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Abstract

This technical report explores some issues left open in Technical Reports 669 and 670
(Geyer and Shaw, 2008a,b): for �tness landscapes �t using an aster models, we propose
hypothesis tests of whether the landscape has a maximum and con�dence regions for
the location of the maximum.

All analyses are done in R (R Development Core Team, 2008) using the aster

contributed package described by Geyer, Wagenius and Shaw (2007) and Shaw, Geyer,
Wagenius, Hangelbroek, and Etterson (2008). Furthermore, all analyses are done using
the Sweave function in R, so this entire technical report and all of the analyses reported
in it are completely reproducible by anyone who has R with the aster package installed
and the R noweb �le specifying the document.

The revision �xes one error in the con�dence ellipsoids in Section 4 (a square root
was forgotten so the regions in the original were too big).

1 R Package Aster

We use R statistical computing environment (R Development Core Team, 2008) in our

analysis. It is free software and can be obtained from http://cran.r-project.org. Pre-

compiled binaries are available for Windows, Macintosh, and popular Linux distributions.

We use the contributed package aster. If R has been installed, but this package has not

yet been installed, do

install.packages("aster")

from the R command line (or do the equivalent using the GUI menus if on Apple Macintosh

or Microsoft Windows). This may require root or administrator privileges.

Assuming the aster package has been installed, we load it

> library(aster)

The version of the package used to make this document is 1.1-3 (which is available on

CRAN). The version of R used to make this document is 4.3.2.

This entire document and all of the calculations shown were made using the R command

Sweave and hence are exactly reproducible by anyone who has R and the R noweb (RNW)

�le from which it was created. Both the RNW �le and and the PDF document produced

from it are available at http://www.stat.umn.edu/geyer/aster. For further details on the

use of Sweave and R see Chapter 1 of the technical report by Shaw, et al. (2007) available

at the same web site.

Not only can one exactly reproduce the results in the printable document, one can also

modify the parameters of the simulation and get di�erent results.

Finally, we set the seeds of the random number generator so that we obtain the same

results every time. To get di�erent results, obtain the RNW �le, change this statement, and

reprocess using Sweave and LATEX.

> set.seed(42)



2 Data Structure

We use the data simulated in Technical Report 669 (Geyer and Shaw, 2008a, herein after

TR 669), because this simulated data has features not present in any currently available real

data and shows the full possibilities of aster modeling.

> data(sim)

> ls()

[1] "beta.true" "fam" "ladata" "mu.true"

[5] "phi.true" "pred" "redata" "theta.true"

[9] "vars"

For a full description of the graphical structure of these data see Section 2.1 of TR 669.

For a full description of the variables and their conditional distributions see Section 2.2

of TR 669. For a full description of the sum of certain variables that is deemed the best

surrogate of �tness for these data see Section 2.3 of TR 669.

3 Hypothesis Tests about Maxima

3.1 Asymptotic

First, we consider asymptotic (large sample, approximate) tests based on the well known

likelihood ratio test, which has asymptotic chi-square distribution.

We �t the same model �t in TR 669 in which the unconditional canonical parameter

corresponding to best surrogate of �tness is a quadratic function of phenotype data. In

short, �tness is quadratic on the canonical parameter scale.

> out6 <- aster(resp ~ varb + 0 + z1 + z2 + I(z1^2) + I(z1*z2) + I(z2^2),

+ pred, fam, varb, id, root, data = redata)

We also �t the model in which �tness is linear on the canonical parameter scale.

> out5 <- aster(resp ~ varb + 0 + z1 + z2,

+ pred, fam, varb, id, root, data = redata)

Then we compare these two models using the conventional likelihood ratio test.

> anova(out5, out6)

Analysis of Deviance Table

Model 1: resp ~ varb + 0 + z1 + z2

Model 2: resp ~ varb + 0 + z1 + z2 + I(z1^2) + I(z1 * z2) + I(z2^2)

Model Df Model Dev Df Deviance P(>|Chi|)

1 22 84959

2 25 84975 3 16.359 0.000957 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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The P -value calculated here is highly statistically signi�cantly (P = 9.6 × 10−4). It is a

correct asymptotic approximation to the P -value for comparing the linear and quadratic

models. It says the quadratic model clearly �ts better.

