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Abstract

This technical report works out details of approximate maximum like-
lihood estimation for aster models with random e�ects. Fixed and random
e�ects are estimated by penalized log likelihood. Variance components are
estimated by integrating out the random e�ects in the Laplace approx-
imation of the complete data likelihood following Breslow and Clayton
(1993), which can be done analytically, and maximizing the resulting ap-
proximate missing data likelihood. A further approximation treats the
second derivative matrix of the cumulant function of the exponential fam-
ily where it appears in the approximate missing data log likelihood as a
constant (not a function of parameters). Then �rst and second derivatives
of the approximate missing data log likelihood can be done analytically.
Minus the second derivative matrix of the approximate missing data log
likelihood is treated as approximate Fisher information and used to esti-
mate standard errors.

1 Theory

Aster models (Geyer, Wagenius and Shaw, 2007; Shaw, Geyer, Wagenius,
Hangelbroek, and Etterson, 2008) have attracted much recent attention. Several
researchers have raised the issue of incorporating random e�ects in aster models,
and we do so here.

1.1 Complete Data Log Likelihood

Although we are particularly interested in aster models (Geyer et al., 2007),
our theory works for any exponential family model. The log likelihood can be
written

l(ϕ) = yTϕ− c(ϕ),

where y is the canonical statistic vector, ϕ is the canonical parameter vector,
and the cumulant function c satis�es

µ(ϕ) = Eϕ(y) = c′(ϕ) (1)

W (ϕ) = varϕ(y) = c′′(ϕ) (2)

where c′(ϕ) denotes the vector of �rst partial derivatives and c′′(ϕ) denotes the
matrix of second partial derivatives.

We assume a canonical a�ne submodel with random e�ects determined by

ϕ = a+Mα+ Zb, (3)

where a is a known vector, M and Z are known matrices, b is a normal random
vector with mean vector zero and variance matrix D. The vector a is called
the o�set vector and the matrices M and Z are called the model matrices for
�xed and random e�ects, respectively, in the terminology of the R function
glm. (The vector a is called the origin in the terminology of the R function
aster. Design matrix is alternative terminology for model matrix.) The matrix
D is assumed to be diagonal, so the random e�ects are independent random
variables. The diagonal components of D are called variance components in the



classical terminology of random e�ects models (Searle et al., 1992). Typically
the components of b are divided into blocks having the same variance (Searle et
al., 1992, Section 6.1), so there are only a few variance components but many
random e�ects, but nothing in this document uses this fact.

The unknown parameter vectors are α and ν, where ν is the vector of variance
components. Thus D is a function of ν, although this is not indicated by the
notation.

The �complete data log likelihood� (i. e., what the log likelihood would be if
the random e�ect vector b were observed) is

lc(α, b, ν) = l(a+Mα+ Zb)− 1
2b
TD−1b− 1

2 log det(D) (4)

in case none of the variance components are zero. We deal with the case of zero
variance components in Sections 1.9, 1.10, and 1.11 below.

1.2 Missing Data Likelihood

Ideally, inference about the parameters should be based on the missing data

likelihood, which is the complete data likelihood with random e�ects b integrated
out

Lm(α, ν) =

∫
elc(α,b,ν) db (5)

Maximum likelihood estimates (MLE) of α and ν are the values that maximize
(5). However MLE are hard to �nd. The integral in (5) cannot be done an-
alytically, nor can it be done by numerical integration except in very simple
cases. There does exist a large literature on doing such integrals by ordinary or
Markov chain Monte Carlo (Penttinen, 1984; Thompson and Guo, 1991; Geyer
and Thompson, 1992; Geyer, 1994; Shaw, Promislow, Tatar, Hughes, and Geyer,
1999; Shaw, Geyer and Shaw, 2002; Booth and Hobert, 1999; Sung and Geyer,
2007; Hunter, Handcock, Butts, Goodreau and Morris, 2008; Okabayashi and
Geyer, 2011; Hummel, Hunter and Handcock, to appear), but these methods
take a great deal of computing time and are di�cult for ordinary users to apply.
We wish to avoid that route if at all possible.

1.3 A Digression on Minimization

The theory of constrained optimization (Section 1.10 below) has a bias in
favor of minimization rather than maximization. The explication below will be
simpler if we switch now from maximization to minimization (minimizing minus
the log likelihood) rather than switch later.

1.4 Laplace Approximation

Breslow and Clayton (1993) proposed to replace the integrand in (5) by its
Laplace approximation, which is proportional to a normal probability density
function so the random e�ects can be integrated out analytically. Let b∗ denote
the result of maximizing (4) considered as a function of b for �xed α and ν.
Then − logLm(α, ν) is approximated by

q(α, ν) = 1
2 log det[κ′′(b∗)] + κ(b∗)
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where

κ(b) = −lc(a+Mα+ Zb)

κ′(b) = −ZT [y + µ(a+Mα+ Zb)] +D−1b

κ′′(b) = ZTW (a+Mα+ Zb)Z +D−1

Hence

q(α, ν) = −lc(α, b∗, ν) + 1
2 log det

[
κ′′(b∗)

]
= −l(a+Mα+ Zb∗) + 1

2 (b∗)TD−1b∗ + 1
2 log det(D)

+ 1
2 log det

[
ZTW (a+Mα+ Zb∗)Z +D−1

]
= −l(a+Mα+ Zb∗) + 1

2 (b∗)TD−1b∗

+ 1
2 log det

[
ZTW (a+Mα+ Zb∗)ZD + I

]
(6)

where I denotes the identity matrix of the appropriate dimension (which must
be the same as the dimension of D for the expression it appears in to make
sense), where b∗ is a function of α and ν and D is a function of ν, although this
is not indicated by the notation, and where the last equality uses the rule sum
of logs is log of product and the rule product of determinants is determinant of
matrix product (Harville, 1997, Theorem 13.3.4).

Since minus the log likelihood of an exponential family is a convex function
(Barndor�-Nielsen, 1978, Theorem 9.1) and the middle term on the right-hand
side of (4) is a strictly convex function, it follows that (4) considered as a
function of b for �xed α and ν is a strictly convex function. Moreover, this
function has bounded level sets, because the �rst term on the right-hand side
of (4) is bounded (Geyer, 2009, Theorems 4 and 6) and the second term has
bounded level sets. It follows that there is unique global minimizer (Rockafellar
and Wets, 2004, Theorems 1.9 and 2.6). Thus b∗(α, ν) is well de�ned for all
values of α and ν.

The key idea is to use (6) as if it were the log likelihood for the unknown
parameters (α and ν), although it is only an approximation. However, this
is also problematic. In doing likelihood inference using (6) we need �rst and
second derivatives of it (to calculate Fisher information), but W is already the
second derivative matrix of the cumulant function, so �rst derivatives of (6)
would involve third derivatives of the cumulant function and second derivatives
of (6) would involve fourth derivatives of the cumulant function. There are
no published formulas for derivatives higher than second of the aster model
cumulant function nor does software (the R package aster, Geyer, 2012) provide
such � the derivatives do, of course, exist because every cumulant function of
a regular exponential family is in�nitely di�erentiable at every point of the
canonical parameter space (Barndor�-Nielsen, 1978, Theorem 8.1) � they are
just not readily available. Breslow and Clayton (1993) noted the same problem
in the context of GLMM, and proceeded as if W were a constant function of its
argument, so all derivatives of W were zero. This is not a bad approximation
because �in asymptopia� the aster model log likelihood is exactly quadratic and
W is a constant function, this being a general property of likelihoods (Geyer,
in press). Hence we adopt this idea too, more because we are forced to by the
di�culty of di�erentiating W than by our belief that we are �in asymptopia.�
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This leads to the following idea. Rather than basing inference on (6), we
actually use

q(α, ν) = −l(a+Mα+ Zb∗) + 1
2 (b∗)TD−1b∗ + 1

2 log det
[
ZT ŴZD + I

]
(7)

where Ŵ is a constant matrix (not a function of α and ν). This makes sense for

any choice of Ŵ that is symmetric and positive semide�nite, but we will choose
Ŵ that are close to W (a+Mα̂+ Zb̂), where α̂ and ν̂ are the joint minimizers

of (6) and b̂ = b∗(α̂, ν̂). Note that (7) is a rede�nition of q(α, ν). Hereafter we
will no longer use the de�nition (6).

