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Abstract

Lande and Arnold (1983) proposed an estimate of beta, the di-
rectional selection gradient, by ordinary least squares (OLS). Aster
models (Geyer, Wagenius and Shaw, 2007; Shaw, Geyer, Wagenius,
Hangelbroek, and Etterson, 2008) estimate exactly the same beta, so
providing no improvement over the Lande-Arnold method in point es-
timation of this quantity. Aster models do provide correct con�dence
intervals, con�dence regions, and hypothesis tests for beta; in con-
trast, such procedures derived from OLS are often invalid because the
assumptions for OLS are grossly incorrect. This revision �xes a bug
which made the �gure incorrect in the original.

We use data simulated in Geyer and Shaw (2008) and available in the
dataset sim in the R contributed package aster. Fitness landscapes for these
data are computed in Geyer and Shaw (2008). Con�dence regions for the
maximum of the �tness landscape are computed in Geyer and Shaw (2010).
Here we compute con�dence regions for Lande-Arnold beta.

First we compute beta, which is found by OLS regression of relative
�tness (�tness divided by average �tness) on centered phenotypic predictor
variables.

> library(aster)

> data(sim)

> w <- ladata$y / mean(ladata$y)

> z1 <- ladata$z1 - mean(ladata$z1)

> z2 <- ladata$z2 - mean(ladata$z2)

The vector w is relative �tness. Vectors z1 and z2 are centered phenotypic
predictor variables.

> bout <- lm(w ~ z1 + z2)

> summary(bout)

Call:

lm(formula = w ~ z1 + z2)

Residuals:

Min 1Q Median 3Q Max

-1.8315 -0.5906 -0.1215 0.5026 3.4714

Coefficients:

Estimate Std. Error t value Pr(>|t|)



(Intercept) 1.00000 0.03844 26.013 <2e-16 ***

z1 0.69969 0.04449 15.729 <2e-16 ***

z2 -0.10355 0.04250 -2.436 0.0152 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.8596 on 497 degrees of freedom

Multiple R-squared: 0.3623, Adjusted R-squared: 0.3598

F-statistic: 141.2 on 2 and 497 DF, p-value: < 2.2e-16

Because we are using relative �tness the intercept term is known to be 1
Thus we re�t �xing the intercept to be one (because the degrees of freedom
are so large, this has negligible e�ect on standard errors).

> bout <- lm(w ~ 0 + z1 + z2, offset = rep(1, length(w)))

> summary(bout)

Call:

lm(formula = w ~ 0 + z1 + z2, offset = rep(1, length(w)))

Residuals:

Min 1Q Median 3Q Max

-1.8315 -0.5906 -0.1215 0.5026 3.4714

Coefficients:

Estimate Std. Error t value Pr(>|t|)

z1 0.69969 0.04444 15.744 <2e-16 ***

z2 -0.10355 0.04246 -2.439 0.0151 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.8587 on 498 degrees of freedom

Multiple R-squared: 0.3623, Adjusted R-squared: 0.3598

F-statistic: 141.5 on 2 and 498 DF, p-value: < 2.2e-16

> beta <- as.numeric(bout$coefficients)

> print(beta)

[1] 0.6996907 -0.1035472

Now we convince ourselves that the �observed equals expected� property
of maximum likelihood estimation in exponential families implies that the
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best linear approximation (BLA) of the �tness landscape estimated by the
aster model is the same as the same as the BLA �t by the Lande-Arnold
method.

