model, based on certain conditional mean value pa-

rameters. Now we have switched to an unconditional model, but we can still calculate its

conditional mean value parameters. The new model (out3) is �incorrect� in the sense that it

is not the old model (out2), but is it close to correct in the sense that the relevant parameters

have not changed?

In order to compute conditional mean value parameters we need to supply data (since

they depend on data, see Geyer, Wagenius and Shaw, 2007, Section 2.5). Since all individuals

are alike, we could have a new model matrix with just one individual all of whose variables

that are �parent� variables (i. e., all of the Ui and Vi) are equal to one. But a much simpler

choice is just to use the observed data, if it contains one such individual.

> foo <- apply(out3$x, 1, function(bar) all(bar > 0))

> ifoo <- seq(along = foo)[foo]

> length(ifoo)

[1] 1

> ifoo <- ifoo[1]

> ifoo

[1] 52

It does.

> pout3 <- predict(out3, model.type = "conditional")

> pout3 <- matrix(pout3, nrow(out3$x))

> pout3 <- pout3[ifoo,]

> pout3

[1] 0.8181441 0.6832398 3.1654929 0.8133603 0.6832398 3.1654929

[7] 0.8073241 0.6832398 3.1654929 0.7996055 0.6832398 3.1654929

[13] 0.7895658 0.6832398 3.1654929 0.7762132 0.6832398 3.1654929

[19] 0.7579195 0.6832398 3.1654929 0.7318098 0.6832398 3.1654929

[25] 0.6922833 0.6832398 3.1654929 0.6267725 0.6832398 3.1654929

We see that all of theWi have conditional expectation 3.1655 given Vi = 1. This is �obvious�
(we admit we did not guess this in advance, but it is easy to explain in hindsight) from the

fact that all Wi are at terminal nodes, hence their conditional canonical parameters θj are
equal to their unconditional canonical parameters ϕj .

We also see that all of the Vi have conditional expectation 0.6832 given Ui = 1. This is
�obvious� (we admit we did not guess this in advance, but it is easy to explain in hindsight)

from the fact that all Vi have exactly one successor Wi and all of the Wi have the same

distribution and the same conditional canonical parameter. Thus equation (5) in Geyer et

al. (2007) makes all the unconditional canonical parameters ϕj for the Vi the same.

So we are left with several questions. First, are the conditional mean value parameters

already discussed reasonable? They are to be compared with

7

> prepr

[1] 0.7

> tau.pois

[1] 3.157187

which are the actual conditional expectations used to simulate the data. They seem close

enough. (We know that the di�erence between 3.1655 and 3.1572 is just sampling variation,

because there is no di�erence between conditional and unconditional canonical parameters

for terminal nodes, and the conditional canonical parameters determine the conditional mean

value parameters.)

Second, are the conditional mean value parameters for the Ui reasonable? These now all

di�er, because each has a di�erent number of �ancestor� nodes (predecessor, predecessor of

predecessor, etc.)

> pout3u <- matrix(pout3, nrow = 3)[1,]

> round(pout3u, 4)

[1] 0.8181 0.8134 0.8073 0.7996 0.7896 0.7762 0.7579 0.7318

[9] 0.6923 0.6268

Clearly, our model has changed. Originally, we modeled organisms that do not age: they have

the same mortality at all ages. This was just for simplicity; we could have put in mortality

that is a function of age. But when we switch to an unconditional model, mortality increases

(survival probability decreases) with age.

We have two options. Since we are just making up data, we could accept this change.

Alternatively, we could put additional terms into the unconditional aster model to allow the

unconditional canonical parameters for the Ui to increase with age more than they do in the

model �t above (out3). Let's try the latter.

> redata$year <- as.numeric(substring(as.character(redata$varb), 2))

> redata$uyear <- redata$year *

+ as.numeric(as.character(redata$vtype) == "u")

> out4 <- aster(resp ~ vtype + uyear, pred, fam, varb, id, root,

+ data = redata)

> summary(out4)

Call:

aster.formula(formula = resp ~ vtype + uyear, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.07095 0.07518 -0.944 0.3453

vtypev -1.57780 0.13720 -11.500 <2e-16 ***

vtypew 1.17268 0.07805 15.025 <2e-16 ***

uyear 0.02605 0.01176 2.216 0.0267 *

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

8

Again we look at conditional mean value parameters.

> pout4 <- predict(out4, model.type = "conditional")

> pout4 <- matrix(pout4, nrow(out4$x))

> pout4 <- pout4[ifoo,]

> pout4

[1] 0.7925686 0.6832398 3.1654930 0.8025099 0.6832398 3.1654930

[7] 0.8094030 0.6832398 3.1654930 0.8128085 0.6832398 3.1654930

[13] 0.8120915 0.6832398 3.1654930 0.8062224 0.6832398 3.1654930

[19] 0.7934028 0.6832398 3.1654930 0.7702688 0.6832398 3.1654930

[25] 0.7299274 0.6832398 3.1654930 0.6561116 0.6832398 3.1654930

Again we see that all of the Wi have the same conditional mean value parameter and that

it has hardly changed from what it was in out3, and the same is true of all the Vi. Since we
did not change the model in any way that a�ects the parameterization of these variables,

this is no surprise.

> pout4u <- matrix(pout4, nrow = 3)[1,]

> round(pout4u, 4)

[1] 0.7926 0.8025 0.8094 0.8128 0.8121 0.8062 0.7934 0.7703

[9] 0.7299 0.6561

Now the conditional mean value parameters E(Ui | Ui−1 = 1) for i > 2 and E(U1) seem
fairly constant. Perhaps they decrease at large ages (9 and 10), or perhaps this is just

chance variation, since there are few individuals alive at these ages. In any event, we will

be satis�ed with this model out4. This will be our �baseline� model, the model with a �at

�tness landscape, since �tness, which we take to be
∑

iE(Wi), does not depend on any of

the Zi, because we put none of these variables in any models �t so far.

4 Simulate New Data

4.1 Overview

At this point we have a reasonable unconditional aster model (out4) with a �at �tness

landscape. Now we want to simulate models with non-�at �tness landscapes.

We will simulate two such models, which we call Model 1 and Model 2. In Model 1, the

�tness landscape depends on just two phenotypic variables z1 and z2. This is somewhat

unrealistic but allows us to draw some simple pictures of �tness landscapes. Burnham and

Anderson (2002, Section 1.2.5) are particularly emphatic about the biological unrealism of

�true� (at least simulation truth) models with only a few parameters. Hence we also simulate

more realistic data that depends on ten phenotypic variables z1, . . . , z10.

We make both �tness landscapes depend quadratically on phenotypic variables on the

canonical parameter scale. Since the mean value parameter is a multivariate monotone

function of the canonical parameter, this means expected �tness is a monotone function of

this quadratic function (see Section 3.2 of Geyer and Shaw, 2008 for details). We make

9

our quadratic function have negative curvature (corresponding to stabilizing selection) in

all directions. Thus it has elliptical contours. By monotonicity, the contours of the actual

�tness landscape (expected �tness considered as a function of phenotypic variables) also

has elliptical contours. We locate the �tness maximum to one side of the distribution of

phenotypic values not right in the middle.

The only remaining decision is how steeply �tness should fall o� as we move away from

the �tness maximum. In order for our simulation to provide useful guidance, the fall-o�

should be steep enough so that the �tness landscape is statistically signi�cant but not so

steep that one doesn't need statistics to see that it is signi�cant. (It's always nice when

evidence is so clear that statistics is unnecessary, but this is not typical.) Thus we adjust

the dependence of �tness on phenotype in both Model 1 and Model 2 to be strong but not

too strong.

This proceeds in several steps, which are substeps of what was called Step 3 in Section 2.1.

(a) We �t a model with quadratic �tness landscape to the data with �at �tness landscape.

The sole purpose is to get the coe�cient vector for such a model.

(b) We adjust the coe�cients of the quadratic �tness landscape.

(c) We simulate new data having this unconditional aster model with non-�at (quadratic

on the canonical parameter scale) �tness landscape.

(d) We do a likelihood ratio test comparing the models with �at and non-�at �tness

landscape. If the result is not statistically signi�cant or is too statistically signi�cant

(the inference is so clear that statistics is unnecessary) we go back to substep (b).

4.2 Model 1

For a �rst try, let us have the �tness landscape depend on just the �rst two phenotypic

variables z1 and z2. Burnham and Anderson (2002, Section 1.2.5) are particularly emphatic

about the biological unrealism of �true� (at least simulation truth) models with only a few

parameters. The main virtue of this simple model is that it allows us to draw some simple

pictures of �tness landscapes. We will also simulate a more complicated model in Section 4.3.

Now we will simulate new data using the raster function. To use that we need to, �rst,

make up a model, including dependence on z1 and z2 and, second, convert unconditional

canonical parameters ϕ to conditional canonical parameters θ, because that is what the

raster function wants. There is no function in the aster package that does this conversion,

perhaps a defect in the aster user interface. We can, however, trick the predict.aster

function into doing this conversion.

First we �t the model we want to use to the data we have. The �tted parameters will

make no sense, because the �tness landscape is �at for the data we have, but we can use

the model structure.

> out5 <- aster(resp ~ vtype + uyear + z1 + z2 + I(z1^2) + I(z2^2) + I(z1 * z2),

+ pred, fam, varb, id, root, data = redata)

> summary(out5)

10

Call:

aster.formula(formula = resp ~ vtype + uyear + z1 + z2 + I(z1^2) +

I(z2^2) + I(z1 * z2), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.066849 0.075264 -0.888 0.374

vtypev -1.581175 0.137212 -11.524 <2e-16 ***

vtypew 1.177894 0.078094 15.083 <2e-16 ***

uyear 0.025412 0.011780 2.157 0.031 *

z1 -0.003408 0.005705 -0.597 0.550

z2 0.002567 0.005642 0.455 0.649

I(z1^2) -0.005393 0.003564 -1.513 0.130

I(z2^2) -0.003154 0.003514 -0.898 0.369

I(z1 * z2) 0.007144 0.005887 1.213 0.225

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

We now want to make up a quadratic function of z that has approximate mean zero

(averaged over the z) values so that the average �tness is more or less the same as in our

initial data. We also want reasonably sane values, so we keep the quadratic term small. For

simplicity, we make the �tness landscape symmetric in the two variables. (It took several

tries to get the quadratic term small enough. These tries are not shown. The coe�cients of

the linear and quadratic terms were adjusted until the P -values in the tests on p. 18 show

that both were highly statistically signi�cant but not humongously so.) Of course, all of

this can be changed if one has the RNW �le for this document.

> z1 <- dat$z1

> z2 <- dat$z2

> ascal <- 0.013

> quad <- ascal * ((z1 + z2) - (z1^2 + z2^2) + z1 * z2)

> con <- mean(quad)

> mean(quad - con)

[1] -1.608075e-18

Now we change the coe�cients in out5 to be the ones for this made up model.

> beta.new <- out5$coefficients

> beta.new[1:4] <- out4$coefficients

> beta.new[3] <- beta.new[3] - con

> beta.new[5:6] <- ascal

> beta.new[7:8] <- (- ascal)

> beta.new[9] <- ascal

> beta.new <- round(beta.new, 3)

> beta.new

11

(Intercept) vtypev vtypew uyear z1

-0.071 -1.578 1.212 0.026 0.013

z2 I(z1^2) I(z2^2) I(z1 * z2)

0.013 -0.013 -0.013 0.013

Then we �predict� the conditional canonical parameters using beta.new because those are

the parameters that the raster function wants.

> theta <- predict(out5, model.type = "conditional", parm.type = "canonical",

+ newcoef = beta.new)

> theta <- matrix(theta, nrow = nrow(out5$x), ncol = ncol(out5$x))

> # apply(theta, 2, range)

> xnew <- raster(theta, pred, fam, root)

Now we need to reshape these new data just like we did the old.

> dimnames(xnew) <- list(NULL, vars)

> dnew1 <- as.data.frame(xnew)

> renew <- reshape(dnew1, varying = list(vars), direction = "long",

+ timevar = "varb", times = as.factor(vars), v.names = "resp")

> redata$resp1 <- renew$resp

For future reference we also save the unconditional canonical and mean value �simulation

truth� parameter values.

> redata$tau1 <- predict(out5, newcoef = beta.new)

> redata$phi1 <- predict(out5, parm.type = "canonical", newcoef = beta.new)

> beta1true <- beta.new

4.3 Model 2

As pointed out in the Sections 4.1 and 4.2, Burnham and Anderson (2002, Section 1.2.5)

are particularly emphatic about the biological unrealism of simulation truth models like

that simulated in Section 4.2. In reality, the true stochastic mechanism generating the data

is much more complicated than any model under consideration and even if known would

have far too many parameters to be well estimated by available data. Not all parameters

are equally important, of course, and some parameters of the true model, assuming it were

known, could be estimated better than others.

Hence in this section we create a model that is much like the model in Section 4.2 except

the quadratic function depends on all of the zi but not equally.
As before, we start by �tting the full model to the data at hand

> out5too <- aster(resp ~ vtype + uyear + poly(z1, z2, z3, z4, z5, z6, z7,

+ z8, z9, z10, degree = 2, raw = TRUE),

+ pred, fam, varb, id, root, data = redata)

> names(out5too$coefficients) <- sub("^poly[(][^)]*[)]", "",

+ names(out5too$coefficients))

> summary(out5too)

12

Call:

aster.formula(formula = resp ~ vtype + uyear + poly(z1, z2, z3,

z4, z5, z6, z7, z8, z9, z10, degree = 2, raw = TRUE), pred = pred,

fam = fam, varvar = varb, idvar = id, root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.162e-02 7.722e-02 0.539 0.58995

vtypev -1.666e+00 1.373e-01 -12.136 < 2e-16 ***

vtypew 1.062e+00 8.210e-02 12.938 < 2e-16 ***

uyear 8.635e-03 1.236e-02 0.699 0.48463

1.0.0.0.0.0.0.0.0.0 -6.281e-03 9.411e-03 -0.667 0.50446

2.0.0.0.0.0.0.0.0.0 -1.451e-02 7.002e-03 -2.072 0.03824 *

0.1.0.0.0.0.0.0.0.0 5.151e-03 8.241e-03 0.625 0.53193

1.1.0.0.0.0.0.0.0.0 1.496e-02 1.006e-02 1.487 0.13690

0.2.0.0.0.0.0.0.0.0 1.291e-03 5.302e-03 0.243 0.80764

0.0.1.0.0.0.0.0.0.0 1.404e-02 8.523e-03 1.648 0.09939 .