1.5 A Key Concept

Introduce

p(α, b, ν) = −l(a+Mα+ Zb) + 1
2b
TD−1b+ 1

2 log det
[
ZT ŴZD + I

]
(8)

where, as the left-hand side says, α, b, and ν are all free variables and, as usual,
D is a function of ν, although the notation does not indicate this. Since the
terms that contain b are the same in both (4) and (8), b∗ can also be de�ned
as the result of minimizing (8) considered as a function of b for �xed α and ν.

Thus (7) is a pro�le of (8) and (α̂, b̂, ν̂) is the joint minimizer of (8).
Since p(α, b, ν) is a much simpler function than q(α, ν), the latter having no

closed form expression and requiring an optimization as part of each evaluation,
it is much simpler to �nd (α̂, b̂, ν̂) by minimizing the former rather than the
latter.

1.6 A Digression on Partial Derivatives

Let f(α, b, ν) be a scalar-valued function of three vector variables. We write
partial derivative vectors using subscripts: fα(α, b, ν) denotes the vector of par-
tial derivatives with respect to components of α. Our convention is that we take
this to be a column vector. Similarly for fb(α, b, ν). We also use this convention
for partial derivatives with respect to single variables: fνk(α, b, ν), which are,
of course, scalars. We use this convention for any scalar-valued function of any
number of vector variables.

We continue this convention for second partial derivatives: fαb(α, b, ν) de-
notes the matrix of partial derivatives having i, j component that is the (mixed)
second partial derivative of f with respect to αi and bj . Thus the row dimension
of fαb(α, b, ν) is the dimension of α, the column dimension is the dimension of
b, and fbα(α, b, ν) is the transpose of fαb(α, b, ν).

This convention allows easy indication of points at which partial derivatives
are evaluated. For example, fαb(α, b

∗, ν) indicates that b∗ is plugged in for b in
the expression for fαb(α, b, ν).

We also use this convention of subscripts denoting partial derivatives with
vector-valued functions. If f(α, b, ν) is a column-vector-valued function of vector
variables, then fα(α, b, ν) denotes the matrix of partial derivatives having i, j
component that is the partial derivative of the i-th component of fα(α, b, ν)
with respect to αj . Thus the row dimension of fα(α, b, ν) is the dimension of
f(α, b, ν) and the column dimension is the dimension of α.
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1.7 First Derivatives

Start with (8). Its derivatives are

pα(α, b, ν) = −MT
[
y − µ(a+Mα+ Zb)

]
(9)

pb(α, b, ν) = −ZT
[
y − µ(a+Mα+ Zb)

]
+D−1b (10)

and

pνk(α, b, ν) = − 1
2b
TD−1EkD

−1b+ 1
2 tr
([
ZT ŴZD + I

]−1
ZT ŴZEk

)
(11)

where
Ek = Dνk(ν) (12)

is the diagonal matrix whose components are equal to one if the corresponding
components of D are equal to νk by de�nition (rather than by accident when
some other component of ν also has the same value) and whose components are
otherwise zero. The formula for the derivative of a matrix inverse comes from
Harville (1997, Chapter 15, Equation 8.15). The formula for the derivative of
the log of a determinant comes from Harville (1997, Chapter 15, Equation 8.6).

The estimating equation for b∗ can be written

pb
(
α, b∗, ν

)
= 0 (13)

and by the multivariate chain rule (Browder, 1996, Theorem 8.15) we have

qα(α, ν) = pα(α, b∗, ν) + b∗α(α, ν)T pb(α, b
∗, ν)

= pα(α, b∗, ν)
(14)

by (13), and

qνk(α, ν) = b∗νk(α, ν)T pb(α, b
∗, ν) + pνk(α, b∗, ν)

= pνk(α, b∗, ν)
(15)

again by (13).

1.8 Second Derivatives

By the multivariate chain rule (Browder, 1996, Theorem 8.15)

qαα(α, ν) = pαα(α, b∗, ν) + pαb(α, b
∗, ν)b∗α(α, ν)

qαν(α, ν) = pαν(α, b∗, ν) + pαb(α, b
∗, ν)b∗ν(α, ν)

qνν(α, ν) = pνν(α, b∗, ν) + pνb(α, b
∗, ν)b∗ν(α, ν)

The estimating equation (13) de�nes b∗ implicitly. Thus derivatives of b∗ are
computed using the implicit function theorem (Browder, 1996, Theorem 8.29)

b∗α(α, ν) = −pbb(α, b∗, ν)−1pbα(α, b∗, ν) (16)

b∗ν(α, ν) = −pbb(α, b∗, ν)−1pbν(α, b∗, ν) (17)
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This theorem requires that pbb(α, b
∗, ν) be invertible, and we shall see below

that it is. Then the second derivatives above can be rewritten

qαα(α, ν) = pαα(α, b∗, ν)− pαb(α, b∗, ν)pbb(α, b
∗, ν)−1pbα(α, b∗, ν)

qαν(α, ν) = pαν(α, b∗, ν)− pαb(α, b∗, ν)pbb(α, b
∗, ν)−1pbν(α, b∗, ν)

qνν(α, ν) = pνν(α, b∗, ν)− pνb(α, b∗, ν)pbb(α, b
∗, ν)−1pbν(α, b∗, ν)

a particularly simple and symmetric form. If we combine all the parameters in
one vector ψ = (α, ν) and write p(ψ, b) instead of p(α, b, ν) we have

qψψ(ψ) = pψψ(ψ, b∗)− pψb
(
ψ, b∗

)
pbb
(
ψ, b∗

)−1
pbψ
(
ψ, b∗

)
(18)

This form is familiar from the conditional variance formula for normal distribu-
tions if (

Σ11 Σ12

Σ21 Σ22

)
(19)

is the partitioned variance matrix of a partitioned normal random vector with
components X1 and X2, then the variance matrix of the conditional distribution
of X1 given X2 is

Σ11 − Σ12Σ−1
22 Σ21 (20)

assuming thatX2 is nondegenerate (Anderson, 2003, Theorem 2.5.1). Moreover,
if the conditional distribution is degenerate, that is, if there exists a nonrandom
vector v such that var(vTX1 | X2) = 0, then

vTX1 = vTΣ12Σ−1
22 X2

with probability one, assuming X1 and X2 have mean zero (also by Anderson,
2003, Theorem 2.5.1), and the joint distribution ofX1 andX2 is also degenerate.
Thus we conclude that if the (joint) Hessian matrix of p is nonsingular, then so
is the (joint) Hessian matrix of q given by (18).

The remaining work for this section is deriving second derivatives of p

pαα(α, b, ν) = MTW (a+Mα+ Zb)M

pαb(α, b, ν) = MTW (a+Mα+ Zb)Z

pbb(α, b, ν) = ZTW (a+Mα+ Zb)Z +D−1

pανk(α, b, ν) = 0

pbνk(α, b, ν) = −D−1EkD
−1b

pνjνk(α, b, ν) = bTD−1EjD
−1EkD

−1b

− 1
2 tr
([
ZT ŴZD + I

]−1
ZT ŴZEj[

ZT ŴZD + I
]−1

ZT ŴZEk

)
This �nishes the derivation of all the derivatives we need. Recall that in our use
of the implicit function theorem we needed pbb(α, b

∗, ν) to be invertible. From
the explicit form given above we see that it is actually negative de�nite, because
W (a+Mα+ Zb) is positive semide�nite by (2).
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1.9 Zero Variance Components

When some variance components are zero, the corresponding diagonal com-
ponents of D are zero, and the corresponding components of b are zero almost
surely. However we deal with this situation, it must have the same e�ect as
omitting those variance components and the corresponding random e�ects from
the model.

Breslow and Clayton (1993, Section 2.3) suggest using the Moore-Penrose
pseudoinverse (Harville, 1997, Chapter 20). Let D+ denote the diagonal ma-
trix whose diagonal components are the reciprocals of the diagonal components
provided those are nonzero and whose diagonal components are zero otherwise.
Then

q(α, ν) = −l(a+Mα+ Zb∗) + 1
2 (b∗)TD+b∗ + 1

2 log det
[
ZT ŴZD + I

]
(21)

is an approximate log likelihood, but in the calculation of b∗ constrained pe-
nalized maximum likelihood must be used: elements of b corresponding to zero
variance components must be constrained to be zero, because (21) does not
force them to be zero.

Although this proposal (Breslow and Clayton, 1993, Section 2.3) does deal
with the situation where the zero variance components are somehow known, it
does not adequately deal with estimating which variance components are zero.
That is the subject of the following two sections.

1.10 The Theory of Constrained Optimization

1.10.1 Incorporating Constraints in the Objective Function

When zero variance components arise, optimization of (8) puts us in the
realm of constrained optimization. The theory of constrained optimization
(Rockafellar and Wets, 2004) has a notational bias towards minimization (Rock-
afellar and Wets, 2004, p. 5). Thus, as explained above (Section 1.3) we have
switched from maximization to minimization.