> out6 <- aster(resp ~ varb + 0 + z1 + z2 + I(z1^2) + I(z1*z2) + I(z2^2),

+ pred, fam, varb, id, root, data = redata)

> summary(out6)

Call:

aster.formula(formula = resp ~ varb + 0 + z1 + z2 + I(z1^2) +

I(z1 * z2) + I(z2^2), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

varbiflow1 -3.444251 0.180123 -19.122 < 2e-16 ***

varbiflow2 -3.064152 0.203311 -15.071 < 2e-16 ***

varbiflow3 -3.207467 0.218952 -14.649 < 2e-16 ***

varbiflow4 -3.284180 0.236597 -13.881 < 2e-16 ***

varbisurv1 -0.065167 0.160348 -0.406 0.68444

varbisurv2 -0.700847 0.225747 -3.105 0.00191 **

varbisurv3 -0.094013 0.275111 -0.342 0.73256

varbisurv4 1.217672 0.234288 5.197 2.02e-07 ***

varbnflow1 -7.264353 0.090581 -80.198 < 2e-16 ***

varbnflow2 -7.452760 0.102617 -72.627 < 2e-16 ***

varbnflow3 -7.227782 0.105711 -68.373 < 2e-16 ***

varbnflow4 -7.044131 0.107792 -65.349 < 2e-16 ***

varbngerm1 -2.264595 0.030308 -74.720 < 2e-16 ***

varbngerm2 -2.270312 0.033766 -67.237 < 2e-16 ***

varbngerm3 -2.325980 0.036102 -64.429 < 2e-16 ***

varbngerm4 -2.304824 0.036977 -62.332 < 2e-16 ***

varbnseed1 2.881224 0.009182 313.789 < 2e-16 ***

varbnseed2 2.895118 0.010258 282.241 < 2e-16 ***

varbnseed3 2.880964 0.010737 268.332 < 2e-16 ***

varbnseed4 2.864026 0.011117 257.619 < 2e-16 ***

z1 0.146950 0.013695 10.730 < 2e-16 ***

z2 -0.020598 0.009842 -2.093 0.03637 *

I(z1^2) -0.027807 0.009508 -2.925 0.00345 **

I(z1 * z2) 0.023713 0.012352 1.920 0.05489 .

I(z2^2) -0.017986 0.006536 -2.752 0.00593 **

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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This is the aster model �t in Geyer and Shaw (2008). Note that this �tness
landscape is quadratic on the canonical parameter scale. We are not trying
to �t a linear �tness landscape. Rather we are trying to estimate the �tness
landscape as best we can.

Now we get the �tness landscape itself. The aster model has the depen-
dence graph shown in Geyer and Shaw (2008, Section 2.1). There are 25
�tness component variables measured for each individual, of which only the
last 4, number of seeds germinated in each of four time periods contribute
directly to observed �tness (the other variables contribute indirectly in being
predecessors, predecessors of predecessors, etc. of these four).

> pout6 <- predict(out6)

> pout6 <- matrix(pout6, nrow = nrow(out6$x), ncol = ncol(out6$x))

> colnames(pout6) <- colnames(out6$x)

> mufit <- pout6[ , grep("germ", colnames(pout6))]

> mufit <- apply(mufit, 1, "sum")

> length(mufit)

[1] 500

Now mufit is the (MLE of) expected �tness for each individual. When
divided by its mean, it gives the (MLE of) expected relative �tness for each
individual. We check that OLS regression of this on z1 and z2 giving the
BLA of (the MLE of) the �tness landscape is the same as the Lande-Arnold
beta.

> wmu <- mufit / mean(mufit)

> wmout <- lm(wmu ~ z1 + z2)

> all.equal(beta, as.numeric(wmout$coefficients[-1]))

[1] TRUE

Because this is a simulated dataset, we know the simulation truth �tness
landscape, which is given by the R object mu.true in the sim dataset. So
we treat mu.true as we did pout6 above, to get the simulation truth beta.