1.0.1.0.0.0.0.0.0.0 -8.525e-04 9.336e-03 -0.091 0.92724

0.1.1.0.0.0.0.0.0.0 1.425e-02 7.177e-03 1.985 0.04718 *

0.0.2.0.0.0.0.0.0.0 4.609e-03 5.675e-03 0.812 0.41676

0.0.0.1.0.0.0.0.0.0 1.035e-02 7.920e-03 1.307 0.19113

1.0.0.1.0.0.0.0.0.0 -5.166e-03 9.193e-03 -0.562 0.57414

0.1.0.1.0.0.0.0.0.0 -1.719e-03 7.292e-03 -0.236 0.81361

0.0.1.1.0.0.0.0.0.0 -5.085e-03 8.652e-03 -0.588 0.55673

0.0.0.2.0.0.0.0.0.0 5.768e-04 5.198e-03 0.111 0.91164

0.0.0.0.1.0.0.0.0.0 -4.384e-03 7.940e-03 -0.552 0.58085

1.0.0.0.1.0.0.0.0.0 9.889e-05 8.767e-03 0.011 0.99100

0.1.0.0.1.0.0.0.0.0 5.217e-03 7.665e-03 0.681 0.49610

0.0.1.0.1.0.0.0.0.0 -9.425e-03 7.890e-03 -1.195 0.23226

0.0.0.1.1.0.0.0.0.0 -3.258e-03 8.412e-03 -0.387 0.69854

0.0.0.0.2.0.0.0.0.0 -2.384e-03 5.643e-03 -0.422 0.67274

0.0.0.0.0.1.0.0.0.0 -3.488e-03 8.007e-03 -0.436 0.66314

1.0.0.0.0.1.0.0.0.0 4.563e-03 9.204e-03 0.496 0.62005

0.1.0.0.0.1.0.0.0.0 -1.188e-02 7.193e-03 -1.652 0.09856 .

0.0.1.0.0.1.0.0.0.0 4.691e-03 7.994e-03 0.587 0.55729

0.0.0.1.0.1.0.0.0.0 4.473e-03 7.422e-03 0.603 0.54675

0.0.0.0.1.1.0.0.0.0 2.273e-03 7.695e-03 0.295 0.76772

0.0.0.0.0.2.0.0.0.0 -7.602e-03 5.961e-03 -1.275 0.20226

0.0.0.0.0.0.1.0.0.0 -8.375e-04 8.522e-03 -0.098 0.92171

1.0.0.0.0.0.1.0.0.0 9.264e-04 9.080e-03 0.102 0.91873

0.1.0.0.0.0.1.0.0.0 -1.596e-02 7.586e-03 -2.104 0.03541 *

0.0.1.0.0.0.1.0.0.0 -3.274e-03 8.388e-03 -0.390 0.69632

0.0.0.1.0.0.1.0.0.0 1.276e-02 8.029e-03 1.589 0.11205

0.0.0.0.1.0.1.0.0.0 -1.553e-02 8.900e-03 -1.745 0.08102 .

0.0.0.0.0.1.1.0.0.0 -4.120e-03 8.326e-03 -0.495 0.62074

0.0.0.0.0.0.2.0.0.0 2.921e-04 5.712e-03 0.051 0.95922

13

0.0.0.0.0.0.0.1.0.0 -2.480e-02 8.684e-03 -2.856 0.00430 **

1.0.0.0.0.0.0.1.0.0 6.809e-03 8.722e-03 0.781 0.43502

0.1.0.0.0.0.0.1.0.0 7.533e-03 7.371e-03 1.022 0.30678

0.0.1.0.0.0.0.1.0.0 -1.924e-02 7.783e-03 -2.472 0.01345 *

0.0.0.1.0.0.0.1.0.0 -5.540e-04 7.493e-03 -0.074 0.94107

0.0.0.0.1.0.0.1.0.0 -4.682e-03 8.259e-03 -0.567 0.57080

0.0.0.0.0.1.0.1.0.0 -7.881e-03 8.907e-03 -0.885 0.37625

0.0.0.0.0.0.1.1.0.0 2.543e-02 9.112e-03 2.790 0.00526 **

0.0.0.0.0.0.0.2.0.0 -1.225e-03 5.913e-03 -0.207 0.83590

0.0.0.0.0.0.0.0.1.0 -2.627e-03 7.811e-03 -0.336 0.73665

1.0.0.0.0.0.0.0.1.0 1.199e-02 9.231e-03 1.299 0.19403

0.1.0.0.0.0.0.0.1.0 -1.823e-02 7.491e-03 -2.434 0.01494 *

0.0.1.0.0.0.0.0.1.0 7.427e-03 7.654e-03 0.970 0.33189

0.0.0.1.0.0.0.0.1.0 -5.882e-03 7.728e-03 -0.761 0.44658

0.0.0.0.1.0.0.0.1.0 8.046e-03 7.374e-03 1.091 0.27522

0.0.0.0.0.1.0.0.1.0 7.262e-03 8.092e-03 0.897 0.36950

0.0.0.0.0.0.1.0.1.0 4.882e-03 7.930e-03 0.616 0.53813

0.0.0.0.0.0.0.1.1.0 6.757e-03 7.330e-03 0.922 0.35667

0.0.0.0.0.0.0.0.2.0 -4.310e-03 5.562e-03 -0.775 0.43845

0.0.0.0.0.0.0.0.0.1 1.394e-02 8.727e-03 1.598 0.11013

1.0.0.0.0.0.0.0.0.1 -1.309e-02 8.734e-03 -1.499 0.13377

0.1.0.0.0.0.0.0.0.1 -8.951e-03 8.082e-03 -1.108 0.26804

0.0.1.0.0.0.0.0.0.1 1.337e-03 8.479e-03 0.158 0.87471

0.0.0.1.0.0.0.0.0.1 4.084e-03 7.476e-03 0.546 0.58487

0.0.0.0.1.0.0.0.0.1 2.158e-02 9.410e-03 2.293 0.02182 *

0.0.0.0.0.1.0.0.0.1 7.224e-03 8.250e-03 0.876 0.38123

0.0.0.0.0.0.1.0.0.1 -1.515e-03 8.600e-03 -0.176 0.86018

0.0.0.0.0.0.0.1.0.1 -2.366e-03 8.054e-03 -0.294 0.76895

0.0.0.0.0.0.0.0.1.1 -3.629e-04 8.603e-03 -0.042 0.96635

0.0.0.0.0.0.0.0.0.2 -7.184e-03 5.963e-03 -1.205 0.22826

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Now we have to �gure out which coe�cients are which

> fred <- strsplit(names(out5too$coefficients)[-(1:4)], "\\.")

> fred <- lapply(fred, as.numeric)

Then we construct the quadratic function that is the canonical parameter for �tness.

This time we don't bother to adjust the intercept. Of course, all of this can be changed if

one has the RNW �le for this document.

> b <- 0.5

> bvec <- c(1, 1, b^(1:8))

> bvec <- bvec / sum(bvec) * 2

> round(bvec, 5)

14

[1] 0.66754 0.66754 0.33377 0.16688 0.08344 0.04172 0.02086

[8] 0.01043 0.00522 0.00261

Again make a parameter vector beta.new constructed above

> beta.new <- out5too$coefficients

> beta.new[1:4] <- out4$coefficients

> for (i in seq(along = fred)) {

+ freddy <- fred[[i]]

+ sally <- freddy > 0

+ if (sum(sally) == 1) {

+ if (freddy[sally] == 1) {

+ ### linear term

+ beta.new[i + 4] <- ascal * bvec[sally]

+ } else {

+ ### quadratic term

+ beta.new[i + 4] <- (- ascal * bvec[sally])

+ }

+ } else {

+ ### cross term

+ beta.new[i + 4] <- ascal * mean(bvec[sally])

+ }

+ }

> beta.new

(Intercept) vtypev vtypew

-7.095498e-02 -1.577799e+00 1.172683e+00

uyear 1.0.0.0.0.0.0.0.0.0 2.0.0.0.0.0.0.0.0.0

2.605057e-02 8.677966e-03 -8.677966e-03

0.1.0.0.0.0.0.0.0.0 1.1.0.0.0.0.0.0.0.0 0.2.0.0.0.0.0.0.0.0

8.677966e-03 8.677966e-03 -8.677966e-03

0.0.1.0.0.0.0.0.0.0 1.0.1.0.0.0.0.0.0.0 0.1.1.0.0.0.0.0.0.0

4.338983e-03 6.508475e-03 6.508475e-03

0.0.2.0.0.0.0.0.0.0 0.0.0.1.0.0.0.0.0.0 1.0.0.1.0.0.0.0.0.0

-4.338983e-03 2.169492e-03 5.423729e-03

0.1.0.1.0.0.0.0.0.0 0.0.1.1.0.0.0.0.0.0 0.0.0.2.0.0.0.0.0.0

5.423729e-03 3.254237e-03 -2.169492e-03

0.0.0.0.1.0.0.0.0.0 1.0.0.0.1.0.0.0.0.0 0.1.0.0.1.0.0.0.0.0

1.084746e-03 4.881356e-03 4.881356e-03

0.0.1.0.1.0.0.0.0.0 0.0.0.1.1.0.0.0.0.0 0.0.0.0.2.0.0.0.0.0

2.711864e-03 1.627119e-03 -1.084746e-03

0.0.0.0.0.1.0.0.0.0 1.0.0.0.0.1.0.0.0.0 0.1.0.0.0.1.0.0.0.0

5.423729e-04 4.610169e-03 4.610169e-03

0.0.1.0.0.1.0.0.0.0 0.0.0.1.0.1.0.0.0.0 0.0.0.0.1.1.0.0.0.0

2.440678e-03 1.355932e-03 8.135593e-04

0.0.0.0.0.2.0.0.0.0 0.0.0.0.0.0.1.0.0.0 1.0.0.0.0.0.1.0.0.0

15

-5.423729e-04 2.711864e-04 4.474576e-03

0.1.0.0.0.0.1.0.0.0 0.0.1.0.0.0.1.0.0.0 0.0.0.1.0.0.1.0.0.0

4.474576e-03 2.305085e-03 1.220339e-03

0.0.0.0.1.0.1.0.0.0 0.0.0.0.0.1.1.0.0.0 0.0.0.0.0.0.2.0.0.0

6.779661e-04 4.067797e-04 -2.711864e-04

0.0.0.0.0.0.0.1.0.0 1.0.0.0.0.0.0.1.0.0 0.1.0.0.0.0.0.1.0.0

1.355932e-04 4.406780e-03 4.406780e-03

0.0.1.0.0.0.0.1.0.0 0.0.0.1.0.0.0.1.0.0 0.0.0.0.1.0.0.1.0.0

2.237288e-03 1.152542e-03 6.101695e-04

0.0.0.0.0.1.0.1.0.0 0.0.0.0.0.0.1.1.0.0 0.0.0.0.0.0.0.2.0.0

3.389831e-04 2.033898e-04 -1.355932e-04

0.0.0.0.0.0.0.0.1.0 1.0.0.0.0.0.0.0.1.0 0.1.0.0.0.0.0.0.1.0

6.779661e-05 4.372881e-03 4.372881e-03

0.0.1.0.0.0.0.0.1.0 0.0.0.1.0.0.0.0.1.0 0.0.0.0.1.0.0.0.1.0

2.203390e-03 1.118644e-03 5.762712e-04

0.0.0.0.0.1.0.0.1.0 0.0.0.0.0.0.1.0.1.0 0.0.0.0.0.0.0.1.1.0

3.050847e-04 1.694915e-04 1.016949e-04

0.0.0.0.0.0.0.0.2.0 0.0.0.0.0.0.0.0.0.1 1.0.0.0.0.0.0.0.0.1

-6.779661e-05 3.389831e-05 4.355932e-03

0.1.0.0.0.0.0.0.0.1 0.0.1.0.0.0.0.0.0.1 0.0.0.1.0.0.0.0.0.1

4.355932e-03 2.186441e-03 1.101695e-03

0.0.0.0.1.0.0.0.0.1 0.0.0.0.0.1.0.0.0.1 0.0.0.0.0.0.1.0.0.1

5.593220e-04 2.881356e-04 1.525424e-04

0.0.0.0.0.0.0.1.0.1 0.0.0.0.0.0.0.0.1.1 0.0.0.0.0.0.0.0.0.2

8.474576e-05 5.084746e-05 -3.389831e-05

And the rest is just like the Section 4.2.

> theta <- predict(out5too, model.type = "conditional",

+ parm.type = "canonical", newcoef = beta.new)

> theta <- matrix(theta, nrow = nrow(out5too$x), ncol = ncol(out5too$x))

> # apply(theta, 2, range)

> xnew <- raster(theta, pred, fam, root)

Reshape.

> dimnames(xnew) <- list(NULL, vars)

> dnew2 <- as.data.frame(xnew)

> renew <- reshape(dnew2, varying = list(vars), direction = "long",

+ timevar = "varb", times = as.factor(vars), v.names = "resp")

> redata$resp2 <- renew$resp

For future reference we also save the unconditional canonical and mean value �simulation

truth� parameter values.

> redata$tau2 <- predict(out5too, newcoef = beta.new)

> redata$phi2 <- predict(out5too, parm.type = "canonical", newcoef = beta.new)

> beta2true <- beta.new

16

5 Fit New Data

5.1 Overview

At this point, we have �nished making up data (by simulation from an aster model).

In real life, none of the work up to here would be necessary. We would collect data by

measuring �tness components of real living organisms. For the purposes of this technical

report we pretend that the simulated data, redata$resp and redata$resp2 are such real

scienti�c data. Everything we do from here on is an example of what could be done with

real data.

5.2 Fit Model 1

So we should be able to �t the model that was used to simulate these data. We start

with the simpler model 1 that has only z1 and z2 involved in the simulation truth model.

> out6 <- aster(resp1 ~ vtype + uyear + z1 + z2 + I(z1^2) + I(z2^2) + I(z1 * z2),

+ pred, fam, varb, id, root, data = redata)

> summary(out6)

Call:

aster.formula(formula = resp1 ~ vtype + uyear + z1 + z2 + I(z1^2) +

I(z2^2) + I(z1 * z2), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.254846 0.078298 -3.255 0.001135 **

vtypev -1.352392 0.140791 -9.606 < 2e-16 ***

vtypew 1.423436 0.080121 17.766 < 2e-16 ***

uyear 0.041370 0.011922 3.470 0.000521 ***

z1 0.012508 0.006143 2.036 0.041717 *

z2 0.019975 0.006139 3.254 0.001138 **

I(z1^2) -0.013450 0.003968 -3.390 0.000699 ***

I(z2^2) -0.012407 0.003951 -3.141 0.001686 **

I(z1 * z2) 0.010804 0.006250 1.729 0.083862 .

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

For further comparison, the likelihood ratio test with this model as the alternative hy-

pothesis and the simulation truth for the point null hypothesis can be calculated as follows.