Readers who are familiar with Karush-Kuhn-Tucker (Fletcher, 1987, Sec-
tion 9.1; Nocedal and Wright, 1999, Section 12.2) theory should be warned that
that theory is not adequate for the problem at hand, because the constraint
set is not a closed set and so cannot be de�ned in terms of smooth constraint
functions. Thus the need for the more general theory (Rockafellar and Wets,
2004).

The theory of constrained optimization incorporates constraints in the ob-
jective function by the simple device of de�ning the objective function (for a
minimization problem) to have the value +∞ o� the constraint set (Rockafellar
and Wets, 2004, Section 1A). Since no point where the objective function has
the value +∞ can minimize it, unless the the objective function has the value
+∞ everywhere, which is not the case in any application, the unconstrained
minimizer of this sort of objective function is the same as the constrained min-
imizer.

Thus we need to impose constraints on our key function (8), requiring that
each component of ν be nonnegative and when any component of ν is zero the
corresponding components of b are also zero. However, the formula (8) does not
make sense when components of ν are zero, so we proceed di�erently.
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1.10.2 Lower Semicontinuous Regularization

Since all but the middle term on the right-hand side of (8) are actually de-
�ned on some neighborhood of each point of the constraint set and di�erentiable
at each point of the constraint set, we only need to deal with the middle term.
It is the sum of terms of the form b2i /νk, where νk is the variance of bi. Thus
we investigate functions of this form

h(b, ν) = b2/ν (22)

where, temporarily, b and ν are scalars rather than vectors (representing single
components of the vectors). In case ν > 0 we have derivatives

hb(b, ν) = 2b/ν

hν(b, ν) = −b2/ν2

hbb(b, ν) = 2/ν

hbν(b, ν) = −2b/ν2

hνν(b, ν) = 2b2/ν3

The Hessian matrix

h′′(b, ν) =

(
2/ν −2b/ν2

−2b/ν2 2b2/ν3

)
has nonnegative determinants of its principal submatrices, since the diagonal
components are positive and det

(
h′′(b, ν)

)
is zero. Thus the Hessian matrix is

nonnegative de�nite (Harville, 1997, Theorem 14.9.11), which implies that h
itself is convex (Rockafellar and Wets, 2004, Theorem 2.14) on the set where
ν > 0.

We then extend h to the whole of the constraint set (this just adds the origin
to the points already considered) in two steps. First we de�ne it to have the
value +∞ at all points not yet considered (those where any component of ν is
nonpositive). This gives us an extended-real-valued convex function de�ned on
all of R2. Second we take it to be the lower semicontinuous (LSC) regularization
(Rockafellar and Wets, 2004, p. 14) of the function just de�ned. It is clear that

lim inf
b→b̄
ν↘0

h(b, ν) =

{
0, b̄ = 0

+∞, otherwise

Thus the LSC regularization is

h(b, ν) =


b2/ν, ν > 0

0, ν = 0 and b = 0

+∞, otherwise

(23)

The LSC regularization of a convex function is convex (Rockafellar and Wets,
2004, Proposition 2.32), so (23) de�nes an extended-real-valued convex function.

Note that h(b, 0) considered as a function of b is minimized at b = 0 because
that is the only point where this function is �nite. Hence this does enforce the
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constraint that random e�ects corresponding to zero variance components must
be zero.

Let k denote the map from indices for b to indices for ν that gives corre-
sponding components: νk(i) is the variance of bi. Let dim(b) denote the number
of random e�ects. Then our objective function can be written

p(α, b, ν) = −l(a+Mα+Zb)+ 1
2

dim(b)∑
i=1

h(bi, νk(i))+ 1
2 log det

[
ZT ŴZD+I

]
(24)

where h is given by (23), provided all of the components of ν are nonnegative.
The proviso is necessary because the third term on the right-hand side is not
de�ned for all values of ν, only those such that the argument of the determinant
is a positive de�nite matrix. Hence, we must separately de�ne p(α, b, ν) = +∞
whenever any component of ν is negative.

1.10.3 Subderivatives

In calculus we learn that the �rst derivative is zero at a local minimum
and, therefore, to check points where the �rst derivative is zero. This is called
Fermat's rule. This rule no longer works for nonsmooth functions, including
those that incorporate constraints, such as (24). It does, of course, still work at
points in the interior of the constraint set where (24) is di�erentiable. It does
not work to check points on the boundary. There we need what Rockafellar and
Wets (2004, Theorem 10.1) call Fermat's rule, generalized: at a local minimum
the subderivative function is nonnegative.

For any extended-real-valued function f on Rd, the subderivative function,
denoted df(x) is also an extended-real-valued function on Rd de�ned by

df(x)(w̄) = lim inf
τ↘0
w→w̄

f(x+ τw)− f(x)

τ

(Rockafellar and Wets, 2004, De�nition 8.1). The notation on the left-hand side
is read the subderivative of f at the point x in the direction w̄. Fortunately, we
do not have to use this de�nition to calculate subderivatives we want, because
the calculus of subderivatives allows us to use simpler formulas in special cases.
Firstly, there is the notion of subdi�erential regularity (Rockafellar and Wets,
2004, De�nition 7.25), which we can use without knowing the de�nition. The
sum of regular functions is regular and the subderivative of a sum is the sum
of the subderivatives (Rockafellar and Wets, 2004, Corollary 10.9). A smooth
function is regular and the subderivative is given by

df(x)(w) = wT f ′(x), (25)

where, as in Sections 1.1 and 1.4 above, f ′(x) denotes the gradient vector (the
vector of partial derivatives) of f at the point x (Rockafellar and Wets, 2004,
Exercise 8.20). Every LSC convex function is regular (Rockafellar and Wets,
2004, Example 7.27). Thus in computing subderivatives of (24) we may compute
them term by term, and for the �rst and last terms, they are given in terms of
the partial derivatives already computed by (25). For an LSC convex function
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f , we have the following characterization of the subderivative (Rockafellar and
Wets, 2004, Proposition 8.21). At any point x where f(x) is �nite, the limit

g(w) = lim
τ↘0

f(x+ τw)− f(x)

τ

exists and de�nes a sublinear function g, and then df(x) is the LSC regulariza-
tion of g. An extended-real-valued function g is sublinear if g(0) = 0 and

g(a1x1 + a2x2) ≤ a1g(x1) + a2g(x2)

for all vectors x1 and x2 and positive scalars a1 and a2 (Rockafellar and Wets,
2004, De�nition 3.18). The subderivative function of every regular LSC function
is sublinear (Rockafellar and Wets, 2004, Theorem 7.26).

So let us proceed to calculate the subderivative of (23). In the interior of the
constraint set, where this function is smooth, we can use the partial derivatives
already calculated

dh(b, ν)(u, v) =
2bu

ν
− b2v

ν2

where the notation on the left-hand side means the subderivative of h at the
point (b, ν) in the direction (u, v). On the boundary of the constraint set, which
consists of the single point (0, 0), we take limits. In case v > 0, we have

lim
τ↘0

h(τu, τv)− h(0, 0)

τ
= lim
τ↘0

τ2u2/(τv)

τ
= lim
τ↘0

u2

v
=
u2

v

In case v < 0 or in case v = 0 and u 6= 0,

h(τu, τv)− h(0, 0)

τ
(26)

is equal to +∞ for all τ > 0 so the limit inferior is +∞. In case v = 0 and
u = 0, (26) is equal to zero for all τ > 0 so the limit inferior is zero. Thus we
see that the limit inferior already de�nes an LSC function and

dh(0, 0)(u, v) = h(u, v).

1.10.4 Applying the Generalization of Fermat's Rule

The theory of constrained optimization tells us nothing we did not already
know (from Fermat's rule) about smooth functions. The only way we can have
df(x)(w) = wT f ′(x) ≥ 0 for all vectors w is if f ′(x) = 0. It is only at points
where the function is nonsmooth, in the cases of interest to us, points on the
boundary of the constraint set, where the theory of constrained optimization
tells us things we did not know and need to know.

Even on the boundary, the conclusions of the theory about components of
the state that are not on the boundary agree with what we already knew. We
have

dp(α, b, ν)(s, u, v) = sT pα(α, b, ν) + terms not containing s

and the only way this can be nonnegative for all s is if

pα(α, b, ν) = 0 (27)
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in which case dp(α, b, ν)(s, u, v) is a constant function of s, or, what is the same
thing in other words, the terms of dp(α, b, ν)(s, u, v) that appear to involve s
are all zero (and so do not actually involve s).