> wmu.true <- matrix(mu.true, nrow = nrow(out6$x), ncol = ncol(out6$x))

> wmu.true <- wmu.true[ , grep("germ", colnames(pout6))]

> wmu.true <- apply(wmu.true, 1, "sum")

> wmu.true <- wmu.true / mean(wmu.true)

> wmout.true <- lm(wmu.true ~ z1 + z2)

> beta.true <- as.vector(wmout.true$coefficients[-1])

> print(beta.true)
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[1] 0.7107269 -0.1341213

Summarizing where we are at this point, beta.true is the true (sim-
ulation truth) unknown (in real data unknown, in simulated data known)
parameter value, the slope of the BLA of the relative �tness landscape, and
beta is its MLE using the aster model. Of course, beta is also the MLE
under the assumption that relative �tness is exactly homoscedastic normal,
which is, of course, grossly incorrect. Con�dence intervals for beta derived
from the aster model are correct; those derived from OLS are invalid.

We now proceed to �nd con�dence intervals for the components of beta
and a con�dence region for the vector beta derived from the aster model and
the asymptotics of maximum likelihood estimation.

First we look at another way of estimating beta, using what Lande and
Arnold (1983) call the �multivariate generalization of the results of Robertson
(1966) and Price (1970, 1972) [see Lande and Arnold (1983) for citations]�

β = P−1 cov(w, z),

where z is the random vector of phenotypic predictor values and P is its
variance-covariance matrix. This shows we can estimate beta as follows

> z <- cbind(z1, z2, deparse.level = 0)

> zvarinv <- solve(t(z) %*% z / nrow(z))

> zwcov <- t(z) %*% cbind(mufit) / nrow(z)

> all.equal(beta, as.numeric(zvarinv %*% zwcov) / mean(mufit))

[1] TRUE

Now we want to do the same calculation starting with predict(out6)

> mu <- predict(out6)

> amat <- matrix(0, nrow = length(mufit), ncol = length(mu))

> blank <- matrix(0, nrow = nrow(pout6), ncol = ncol(pout6))

> blank.idx <- grep("germ", colnames(pout6))

> for (i in 1:nrow(amat)) {

+ boom <- blank

+ boom[i, blank.idx] <- 1

+ amat[i, ] <- as.vector(boom)

+ }

> all.equal(mufit, as.vector(amat %*% mu))

[1] TRUE
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> bmat <- zvarinv %*% t(z) %*% amat / nrow(z)

> all.equal(beta, as.numeric(bmat %*% mu) / mean(as.numeric(amat %*% mu)))

[1] TRUE

> cmat <- apply(amat, 2, sum) / nrow(z)

> cmat <- rbind(cmat)

> all.equal(beta, as.numeric(bmat %*% mu) / as.numeric(cmat %*% mu))

[1] TRUE

> dmat <- rbind(bmat, cmat, deparse.level = 0)

> all.equal(beta, as.numeric(dmat %*% mu)[1:2] / as.numeric(dmat %*% mu)[3])

[1] TRUE

> d3way <- array(as.vector(t(dmat)), dim = c(dim(out6$modmat)[1:2], nrow(dmat)))

> dout <- predict(out6, amat = d3way, se.fit = TRUE)

> all.equal(beta, dout$fit[1:2] / dout$fit[3])

[1] TRUE

If we denote the R object dout$fit as the vector ζ in mathematical notation,
then

βi = ζi/ζ3, i = 1, 2.

This is a non-linear transformation ζ → β that has Jacobian matrix(
1/ζ3 0 −ζ1/ζ23
0 1/ζ3 −ζ2/ζ23

)
constructed in R as

> zeta1 <- dout$fit[1]

> zeta2 <- dout$fit[2]

> zeta3 <- dout$fit[3]

> jacobian <- rbind( c( 1 / zeta3, 0, - zeta1 / zeta3^2 ),

+ c( 0, 1 / zeta3, - zeta2 / zeta3^2 ) )

Because of this nonlinearity, which arises from the fact that we measure
actual �tness not relative �tness, hence must estimate it by dividing actual
�tness by mean �tness, OLS would not calculate correct standard errors even
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if actual �tness were homoscedastic normal. Our next step takes this issue
into account correctly.