> mout6true <- mlogl(beta1true, pred, fam, out6$x,

+ out6$root, out6$modmat, type = out6$type, origin = out6$origin)

> dev6true <- 2 * mout6true$value - out6$deviance

> dev6true

[1] 11.67515

17

> 1 - pchisq(dev6true, df = length(beta.new))

[1] 1

Great! Statistics works again. When we simulate data from a model and estimate the

parameters in that model, the maximum likelihood estimates are close to the simulation

truth.

We also look at how statistically signi�cant our quadratic e�ect is

> out8 <- aster(resp1 ~ vtype + uyear,

+ pred, fam, varb, id, root, data = redata)

> out7 <- aster(resp1 ~ vtype + uyear + z1 + z2,

+ pred, fam, varb, id, root, data = redata)

> anova(out8, out7, out6)

Analysis of Deviance Table

Model 1: resp1 ~ vtype + uyear

Model 2: resp1 ~ vtype + uyear + z1 + z2

Model 3: c("resp1 ~ vtype + uyear + z1 + z2 + I(z1^2) + I(z2^2) + I(z1 * ", " z2)")

Model Df Model Dev Df Deviance P(>|Chi|)

1 4 -1859.0

2 6 -1836.2 2 22.753 1.146e-05 ***

3 9 -1810.9 3 25.338 1.312e-05 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> anova(out8, out6)

Analysis of Deviance Table

Model 1: resp1 ~ vtype + uyear

Model 2: c("resp1 ~ vtype + uyear + z1 + z2 + I(z1^2) + I(z2^2) + I(z1 * ", " z2)")

Model Df Model Dev Df Deviance P(>|Chi|)

1 4 -1859.0

2 9 -1810.9 5 48.092 3.402e-09 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

5.3 Plot Monotone Function of Fitness

We extract the quadratic part of the �tness function (on the canonical parameter scale),

which is a monotone transformation of actual �tness, see Sections 3.4, and 3.10 of Shaw,

Geyer, Wagenius, Hangelbroek, and Etterson (2007) for details.

> qcoef <- out6$coefficients

18

> a1 <- qcoef["z1"]

> a2 <- qcoef["z2"]

> a <- c(a1, a2)

> A11 <- qcoef["I(z1^2)"]

> A22 <- qcoef["I(z2^2)"]

> A12 <- qcoef["I(z1 * z2)"] / 2

> A <- matrix(c(A11, A12, A12, A22), 2, 2)

Figure 2 (page 20) shows the scatterplot of data values for z1 and z2 and the contours of

the estimated quadratic �tness function. It is similar to Figure 3 in the �rst submission of

Shaw, et al. (2008), which is Figure 3.1 in Shaw, et al. (2007). (In the second submission of

the paper, this �gure was changed to be like Figure 3 below.) It is made by the following

code.

> plot(z1, z2)

> ufoo <- par("usr")

> nx <- 101

> ny <- 101

> z <- matrix(NA, nx, ny)

> x <- seq(ufoo[1], ufoo[2], length = nx)

> y <- seq(ufoo[3], ufoo[4], length = ny)

> for (i in 1:nx) {

+ for (j in 1:ny) {

+ b <- c(x[i], y[j])

+ z[i, j] <- sum(a * b) + as.numeric(t(b) %*% A %*% b)

+ }

+ }

> contour(x, y, z, add = TRUE)

5.4 Plot Actual Fitness

The plot produced in the preceding section (Figure 2) is good enough for most purposes,

even though the numbers on the contours are not actual �tness but a monotone transfor-

mation of it (the corresponding canonical parameter). The contours shown are contours of

actual �tness, but the numbers attached to them do not re�ect actual �tness.

We can get a similar plot where the numbers on the contours are actual �tness. It just

takes a bit more work. The �rst plot of this kind was made in Section 3.11 of Shaw, et al.

(2007). Figure 3 of the second submission of Shaw, et al. (2008) was also a plot of this kind.

Figure 3 (page 22) shows the scatterplot of data values for z1 and z2 and the contours

of the estimated quadratic �tness function. It is made by the following code.

> xx <- outer(x, y^0)

> yy <- outer(x^0, y)

> xx <- as.vector(xx)

> yy <- as.vector(yy)

> n <- length(xx)

19

−4 −2 0 2 4

−
4

−
2

0
2

z1

z2

 −0.7
 −0.6

 −0.5

 −
0.

4

 −0.4
 −0.3

 −
0.

3

 −0.2

 −0.1

 0

Figure 2: Scatterplot of z1 versus z2 with contours of the estimated quadratic function of

phenotypic covariates in the linear predictor, which is only a monotone function of �tness

not actual �tness. Compare Figure 3.

20

> foo <- rep(1, n)

> bar <- list(z1 = xx, z2 = yy, root = foo)

> for (lab in levels(renew$varb)) {

+ bar[[lab]] <- foo

+ ##### response doesn't matter for prediction #####

+ }

> bar <- as.data.frame(bar)

> rebar <- reshape(bar, varying = list(vars), direction = "long",

+ timevar = "varb", times = as.factor(vars), v.names = "resp1")

> rebar$vtype <- as.factor(substr(as.character(rebar$varb), 1, 1))

> rebar$year <- as.numeric(substring(as.character(rebar$varb), 2))

> rebar$uyear <- rebar$year * as.numeric(as.character(rebar$vtype) == "u")

> pbar <- predict(out6, newdata = rebar, varvar = varb, idvar = id,

+ root = root)

> pbar <- matrix(pbar, nrow = nrow(bar))

> pbar <- pbar[, grep("w", vars)]

> zz <- apply(pbar, 1, sum)

> zz <- matrix(zz, nx, ny)

and

> plot(z1, z2)

> contour(x, y, zz, add = TRUE)

Figure 3 looks quite a bit di�erent from Figure 2. Nevertheless, every contour of one is

also a contour of the other. The only di�erences are the numbers attached to the contours

and which contours the contour function draws by default.

6 Lande-Arnold Analysis

6.1 Original

Lande and Arnold (1983) proposed a method of analysis of phenotypic natural selection

that is related to the analysis we did leading to Figure 2 but di�erent in the following

respects.

First, it uses ordinary least squares (OLS) rather than aster models. Second, it does not

estimate the �tness landscape itself. If w is �tness and

g(z) = E(w | z). (1)

is the �tness landscape, de�ne

Q(α, β, γ) = E
{
(w − α− zTβ − 1

2z
Tγz)2

}
(2)

and de�ne α2, β2, and γ2 to be the values of α, β, and γ that minimize Q(α, β, γ). Then

g2(z) = α2 + zTβ2 +
1
2z

Tγ2z (3)

21

−4 −2 0 2 4

−
4

−
2

0
2

z1

z2

 2

 4

 6

 8

 10

 12

 14

Figure 3: Scatterplot of z1 versus z2 with contours of the estimated �tness function. Note

numbers on the contours are actual �tness.

22

the best quadratic approximation to the �tness landscape. Lande and Arnold (1983) show

that β2 and γ2 have several other equivalent characterizations when z is multivariate normal,

but we will have little to say about them in this technical report.

So let us try a Lande-Arnold analysis. First we construct the �tness variable.

> widx <- grep("^w[0-9]", colnames(dnew1))

> dnew1$fit <- apply(dnew1[, widx], 1, sum)

Then we do the OLS regression that is, in other respects, just like the aster �regression�

producing out6.

> lout1 <- lm(fit ~ z1 + z2 + I(z1^2) + I(z2^2) + I(z1 * z2), data = dnew1)

> summary(lout1)

Call:

lm(formula = fit ~ z1 + z2 + I(z1^2) + I(z2^2) + I(z1 * z2),

data = dnew1)

Residuals:

Min 1Q Median 3Q Max

-11.672 -6.950 -2.474 5.992 27.434

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.5348 0.7069 14.904 < 2e-16 ***

z1 0.6346 0.3801 1.670 0.095909 .

z2 1.1460 0.3884 2.950 0.003393 **

I(z1^2) -0.7582 0.2263 -3.351 0.000896 ***

I(z2^2) -0.6417 0.2389 -2.687 0.007568 **

I(z1 * z2) 0.8290 0.3865 2.145 0.032672 *

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 8.923 on 344 degrees of freedom

Multiple R-squared: 0.09935, Adjusted R-squared: 0.08626

F-statistic: 7.589 on 5 and 344 DF, p-value: 8.861e-07

We now plot the results of the OLS analysis.

> qcoef <- lout1$coefficients

> intercept <- qcoef[1]

> a1 <- qcoef["z1"]

> a2 <- qcoef["z2"]

> a <- c(a1, a2)

> A11 <- qcoef["I(z1^2)"]

> A22 <- qcoef["I(z2^2)"]

> A12 <- qcoef["I(z1 * z2)"] / 2

> A <- matrix(c(A11, A12, A12, A22), 2, 2)

23

−4 −2 0 2 4

−
4

−
2

0
2

z1

z2

 2

 4

 6

 8

 10

 12

 14

 −
35

 −
30

 −25
 −20

 −
15

 −15

 −
10

 −10 −5

 −
5

 −5

 0

 5

 10

Figure 4: Scatterplot of z1 versus z2 with contours of the estimated �tness landscape (black)

and contours of the Lande-Arnold function (red), its best quadratic approximation.

Figure 4 (page 24) shows the scatterplot of data values for z1 and z2 and the contours of

the estimated quadratic function. For comparison, it also shows the contours of the �tness

landscape taken from Figure 3. It is made by the following code.

> plot(z1, z2)

> contour(x, y, zz, add = TRUE)

> zols <- matrix(NA, nx, ny)

> for (i in 1:nx) {

+ for (j in 1:ny) {

+ b <- c(x[i], y[j])

+ zols[i, j] <- intercept + sum(a * b) + as.numeric(t(b) %*% A %*% b)

+ }

+ }

> contour(x, y, zols, col = "red", add = TRUE)

Clearly from Figure 4 the two analyses are qualitatively similar but di�er in detail. To the

24

extent they disagree the aster analysis is correct and the Lande-Arnold analysis incorrect (we

know this because we know the �true� model under which the data were simulated). The red

contours in Figure 4 are the best quadratic approximation to the �tness landscape, but the

�tness landscape is not close to quadratic, so even the best quadratic approximation is not

a very good approximation. We know �tness is nonnegative, so all of the red contours with

negative values are nonsense. To counterbalance the negative nonsense, the best quadratic

approximation must underestimate the peak (because it must average to the correct average,

a property of best quadratic approximation). The maximum value of the surface with black

contours (on the grid where it was evaluated) is 14.1; the maximum value of the surface

with red contours (on the same grid) is 12.01.

6.2 Improved by Combination with Aster Analysis

To the extent that we still care about best quadratic approximation now that we know

how to estimate the �tness landscape itself, it is interesting that OLS regression is not the

best way to estimate β and γ once we have an aster model for the data, which we do (out6).

If we knew the �tness landscape g(z), then we should estimate the best quadratic ap-

proximation by regressing g(z) on z rather than regressing w on z. This would give us an

estimate that had no statistical error, only error from approximating a non-quadratic func-

tion by a quadratic one. We do not know the true �tness landscape, but we do have a good

approximation from the aster model, the function whose contours are shown in Figure 3. So

we can improve our estimate of the best quadratic approximation to the �tness landscape

as follows.

First we go back to the aster analysis (out6) and obtain the unconditional mean value

parameters, which in this context are the E(w | z).

> pout6 <- predict(out6)

> pout6 <- matrix(pout6, nrow = nrow(out6$x), ncol = ncol(out6$x))

> wcol <- grep("w", colnames(out6$x))

> afit <- apply(pout6[, wcol], 1, sum)

> dnew1$afit <- afit

Then we do the OLS regression that is, in other respects, just like the preceding OLS

regression (lout1).

> lout2 <- lm(afit ~ z1 + z2 + I(z1^2) + I(z2^2) + I(z1 * z2), data = dnew1)

> summary(lout2)

Call:

lm(formula = afit ~ z1 + z2 + I(z1^2) + I(z2^2) + I(z1 * z2),

data = dnew1)

Residuals:

Min 1Q Median 3Q Max

-2.2666 -0.5600 -0.1239 0.6419 4.2589

Coefficients:

25

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.53477 0.06844 153.92 <2e-16 ***

z1 0.63455 0.03680 17.24 <2e-16 ***

z2 1.14596 0.03761 30.47 <2e-16 ***

I(z1^2) -0.75821 0.02191 -34.60 <2e-16 ***

I(z2^2) -0.64172 0.02313 -27.75 <2e-16 ***

I(z1 * z2) 0.82902 0.03743 22.15 <2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.8641 on 344 degrees of freedom

Multiple R-squared: 0.9217, Adjusted R-squared: 0.9205

F-statistic: 809.4 on 5 and 344 DF, p-value: < 2.2e-16

To the extent that the estimates in the two OLS regressions (lout1 and lout2) di�er, the

latter is better. This is clear from the smallness of the reported standard errors for the

latter. These standard errors are invalid, because they are based on the assumption that

the response is normal, which it is not (although it is a lot closer to normal in the latter).

In order to do the Lande-Arnold analysis, we only needed to assume that z was multivariate
normal and needed no assumption about the distribution of w given z. (Of course, we

do know that distribution � it is the aster model used to simulate the data � but that

distribution does not satisfy the �usual� assumptions for OLS regression.) But invalid or not,

the standard errors give a rough indication of the variability of the �response.� Of course,

correct standard errors could be derived based on the aster model and the delta method,

but that is a lot of work.

Figure 5 (page 27) is just like Figure 4 except that now our improved Lande-Arnold

estimates based on combining aster analysis with OLS regression (lout2) are used instead

of the crude OLS estimates.

6.3 Discussion

It is clear from Figure 5 that �tness landscape analysis using aster models and Lande-

Arnold analysis estimate di�erent things. The best quadratic approximation to the �tness

landscape may not be a very good approximation. It cannot be when the �tness landscape

is far from quadratic, which is the usual case. Lande and Arnold (1983) are, of course, not

to be faulted for failing to use methods that were �rst proposed more than 20 years after

they wrote their paper, but we can do better now.

7 Model Selection

7.1 Principal Components Regression

Lande and Arnold (1983, p. 1214) have a section on model selection in which they

recommend principal components regression (PCR). They are not to be faulted for this

because PCR is a very popular methodology that is the subject of many books and articles

and has been used for more than 100 years. However, despite its popularity, PCR has no

26

−4 −2 0 2 4

−
4

−
2

0
2

z1

z2

 2

 4

 6

 8

 10

 12

 14

 −
35

 −

30

 −25
 −20

 −
15

 −15

 −
10

 −10 −5

 −
5

 −5

 0

 5

 10

Figure 5: Scatterplot of z1 versus z2 with contours of the estimated quadratic �tness func-

tion (black) and contours of the Lande-Arnold function (red) using the improved Lande-

Arnold estimators.