Similarly, dp(α, b, ν)(s, u, v) ≥ 0 for all ui and vj such that νj > 0 and
k(i) = j only if

pνj (α, b, ν) = 0, j such that νj > 0

pbi(α, b, ν) = 0, i such that νk(i) > 0
(28)

in which case we conclude that dp(α, b, ν)(s, u, v) is a constant function of such
ui and vj .

Thus, assuming that we are at a point (α, b, ν) where (27) and (28) hold,
and we do assume this throughout the rest of this section, dp(α, b, ν)(s, u, v)
actually involves only vj and ui such that νj = 0 and k(i) = j. De�ne

p̄(α, b, ν) = −l(a+Mα+ Zb) + 1
2 log det

[
ZT ŴZD + I

]
(29)

(the part of (24) consisting of the smooth terms). Then

dp(α, b, ν)(s, u, v) =
∑
j∈J

[
vj p̄νj (α, b, ν)

+
∑

i∈k−1(j)

(
uip̄bi(α, b, ν) + h(ui, vj)

)] (30)

where J is the set of j such that νj = 0, where k−1(j) denotes the set of i such
that k(i) = j, and where h is de�ned by (23). Fermat's rule generalized says
we must consider all of the terms of (30) together. We cannot consider partial
derivatives, because the partial derivatives do not exist. To check that we are
at a local minimum we need to show that (30) is nonnegative for all vectors u
and v. Conversely, to verify that we are not at a local minimum, we need to
�nd one pair of vectors u and v such that (30) is negative. Such a pair (u, v) we
call a descent direction. Since Fermat's rule generalized is a necessary but not
su�cient condition (like the ordinary Fermat's rule), the check that we are at a
local minimum is not de�nitive, but the check that we are not is. If a descent
direction is found, then moving in that direction away from the current value
of (α, b, ν) will decrease the objective function (24).

So how do we �nd a descent direction? We want to minimize (30) considered
as a function of u and v for �xed α, b, and ν. On further consideration, we can
consider the terms of (30) for each j separately. If the minimum of

vj p̄νj (α, b, ν) +
∑

i∈k−1(j)

(
uip̄bi(α, b, ν) + h(ui, vj)

)
(31)

over all vectors u and v is nonnegative, then the minimum is zero, because
(31) has the value zero when u = 0 and v = 0. Thus we can ignore this j in
calculating the descent direction.

On the other hand, if the minimum is negative, then the minimum does not
occur at v = 0 and the minimum is actually −∞ by the sublinearity of the
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subderivative, one consequence of sublinearity being positive homogeneity

df(x)(τw) = τdf(x)(w), τ ≥ 0

which holds for any subderivative. Thus (as our terminology hints) we are
only trying to �nd a descent direction, the length of the vector (u, v) does not
matter, only its direction. Thus to get a �nite minimum we can do a constrained
minimization of (31), constraining (u, v) to lie in a ball. This is found by the
well-known Karush-Kuhn-Tucker theory of constrained optimization (Fletcher,
1987, Section 9.1; Nocedal and Wright, 1999, Section 12.2) to be the minimum
of the Lagrangian function

L(u, v) = λv2
j + vj p̄νj (α, b, ν) +

∑
i∈k−1(j)

(
λu2

i + uip̄bi(α, b, ν) +
u2
i

vj

)
(32)

where λ > 0 is the Lagrange multiplier, which would have to be adjusted if we
were interested in constraining (u, v) to lie in a particular ball. Since we do not
care about the length of (u, v) we can use any λ. We have replaced h(ui, vi) by
u2
i /vj because we know that if we are �nding an actual descent direction, then

we will have vj > 0. Now

Lui(u, v) = 2λui + p̄bi(α, b, ν) +
2ui
vj
, i ∈ k−1(j)

Lvj (u, v) = 2λvj + p̄νj (α, b, ν)−
∑

i∈k−1(j)

u2
i

v2
j

The minimum occurs where these are zero. Setting the �rst equal to zero and
solving for ui gives

ûi(vj) = − p̄bi(α, b, ν)

2(λ+ 1/vj)

plugging this back into the second gives

Lvj
(
û(v), v

)
= 2λvj + p̄νj (α, b, ν)− 1

4(λvj + 1)2

∑
i∈k−1(j)

p̄bi(α, b, ν)2

and we seek zeros of this. The right-hand is clearly an increasing function of vj
so it is negative somewhere only if it is negative when vj = 0 where it has the
value

p̄νj (α, b, ν)− 1

4

∑
i∈k−1(j)

p̄bi(α, b, ν)2 (33)

So that gives us a test for a descent direction: we have a descent direction if
and only if (33) is negative. Conversely, we appear to have ν̂j = 0 if (33) is
nonnegative.

That �nishes our treatment of the theory of constrained optimization. We
have to ask is all of this complication really necessary? It turns out that it is
and it isn't. We can partially avoid it by a change of variables. But the cure is
worse than the disease in some ways. This is presented in the following section.
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1.11 Square Roots

We can avoid constrained optimization by the following change of parameter.
Introduce new parameter variables by

νj = σ2
j

b = Ac

where A is diagonal and A2 = D, so the i-th diagonal component of A is σk(i).
Then the objective function (8) becomes

p̃(α, c, σ) = −l(a+Mα+ ZAc) + 1
2c
T c+ 1

2 log det
[
ZT ŴZA2 + I

]
(34)

There are now no constraints and (34) is a continuous function of all variables.
The drawback is that by symmetry we must have p̃σj

(α, c, σ) equal to zero
when σj = 0. Thus �rst derivatives become useless for checking for descent
directions, and second derivative information is necessary. However, that is not
the way unconstrained optimizers like the R functions optim and nlminb work.
They do not expect such pathological behavior and do not deal with it correctly.
If we want to use such optimizers to �nd local minima of (34), then we must
provide starting points that have no component of ν equal to zero, and hope
that the optimizer will never get any component of ν close to zero unless zero
actually is a solution. But this is only a hope. The theory that guided the design
of these optimizers does not provide any guarantees for this kind of objective
function.

Moreover, optimizer algorithms stop when close to but not exactly at a
solution, a consequence of inexactness of computer arithmetic. Thus when the
optimizer stops and declares convergence with one or more components of ν
close to zero, how do we know whether the true solution is exactly zero or
not? We don't unless we return to the original parameterization and apply
the theory of the preceding section. The question of whether the MLE of the
variance components are exactly zero or not is of scienti�c interest, so it seems
that the device of this section does not entirely avoid the theory of constrained
optimization. We must change back to the original parameters and use (33) to
determine whether or not we have νj = 0.

Finally, there is another issue with this �square root� parameterization. For
this new parameterization, the analogs of the second derivative formulas derived
in Section 1.8 above are extraordinarily ill-behaved. The Hessian matrices are
badly conditioned and sometimes turn out to be not positive de�nite when
calculated by the computer's arithmetic (which is inexact) even though theory
says they must be positive de�nite. We know this because at one point we
thought that this �square root� parameterization was the answer to everything
and tried to use it everywhere. Months of frustration ensued where it mostly
worked, but failed on a few problems. It took us a long time to see that it
is fundamentally wrong-headed. As we said above, the cure is worse than the
disease.

Thus we concluded that, while we may use this �square root� parameteriza-
tion to do unconstrained rather than constrained minimization, we should use
it only for that. The test (33) should be used to determine whether variance
components are exactly zero or not, and the formulas in Section 1.8 should be
used to derive Fisher information.
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1.11.1 First Derivatives

Some of R's optimization routines can use �rst derivative information, thus
we derive �rst derivatives in this parameterization.

p̃α(α, c, σ) = −MT [y − µ(a+Mα+ ZAc)] (35)

p̃c(α, c, σ) = −AZT [y − µ(a+Mα+ ZAc)] + c (36)

p̃σj (α, c, σ) = −cTEjZT [y − µ(a+Mα+ ZAc)]

+ tr
(

[ZT ŴZA2 + I
]−1

ZT ŴZAEj

)
(37)

where Ej is given by (12).

1.12 Fisher Information

The observed Fisher information matrix is minus the second derivative ma-
trix of the log likelihood. As we said above, we want to do this in the original
parameterization.