A linear model cannot have a stationary point. A quadratic model does have a stationary

point. Hence this is also a test of whether the �tness landscape has a stationary point, which

may be a maximum, a minimum, or a saddle point.

If we wish to turn this into a test for the presence of a maximum, we should make the

alternative assert that the model is quadratic and the �tness surface has a maximum. Since

this requires both diagonal elements of the Hessian matrix to be negative, the coe�cients of

I(z1^2) and I(z2^2), this restricts the alternative to less than 1/4 of the parameter space.
Hence an appropriate P -value for this test is 1/4 of the P -value for the general quadratic
alternative, that is, (P = 2.4× 10−4).

This test, although seemingly liberal, dividing the P -value of the conventional test by
4, or, more generally, by 2p where p is the number of phenotypic variables, should be

(asymptotically) conservative. Our claim that the alternative is only 1/4 of the parameter

space, or 2−p of the parameter space for general p is conservative, since it only takes account
of the diagonal elements of the Hessian matrix of the quadratic function and ignores the

constraint that the Hessian matrix be positive semide�nite (which involves all elements of

the Hessian matrix). Unfortunately, this argument is not completely rigorous because it

ignores the variance-covariance matrix of the MLE. Although the alternative hypothesis

is geometrically less than 2−p of the unrestricted alternative, we do not know that the

probability assigned to that region is less than 2−p of the probability of the unrestricted

alternative. As we shall see in the following section, our correction does seem conservative

for these data.

3.2 Parametric Bootstrap

Second, we consider a hypothesis test based on the distribution under the null hypothesis

determined by simulation. These are still large sample approximate in a weak sense in that

we should simulate the distribution for the true unknown parameter vector β but cannot

and must use our best approximation, which is the distribution for the parameter vector β̂
that is the MLE for the null hypothesis. Since this only makes sense when β̂ is close to β,
this procedure is only approximate. To remind everyone of this fact, we call the procedure

a parametric bootstrap rather than a simulation test. However, this procedure is much

less approximate than the procedure of the preceding section, because it does not use the

chi-square approximation for the distribution of the test statistic but instead calculates its

exact sampling distribution when β̂ is the true parameter value.

The test in the preceding section also does not fully account for the restriction that the

Hessian matrix be negative de�nite. Thus an even more correct P -value can be obtained

using a parametric bootstrap that goes like this.

> nsim <- 249

> theta.boot <- predict(out5, parm.type = "canonical",

+ model.type = "conditional")

> nind <- length(unique(redata$id))

> theta.boot <- matrix(theta.boot, nrow = nind)
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> phi.boot <- out6$coef * 0

> phi.boot[1:length(out5$coef)] <- out5$coef

> pvalsim <- double(nsim)

> eigmaxsim <- double(nsim)

> save.time <- proc.time()

> for (i in 1:nsim) {

+ ystar <- raster(theta.boot, pred, fam, root = theta.boot^0)

+ redatastar <- redata

+ redatastar$resp <- as.vector(ystar)

+ out6star <- aster(resp ~ varb + 0 + z1 + z2 + I(z1^2) +

+ I(z1*z2) + I(z2^2), pred, fam, varb, id, root,

+ parm = phi.boot, data = redatastar)

+ out5star <- aster(resp ~ varb + 0 + z1 + z2,

+ pred, fam, varb, id, root,

+ parm = out5$coef, data = redatastar)

+ Afoo <- matrix(NA, 2, 2)

+ Afoo[1, 1] <- out6star$coef["I(z1^2)"]

+ Afoo[2, 2] <- out6star$coef["I(z2^2)"]

+ Afoo[1, 2] <- out6star$coef["I(z1 * z2)"] / 2

+ Afoo[2, 1] <- out6star$coef["I(z1 * z2)"] / 2

+ pvalsim[i] <- anova(out5star, out6star)[2, 5]

+ eigmaxsim[i] <- max(eigen(Afoo, symmetric = TRUE,

+ only.values = TRUE)$values)

+ }

> elapsed.time <- proc.time() - save.time

> pval.obs <- anova(out5, out6)[2, 5]

> pvalsim.corr <- pvalsim

> pvalsim.corr[eigmaxsim > 0] <- 1

> mean(c(pvalsim.corr, pval.obs) <= pval.obs)

[1] 0.004

The parametric bootstrap P -value, here P = 0.004, cannot be lower than 1/(n+1), where n
is the number of simulations, here nsim = 249. We have gotten the lowest bootstrap P -value
we could have with this number of simulations, which took 8 minutes and 29.7 seconds.