27

theory that justi�es it or even motivates it. Principal components as a method of dimension

reduction in multivariate analysis (where there is no response) is justi�ed by theory, but

PCR is not. This is well known to statisticians. The problem with PCR is that the principal

components (which in this case would be linear combinations of the covariates z1, z2, . . .,
z10) are chosen without any use of the response (in this case w or the entire response vector

containing all the ui, vi, and wi). Hence there is no reason why the principal components

should be related to the response. PCR may work, but only by fortunate coincidence.

In our �rst simulated data set (model 1), PCR would give terrible results. We know

(because we simulated the data) that z1 and z2 are the variables related to w. If we look at

the loadings of these variables on the principal components

> vz <- dat[, grep("z[0-9]$|z10", names(dat), value = TRUE)]

> names(vz)

[1] "z1" "z2" "z3" "z4" "z5" "z6" "z7" "z8" "z9" "z10"

> vz <- var(vz)

> ez <- eigen(vz, symmetric = TRUE)

> ez$values

[1] 10.7165812 1.3526707 1.1623531 1.1181554 1.0792147

[6] 1.0164283 0.9386040 0.8618710 0.8342036 0.8074655

> ez$vectors[1:2,]

[,1] [,2] [,3] [,4] [,5]

[1,] -0.328517 0.4792024 -0.07294413 -0.02030048 -0.1486932

[2,] -0.307517 -0.1992723 -0.23429566 -0.15560890 0.7106091

[,6] [,7] [,8] [,9] [,10]

[1,] -0.005553264 0.1129436 -0.3198200 0.3943884 0.6033116

[2,] -0.155499003 0.2673458 0.3453587 0.2328770 0.1117676

we see that we need all the principal components to contain the subspace spanned by z1 and
z2. Thus principal components does exactly the wrong thing in our example. It couldn't be

more damaging. Of course, our example was constructed to be this way. In any particular

application, principal components may do better (it couldn't do worse), but one can never

know when it will do a good job.

In our second simulated data set (model 2), PCR would give slightly less terrible results.

The �rst principal component is now closer to the principal axis of the quadratic form that is

canonical parameter for �tness, but still not close, and the rest of the principal components

are random directions having no relationship to �tness.

Cook (2007) gives a thorough discussion of the origins of PCR and what is wrong with it

and proposes modern methods that have some of the �avor of PCR without the problems.

The earliest criticism of PCR cited by Cook (2007) is Cox (1968), so the problems of PCR

have been recognized for at least 40 years.

28

7.2 Information Criteria

Having given up on the idea that principal components will magically select the correct

model, we move to methods that are justi�ed by statistical theory. These methods �t all

models in some speci�ed family M of models, the �models of interest� and evaluate them

using some criterion. The oldest and best known criteria are the Akaike information criterion

(AIC, Akaike, 1973) or the Bayes information criterion (BIC, Schwarz, 1978). Many other

information criteria have been proposed, but we shall add only one more. Corrected AIC

(AICc) which is a �nite-sample size correction to AIC, originally due to Sugiura (1978).

If l(θ̂m) is the log likelihood maximized over the parameter space of model m and pm is

the dimension of the parameter space of model m, then

AIC(m) = −2l(θ̂m) + 2pm (4)

is AIC for model m,

AICc(m) = AIC(m) +
2pm[pm + 1]

n− pm − 1
(5)

is AICc for model m, and

BIC(m) = −2l(θ̂m) + log(n)pm (6)

is BIC for model m, where n is the sample size. AIC(m) provides a consistent estimator

of the maximum expected log likelihood for model m, and BIC(m) provides an asymptotic

approximation of the Bayes factor for model m. In our example log(n) is

> log(nind)

[1] 5.857933

Note that natural logarithms are used (as they are everywhere in statistics). According to

Burnham and Anderson (2002) AICc should always be preferred to AIC unless the sample

size is very large.

The idea is that the model with the smallest information criterion, whichever one

AIC(m), AICc(m), or BIC(m) we are using, is the best estimate of the true unknown

model that we can get. As everywhere else in statistics the estimate is not the truth and

is random. When the classM of models in which we look for the best model is very large,

then the probability of selecting the best model may be very small (more on this later). But

we shall try these procedures out and see how they do.

7.3 The Branch and Bound Algorithm

We need another idea. Fitting all models in the class M is unpalatable if the class is

large. The branch and bound algorithm from computer science was �rst introduced into

statistical model selection by Furnival and Wilson (1974), a paper that is almost unreadable

being bogged down in the details of Fortran code for least squares. A good introduction to

the branch and bound algorithm is given by Hand (1981).

The branch and bound algorithm works on the principle of divide and conquer. �Branch�

refers to dividing up the work to be done. In this case we divide up the work by �xing how

29

one phenotypic covariate enters the model. The canonical parameter is constant, linear,

or quadratic in that variable. That divides the whole class of models to be examined

into three disjoint subclasses (constant, linear, and quadratic in one particular variable).

We can further subdivide the work by splitting on another variable, further subdivide the

subdivisions by splitting on yet another, and so forth.

�Bound� refers to bounding the criterion function (e. g., AIC) for a whole subclass of

models. If we keep track of the AIC of the best model found so far, this provides an upper

bound for the AIC of the best model in the entire class of models to be examined. From (4)

we see that, as a function of model complexity, the �rst term of (4) decreases (a supermodel

has higher likelihood than one of its submodels) whereas the second term of (4) increases (a

supermodel has more parameters than one of its submodels). Hence a lower bound for AIC

of all the models in a subclass M ⊂M of models is

−2lLCS(M)(θ̂LCS(M)) + 2pGCS(M) (7)

where LCS(M) is the least common supermodel (the smallest model that is a supermodel

of every m in M) and GCS(M) is the greatest common submodel (the largest model that is

a submodel of every m in M). The same argument provides a lower bound for BIC or AICc

because their penalty terms are also increasing functions of pm. Note further that the lower
bound is cheap to evaluate (we only need to �t two models no matter how many models are

in M).

If (7) is greater than AIC(m) for the best model seen so far, then we know that M
cannot contain the best model and we need not examine it further. If the lower bound does

not allow us to dispense with M , then we subdivide it, �nding bounds for each subdivision.

When the subdivisions become small enough they will be eliminated (no subdivision can be

empty, and if it contains just one model, we evaluate that model and are done with that

subdivision).

Branch and bound is not magic. Typically, the number of models to be evaluated grows

exponentially in the dimension of the problem. Here we have 3k models if there are k
phenotypic covariates. The branch and bound algorithm still takes time exponential in k,
but the constant is much smaller. Typically, the branch and bound algorithm only examines

a small fraction of the possible models. The number of models actually examined is reported

in each case. So branch and bound does not allow us to do arbitrarily large problems, but

it does allow us to do problems somewhat larger than we could do without it.

This algorithm is not implemented in the aster package, so we provide an implementa-

tion for the particular problem we are interested in here.

> # source("http://www.stat.umn.edu/geyer/aster/leap-funs.R")

> source("leap-funs.R")

> args(aster.leaps)

function (pred, fam, data, nsplit, response = "resp", type = c("AIC",

"AICc", "BIC"), cutoff = 0, envir = new.env(hash = TRUE,

parent = globalenv()))

NULL

30

The function aster.leaps �ts all models in a certain class of models, that we now describe.

First each model formula starts o� �resp1 ~ vtype + uyear� just like out6 if given the

argument response = "resp1". The rest of the terms are linear or quadratic in some or

all of the variables z1, z2, . . . , the number of such variables being the argument nsplit to

aster.leaps. The linear predictor may be constant, linear, or quadratic in such a variable.

If �constant� the variable does not appear in the formula. If �linear� the variable appears

linearly, for example, if z2 and z3 are linear, then the formula continues �+ z2 + z3� If

�quadratic� the variable appears quadratically, for example, if z1, z4, and z5 are quadratic,

then the formula continues �+ poly(z1, z4, z5, degree = 2, raw = TRUE)�. Note that

this means mixed terms of degree two, such as, z1 * z4 are included in the formula, in

e�ect.

One argument to aster.leaps, that is nsplit, has been described already. The other

non-optional arguments pred, fam, and data are passed to the aster function to �t aster

models, for this case, we give them the same values they had in producing out6, that is

pred, fam, and redata.

7.4 Five Predictors

7.4.1 Model 1

Let's try it. We apply the branch and bound algorithm to the data for Model 1 simulated

in Section 4.2 in which �tness is a quadratic function of z1 and z2 only. Because this function

may take a lot of time to run, we store the results in the current working directory, and

simply load them if they exist.

> options(show.error.messages = FALSE, warn = -1)

> try(load("b1out5a.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b1out5a")) {

+ b1out5a <- aster.leaps(pred, fam, data = redata, nsplit = 5,

+ response = "resp1")

+ save(b1out5a, file = "b1out5a.rda")

+ }

> secs <- b1out5a$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> names(b1out5a)

[1] "fits" "time" "envir" "nfit"

> b1out5a$time

user system elapsed

30.153 0.060 30.215

> b1out5a$fits

31

dev p aic bic cic

q12l3 1805.962 10 1825.962 1864.541 1826.611

q12l35 1805.962 11 1827.962 1870.399 1828.743

q12l 1810.862 9 1828.862 1863.583 1829.391

q12l4 1809.364 10 1829.364 1867.943 1830.013

q12l5 1810.603 10 1830.603 1869.182 1831.252

q12l45 1809.303 11 1831.303 1873.740 1832.084

q125l3 1805.235 14 1833.235 1887.246 1834.489

q125l34 1804.879 15 1834.879 1892.748 1836.316

q125l 1809.784 13 1835.784 1885.937 1836.867

q125l4 1808.376 14 1836.376 1890.387 1837.629

q1235l 1801.662 18 1837.662 1907.104 1839.728

q1235l4 1801.245 19 1839.245 1912.546 1841.548

q1245l3 1804.566 19 1842.566 1915.866 1844.869

q1245l 1808.235 18 1844.235 1913.678 1846.302

q145l23 1815.911 15 1845.911 1903.780 1847.348

q145l2 1819.494 14 1847.494 1901.505 1848.747

q145l3 1819.574 14 1847.574 1901.586 1848.828

q245l3 1819.576 14 1847.576 1901.587 1848.830

q12345l 1799.805 24 1847.805 1940.396 1851.498

q245l13 1818.616 15 1848.616 1906.485 1850.053

q245l 1823.638 13 1849.638 1899.791 1850.721

q1345l2 1811.689 19 1849.689 1922.990 1851.992

q245l1 1822.077 14 1850.077 1904.088 1851.331

q145l 1824.718 13 1850.718 1900.871 1851.801

q1345l 1815.539 18 1851.539 1920.981 1853.605

q2345l 1815.607 18 1851.607 1921.050 1853.674

q345l2 1824.161 14 1852.161 1906.172 1853.414

q2345l1 1814.282 19 1852.282 1925.583 1854.585

q345l12 1822.716 15 1852.716 1910.585 1854.153

q345l1 1826.884 14 1854.884 1908.895 1856.138

q345l 1829.526 13 1855.526 1905.679 1856.610

The call to this function took 0 minutes and 30 seconds. The models �t by the branch and

bound algorithm are shown. The deviance, degrees of freedom, AIC, BIC, and AICc (labeled

cic) are shown for each model. Of the 35 = 243 models under consideration, the branch

and bound algorithm �t only nrow(b1out5a$fits) = 31 in determining the model with the

lowest AIC. The labels for the models indicate the degree of each predictor variable. For

example, q125l3 means z1, z2, and z5 are quadratic, z3 is linear, and z4 is constant (not

in the model). Note that the simulation truth model ranks number 3 according to AIC of

the models that have been �t.

We shall say no more right now about the how well the branch and bound algorithm with

AIC worked. Nor will we say anything about performance of similar uses of the branch and

bound algorithm with other numbers of predictor variables and other information criteria

(AICc and BIC) in the rest of this section. Some aspects of performance will be examined

in Section 8.

32

Now we repeat what we just did using AICc instead of AIC.

> options(show.error.messages = FALSE, warn = -1)

> try(load("b1out5c.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b1out5c")) {

+ b1out5c <- aster.leaps(pred, fam, data = redata, nsplit = 5,

+ response = "resp1", type = "AICc", envir = b1out5a$envir)

+ save(b1out5c, file = "b1out5c.rda")

+ }

> secs <- b1out5c$time[1]

> b1out5c$nfit

[1] 0

> identical(rownames(b1out5a$fits), rownames(b1out5c$fits))

[1] FALSE

This takes essentially no time (0.001 seconds), since no new �ts need to be done. However,

the order of models according to AIC and AICc are di�erent. Rather than show all the �ts

we now show only those having AICc within 10 of the lowest.

> ilow <- b1out5c$fits[, "cic"] < b1out5c$fits[1, "cic"] + 10

> b1out5c$fits[ilow, , drop = FALSE]

dev p aic bic cic

q12l3 1805.962 10 1825.962 1864.541 1826.611

q12l35 1805.962 11 1827.962 1870.399 1828.743

q12l 1810.862 9 1828.862 1863.583 1829.391

q12l4 1809.364 10 1829.364 1867.943 1830.013

q12l5 1810.603 10 1830.603 1869.182 1831.252

q12l45 1809.303 11 1831.303 1873.740 1832.084

q125l3 1805.235 14 1833.235 1887.246 1834.489

q125l34 1804.879 15 1834.879 1892.748 1836.316

The number 10 is arbitrary, but Burnham and Anderson (2002, Section 2.6) make it the

dividing line between �considerably less than substantial� support and �essentially none.�

Note that the simulation truth model ranks number 3 according to AICc of the models that

have been �t.

Now we repeat what we just did using BIC instead of AICc.

> options(show.error.messages = FALSE, warn = -1)

> try(load("b1out5b.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b1out5b")) {

+ b1out5b <- aster.leaps(pred, fam, data = redata, nsplit = 5,

+ response = "resp1", type = "BIC", envir = b1out5c$envir)

33

+ save(b1out5b, file = "b1out5b.rda")

+ }

> secs <- b1out5b$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b1out5b$fits[, "bic"] < b1out5b$fits[1, "bic"] + 10

> b1out5b$fits[ilow, , drop = FALSE]

dev p aic bic cic

q2l3 1822.091 7 1836.091 1863.097 1836.419

q1l3 1822.145 7 1836.145 1863.151 1836.473

q1l2 1822.442 7 1836.442 1863.448 1836.770

q12l 1810.862 9 1828.862 1863.583 1829.391

q2l 1828.689 6 1840.689 1863.836 1840.933

q12l3 1805.962 10 1825.962 1864.541 1826.611

q12l4 1809.364 10 1829.364 1867.943 1830.013

q2l5 1827.604 7 1841.604 1868.609 1841.931

q1l35 1821.860 8 1837.860 1868.723 1838.282

q1l25 1821.971 8 1837.971 1868.835 1838.394

q2l35 1822.046 8 1838.046 1868.910 1838.468

q12l5 1810.603 10 1830.603 1869.182 1831.252

q12l35 1805.962 11 1827.962 1870.399 1828.743

In all three calls to aster.leaps we have �t 69 models. In this call we �t 38. The time

taken for this call was 0 minutes and 16 seconds. Note that the simulation truth model

ranks number 4 according to BIC of the models that have been �t.