Assembling stu� derived in preceding sections and introducing

µ∗ = µ
(
a+Mα+ Zb∗(α, ν)

)
W ∗ = W

(
a+Mα+ Zb∗(α, ν)

)
H∗ = ZTW ∗Z +D−1

Ĥ = ZT ŴZD + I

we obtain

qαα(α, ν) = MTW ∗M −MTW ∗Z(H∗)−1ZTW ∗M

qανj (α, ν) = MTW ∗Z(H∗)−1D−1EjD
−1b∗

qνjνk(α, ν) = (b∗)TD−1EjD
−1EkD

−1b∗

− 1
2 tr
(
Ĥ−1ZT ŴZEjĤ

−1ZT ŴZEk

)
− (b∗)TD−1EjD

−1(H∗)−1D−1EkD
−1b∗

In all of these b∗, µ∗, W ∗, and H∗ are functions of α and ν even though the
notation does not indicate this.

It is tempting to think expected Fisher information simpli�es things because
we �know� E(y) = µ and var(y) = W , except we don't know that! What we do
know is

E(y | b) = µ(a+Mα+ Zb)

but we don't know how to take the expectation of the right hand side (and simi-
larly for the variance). Rather than introduce further approximations of dubious
validity, it seems best to just use (approximate) observed Fisher information.

1.13 REML?

Breslow and Clayton (1993) do not maximize the approximate log likelihood
(6), but make further approximations to give estimators motivated by REML
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(restricted maximum likelihood) estimators for linear mixed models (LMM).
Breslow and Clayton (1993) concede that the argument that justi�es REML
estimators for LMM does not carry over to their REML-like estimators for
generalized linear mixed models (GLMM). Hence these REML-like estimators
have no mathematical justi�cation. Even in LMM the widely used procedure
of following REML estimates of the variance components with so-called BLUE
estimates of �xed e�ects and BLUP estimates of random e�ects, which are
actually only BLUE and BLUP if the variance components are assumed known
rather than estimated, is obviously wrong: ignoring the fact that the variance
components are estimated cannot be justi�ed (and Breslow and Clayton say this
in their discussion section). Hence REML is not justi�ed even in LMM when
�xed e�ects are the parameters of interest. In aster models, because components
of the response vector are dependent and have distributions in di�erent families,
it is very unclear what REML-like estimators in the style of Breslow and Clayton
(1993) might be. The analogy just breaks down. Hence, we do not pursue this
REML analogy and stick with what we have described above.

2 Practice

Our goal is to minimize (6). We replace (6) with (7) in some steps because
of our inability to di�erentiate (6), but our whole procedure must minimize (6).

2.1 Step 1

To get close to (α̂, ĉ, σ̂) starting from far away we minimize

r(σ) = −l(a+Mα̃+ ZAc̃) + 1
2 c̃
T c̃

+ 1
2 log det

[
ZTW (a+Mα̃+ ZAc̃)ZA2 + I

] (38)

where α̃ and c̃ are the joint minimizers of (34) considered as a function of α and
c for �xed σ. In (38), α̃, c̃, and A are all functions of σ although the notation
does not indicate this.

Because we cannot calculate derivatives of (38) we minimize using the R
function optim with method = "Nelder-Mead", the so-called Nelder-Mead sim-
plex algorithm, a no-derivative method nonlinear optimization, not to be con-
fused with the simplex algorithm for linear programming.

2.2 Step 2

Having found α, c, and σ close to the MLE values via the preceding step, we
then switch to minimization of (34) for which we have the derivative formulas
(35), (36), and (37). In this step we can use one of R's optimization functions
that uses �rst derivative information: nlm or nlminb or optim with optional
argument method = "BFGS" or method = "CG" or method = "L-BFGS-B".

To de�ne (34) we also need a Ŵ , and we take the value at the current values
of α, c, and σ. Because W is typically a very large matrix (n × n, where n
is the number of nodes in complete aster graph, the number of nodes in the
subgraph for a single individual times the number of individuals), we actually
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store ZT ŴZ, which is only r× r, where r is the number of random e�ects. We
set

ZT ŴZ = ZTW (a+Mα+ ZAc)Z (39)

where α, c, and A = A(σ) are the current values before we start minimizing

p̃(α, c, σ) and this value of ZT ŴZ is �xed throughout the minimization, as is
required by the de�nition of p̃(α, c, σ).

Having minimized p̃(α, c, σ) we are still not done, because now (39) is wrong.
We held it �xed at the values of α, c, and σ we had before the minimization,
and now those values have changed. Thus we should re-evaluate (39) and re-
minimize, and continue doing this until convergence.

When this iteration terminates we are done with this step, and we have our
point estimates α̂, ĉ, and σ̂. We also have our point estimates b̂ of the random
e�ects on the original scale given by A(ν̂)ĉ and our point estimates νj = σ2

j of
the variance components.

2.3 Step 3

Having converted back to the original parameters, if any of the νj are close
to zero we use the check (33) to determine whether or not they are exactly zero.

3 R Package Aster

We use the R statistical computing environment (R Development Core Team,
2012) in our analysis. It is free software and can be obtained from http://cran.

r-project.org. Precompiled binaries are available for Windows, Macintosh,
and popular Linux distributions. We use the contributed package aster (Geyer,
2012). If R has been installed, but this package has not yet been installed, do

install.packages("aster")

from the R command line (or do the equivalent using the GUI menus if on Apple
Macintosh or Microsoft Windows). This may require root or administrator
privileges.

Assuming the aster package has been installed, we load it. If we want to
call R function trust, which this document does, we now have to load CRAN
package trust (this used to be loaded automatically when package aster was
loaded, but no longer is).

> library(aster)

> library(trust)

The version of the package used to make this document is 1.1-3. The version of
R used to make this document is 4.3.2.

This entire document and all of the calculations shown were made using
the R command Sweave and hence are exactly reproducible by anyone who has
R and the R noweb (RNW) �le from which it was created. Both the RNW
�le and and the PDF document produced from it will be made available at
http://www.stat.umn.edu/geyer/aster. For further details on the use of
Sweave and R see Chapter 1 of the technical report Shaw et al. (2007) available
at the same web site.
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Not only can one exactly reproduce the results in the printable document,
one can also modify the parameters of the simulation and get di�erent results.
Anything at all can be changed once one has the RNW �le.

In particular, we set the �seed� of the random number generator

> set.seed(42)

so that every time this RNW �le is run it produces the same results. Chang-
ing the argument of set.seed or removing this chunk of R code will produce
di�erent results.

4 A Digression on Aster Models and Formulas

4.1 Observed Fitness

In an unconditional aster model (and all published examples in the literature
are unconditional aster models except for Example 1 of Shaw et al. (2008) and
that could have also been done using an unconditional aster model) the uncon-
ditional canonical parameter vector ϕ has a multivariate monotone relationship
with the unconditional mean value parameter vector µ (Shaw and Geyer, 2010,
Appendix). The exact relationship between ϕ and µ is very complicated. Geyer
(2010) works through a simple example, and the formulas become very messy.
So the only thing one can have any intuition about is the multivariate mono-
tone relationship. The new functions added to the aster package to do random
e�ects aster models only do unconditional aster models.

Now what unconditional mean values does one want to establish relation-
ships with? Generally with those that are the best surrogates of overall �tness
(total reproductive success of individuals over their lifetime) in the data, that
is, generally, the last �tness component observed. In the data in the example in
Geyer et al. (2007), that is head count (number of compound �owers observed).
One might think that the earlier components of �tness are important too, but
their e�ect is already incorporated in the last component of �tness (you can't
have �owers if you are dead, and similarly for any other component of �tness).

Thus if one has predictors only a�ecting ��tness� nodes of the graph (those
whose sum is the best surrogate of lifetime �tness), an unconditional aster model
will do the right thing by adjusting the unconditional mean values of those nodes
to �t the data. In recent papers we have included an indicator variable named
fit that indicates these ��tness� nodes of the graph (it is one for those nodes
and zero for other nodes) that helps in the modeling and we have done so for
the examples in this paper.

The model in Geyer et al. (2007) that was deemed the best one for drawing
scienti�c conclusions (their Model 2) was �t by the formula given in the paper

resp ~ varb + level:(nsloc + ewloc) + hdct * pop - pop

but that formula can be simpli�ed to

resp ~ varb + level:(nsloc + ewloc) + hdct:pop

which �ts the same model and is easier to understand. The term hdct:pop is
best not thought of as an �interaction� although that is the way the R formula
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mini-language describes it. What actually happens is, because pop is categorical
with 7 levels R makes 6 dummy variables (one for each category but throws one
away because all 7 together would be confounded with the intercept dummy
variable) then it multiplies each of these dummy variables by hdct (which,
recall, is zero-or-one-valued), and this does exactly what is wanted: making
those dummy variables apply to ��tness� nodes only. (It was just noticed that
the examples on the help pages for the R functions aster, anova.aster, and
predict.aster had the old-style formulas. Those help pages have now been
�xed.)