Hence there is little point in using the parametric bootstrap here where the asymptotic

P -value (P = 2.4× 10−4) is so small. If the asymptotic P -value were equivocal, somewhere
in the vicinity of 0.05, then there would be much more reason to calculate a parametric

bootstrap P -value, and the code above shows how to do it right.

We can see that the correction of dividing the conventional P -value by 2p is conservative
here. The fraction of the sample in which the matrix A is negative de�nite is 0.145, a good

deal less than 0.25, which is the 2−p correction.
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4 Con�dence Regions about Maxima

Now we consider the MLE of the location of the maximum, which is calculated in TR 669

as

> Afoo <- matrix(NA, 2, 2)

> Afoo[1, 1] <- out6$coef["I(z1^2)"]

> Afoo[2, 2] <- out6$coef["I(z2^2)"]

> Afoo[1, 2] <- out6$coef["I(z1 * z2)"] / 2

> Afoo[2, 1] <- out6$coef["I(z1 * z2)"] / 2

> bfoo <- rep(NA, 2)

> bfoo[1] <- out6$coef["z1"]

> bfoo[2] <- out6$coef["z2"]

> cfoo <- solve(- 2 * Afoo, bfoo)

> cfoo

[1] 3.335738 1.626314

The explanation for this is that the estimated regression function, mapped to the natural

parameter scale, is

g(z) = c+ bT z+ zTAz

where c is an arbitrary constant, b is the R vector bfoo above and A is the R matrix Afoo

above. The �rst derivative vector is

∇g(z) = bT + 2zTA

and setting this equal to zero and solving for z gives

z = −1
2A

−1b

For future reference, we compute the maximum the simulation truth �tness landscape.

> Abar <- matrix(NA, 2, 2)

> Abar[1, 1] <- beta.true["I(z1^2)"]

> Abar[2, 2] <- beta.true["I(z2^2)"]

> Abar[1, 2] <- beta.true["I(z1 * z2)"] / 2

> Abar[2, 1] <- beta.true["I(z1 * z2)"] / 2

> bbar <- rep(NA, 2)

> bbar[1] <- beta.true["z1"]

> bbar[2] <- beta.true["z2"]

> cbar <- solve(- 2 * Abar, bbar)

In order to apply the multivariable delta method, we need to di�erentiate the function

of the parameter β that gives the maximum,

h(β) = −1
2A(β)−1b(β),
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where we have now written the matrix A and the vector b as functions of the regression

coe�cient vector β, which they are, each component of A and each component of b being

a component of β. The partial derivatives are

∂h(β)

∂βi
= 1

2A(β)−1∂A(β)−1

∂βi
A(β)−1b(β)− 1

2A(β)−1∂b(β)

∂βi

The asymptotic variance of the components of β is the submatrix of the inverse Fisher

information matrix corresponding to the components of β that enter into A(β) and b(β)

> beta.sub.names <- c("I(z1^2)", "I(z2^2)", "I(z1 * z2)", "z1", "z2")

> beta.sub.idx <- match(beta.sub.names, names(out6$coef))

> asymp.var <- solve(out6$fisher)

> asymp.var <- asymp.var[beta.sub.idx, ]

> asymp.var <- asymp.var[ , beta.sub.idx]

The derivative matrix is set up as follows

> jack <- matrix(NA, 2, 5)

> jack[ , 1] <- (1 / 2) * solve(Afoo) %*% matrix(c(1, 0, 0, 0), 2, 2) %*%

+ solve(Afoo) %*% cbind(bfoo)

> jack[ , 2] <- (1 / 2) * solve(Afoo) %*% matrix(c(0, 0, 0, 1), 2, 2) %*%

+ solve(Afoo) %*% cbind(bfoo)

> jack[ , 3] <- (1 / 2) * solve(Afoo) %*% matrix(c(0, 1, 1, 0), 2, 2) %*%

+ solve(Afoo) %*% cbind(bfoo)

> jack[ , 4] <- (- (1 / 2) * solve(Afoo) %*% matrix(c(1, 0), 2, 1))

> jack[ , 5] <- (- (1 / 2) * solve(Afoo) %*% matrix(c(0, 1), 2, 1))