7.4.2 Model 2

Now we do the same thing with model 2, simulated in Section 4.3 in which �tness is a

quadratic function of z1, . . ., z10.

> options(show.error.messages = FALSE, warn = -1)

> try(load("b2out5a.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b2out5a")) {

+ b2out5a <- aster.leaps(pred, fam, data = redata, nsplit = 5,

+ response = "resp2")

+ save(b2out5a, file = "b2out5a.rda")

+ }

> secs <- b2out5a$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b2out5a$fits[, "aic"] < b2out5a$fits[1, "aic"] + 10

> b2out5a$fits[ilow, , drop = FALSE]

dev p aic bic cic

q12345l 235.9033 24 283.9033 376.4937 287.5956

34

q1234l 248.3135 18 284.3135 353.7563 286.3800

q1234l5 248.2524 19 286.2524 359.5531 288.5554

The call to this function took 0 minutes and 16 seconds. Note that the simulation truth

model is not among the models under consideration (it depends on all 10 zi).

> options(show.error.messages = FALSE, warn = -1)

> try(load("b2out5c.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b2out5c")) {

+ b2out5c <- aster.leaps(pred, fam, data = redata, nsplit = 5,

+ response = "resp2", type = "AICc", envir = b2out5a$envir)

+ save(b2out5c, file = "b2out5c.rda")

+ }

> secs <- b2out5c$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b2out5c$fits[, "cic"] < b2out5c$fits[1, "cic"] + 10

> b2out5c$fits[ilow, , drop = FALSE]

dev p aic bic cic

q1234l 248.3135 18 284.3135 353.7563 286.3800

q12345l 235.9033 24 283.9033 376.4937 287.5956

q1234l5 248.2524 19 286.2524 359.5531 288.5554

The call to this function took 0 minutes and 0 seconds. Note that the simulation truth

model is not among the models under consideration (it depends on all 10 zi).

> options(show.error.messages = FALSE, warn = -1)

> try(load("b2out5b.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b2out5b")) {

+ b2out5b <- aster.leaps(pred, fam, data = redata, nsplit = 5,

+ response = "resp2", type = "BIC", envir = b2out5c$envir)

+ save(b2out5b, file = "b2out5b.rda")

+ }

> secs <- b2out5b$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b2out5b$fits[, "bic"] < b2out5b$fits[1, "bic"] + 10

> b2out5b$fits[ilow, , drop = FALSE]

dev p aic bic cic

q1234l 248.3135 18 284.3135 353.7563 286.3800

q1234l5 248.2524 19 286.2524 359.5531 288.5554

The time taken for this call was 0 minutes and 7 seconds. Note that the simulation truth

model is not among the models under consideration (it depends on all 10 zi).

35

7.5 Six Predictors

This section repeats Section 7.4 changing ��ve� to �six.�

7.5.1 Model 1

> options(show.error.messages = FALSE, warn = -1)

> try(load("b1out6a.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b1out6a")) {

+ b1out6a <- aster.leaps(pred, fam, data = redata, nsplit = 6,

+ response = "resp1", type = "AIC", envir = b1out5b$envir)

+ save(b1out6a, file = "b1out6a.rda")

+ }

> secs <- b1out6a$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b1out6a$fits[, "aic"] < b1out6a$fits[1, "aic"] + 10

> b1out6a$fits[ilow, , drop = FALSE]

dev p aic bic cic

q12l3 1805.962 10 1825.962 1864.541 1826.611

q12l36 1805.133 11 1827.133 1869.570 1827.914

q12l34 1805.677 11 1827.677 1870.114 1828.458

q12l35 1805.962 11 1827.962 1870.399 1828.743

q12l346 1804.540 12 1828.540 1874.836 1829.466

q12l 1810.862 9 1828.862 1863.583 1829.391

q12l4 1809.364 10 1829.364 1867.943 1830.013

q12l5 1810.603 10 1830.603 1869.182 1831.252

q12l45 1809.303 11 1831.303 1873.740 1832.084

q126l3 1804.055 14 1832.055 1886.066 1833.308

q125l3 1805.235 14 1833.235 1887.246 1834.489

q126l34 1803.573 15 1833.573 1891.442 1835.010

q126l35 1804.012 15 1834.012 1891.881 1835.449

q125l34 1804.879 15 1834.879 1892.748 1836.316

q126l345 1803.560 16 1835.560 1897.287 1837.193

q126l 1809.715 13 1835.715 1885.868 1836.798

q125l 1809.784 13 1835.784 1885.937 1836.867

q126l4 1807.797 14 1835.797 1889.808 1837.050

The call to this function took 1 minutes and 18 seconds. Note that the simulation truth

model ranks number 6 according to AIC of the models that have been �t.

> options(show.error.messages = FALSE, warn = -1)

> try(load("b1out6c.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b1out6c")) {

36

+ b1out6c <- aster.leaps(pred, fam, data = redata, nsplit = 6,

+ response = "resp1", type = "AICc", envir = b1out6a$envir)

+ save(b1out6c, file = "b1out6c.rda")

+ }

> secs <- b1out6c$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b1out6c$fits[, "cic"] < b1out6c$fits[1, "cic"] + 10

> b1out6c$fits[ilow, , drop = FALSE]

dev p aic bic cic

q12l3 1805.962 10 1825.962 1864.541 1826.611

q12l36 1805.133 11 1827.133 1869.570 1827.914

q12l34 1805.677 11 1827.677 1870.114 1828.458

q12l35 1805.962 11 1827.962 1870.399 1828.743

q12l 1810.862 9 1828.862 1863.583 1829.391

q12l346 1804.540 12 1828.540 1874.836 1829.466

q12l4 1809.364 10 1829.364 1867.943 1830.013

q12l5 1810.603 10 1830.603 1869.182 1831.252

q12l45 1809.303 11 1831.303 1873.740 1832.084

q126l3 1804.055 14 1832.055 1886.066 1833.308

q125l3 1805.235 14 1833.235 1887.246 1834.489

q126l34 1803.573 15 1833.573 1891.442 1835.010

q126l35 1804.012 15 1834.012 1891.881 1835.449

q125l34 1804.879 15 1834.879 1892.748 1836.316

q2l3 1822.091 7 1836.091 1863.097 1836.419

q1l3 1822.145 7 1836.145 1863.151 1836.473

The call to this function took 0 minutes and 0 seconds. Note that the simulation truth

model ranks number 5 according to AICc of the models that have been �t.

> options(show.error.messages = FALSE, warn = -1)

> try(load("b1out6b.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b1out6b")) {

+ b1out6b <- aster.leaps(pred, fam, data = redata, nsplit = 6,

+ response = "resp1", type = "BIC", envir = b1out6c$envir)

+ save(b1out6b, file = "b1out6b.rda")

+ }

> secs <- b1out6b$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b1out6b$fits[, "bic"] < b1out6b$fits[1, "bic"] + 10

> b1out6b$fits[ilow, , drop = FALSE]

dev p aic bic cic

q2l3 1822.091 7 1836.091 1863.097 1836.419

37

q1l3 1822.145 7 1836.145 1863.151 1836.473

q1l2 1822.442 7 1836.442 1863.448 1836.770

q12l 1810.862 9 1828.862 1863.583 1829.391

q2l 1828.689 6 1840.689 1863.836 1840.933

q1l23 1817.493 8 1833.493 1864.356 1833.915

q12l3 1805.962 10 1825.962 1864.541 1826.611

q12l4 1809.364 10 1829.364 1867.943 1830.013

q2l5 1827.604 7 1841.604 1868.609 1841.931

q2l36 1821.847 8 1837.847 1868.711 1838.270

q1l35 1821.860 8 1837.860 1868.723 1838.282

q1l25 1821.971 8 1837.971 1868.835 1838.394

q1l36 1822.003 8 1838.003 1868.867 1838.426

q2l35 1822.046 8 1838.046 1868.910 1838.468

q1l26 1822.126 8 1838.126 1868.989 1838.548

q12l6 1810.576 10 1830.576 1869.155 1831.225

q12l5 1810.603 10 1830.603 1869.182 1831.252

q1l236 1816.582 9 1834.582 1869.303 1835.111

q12l36 1805.133 11 1827.133 1869.570 1827.914

q2l6 1828.668 7 1842.668 1869.674 1842.996

q12l34 1805.677 11 1827.677 1870.114 1828.458

q12l35 1805.962 11 1827.962 1870.399 1828.743

The time taken for this call was 0 minutes and 56 seconds. Note that the simulation truth

model ranks number 4 according to BIC of the models that have been �t.

7.5.2 Model 2

> options(show.error.messages = FALSE, warn = -1)

> try(load("b2out6a.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b2out6a")) {

+ b2out6a <- aster.leaps(pred, fam, data = redata, nsplit = 6,

+ response = "resp2", envir = b2out5b$envir)

+ save(b2out6a, file = "b2out6a.rda")

+ }

> secs <- b2out6a$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b2out6a$fits[, "aic"] < b2out6a$fits[1, "aic"] + 10

> b2out6a$fits[ilow, , drop = FALSE]

dev p aic bic cic

q123456l 204.5308 31 266.5308 386.1268 272.7698

q12346l 218.5492 24 266.5492 359.1396 270.2415

q12346l5 218.5485 25 268.5485 364.9968 272.5608

38

The call to this function took 0 minutes and 37 seconds. Note that the simulation truth

model is not among the models under consideration (it depends on all 10 zi).

> options(show.error.messages = FALSE, warn = -1)

> try(load("b2out6c.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b2out6c")) {

+ b2out6c <- aster.leaps(pred, fam, data = redata, nsplit = 6,

+ response = "resp2", type = "AICc", envir = b2out6a$envir)

+ save(b2out6c, file = "b2out6c.rda")

+ }

> secs <- b2out6c$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b2out6c$fits[, "cic"] < b2out6c$fits[1, "cic"] + 10

> b2out6c$fits[ilow, , drop = FALSE]

dev p aic bic cic

q12346l 218.5492 24 266.5492 359.1396 270.2415

q12346l5 218.5485 25 268.5485 364.9968 272.5608

q123456l 204.5308 31 266.5308 386.1268 272.7698

The call to this function took 0 minutes and 2 seconds. Note that the simulation truth

model is not among the models under consideration (it depends on all 10 zi).

> options(show.error.messages = FALSE, warn = -1)

> try(load("b2out6b.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b2out6b")) {

+ b2out6b <- aster.leaps(pred, fam, data = redata, nsplit = 6,

+ response = "resp2", type = "BIC", envir = b2out6c$envir)

+ save(b2out6b, file = "b2out6b.rda")

+ }

> secs <- b2out6b$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b2out6b$fits[, "bic"] < b2out6b$fits[1, "bic"] + 10

> b2out6b$fits[ilow, , drop = FALSE]

dev p aic bic cic

q1234l 248.3135 18 284.3135 353.7563 286.3800

q1234l6 247.7541 19 285.7541 359.0549 288.0572

q12346l 218.5492 24 266.5492 359.1396 270.2415

q1234l5 248.2524 19 286.2524 359.5531 288.5554

The time taken for this call was 1 minutes and 1 seconds. Note that the simulation truth

model is not among the models under consideration (it depends on all 10 zi).

39

7.6 Seven Predictors

This section repeats Section 7.5 changing �six� to �seven.�

7.6.1 Model 1

> options(show.error.messages = FALSE, warn = -1)

> try(load("b1out7a.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b1out7a")) {

+ b1out7a <- aster.leaps(pred, fam, data = redata, nsplit = 7,

+ response = "resp1", type = "AIC", envir = b1out6b$envir)

+ save(b1out7a, file = "b1out7a.rda")

+ }

> secs <- b1out7a$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b1out7a$fits[, "aic"] < b1out7a$fits[1, "aic"] + 10

> b1out7a$fits[ilow, , drop = FALSE]