The only di�erence between the example just discussed (which now matches
the example on the help page for the aster function) and the ones in this
technical report (other than being random e�ects models) is that where it says
hdct we would now say fit, taking that for a conventional name of a dummy
(indicator) variable that indicates ��tness� nodes of the graph.

Thus the dictum: every variable for which one wants to establish a rela-
tionship with (overall) �tness should enter every formula �interacted with� fit
(but, as explained above, �interacted with� is a bad description, hence the scare
quotes). And that �interacted with� must be the colon operator (:) in the R
formula mini-language, not the star operator (*), as in pop : fit.

4.2 Other Fitness Components

In general it makes no scienti�c sense to have terms without interaction in
aster model formulas, except for varb if that is what one is calling the factor that
indicates nodes of the graph (as it does in all of the examples in this technical
report and earlier aster technical reports and in the aster papers these technical
reports accompanied). The reason why one should not, for example, have pop

by itself is that it makes no sense to have one parameter for the population
e�ect on all �tness components (survival and fecundity, or survival, �owering
indicator, and number of �owers). That is why the four models tested by Geyer
et al. (2007, Table 1), which can be simpli�ed (as discussed above) to

Model 1 resp ~ varb + level:(nsloc + ewloc)

Model 2 resp ~ varb + level:(nsloc + ewloc) + fit:pop

Model 3 resp ~ varb + level:(nsloc + ewloc) + factor(fit)*pop

Model 4 resp ~ varb + level:(nsloc + ewloc) + level*pop

have some �interaction� (again with scare quotes because they should not be
interpreted as interactions) with either fit or level or varb, all of which are
indicators for certain nodes of the graph or groups of nodes of the graph. These
�interactions� make certain regression coe�cients only apply to certain nodes of
the graph. In model 1 there are no pop e�ects. In model 2 there are pop e�ects
only for �tness nodes (the head count nodes that together are the best surrogate
of observed �tness). In model 3 there are pop e�ects not only for �tness node
but also for non-�tness nodes. We would now say this model doesn't really
make scienti�c sense and Geyer et al. (2007) said the same thing (�it is di�cult
to interpret Model 3 scienti�cally . . .�) because non-�tness nodes includes two
di�erent �tness components (survival and �owering indicator) and these should
have separate parameters not the same parameters. Thus we should not use
Model 3 even though it �ts best according to purely statistical criteria. In model
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4 there are pop e�ects for each population and each �level� (which is shorthand
for component of �tness), that is, there are separate pop e�ects for survival, for
�owering, and for head count. And that also makes scienti�c sense. We could
also have a model 5 in which the last term in the formula is varb*pop but that
would be a lot of parameters.

Whenever possible, one wants to have fit interaction with all predictors
with which one wants to establish a relation with �tness. As Geyer et al. (2007)
discuss, models other than Model 2 are di�cult to interpret. The fact that
fit:pop is statistically signi�cant has the direct interpretation that individuals
having di�erent parental populations have di�erent �tness. Model 4, in contrast,
says that all �tness components vary with respect to parental population, not
necessarily in the same direction, and the e�ect on overall �tness is unclear.

5 Radish Data

We use data on the invasive California wild radish (Raphanus sativus) de-
scribed by Ridley and Ellstrand (2010) and contained in the dataset radish in
the R contributed package aster. For each individual, three response variables
are observed, connected by the following graphical model

1
Ber−−−−→ y1

0-Poi−−−−→ y2
Poi−−−−→ y3

y1 being an indicator of whether any �owers were produced, y2 being the count
of the number of �owers produced, y3 being the count of the number of fruits
produced, the unconditional distribution of y1 being Bernoulli, the conditional
distribution of y2 given y1 being zero-truncated Poisson, and the conditional
distribution of y3 given y2 being Poisson.

We load the data

> data(radish)

> names(radish)

[1] "Site" "Block" "Region" "Pop"

[5] "varb" "resp" "id" "root"

[9] "varbFlowering" "varbFlowers" "fit"

> levels(radish$varb)

[1] "Flowering" "Flowers" "Fruits"

This is a �long format� data frame produced by the R command reshape from
�wide format� data. The variable varb indicates which components of the re-
sponse vector (variable resp) corresponded to which original variables in the
�wide format� data (components of �tness). The variable fit is the indicator
of the best surrogate of �tness in these data, which is the last node (y3) of the
graph and the "Fruits" level of varb.

Then set up the graphical model

> pred <- c(0,1,2)

> fam <- c(1,3,2)

> sapply(fam.default(), as.character)[fam]
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[1] "bernoulli" "truncated.poisson(truncation = 0)"

[3] "poisson"

These data come from a designed experiment started with seeds collected
from three large wild populations of northern, coastal California wild radish
and three populations of southern, inland California wild radish. Thus we have
populations nested within region.

> reg2pop <- split(as.character(radish$Pop), as.character(radish$Region))

> reg2pop <- lapply(reg2pop, unique)

> reg2pop

$N

[1] "HLFMNGRVST" "SEARANCH" "STYSITE"

$S

[1] "JHNSNRCH" "NEWSW33HMT" "WATKINSUCR"

Plants were grown at two experimental sites, one northern, coastal California
�eld site located at Point Reyes National Seashore and one southern, inland
site located at the University of California Riverside Agricultural Experiment
Station. Blocks were nested within site.

> sit2blk <- split(as.character(radish$Block), as.character(radish$Site))

> sit2blk <- lapply(sit2blk, unique)

> sit2blk

$`Point Reyes`

[1] "6" "7" "8" "9" "10"

$Riverside

[1] "1" "2" "3" "4" "5"

The issue of main scienti�c interest is the interaction of region and site, which is
indicative of local adaptation when the pattern of mean values shows that each
population does better in its home environment than in others. Testing signif-
icance of this interaction is complicated by the nesting of populations within
region and blocks within site and the desire of scientists to treat these nested
factors as random e�ects.

The best surrogate of �tness in these data is the Fruits component of the
response vector. Thus we form the �interaction� with the indicator of this com-
ponent and all scienti�cally interesting predictors (Section 4 above).

5.1 A Fixed E�ects Model

The �xed e�ects model most closely connected with the random e�ects model
of interest is

> aout <- aster(resp ~ varb + fit : (Site * Region + Block + Pop),

+ pred, fam, varb, id, root, data = radish)

> options(show.signif.stars = FALSE)

> summary(aout)
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Call:

aster.formula(formula = resp ~ varb + fit:(Site * Region + Block +

Pop), pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = radish)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.671e+02 1.753e+00 -266.445 < 2e-16

varbFlowers 4.740e+02 1.755e+00 270.020 < 2e-16

varbFruits 4.652e+02 1.760e+00 264.292 < 2e-16

fit:SitePoint Reyes 5.148e-01 1.300e-02 39.587 < 2e-16

fit:RegionS 3.507e-03 9.736e-03 0.360 0.71871

fit:Block2 3.370e-01 1.466e-02 22.990 < 2e-16

fit:Block3 9.366e-01 1.605e-02 58.370 < 2e-16

fit:Block4 9.611e-01 1.594e-02 60.313 < 2e-16

fit:Block5 1.220e+00 1.501e-02 81.321 < 2e-16

fit:Block6 2.849e-01 1.652e-02 17.246 < 2e-16

fit:Block7 1.975e-01 1.361e-02 14.518 < 2e-16

fit:Block8 5.508e-02 1.895e-02 2.906 0.00366

fit:Block9 1.680e-01 1.224e-02 13.725 < 2e-16

fit:PopJHNSNRCH -2.565e-03 6.539e-03 -0.392 0.69492

fit:PopNEWSW33HMT -1.918e-01 9.955e-03 -19.264 < 2e-16

fit:PopSEARANCH 1.879e-01 1.155e-02 16.273 < 2e-16

fit:PopSTYSITE -1.932e-03 9.799e-03 -0.197 0.84371

fit:SiteRiverside:RegionS 5.005e-01 1.212e-02 41.311 < 2e-16

Original predictor variables dropped (aliased)

fit:SiteRiverside

fit:Block10

fit:PopWATKINSUCR

Note: the variable fit is the same as the dummy variable varbFruits con-
structed by the aster model software.

The parameter of main scienti�c interest is the regression coe�cient named
(by R) fit:SiteRiverside:RegionS, which is the region by site interaction.
A statistically signi�cantly nonzero value of this parameter may indicate local
adaptation (more on this in Section 5.3 below). In the �t above, this parameter
is indeed highly statistically signi�cant, but that P -value does not take the
random e�ects story into account.