The function predict.aster does not give the full variance-covariance
matrix for �predicted values� like dout$fit. It does, however, give a compo-
nent gradient which is ∂ζ/∂β and can be used to calculate the asymptotic
variance-covariance matrix for ζ

> dvar <- dout$gradient %*% solve(out6$fisher) %*% t(dout$gradient)

> all.equal(dout$se.fit, sqrt(diag(dvar)))

[1] TRUE

> print(dvar)

[,1] [,2] [,3]

[1,] 0.11074988 -0.049378460 0.051190895

[2,] -0.04937846 0.099797054 -0.008332417

[3,] 0.05119090 -0.008332417 0.092359357

Then the delta method is applied to get the asymptotic variance-covariance
matrix for β

> bvar <- jacobian %*% dvar %*% t(jacobian)

> print(bvar)

[,1] [,2]

[1,] 0.0012646355 -0.0006739173

[2,] -0.0006739173 0.0014855497

The diagonal elements give standard errors for beta

> foo <- cbind(beta, sqrt(diag(bvar)))

> colnames(foo) <- c("beta", "se(beta)")

> print(foo)

beta se(beta)

[1,] 0.6996907 0.03556171

[2,] -0.1035472 0.03854283

If one compares these standard errors (derived from the aster model) with
the putative (and erroneous) standard errors derived from OLS (page 2), one
sees that the putative OLS standard errors are larger than correct standard
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errors based on a defensible statistical model. A 95% con�dence interval
for β2 is (−0.187,−0.02) based on OLS and (−0.179,−0.028) based on the
aster model. The P -value for the two-tailed test with null hypothesis β2 = 0
is P = 0.015 based on OLS and (P = 0.007) using the aster model. The
incorrect OLS con�dence interval is wider than it should be, and the incorrect
OLS P -value is larger than it should be.

One might draw the lesson from this one example that OLS standard
errors are always conservative, but there is no mathematics to justify this.
The OLS standard errors (in the context of Lande-Arnold analysis) are just
wrong and should never be used.

We can also make an elliptical con�dence region that accounts for the cor-
relation of the components of β. The following R statements make Figure 1
(page 9)

> fred <- eigen(bvar, symmetric = TRUE)

> sally <- fred$vectors %*% diag(sqrt(fred$values)) %*% t(fred$vectors)

> zoo1 <- cos(seq(0, 2 * pi, length = 101))

> zoo2 <- sin(seq(0, 2 * pi, length = 101))

> zoo <- rbind(zoo1, zoo2)

> jane <- sqrt(qchisq(0.95, 2)) * sally %*% zoo

> par(mar = c(5, 4, 1, 1) + 0.1)

> plot(beta[1] + jane[1, ], beta[2] + jane[2, ], type = "l",

+ xlab = expression(beta[1]), ylab = expression(beta[2]),

+ ylim = range(c(0, beta[2] + jane[2, ])))

> points(beta[1], beta[2], pch = 19)

> points(beta.true[1], beta.true[2])

> jane <- sqrt(qchisq(0.50, 2)) * sally %*% zoo

> lines(beta[1] + jane[1, ], beta[2] + jane[2, ], lty = "dashed")

Note that in Figure 1 the 95% con�dence ellipse does not cross either
coordinate axis. This says β1 is statistically signi�cantly greater than zero
and β2 is statistically signi�cantly less than zero (at the 0.05 signi�cance
level), even accounting for doing two tests.

If one were going to use beta to plug into the multivariate breeder's
equation (mean response to selection equals Gβ, where G is the variance-
covariance matrix of the breeding values derived from a quantitative genet-
ics model) one could use the variance-covariance matrix for β̂ (the matrix
bvar) with another application of the delta method involving the asymptotic
variance-covariance matrix of G (if it is also estimated from data) to get a
variance-covariance matrix for the response to selection.
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Figure 1: Con�dence ellipses for beta. Solid curve is boundary of 95% con-
�dence region, dashed curve is boundary of 50% con�dence region, solid dot
is location of MLE for beta, hollow dot is location of simulation truth value
of beta.
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