dev p aic bic cic

q12l3 1805.962 10 1825.962 1864.541 1826.611

q12l36 1805.133 11 1827.133 1869.570 1827.914

q12l37 1805.439 11 1827.439 1869.877 1828.220

q12l34 1805.677 11 1827.677 1870.114 1828.458

q12l35 1805.962 11 1827.962 1870.399 1828.743

q127l3 1800.006 14 1828.006 1882.017 1829.259

q12l346 1804.540 12 1828.540 1874.836 1829.466

q12l367 1804.763 12 1828.763 1875.059 1829.689

q12l 1810.862 9 1828.862 1863.583 1829.391

q12l347 1805.006 12 1829.006 1875.301 1829.932

q127l36 1799.042 15 1829.042 1886.911 1830.479

q12l356 1805.118 12 1829.118 1875.413 1830.043

q12l4 1809.364 10 1829.364 1867.943 1830.013

q12l357 1805.424 12 1829.424 1875.719 1830.350

q127l34 1799.505 15 1829.505 1887.374 1830.942

q12l345 1805.667 12 1829.667 1875.962 1830.593

q1237l 1793.907 18 1829.907 1899.349 1831.973

q127l35 1800.005 15 1830.005 1887.874 1831.442

q12l3467 1804.026 13 1830.026 1880.179 1831.110

q127l346 1798.142 16 1830.142 1891.869 1831.776

q123l 1804.280 13 1830.280 1880.433 1831.363

q12l46 1808.539 11 1830.539 1872.976 1831.320

q12l3456 1804.540 13 1830.540 1880.693 1831.623

q12l6 1810.576 10 1830.576 1869.155 1831.225

q12l5 1810.603 10 1830.603 1869.182 1831.252

q12l3567 1804.710 13 1830.710 1880.863 1831.793

40

q127l 1804.718 13 1830.718 1880.871 1831.802

q1237l6 1792.797 19 1830.797 1904.098 1833.100

q12l7 1810.855 10 1830.855 1869.434 1831.504

q12l3457 1805.004 13 1831.004 1881.157 1832.088

q127l356 1799.032 16 1831.032 1892.759 1832.666

q127l4 1803.051 14 1831.051 1885.062 1832.305

q12l47 1809.215 11 1831.215 1873.652 1831.996

q12l45 1809.303 11 1831.303 1873.740 1832.084

q123l6 1803.376 14 1831.376 1885.387 1832.629

q127l345 1799.490 16 1831.490 1893.217 1833.124

q1237l4 1793.620 19 1831.620 1904.921 1833.923

q127l46 1801.887 15 1831.887 1889.756 1833.324

q123l4 1803.888 14 1831.888 1885.899 1833.142

q1237l5 1793.893 19 1831.893 1905.194 1834.196

q123l7 1803.930 14 1831.930 1885.941 1833.183

q12l34567 1804.005 14 1832.005 1886.016 1833.259

q126l3 1804.055 14 1832.055 1886.066 1833.308

q127l3456 1798.142 17 1832.142 1897.727 1833.985

q1237l46 1792.147 20 1832.147 1909.305 1834.700

q127l6 1804.190 14 1832.190 1886.201 1833.443

q12l56 1810.191 11 1832.191 1874.629 1832.972

q123l5 1804.274 14 1832.274 1886.285 1833.528

q12l456 1808.403 12 1832.403 1878.698 1833.328

q12l467 1808.457 12 1832.457 1878.752 1833.383

q12l57 1810.558 11 1832.558 1874.995 1833.339

q12l67 1810.576 11 1832.576 1875.013 1833.357

q127l5 1804.585 14 1832.585 1886.596 1833.839

q123l46 1802.603 15 1832.603 1890.472 1834.040

q1237l56 1792.797 20 1832.797 1909.955 1835.350

q127l45 1803.032 15 1833.032 1890.901 1834.469

q12l457 1809.105 12 1833.105 1879.400 1834.031

q123l67 1803.152 15 1833.152 1891.021 1834.589

q125l3 1805.235 14 1833.235 1887.246 1834.489

q123l56 1803.370 15 1833.370 1891.239 1834.807

q123l47 1803.409 15 1833.409 1891.278 1834.846

q1l23 1817.493 8 1833.493 1864.356 1833.915

q126l34 1803.573 15 1833.573 1891.442 1835.010

q1237l45 1793.584 20 1833.584 1910.743 1836.137

q126l37 1803.652 15 1833.652 1891.521 1835.090

q127l456 1801.822 16 1833.822 1895.549 1835.456

q123l45 1803.858 15 1833.858 1891.727 1835.296

q123l57 1803.928 15 1833.928 1891.797 1835.365

q127l56 1803.959 15 1833.959 1891.828 1835.396

q126l35 1804.012 15 1834.012 1891.881 1835.449

q1237l456 1792.143 21 1834.143 1915.160 1836.960

41

q12l567 1810.175 12 1834.175 1880.470 1835.101

q123l467 1802.261 16 1834.261 1895.988 1835.895

q12l4567 1808.271 13 1834.271 1884.424 1835.354

q1l236 1816.582 9 1834.582 1869.303 1835.111

q123l456 1802.602 16 1834.602 1896.329 1836.235

q125l34 1804.879 15 1834.879 1892.748 1836.316

q1267l3 1796.911 19 1834.911 1908.211 1837.214

q137l2 1806.955 14 1834.955 1888.966 1836.209

q123l567 1803.126 16 1835.126 1896.853 1836.759

q123l457 1803.406 16 1835.406 1897.133 1837.040

q126l345 1803.560 16 1835.560 1897.287 1837.193

q126l 1809.715 13 1835.715 1885.868 1836.798

q125l 1809.784 13 1835.784 1885.937 1836.867

q126l4 1807.797 14 1835.797 1889.808 1837.050

The call to this function took 6 minutes and 17 seconds. Note that the simulation truth

model ranks number 9 according to AIC of the models that have been �t.

> options(show.error.messages = FALSE, warn = -1)

> try(load("b1out7c.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b1out7c")) {

+ b1out7c <- aster.leaps(pred, fam, data = redata, nsplit = 7,

+ response = "resp1", type = "AICc", envir = b1out7a$envir)

+ save(b1out7c, file = "b1out7c.rda")

+ }

> secs <- b1out7c$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b1out7c$fits[, "cic"] < b1out7c$fits[1, "cic"] + 10

> b1out7c$fits[ilow, , drop = FALSE]

dev p aic bic cic

q12l3 1805.962 10 1825.962 1864.541 1826.611

q12l36 1805.133 11 1827.133 1869.570 1827.914

q12l37 1805.439 11 1827.439 1869.877 1828.220

q12l34 1805.677 11 1827.677 1870.114 1828.458

q12l35 1805.962 11 1827.962 1870.399 1828.743

q127l3 1800.006 14 1828.006 1882.017 1829.259

q12l 1810.862 9 1828.862 1863.583 1829.391

q12l346 1804.540 12 1828.540 1874.836 1829.466

q12l367 1804.763 12 1828.763 1875.059 1829.689

q12l347 1805.006 12 1829.006 1875.301 1829.932

q12l4 1809.364 10 1829.364 1867.943 1830.013

q12l356 1805.118 12 1829.118 1875.413 1830.043

q12l357 1805.424 12 1829.424 1875.719 1830.350

42

q127l36 1799.042 15 1829.042 1886.911 1830.479

q12l345 1805.667 12 1829.667 1875.962 1830.593

q127l34 1799.505 15 1829.505 1887.374 1830.942

q12l3467 1804.026 13 1830.026 1880.179 1831.110

q12l6 1810.576 10 1830.576 1869.155 1831.225

q12l5 1810.603 10 1830.603 1869.182 1831.252

q12l46 1808.539 11 1830.539 1872.976 1831.320

q123l 1804.280 13 1830.280 1880.433 1831.363

q127l35 1800.005 15 1830.005 1887.874 1831.442

q12l7 1810.855 10 1830.855 1869.434 1831.504

q12l3456 1804.540 13 1830.540 1880.693 1831.623

q127l346 1798.142 16 1830.142 1891.869 1831.776

q12l3567 1804.710 13 1830.710 1880.863 1831.793

q127l 1804.718 13 1830.718 1880.871 1831.802

q1237l 1793.907 18 1829.907 1899.349 1831.973

q12l47 1809.215 11 1831.215 1873.652 1831.996

q12l45 1809.303 11 1831.303 1873.740 1832.084

q12l3457 1805.004 13 1831.004 1881.157 1832.088

q127l4 1803.051 14 1831.051 1885.062 1832.305

q123l6 1803.376 14 1831.376 1885.387 1832.629

q127l356 1799.032 16 1831.032 1892.759 1832.666

q12l56 1810.191 11 1832.191 1874.629 1832.972

q1237l6 1792.797 19 1830.797 1904.098 1833.100

q127l345 1799.490 16 1831.490 1893.217 1833.124

q123l4 1803.888 14 1831.888 1885.899 1833.142

q123l7 1803.930 14 1831.930 1885.941 1833.183

q12l34567 1804.005 14 1832.005 1886.016 1833.259

q126l3 1804.055 14 1832.055 1886.066 1833.308

q127l46 1801.887 15 1831.887 1889.756 1833.324

q12l456 1808.403 12 1832.403 1878.698 1833.328

q12l57 1810.558 11 1832.558 1874.995 1833.339

q12l67 1810.576 11 1832.576 1875.013 1833.357

q12l467 1808.457 12 1832.457 1878.752 1833.383

q127l6 1804.190 14 1832.190 1886.201 1833.443

q123l5 1804.274 14 1832.274 1886.285 1833.528

q127l5 1804.585 14 1832.585 1886.596 1833.839

q1l23 1817.493 8 1833.493 1864.356 1833.915

q1237l4 1793.620 19 1831.620 1904.921 1833.923

q127l3456 1798.142 17 1832.142 1897.727 1833.985

q12l457 1809.105 12 1833.105 1879.400 1834.031

q123l46 1802.603 15 1832.603 1890.472 1834.040

q1237l5 1793.893 19 1831.893 1905.194 1834.196

q127l45 1803.032 15 1833.032 1890.901 1834.469

q125l3 1805.235 14 1833.235 1887.246 1834.489

q123l67 1803.152 15 1833.152 1891.021 1834.589

43

q1237l46 1792.147 20 1832.147 1909.305 1834.700

q123l56 1803.370 15 1833.370 1891.239 1834.807

q123l47 1803.409 15 1833.409 1891.278 1834.846

q126l34 1803.573 15 1833.573 1891.442 1835.010

q126l37 1803.652 15 1833.652 1891.521 1835.090

q12l567 1810.175 12 1834.175 1880.470 1835.101

q1l236 1816.582 9 1834.582 1869.303 1835.111

q123l45 1803.858 15 1833.858 1891.727 1835.296

q1237l56 1792.797 20 1832.797 1909.955 1835.350

q12l4567 1808.271 13 1834.271 1884.424 1835.354

q123l57 1803.928 15 1833.928 1891.797 1835.365

q127l56 1803.959 15 1833.959 1891.828 1835.396

q126l35 1804.012 15 1834.012 1891.881 1835.449

q127l456 1801.822 16 1833.822 1895.549 1835.456

q123l467 1802.261 16 1834.261 1895.988 1835.895

q1237l45 1793.584 20 1833.584 1910.743 1836.137

q137l2 1806.955 14 1834.955 1888.966 1836.209

q123l456 1802.602 16 1834.602 1896.329 1836.235

q125l34 1804.879 15 1834.879 1892.748 1836.316

q2l3 1822.091 7 1836.091 1863.097 1836.419

q1l3 1822.145 7 1836.145 1863.151 1836.473

The call to this function took 0 minutes and 0 seconds. Note that the simulation truth

model ranks number 7 according to AICc of the models that have been �t.

> options(show.error.messages = FALSE, warn = -1)

> try(load("b1out7b.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b1out7b")) {

+ b1out7b <- aster.leaps(pred, fam, data = redata, nsplit = 7,

+ response = "resp1", type = "BIC", envir = b1out7c$envir)

+ save(b1out7b, file = "b1out7b.rda")

+ }

> secs <- b1out7b$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b1out7b$fits[, "bic"] < b1out7b$fits[1, "bic"] + 10

> b1out7b$fits[ilow, , drop = FALSE]

dev p aic bic cic

q2l3 1822.091 7 1836.091 1863.097 1836.419

q1l3 1822.145 7 1836.145 1863.151 1836.473

q1l2 1822.442 7 1836.442 1863.448 1836.770

q12l 1810.862 9 1828.862 1863.583 1829.391

q2l 1828.689 6 1840.689 1863.836 1840.933

q1l23 1817.493 8 1833.493 1864.356 1833.915

44

q12l3 1805.962 10 1825.962 1864.541 1826.611

q12l4 1809.364 10 1829.364 1867.943 1830.013

q2l5 1827.604 7 1841.604 1868.609 1841.931

q2l36 1821.847 8 1837.847 1868.711 1838.270

q1l35 1821.860 8 1837.860 1868.723 1838.282

q1l25 1821.971 8 1837.971 1868.835 1838.394

q1l36 1822.003 8 1838.003 1868.867 1838.426

q2l35 1822.046 8 1838.046 1868.910 1838.468

q1l37 1822.047 8 1838.047 1868.910 1838.469

q2l37 1822.050 8 1838.050 1868.913 1838.472

q1l26 1822.126 8 1838.126 1868.989 1838.548

q2l7 1828.122 7 1842.122 1869.127 1842.449

q12l6 1810.576 10 1830.576 1869.155 1831.225

q12l5 1810.603 10 1830.603 1869.182 1831.252

q1l27 1822.409 8 1838.409 1869.273 1838.831

q1l236 1816.582 9 1834.582 1869.303 1835.111

q12l7 1810.855 10 1830.855 1869.434 1831.504

q1l237 1816.802 9 1834.802 1869.524 1835.332

q12l36 1805.133 11 1827.133 1869.570 1827.914

q2l6 1828.668 7 1842.668 1869.674 1842.996

q12l37 1805.439 11 1827.439 1869.877 1828.220

q12l34 1805.677 11 1827.677 1870.114 1828.458

q12l35 1805.962 11 1827.962 1870.399 1828.743

q12l46 1808.539 11 1830.539 1872.976 1831.320

The time taken for this call was 1 minutes and 43 seconds. Note that the simulation truth

model ranks number 4 according to BIC of the models that have been �t.

7.6.2 Model 2

> options(show.error.messages = FALSE, warn = -1)

> try(load("b2out7a.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b2out7a")) {

+ b2out7a <- aster.leaps(pred, fam, data = redata, nsplit = 7,

+ response = "resp2", envir = b2out6b$envir)

+ save(b2out7a, file = "b2out7a.rda")

+ }

> secs <- b2out7a$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b2out7a$fits[, "aic"] < b2out7a$fits[1, "aic"] + 10

> b2out7a$fits[ilow, , drop = FALSE]

dev p aic bic cic

q123467l 199.5291 31 261.5291 381.1251 267.7681

45

q123467l5 199.5179 32 263.5179 386.9718 270.1804

q1234567l 187.0563 39 265.0563 415.5157 275.1209

q123456l 204.5308 31 266.5308 386.1268 272.7698

q12346l 218.5492 24 266.5492 359.1396 270.2415

q12346l7 217.8235 25 267.8235 364.2718 271.8358

q123456l7 204.0389 32 268.0389 391.4928 274.7014

q12346l5 218.5485 25 268.5485 364.9968 272.5608

q12346l57 217.8075 26 269.8075 370.1138 274.1542

The call to this function took 3 minutes and 9 seconds. Note that the simulation truth

model is not among the models under consideration (it depends on all 10 zi).

> options(show.error.messages = FALSE, warn = -1)

> try(load("b2out7c.rda"))

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b2out7c")) {

+ b2out7c <- aster.leaps(pred, fam, data = redata, nsplit = 7,

+ response = "resp2", type = "AICc", envir = b2out7a$envir)

+ save(b2out7c, file = "b2out7c.rda")

+ }

> secs <- b2out7c$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b2out7c$fits[, "cic"] < b2out7c$fits[1, "cic"] + 10

> b2out7c$fits[ilow, , drop = FALSE]

dev p aic bic cic

q123467l 199.5291 31 261.5291 381.1251 267.7681

q123467l5 199.5179 32 263.5179 386.9718 270.1804

q12346l 218.5492 24 266.5492 359.1396 270.2415

q12346l7 217.8235 25 267.8235 364.2718 271.8358

q12346l5 218.5485 25 268.5485 364.9968 272.5608

q123456l 204.5308 31 266.5308 386.1268 272.7698

q12346l57 217.8075 26 269.8075 370.1138 274.1542

q123456l7 204.0389 32 268.0389 391.4928 274.7014

q1234567l 187.0563 39 265.0563 415.5157 275.1209

q12347l 223.8307 24 271.8307 364.4211 275.5230

q12367l 225.5405 24 273.5405 366.1309 277.2328

q12347l6 223.4512 25 273.4512 369.8995 277.4635

q12347l5 223.6372 25 273.6372 370.0855 277.6495

The call to this function took 0 minutes and 26 seconds. Note that the simulation truth

model is not among the models under consideration (it depends on all 10 zi).