5.2 Random E�ects Model

The traditional way to deal with a situation like this is to treat the population
e�ects as random (within region) and the block e�ects as random (within site).
We now do (an approximation to) this. To specify a random-e�ects aster model
using the R function reaster one supplies either two formulas (when there is
only one variance component) or one formula and a list of formulas (when there
is more than one variance component). The �rst formula speci�es the �xed
e�ects model matrix (M in the notation of Section 1), and the second formula
or list of formulas speci�es the random e�ects model matrix (Z in the notation of
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Section 1). When there is a list of formulas, each formula speci�es the columns
of the random e�ects model matrix that go with one variance component. The
components of the list should be named, because the names are taken to name
the variance components. The �rst formula (for �xed e�ects) is just like in
an ordinary aster model (or a linear or generalized linear model). The other
formulas (for random e�ects) are somewhat di�erent in that they (1) do not
need a response (that is speci�ed by the �xed e�ects formula) and (2) should
not have an intercept (the way to specify this is to pre�x the formula with 0

+). Hence the following. Note that we are following the dictum of Section 4.

> rout <- reaster(resp ~ varb + fit : (Site * Region),

+ list(block = ~ 0 + fit : Block, pop = ~ 0 + fit : Pop),

+ pred, fam, varb, id, root, data = radish)

> summary(rout)

Call:

reaster.formula(fixed = resp ~ varb + fit:(Site * Region), random = list(block = ~0 +

fit:Block, pop = ~0 + fit:Pop), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = radish)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -467.24221 1.75183 -266.717 <2e-16

varbFlowers 474.13812 1.75416 270.293 <2e-16

varbFruits 466.11027 1.76038 264.779 <2e-16

fit:SitePoint Reyes -0.03620 0.20781 -0.174 0.862

fit:RegionS -0.12249 0.07892 -1.552 0.121

fit:SiteRiverside:RegionS 0.49930 0.01211 41.223 <2e-16

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

block 0.32820 0.07358 4.461 4.09e-06

pop 0.09619 0.02992 3.214 0.000654

The results are somewhat di�erent from the �xed e�ects analysis. One �xed
e�ect fit:SitePoint Reyes, which was statistically signi�cant in the �xed ef-
fects model, is not statistically signi�cant in the random e�ects model. The
main scienti�c conclusions, however, do not change (Section 5.3 below).

We also try out some options of the summary.reaster function, not because
they are particularly interesting here, but just to illustrate them

> summary(rout, standard.deviation = FALSE)

Call:

reaster.formula(fixed = resp ~ varb + fit:(Site * Region), random = list(block = ~0 +

fit:Block, pop = ~0 + fit:Pop), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = radish)
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Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -467.24221 1.75183 -266.717 <2e-16

varbFlowers 474.13812 1.75416 270.293 <2e-16

varbFruits 466.11027 1.76038 264.779 <2e-16

fit:SitePoint Reyes -0.03620 0.20781 -0.174 0.862

fit:RegionS -0.12249 0.07892 -1.552 0.121

fit:SiteRiverside:RegionS 0.49930 0.01211 41.223 <2e-16

Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

block 0.107716 0.048297 2.230 0.0129

pop 0.009252 0.005757 1.607 0.0540

Now the estimates in the Variance Components section of the printout are
variance components ν̂k = σ̂2

k rather than their square roots as we had before.
We do not recommend this option standard.deviation = FALSE because the
standard errors, derived from the delta method go to zero as νk goes to zero, and
this is wrong (it is right �in asymptopia� but for su�ciently small νk whatever
sample size one has is too small). Thus this option seems to provide worse
estimates than the default.

5.3 Does this Reanalysis Change Biological Conclusions?

In short, no. Ridley and Ellstrand (2010) did not do a random e�ects aster
analysis because it had not yet been invented. Nevertheless their conclusions
hold up. The main conclusion of interest being local adaptation, which is indi-
cated by the statistical signi�cance of the �xed e�ect for region-site interaction
and the pattern of mean values for di�erent populations and di�erent blocks,
which we do not examine (this was done by Ridley and Ellstrand, 2010).

The fact that random e�ects analysis and �xed e�ects analysis agree quali-
tatively on this one example does not, of course, prove that they would agree on
all examples. In these data the region-site interaction is very large and almost
any sensible statistical analysis would show it. When the interaction is not so
large, the analysis done will make a di�erence.

6 Bootstrapping the Radish Data

In this section we do a parametric bootstrap to check the standard errors
provided by reaster and summary. First we store the (approximate) maximum
likelihood estimates

> names(rout)

[1] "obj" "fixed" "random" "dropped" "sigma"

[6] "nu" "c" "b" "alpha" "zwz"

[11] "response" "origin" "iterations" "counts" "deviance"

[16] "formula" "call"
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> alpha.hat <- rout$alpha

> sigma.hat <- rout$sigma

> nu.hat <- rout$nu

> b.hat <- rout$b

> c.hat <- rout$c

> sout <- summary(rout)

> se.alpha.hat <- sout$alpha[ , "Std. Error"]

> se.sigma.hat <- sout$sigma[ , "Std. Error"]

> se.nu.hat <- sout$nu[ , "Std. Error"]

> fixed <- rout$fixed

> random <- rout$random

> modmat.tot <- cbind(fixed, Reduce(cbind, random))

> nfix <- ncol(fixed)

> nrand <- sapply(random, ncol)

> a.hat <- rep(sigma.hat, times = nrand)

To simulate new aster data we �rst need to change from unconditional canon-
ical parameters to conditional canonical parameters (because that's what the R
function raster requires).

> c.star <- rnorm(sum(nrand))

> b.star <- a.hat * c.star

> eff.star <- c(alpha.hat, b.star)

> phi.star <- as.numeric(as.vector(rout$obj$origin) + modmat.tot %*% eff.star)

> theta.star <- astertransform(phi.star, rout$obj, to.cond = "conditional",

+ to.mean = "canonical")

> y.star <- raster(theta.star, pred, fam, rout$obj$root)

> y.star <- as.vector(y.star)

Now we need to redo the above analysis on the new data. We can take the
simulation truth as starting values.

> rout.star <- reaster(y.star ~ varb + fit : (Site * Region),

+ list(block = ~ 0 + fit : Block, pop = ~ 0 + fit : Pop),

+ pred, fam, varb, id, root, data = radish,

+ effects = c(alpha.hat, c.star), sigma = sigma.hat)

> sout.star <- summary(rout.star)

> print(sout.star)

Call:

reaster.formula(fixed = y.star ~ varb + fit:(Site * Region),

random = list(block = ~0 + fit:Block, pop = ~0 + fit:Pop),

pred = pred, fam = fam, varvar = varb, idvar = id, root = root,

data = radish, effects = c(alpha.hat, c.star), sigma = sigma.hat)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -465.37498 3.41631 -136.222 <2e-16

varbFlowers 472.27137 3.41732 138.199 <2e-16

varbFruits 464.39985 3.41932 135.816 <2e-16
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fit:SitePoint Reyes 0.04351 0.16525 0.263 0.792

fit:RegionS -0.09240 0.09720 -0.951 0.342

fit:SiteRiverside:RegionS 0.50187 0.01262 39.763 <2e-16

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

block 0.26083 0.05863 4.448 4.32e-06

pop 0.11846 0.03604 3.287 0.000507

Now we want to get estimates and standard errors for this �t

> alpha.star <- rout.star$alpha

> sigma.star <- rout.star$sigma

> nu.star <- rout.star$nu

> as.vector(alpha.star - alpha.hat)

[1] 1.867230807 -1.866751889 -1.710425953 0.079703193 0.030085659

[6] 0.002567234

> as.vector(sigma.star - sigma.hat)

[1] -0.06737231 0.02227430

> as.vector(nu.star - nu.hat)

[1] -0.039684234 0.004781172

> se.alpha.star <- sout.star$alpha[ , "Std. Error"]

> se.sigma.star <- sout.star$sigma[ , "Std. Error"]

> se.nu.star <- sout.star$nu[ , "Std. Error"]

So this is the analysis we bootstrap. All we need to do is put it in a loop.
The bootstrap takes a long time (see below) if done with a reasonable sample

size. Here we use bootstrap sample size

> nboot <- 199

Thus we save the results and restore them here

> suppressWarnings(foo <- try(load("radish-boot.rda"), silent = TRUE))

> done <- (! inherits(foo, "try-error")) &&

+ identical(.Random.seed, signature$seed) &&

+ identical(nboot, signature$nboot) &&

+ identical(alpha.hat, signature$alpha) &&

+ identical(sigma.hat, signature$sigma)

> done

[1] FALSE

If done is TRUE then the bootstrap is already done and its results restored.
Otherwise we have to do it, either because it has never been done or because
one or more of the values of the R objects that (partially) determine it has
changed. The reason for using both the suppressWarnings function and the
silent = TRUE argument to the try function is that when the �le we are trying
to load does not exist the load function gives both an error and a warning.