> # eps <- 1e-6

> # jack.check <- matrix(NA, 2, 5)

> # jack.check[ , 1] <- (solve(- 2 * (Afoo + matrix(c(eps, 0, 0, 0), 2, 2)),

> # bfoo) - cfoo) / eps

> # jack.check[ , 2] <- (solve(- 2 * (Afoo + matrix(c(0, 0, 0, eps), 2, 2)),

> # bfoo) - cfoo) / eps

> # jack.check[ , 3] <- (solve(- 2 * (Afoo + matrix(c(0, eps, eps, 0), 2, 2)),

> # bfoo) - cfoo) / eps

> # jack.check[ , 4] <- (solve(- 2 * Afoo, bfoo + matrix(c(eps, 0), 2, 1)) -

> # cfoo) / eps

> # jack.check[ , 5] <- (solve(- 2 * Afoo, bfoo + matrix(c(0, eps), 2, 1)) -

> # cfoo) / eps

Finally, we �nish applying the delta method

> asymp.var <- jack %*% asymp.var %*% t(jack)

> asymp.var

[,1] [,2]

[1,] 2.739692 3.997176

[2,] 3.997176 7.401151
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So now we plot a con�dence region for the maximum based on the delta method calcu-

lation above. The following R statements make Figure 1 (page 8)

> par(mar = c(2, 2, 1, 1) + 0.1)

> plot(ladata$z1, ladata$z2, xlab = "", ylab = "", pch = 20,

+ axes = FALSE, xlim = range(ladata$z1, cfoo[1]),

+ ylim = range(ladata$z2, cfoo[2]))

> title(xlab = "z1", line = 1)

> title(ylab = "z2", line = 1)

> box()

> z1 <- cos(seq(0, 2 * pi, length = 101))

> z2 <- sin(seq(0, 2 * pi, length = 101))

> z <- rbind(z1, z2)

> points(cfoo[1], cfoo[2], col = "blue", pch = 19)

> fred <- eigen(asymp.var)

> sally <- fred$vectors %*% diag(sqrt(fred$values)) %*% t(fred$vectors)

> points(cbar[1], cbar[2], col = "green3", pch = 19)

> jane <- sqrt(qchisq(0.50, 2)) * sally %*% z

> lines(cfoo[1] + jane[1, ], cfoo[2] + jane[2, ], lwd = 2, lty = "dashed")

> # jane <- sqrt(qchisq(0.75, 2)) * sally %*% z

> # lines(cfoo[1] + jane[1, ], cfoo[2] + jane[2, ], col = "blue", lwd = 2,

> # lty = "dotted")

> jane <- sqrt(qchisq(0.95, 2)) * sally %*% z

> lines(cfoo[1] + jane[1, ], cfoo[2] + jane[2, ], lwd = 2)

The con�dence regions are rather large. One would need much larger sample sizes than the

500 used here to get precise con�dence intervals.

One might think we should have a section on how to calculate a con�dence region based

on the parametric bootstrap rather than asymptotic normality, and this would be expected

for a con�dence interval. However, it is an open research question how best to make a

con�dence region in this situation. The elliptical (large sample, approximate, delta method)

con�dence regions shown in Figure 1 get their shape from the asymptotic bivariate normal

distribution of the two-dimensional vector (location of the maximum) being estimated. A

bivariate normal distribution has elliptical contours of its probability density function, hence

elliptical con�dence regions make sense. If we drop the �assumption� of normality (not really

an assumption but an asymptotic approximation), then there is no reason to make elliptical

con�dence regions. In fact, the main point of parametric bootstrap con�dence intervals is

to drop the �assumption� of normality and use intervals that are not centered at the MLE

and re�ect the skewness of the simulation distribution of the estimates. So in order to do

a parametric bootstrap right in this situation, we should also use a non-elliptical con�dence

region that re�ects the non-normality of the simulation distribution of the estimates. But

how? That is the open research question. All of the bootstrap literature known to us is

about con�dence intervals, not about con�dence regions.
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z1

z2

Figure 1: Scatterplot of z1 versus z2 with location of MLE of maximum of the �tness

landscape (blue), boundary of asymptotic 50% con�dence region for the maximum (dashed),

and boundary of the asymptotic 95% con�dence region (solid). Also shown is the simulation

truth maximum (green).
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