> options(show.error.messages = FALSE, warn = -1)

> try(load("b2out7b.rda"))

46

> options(show.error.messages = TRUE, warn = 0)

> if (! exists("b2out7b")) {

+ b2out7b <- aster.leaps(pred, fam, data = redata, nsplit = 7,

+ response = "resp2", type = "BIC", envir = b2out7c$envir)

+ save(b2out7b, file = "b2out7b.rda")

+ }

> secs <- b2out7b$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> ilow <- b2out7b$fits[, "bic"] < b2out7b$fits[1, "bic"] + 10

> b2out7b$fits[ilow, , drop = FALSE]

dev p aic bic cic

q1234l 248.3135 18 284.3135 353.7563 286.3800

q1234l7 247.1159 19 285.1159 358.4166 287.4189

q1234l6 247.7541 19 285.7541 359.0549 288.0572

q12346l 218.5492 24 266.5492 359.1396 270.2415

q1234l5 248.2524 19 286.2524 359.5531 288.5554

q1237l 256.1983 18 292.1983 361.6411 294.2648

The time taken for this call was 3 minutes and 33 seconds. Note that the simulation truth

model is not among the models under consideration (it depends on all 10 zi).

7.7 Total Time

The total time taken for all calls to aster.leaps is

> leapout <- ls(pattern = "^b[12]out")

> secs <- 0

> for (i in seq(along = leapout)) {

+ bxout <- get(leapout[i])

+ secs <- secs + bxout$time[1]

+ }

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

> hrs <- floor(mins / 60)

> mins <- floor(mins - hrs * 60)

0 hours, 20 minutes, and 18 seconds.

8 Frequentist Model Averaging

We do not know if any model under consideration (in the class M) is correct; in our

second example none are. Even if some model under consideration is correct, we do not

know which one it is; in our �rst example neither AIC, AICc nor BIC ever selected the

correct model. Thus it makes no sense to proceed as if the model selected by AIC, AICc or
BIC is correct. So what do we do?

47

A recent proposal is frequentist model averaging (FMA), which copies Bayesian model

averaging (BMA) in operation though not in philosophy. See Burnham and Anderson (2002)

and Hjort and Claeskens (2003) for FMA and Hoeting et al. (1999) for BMA.

BMA does the Right Thing from the Bayesian point of view. A Bayesian considers ev-

erything unknown a parameter and formulates uncertainty about it as a prior distribution.

Here both models and what the frequentist calls parameters within models are unknown.

Given a prior on both models and parameters within models, the Bayesian computes the

posterior distribution (on both models and parameters within models). Then, given some-

thing to predict (e. g., the �tness landscape), which is a function of model and parameter

within model the Bayesian predicts this by averaging over the posterior distribution (over

both models and parameters within models). In this context full BMA would be very com-

putationally intensive, requiring Markov chain Monte Carlo. FMA does roughly the same

thing, is much easier to do, and perhaps works as well, although we do not investigate this.

In this section we will mostly follow Burnham and Anderson (2002, Chapter 4). The idea

is to average inferences from various models that are reasonably well supported by the data.

The virtue of averaging here is the same as everywhere else in statistics: it cancels errors

more often than it ampli�es them. In BMA, exp
(
−1

2 BIC(m)
)
is asymptotically proportional

to the posterior probability of model m. Hence if g(θ) is a function of the parameters we

are interested in estimating, the weighted average∑
m∈M g(θ̂m) exp

(
−1

2 BIC(m)
)∑

m∈M exp
(
−1

2 BIC(m)
) (8)

is an asymptotic approximation of the posterior expectation of g(θ). True BMA would use

the true posterior probabilities and also integrate over θ within models (Hoeting et al., 1999),

but this is a reasonable asymptotic approximation. Proceeding by analogy, frequentists

would use ∑
m∈M g(θ̂m) exp

(
−1

2 AIC(m)
)∑

m∈M exp
(
−1

2 AIC(m)
) (9)

or the same with AIC replaced by AICc (Burnham and Anderson, 2002, Chapter 4). There

does not seem to be a strong theoretical justi�cation for this particular form of weighted

average (Hjort and Claeskens, 2003), but any averaging is better than no averaging.

Because we have not �t all models inM and do not want to (it would take a huge amount

of time), we propose to use a short cut in the spirit of what Madigan and Raftery (1994)

called �Occam's window.� Instead of averaging over all the models under consideration, we

average only over a random subset A, which we de�ne by

A =

{
m ∈M : AIC(m) < 2 log(c) + min

m′∈M
AIC(m′)

}
(10)

where c is a constant chosen by the investigators. Then we replaceM by A in (8) and (9)

giving ∑
m∈A g(θ̂m) exp

(
−1

2 AIC(m)
)∑

m∈A exp
(
−1

2 AIC(m)
) (11)

or the same with AIC replaced by AICc or BIC. Madigan and Raftery (1994) used in their

examples c = 20 �by analogy with the popular .05 cuto� for P values� but that �popular�

48

choice is itself arbitrary and without any theoretical justi�cation, hence so is using c = 20
in BMA or FMA. Nevertheless, we will use the same choice.

The full �Occam's window� proposal of Madigan and Raftery (1994) involved another

kind of pruning using a smaller subset than the A de�ned here, but Raftery and coauthors

seem to have dropped this second kind of pruning; Hoeting et al. (1999) call it �optional�

and Volinsky, et al. (1997) do not even mention it.

The discussants of Hoeting et al. (1999) were dubious about Occam's window and in

reply Hoeting et al. (1999) admitted �we know of no formal theoretical support for it.� It

is merely a computational convenience. In FMA the change from (9) to (11) is, perhaps, a

bit less dubious, not because there is stronger justi�cation for the pruning (10) but because

there is less theoretical justi�cation for (9), there being no philosophically ideal form of

frequentist model averaging.

For our examples of FMA we will stop using AIC and use only AICc and BIC.

8.1 Five Predictors

So far we have been passing around two environments, both now quite full.

> b1out5a$envir

<environment: 0x55642f281ad8>

> b1out7b$envir

<environment: 0x55642df02378>

> b2out5a$envir

<environment: 0x55642ecc4a08>

> b2out7b$envir

<environment: 0x55642d9e9cc8>

Di�erent names for the same two environments. Hence we restore them to where we want

them.

> load("b1out5b.rda")

> load("b2out5b.rda")

8.1.1 Model 1

First we use the data simulated from Model 1. Since we now want to be sure we have

all models in the set (10), we need to rerun aster.leaps using its cutoff argument.

> options(show.error.messages = FALSE, warn = -1)

> try(load("f1out5c.rda"))

> options(show.error.messages = TRUE, warn = 0)

> cutoff <- 2 * log(20)

49

> if (! exists("f1out5c")) {

+ f1out5c <- aster.leaps(pred, fam, data = redata, nsplit = 5,

+ response = "resp1", type = "AICc", envir = b1out5b$envir,

+ cutoff = cutoff)

+ save(f1out5c, file = "f1out5c.rda")

+ }

> secs <- f1out5c$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

The call to this function took 0 minutes and 6 seconds. We had to �t 8 new models that we

had not needed to �t in �nding the minimum AIC, AICc and BIC.

> ilow <- f1out5c$fits[, "cic"] < f1out5c$fits[1, "cic"] + cutoff

> mods <- f1out5c$fits[ilow, , drop = FALSE]

> print(mods)

dev p aic bic cic

q12l3 1805.962 10 1825.962 1864.541 1826.611

q12l34 1805.677 11 1827.677 1870.114 1828.458

q12l35 1805.962 11 1827.962 1870.399 1828.743

q12l 1810.862 9 1828.862 1863.583 1829.391

q12l4 1809.364 10 1829.364 1867.943 1830.013

q12l345 1805.667 12 1829.667 1875.962 1830.593

q12l5 1810.603 10 1830.603 1869.182 1831.252

q123l 1804.280 13 1830.280 1880.433 1831.363

q12l45 1809.303 11 1831.303 1873.740 1832.084

There are 9 models to average over (shown above).

For the �parameter� to average, we take the whole �tness surface. Since this is a function,

we cannot �t it at all points. We will �t it at the 350 data points. First we de�ne a function

that takes the mean value parameter, τ in the notation in Geyer et al. (2007), to �tness; it

uses the global variable vars de�ned on p. 3.

> tau2fit <- function(tau) {

+ tau <- matrix(tau, ncol = length(vars))

+ widx <- grep("^w[0-9]", vars)

+ apply(tau[, widx], 1, sum)

+ }

Thus, for example, the �simulation truth� �tness for Model 1 is given by

> true <- tau2fit(redata$tau1)

Since we did not save the whole �t, just the AIC, AICc, and BIC values for the models

we �t during execution of the branch and bound algorithm, we need to re�t the model in

the set A. Since we only know these models by their �names,� which are character strings

50

> modnames <- rownames(mods)

> modnames

[1] "q12l3" "q12l34" "q12l35" "q12l" "q12l4" "q12l345"

[7] "q12l5" "q123l" "q12l45"

we need a function that turns such strings into model formulas and �ts the models. Such a

function, called redomod, is in the �le sourced on p. 30 that also contained the aster.leaps

function. Here is how it is called.

> args(redomod)

function (string, data, response = "resp")

NULL

The string argument is the model speci�cation, e. g., "q12l3", the data argument is the

data frame containing the variables, for us always redata, and the response argument is

the name of the response, for us either "resp1" or "resp2".

Thus, for example, the �tness predicted by the model �selected� by AICc (the model

with smallest AICc) is given by

> out <- redomod(modnames[1], data = redata, response = "resp1")

> wslct <- tau2fit(predict(out))

and the �tness predicted by the correct model, which we know because the data are simulated

but which we would not know in real life, is given by

> out <- redomod("q12l", data = redata, response = "resp1")

> wbest <- tau2fit(predict(out))

Now we want to calculate the �tness predicted using FMA. First we calculate the weights

used in the weighted average, then we re�t the models and average the predictions of the

models using these weights.

> wgt <- mods[, "cic"]

> wgt <- wgt - wgt[1]

> wgt <- exp(- wgt / 2)

> wgt <- wgt / sum(wgt)

> wgt

q12l3 q12l34 q12l35 q12l q12l4

0.38974833 0.15480020 0.13423571 0.09707571 0.07114041

q12l345 q12l5 q123l q12l45

0.05323540 0.03828964 0.03621935 0.02525525

> wpred <- 0 * true

> modnames <- rownames(mods)

> for (i in seq(along = modnames)) {

+ out <- redomod(modnames[i], data = redata, response = "resp1")

+ wpred <- wpred + wgt[i] * tau2fit(predict(out))

+ }

51

Now we compare these �predictions� (actually, estimates is the better term in this sit-

uation). There are several criteria we could use for comparison. The most natural to

statisticians is root-mean-square (RMS) error

> ### rms error

> sqrt(mean((wslct - true)^2))

[1] 1.330927

> sqrt(mean((wpred - true)^2))

[1] 1.159854

> sqrt(mean((wbest - true)^2))

[1] 0.8031567

We see that FMA does slightly better than merely using the model �selected� by AICc, but
neither does as well as using the correct model, which in real life we would not know.

Or we could use mean absolute error.

> ### mean abs error

> mean(abs(wslct - true))

[1] 1.037055

> mean(abs(wpred - true))

[1] 0.9141408

> mean(abs(wbest - true))

[1] 0.6575415

Same story.

Or we could use maximum error.

> ### max error

> max(abs(wslct - true))

[1] 4.297355

> max(abs(wpred - true))

[1] 3.760234

> max(abs(wbest - true))

[1] 1.761091

52

Same story. Since we get the same results by all three criteria, from now on we will only

use RMS error.

We save these results for future reference.

> m1save <- data.frame(npred = c(5, 5, 2),

+ type = c("select-AICc", "FMA-AICc", "correct"),

+ rms = c(sqrt(mean((wslct - true)^2)), sqrt(mean((wpred - true)^2)),

+ sqrt(mean((wbest - true)^2))))

> print(m1save)

npred type rms

1 5 select-AICc 1.3309273

2 5 FMA-AICc 1.1598541

3 2 correct 0.8031567

Now we redo everything using BIC instead of AICc.

> options(show.error.messages = FALSE, warn = -1)

> try(load("f1out5b.rda"))

> options(show.error.messages = TRUE, warn = 0)

> cutoff <- 2 * log(20)

> if (! exists("f1out5b")) {

+ f1out5b <- aster.leaps(pred, fam, data = redata, nsplit = 5,

+ response = "resp1", type = "BIC", envir = f1out5c$envir,

+ cutoff = cutoff)

+ save(f1out5b, file = "f1out5b.rda")

+ }

> secs <- f1out5b$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

The call to this function took 0 minutes and 22 seconds. We had to �t 56 new models that

we had not yet needed to �t.

> ilow <- f1out5b$fits[, "bic"] < f1out5b$fits[1, "bic"] + cutoff

> mods <- f1out5b$fits[ilow, , drop = FALSE]

> print(mods)

dev p aic bic cic

q2l3 1822.091 7 1836.091 1863.097 1836.419

q1l3 1822.145 7 1836.145 1863.151 1836.473

q1l2 1822.442 7 1836.442 1863.448 1836.770

q12l 1810.862 9 1828.862 1863.583 1829.391

q2l 1828.689 6 1840.689 1863.836 1840.933

q1l23 1817.493 8 1833.493 1864.356 1833.915

q12l3 1805.962 10 1825.962 1864.541 1826.611

q2l1 1825.842 7 1839.842 1866.848 1840.170

q1l 1831.884 6 1843.884 1867.032 1844.129

53

q2l4 1826.384 7 1840.384 1867.390 1840.712

ql23 1832.756 6 1844.756 1867.904 1845.001

q12l4 1809.364 10 1829.364 1867.943 1830.013

q2l13 1821.108 8 1837.108 1867.972 1837.531

q1l24 1821.207 8 1837.207 1868.070 1837.629

q1l34 1821.225 8 1837.225 1868.089 1837.647

q1l4 1827.196 7 1841.196 1868.202 1841.524

ql2 1839.267 5 1849.267 1868.556 1849.441

q2l34 1821.706 8 1837.706 1868.569 1838.128

q2l5 1827.604 7 1841.604 1868.609 1841.931

q1l35 1821.860 8 1837.860 1868.723 1838.282

q1l25 1821.971 8 1837.971 1868.835 1838.394

q2l35 1822.046 8 1838.046 1868.910 1838.468

There are 22 models to average over (shown above) which have �names�

> modnames <- rownames(mods)

> modnames

[1] "q2l3" "q1l3" "q1l2" "q12l" "q2l" "q1l23" "q12l3"

[8] "q2l1" "q1l" "q2l4" "ql23" "q12l4" "q2l13" "q1l24"

[15] "q1l34" "q1l4" "ql2" "q2l34" "q2l5" "q1l35" "q1l25"

[22] "q2l35"

The �tness predicted by the model �selected� by BIC is given by

> out <- redomod(modnames[1], data = redata, response = "resp1")

> wslct <- tau2fit(predict(out))

We do not have to redo wbest. It is the same as before (it did not depend on whether we

were using AICc or BIC).
Now we want to calculate the �tness predicted using FMA. First we calculate the weights

used in the weighted average, then we re�t the models and average the predictions of the

models using these weights.

> wgt <- mods[, "bic"]

> wgt <- wgt - wgt[1]

> wgt <- exp(- wgt / 2)

> wgt <- wgt / sum(wgt)

> wgt

q2l3 q1l3 q1l2 q12l q2l

0.151719985 0.147689912 0.127297920 0.118980150 0.104841282

q1l23 q12l3 q2l1 q1l q2l4

0.080829315 0.073683432 0.023257372 0.021215340 0.017736460

ql23 q12l4 q2l13 q1l24 q1l34

0.013715091 0.013449371 0.013258732 0.012620251 0.012506315

q1l4 ql2 q2l34 q2l5 q1l35

54

0.011816867 0.009897397 0.009833322 0.009639212 0.009105015

q1l25 q2l35

0.008612006 0.008295254

> wpred <- 0 * true

> modnames <- rownames(mods)

> for (i in seq(along = modnames)) {

+ out <- redomod(modnames[i], data = redata, response = "resp1")

+ wpred <- wpred + wgt[i] * tau2fit(predict(out))

+ }

Now we compare these estimates using RMS error and also compare with our other

estimates using AICc.

> tmp <- data.frame(npred = rep(5, 2),

+ type = c("select-BIC", "FMA-BIC"),

+ rms = c(sqrt(mean((wslct - true)^2)), sqrt(mean((wpred - true)^2))))

> m1save <- rbind(m1save, tmp)

> m1save <- m1save[rev(order(m1save[, "rms"])),]

> print(m1save)

npred type rms

4 5 select-BIC 2.0894708

1 5 select-AICc 1.3309273

5 5 FMA-BIC 1.2466073

2 5 FMA-AICc 1.1598541

3 2 correct 0.8031567

Despite the fact that BIC is supposed to do better than AICc in this situation (where

one of the models under consideration is true and a rather small one of them), it actually

does worse in this particular example, the problem being that the model it �selects� "q2l3"

is too small.

8.1.2 Model 2

Now we use the data simulated from Model 2.

> options(show.error.messages = FALSE, warn = -1)

> try(load("f2out5c.rda"))

> options(show.error.messages = TRUE, warn = 0)

> cutoff <- 2 * log(20)

> if (! exists("f2out5c")) {

+ f2out5c <- aster.leaps(pred, fam, data = redata, nsplit = 5,

+ response = "resp2", type = "AICc", envir = b2out5b$envir,

+ cutoff = cutoff)

+ save(f2out5c, file = "f2out5c.rda")

+ }

55

> secs <- f2out5c$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

The call to this function took 0 minutes and 0 seconds. We had to �t 0 new models that we

had not needed to �t in �nding the minimum AIC, AICc and BIC.

> ilow <- f2out5c$fits[, "cic"] < f2out5c$fits[1, "cic"] + cutoff

> mods <- f2out5c$fits[ilow, , drop = FALSE]

> print(mods)

dev p aic bic cic

q1234l 248.3135 18 284.3135 353.7563 286.3800

q12345l 235.9033 24 283.9033 376.4937 287.5956

q1234l5 248.2524 19 286.2524 359.5531 288.5554

There are 3 models to average over (shown above), which have �names�

> modnames <- rownames(mods)

> modnames

[1] "q1234l" "q12345l" "q1234l5"

The �simulation truth� �tness for Model 2 is given by

> wtrue <- tau2fit(redata$tau2)

The �tness predicted by the model �selected� by AICc is given by

> out <- redomod(modnames[1], data = redata, response = "resp2")

> wslct <- tau2fit(predict(out))

and the �tness predicted by the correct model, which we know because the data are simulated

but which we would not know in real life, is given by

> out <- redomod("q123456789Al", data = redata, response = "resp2")

> wbest <- tau2fit(predict(out))

Now we want to calculate the �tness predicted using FMA. First we calculate the weights

used in the weighted average, then we re�t the models and average the predictions of the

models using these weights.

> wgt <- mods[, "cic"]

> wgt <- wgt - wgt[1]

> wgt <- exp(- wgt / 2)

> wgt <- wgt / sum(wgt)

> wgt

q1234l q12345l q1234l5

0.5314843 0.2894129 0.1791028

56

> wpred <- 0 * wtrue

> modnames <- rownames(mods)

> for (i in seq(along = modnames)) {

+ out <- redomod(modnames[i], data = redata, response = "resp2")

+ wpred <- wpred + wgt[i] * tau2fit(predict(out))

+ }

Now we compare these estimates using root-mean-square error.

> m2save <- data.frame(npred = c(5, 5, 10),

+ type = c("select-AICc", "FMA-AICc", "correct"),

+ rms = c(sqrt(mean((wslct - true)^2)), sqrt(mean((wpred - true)^2)),

+ sqrt(mean((wbest - true)^2))))

> m2save <- m2save[rev(order(m2save[, "rms"])),]

> print(m2save)

npred type rms

3 10 correct 13.10318

2 5 FMA-AICc 12.29017

1 5 select-AICc 12.28608

We see that FMA does slightly worse than merely using the model �selected� by AICc, and
both do better than using the correct model, because the correct model just has too many

parameters to estimate well with this amount of data.

Now we redo everything using BIC instead of AICc.

> options(show.error.messages = FALSE, warn = -1)

> try(load("f2out5b.rda"))

> options(show.error.messages = TRUE, warn = 0)

> cutoff <- 2 * log(20)

> if (! exists("f2out5b")) {

+ f2out5b <- aster.leaps(pred, fam, data = redata, nsplit = 5,

+ response = "resp2", type = "BIC", envir = f2out5c$envir,

+ cutoff = cutoff)

+ save(f2out5b, file = "f2out5b.rda")

+ }

> secs <- f2out5b$time[1]

> mins <- floor(secs / 60)

> secs <- floor(secs - mins * 60)

The call to this function took 0 minutes and 6 seconds. We had to �t 8 new models that we

had not yet needed to �t.

> ilow <- f2out5b$fits[, "bic"] < f2out5b$fits[1, "bic"] + cutoff

> mods <- f2out5b$fits[ilow, , drop = FALSE]

> print(mods)

57

dev p aic bic cic

q1234l 248.3135 18 284.3135 353.7563 286.3800

q1234l5 248.2524 19 286.2524 359.5531 288.5554

There are 2 models to average over (shown above) which have �names�

> modnames <- rownames(mods)

> modnames

[1] "q1234l" "q1234l5"

The �tness predicted by the model �selected� by BIC is given by

> out <- redomod(modnames[1], data = redata, response = "resp2")

> wslct <- tau2fit(predict(out))

We do not have to redo wbest. It is the same as before (it did not depend on whether we

were using AICc or BIC).
Now we want to calculate the �tness predicted using FMA. First we calculate the weights

used in the weighted average, then we re�t the models and average the predictions of the

models using these weights.

> wgt <- mods[, "bic"]

> wgt <- wgt - wgt[1]

> wgt <- exp(- wgt / 2)

> wgt <- wgt / sum(wgt)

> wgt

q1234l q1234l5

0.94776716 0.05223284

> wpred <- 0 * wtrue

> modnames <- dimnames(mods)[[1]]

> for (i in seq(along = modnames)) {

+ out <- redomod(modnames[i], data = redata, response = "resp2")

+ wpred <- wpred + wgt[i] * tau2fit(predict(out))

+ }

Now we compare these estimates using root-mean-square error.

> tmp <- data.frame(npred = rep(5, 2),

+ type = c("select-BIC", "FMA-BIC"),

+ rms = c(sqrt(mean((wslct - true)^2)), sqrt(mean((wpred - true)^2))))

> m2save <- rbind(m2save, tmp)

> m2save <- m2save[rev(order(m2save[, "rms"])),]

> print(m2save)

58

npred type rms

3 10 correct 13.10318

2 5 FMA-AICc 12.29017

11 5 select-BIC 12.28608

1 5 select-AICc 12.28608

21 5 FMA-BIC 12.28605

The order between �selection� and FMA is now confused, with one FMA doing better than

the �selection� and the other worse, but all of the model selection and model averaging

estimators are better than using the correct model with 10 predictors and 69 parameters to

estimate.

8.2 Summary

We originally intended to repeat the analyses in this section using more predictor vari-

ables, but since we have seen the pattern we expected (more or less) with �ve predictors,

and since this model selection and model averaging are a minor point of the paper (although

most of the work), we stop here.

9 Discussion

It is hard to know what lessons to draw from simulations. All simulation studies are

designed, consciously or unconsciously, to �prove� a particular point. Since nearly any

method can be made to look good if the simulation is chosen precisely to make it look good,

simulations actually prove nothing.

All we can say about this simulation is that we had, or at least were consciously aware

of, no ax to grind other than illustrating that principal components regression is a bad

idea. But this latter point is so well understood by statisticians, that we did not bother

to illustrate it with our simulations. It is so obvious that principal components would do a

horrible job on our example, that there would be no point to actually illustrating this.

Among model selection and model averaging ideas that actually have some theoretical

justi�cation, we have no ax to grind, not being experts in the area. We tried some and they

worked, more or less. Most readers, however, are probably disappointed in how well they

worked. Many users of statistics have no idea how badly most model selection schemes work

on realistic problems, and the actual performance of the best schemes known is much worse

than users desire. But there is no magic, statistics works as well as it works. Short of a

fairy godmother with a magic wand, it is clear that no model selection method known will

do much better than the ones we tried here. We make no claim that the methods we tried

are optimal; more complicated methods might do slightly better, but not much better.

Of course, how well methods work depend on how obvious the true model is. If the e�ects

are made large enough or if the sample size is large enough, then any method that is any

good (this does not include principal components regression) will select the correct model.

If one increases the sample size nind (p. 3) or if one increases the strength of the quadratic

e�ect ascal (p. 11), then the problem becomes much easier and for su�ciently large nind or

ascal all of the methods we tried will �select� the simulation truth model with reasonably

high probability. But how realistic is that? Note that the data we actually simulated is

59

very easy when the true predictors are known (P -values on p. 18). Most scientists plan

experiments just large enough to show something, not so large that everything is obvious

without statistics.

We did, at least, show two contrasting situations. When the true model, which is, of

course, unknown in real life, is �sparse� with only a few regression coe�cients nonzero, then

BIC does better. It has a bias towards small models, so when this bias works in its favor, it

does better. When the true model, is non-sparse with many regression coe�cients nonzero,

then AIC and AICc do better. They have a bias towards large models, so when this bias

works in their favor, they do better. Choose whichever you like, depending on your opinion

about the true state of a�airs. As we have repeatedly mentioned, Burnham and Anderson

(2002, Section 1.2.5) are particularly emphatic about the biological unrealism of �true� (at

least simulation truth) models with only a few parameters. Although we have nothing

particular to add to this, we agree, for what it is worth. Thus we would usually use AICc
rather than BIC.

Frequentist model averaging is new (less than ten years old) and we have even less to

say about that. It does seem to work better than �selecting� a model and pretending it is

true, a threadbare pretense when there are thousands of models under consideration and

a negligible chance of selecting the correct one. In such circumstances, �selecting� a model

and pretending it is true, especially overinterpreting the �selected� model and claiming that

the predictors �selected� are the ones that explain the phenomena, is clearly wrong, and

frequentist model averaging is a sensible substitute.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.

Second International Symposium on Information Theory, 267�281.

Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A

Practical Information-Theoretic Approach, 2nd ed. New York: Springer-Verlag.

Cook, R. D. (2007). Fisher lecture: Dimension reduction in regression (with discussion).

Statistical Science, in press. http://www.imstat.org/sts/future_papers.html

Cox, D. R. (1968). Notes on some aspects of regression analysis. Journal of the Royal

Statistical Society, Ser. A, 131, 265�279.

Furnival, G. M. and Wilson, R. W., Jr. (1974). Regressions by Leaps and Bounds Techno-

metrics, 16, 499�511. Reprinted, Technometrics, 42, 69�79.

Geyer, C. J. and Shaw, R. G. (2008). Supporting Data Analysis for a talk to be given at

Evolution 2008 University of Minnesota, June 20�24. University of Minnesota School of

Statistics Technical Report No. 669. http://www.stat.umn.edu/geyer/aster/

Geyer, C. J., Wagenius, S. and Shaw, R. G. (2007). Aster models for life history analysis.

Biometrika, 94 415�426.

Hand, D. J. (1981). Branch and bound in statistical data analysis. The Statistician, 30,

1�13.

60

Hjort N. L. and Claeskens G. (2003). Frequentist model average estimators. Journal of the

American Statistical Association, 98, 879�899.

Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999). Bayesian model

averaging: A tutorial (with discussion). Statistical Science, 19, 382�417. Corrected version

available at http://www.stat.washington.edu/www/research/online/1999/hoeting.

pdf.

Lande, R. and Arnold, S. J. (1983). The measurement of selection on correlated characters.

Evolution, 37, 1210�1226.

Madigan, D. and Raftery, A. E. (1994). Model selection and accounting for model uncer-

tainty in graphical models using Occam's window. Journal of the American Statistical

Association, 89, 1535�1546.

R Development Core Team (2008). R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461�464.

Shaw, R. G., Geyer, C. J., Wagenius, S., Hangelbroek, H. H., and Etterson, J. R. (2008).

Unifying life history analysis for inference of �tness and population growth. American

Naturalist, in press. http://www.stat.umn.edu/geyer/aster/

Shaw, R. G., Geyer, C. J., Wagenius, S., Hangelbroek, H. H., and Etterson, J. R. (2007).

Supporting data analysis for �Unifying life history analysis for inference of �tness and

population growth�. University of Minnesota School of Statistics Technical Report No. 658

http://www.stat.umn.edu/geyer/aster/

Sugiura, N. (1978). Further analysis of the data by Akaike's information criterion and the

�nite corrections. Communications in Statistics, Theory and Methods, A7, 13�26.

Volinsky, C. T., Madigan, D., Raftery, A. E. and Kronmal, R. A. (1997). Bayesian model

averaging in proportional hazard models: Assessing the risk of a stroke. Applied Statistics,

46, 433�448.

61