So now we are ready to try it out.
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> if (! done) {

+ signature <- list(seed = .Random.seed, nboot = nboot, alpha = alpha.hat,

+ sigma = sigma.hat)

+ boot.start.time <- proc.time()

+

+ alpha.star <- matrix(NaN, nboot, length(alpha.hat))

+ sigma.star <- matrix(NaN, nboot, length(sigma.hat))

+ nu.star <- matrix(NaN, nboot, length(nu.hat))

+ se.alpha.star <- alpha.star

+ se.sigma.star <- sigma.star

+ se.nu.star <- nu.star

+

+ for (iboot in 1:nboot) {

+ c.star <- rnorm(sum(nrand))

+ b.star <- a.hat * c.star

+ eff.star <- c(alpha.hat, b.star)

+ phi.star <- as.numeric(as.vector(rout$obj$origin) +

+ modmat.tot %*% eff.star)

+ theta.star <- astertransform(phi.star, rout$obj,

+ to.cond = "conditional", to.mean = "canonical")

+ y.star <- raster(theta.star, pred, fam, rout$obj$root)

+ y.star <- as.vector(y.star)

+

+ rout.star <- reaster(y.star ~ varb + fit : (Site * Region),

+ list(block = ~ 0 + fit : Block, pop = ~ 0 + fit : Pop),

+ pred, fam, varb, id, root, data = radish,

+ effects = c(alpha.hat, c.star), sigma = sigma.hat)

+ sout.star <- suppressWarnings(summary(rout.star))

+

+ alpha.star[iboot, ] <- rout.star$alpha

+ sigma.star[iboot, ] <- rout.star$sigma

+ nu.star[iboot, ] <- rout.star$nu

+ se.alpha.star[iboot, ] <- sout.star$alpha[ , "Std. Error"]

+ se.sigma.star[iboot, ] <- sout.star$sigma[ , "Std. Error"]

+ se.nu.star[iboot, ] <- sout.star$nu[ , "Std. Error"]

+ }

+

+ boot.stop.time <- proc.time()

+ save.random.seed <- .Random.seed

+ save(signature, alpha.star, sigma.star, nu.star, se.alpha.star,

+ se.sigma.star, se.nu.star,

+ boot.start.time, boot.stop.time, save.random.seed,

+ file = "radish-boot.rda")

+ } else {

+ .Random.seed <- save.random.seed

+ }

The bootstrap with bootstrap sample size 199 took 0 hours, 5 minutes, and 50.7
seconds.
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Occasionally, the summary function fails to calculate standard errors. The
following tells us how many times this happened.

> sum(! is.finite(se.alpha.star[ , 1]))

[1] 1

Now we make standardized quantities

> z <- cbind(alpha.star, sigma.star)

> z <- sweep(z, 2, c(alpha.hat, sigma.hat))

> se.z <- cbind(se.alpha.star, se.sigma.star)

> z <- z / se.z

> apply(z, 2, mean)

[1] -0.19449646 0.19456491 0.19331165 0.17984055 0.01434750

[6] 0.01499696 -1.37949472 -1.25354773

> apply(z, 2, sd)

[1] 1.0189243 1.0190112 1.0146962 1.3651307 1.4327493 0.9472664

[7] 1.4910829 1.9438870

Not exactly standard normal (mean zero, standard deviation one). In fact, some
seem quite far from standard normal.

If we apply more robust estimators of location and scale

> apply(z, 2, median)

[1] -0.02503285 0.02497086 0.01018879 0.10817474 0.08707737

[6] 0.09771285 -1.05151138 -0.86355658

> apply(z, 2, mad)

[1] 1.045318 1.045800 1.050378 1.239033 1.165617 1.007494 1.338282

[8] 1.306944

we see that some of the non-normality appears to be due to outliers, but the dis-
tributions are still nowhere near standard normal. This means if we really want
accurate tests and con�dence intervals, they cannot be based on the standard
errors printed out by summary.reaster.

Suppose we want a 95% con�dence interval for the coe�cient for the �xed
e�ect named "fit:SiteRiverside:RegionS". Instead of using

point estimate± 1.96× standard error

we should use critical values derived from the bootstrap distribution. Here's
how to do that.

> conf.level <- 0.95

> n <- "fit:SiteRiverside:RegionS"

> colnames(z) <- c(names(alpha.hat), names(sigma.hat))

> myz <- z[ , n]

> crit <- quantile(myz, probs = c((1 - conf.level) / 2, (1 + conf.level) / 2))

> crit
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2.5% 97.5%

-1.769053 1.677903

> alpha.hat[n] - rev(crit) * se.alpha.hat[n]

97.5% 2.5%

0.4789797 0.5207304

In this case, the bootstrap critical values are actually smaller than 1.96 so the
bootstrap con�dence interval is actually shorter than the con�dence interval
based on the standard error printed out by summary.reaster. But that won't
be true in general.

Let us look at what seems to be the worst (most non-standard-normal)
bootstrap distribution, that for ν1.

> n <- "block"

> myz <- z[ , n]

> myz <- myz[! is.na(myz)]

makes the bootstrap z-scores and

> qqnorm(myz)

> qqline(myz)

makes a Q-Q plot (Figure 1).
We see from Fig. 1 that the distribution is not too far from normal in the

middle (Tukey's law: all distributions look normal in the middle), but is centered
in the wrong place (median = -1.052) has the wrong spread (1.4826 times median
absolute deviation = 1.338), is skewed with a long left tail and short right tail.

For comparison we make the analogous plot for the corresponding variance
component.

> n <- 1

> myz <- (nu.star[ , n] - nu.hat[n]) / se.nu.star[ , n]

> myz <- myz[! is.na(myz)]

> mean(myz)

[1] -1.848132

> sd(myz)

[1] 2.249301

> median(myz)

[1] -1.176664

> mad(myz)

[1] 1.535348

The following code
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Figure 1: Q-Q plot of bootstrap z-scores for σ1 (square root of variance com-
ponent for blocks).
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Figure 2: Q-Q plot of bootstrap z-scores for ν1 (of variance component for
blocks).
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> qqnorm(myz)

> qqline(myz)

makes the Q-Q plot for this (Figure 2). We see that the bootstrap distribution
of the variance component is even worse than the distribution of its square root.
That is why we recommend using square roots of variance components.

That is the end of bootstrap analysis in this technical report. We see the
asymptotic standard errors produced by reaster and summary are not perfect
and not horrible. We will just use them from now on.

7 Oats Data

7.1 Data

We use data on the slender wild oat (Avena barbata) described by Latta
(2009) and contained in the dataset oats in the R contributed package aster.
For each individual, two response variables are observed, connected by the fol-
lowing graphical model

1
Ber−−−−→ y1

0-Poi−−−−→ y2

y1 being an indicator of whether any spikelets (compound �owers) were pro-
duced, y2 being the count of the number of spikelets produced, the uncondi-
tional distribution of y1 being Bernoulli, and the conditional distribution of y2

given y1 being zero-truncated Poisson.
We load the data

> data(oats)

> names(oats)

[1] "Plant.id" "Env" "Gen" "Fam" "Site" "Year"

[7] "varb" "resp" "id" "root" "fit"

> levels(oats$varb)

[1] "Spike" "Surv"

This is a �long format� data frame produced by the R command reshape from
�wide format� data. The variable varb indicates which components of the re-
sponse vector (variable resp) corresponded to which original variables in the
�wide format� data (components of �tness). The variable fit is the indicator
of the best surrogate of �tness in these data, which is the last node (y2) of the
graph and the "Spike" level of varb.

Then set up the graphical model

> pred <- c(0, 1)

> fam <- c(1, 3)

> sapply(fam.default(), as.character)[fam]

[1] "bernoulli"

[2] "truncated.poisson(truncation = 0)"
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These data come from a designed experiment started with seeds collected in
the 1980's in northern California of the xeric (found in drier regions) and mesic
(found in less dry regions) ecotypes. The variable Gen is the ecotype ("X" or
"M"). The variable Fam is the accession (nested within Gen). The variable Site
is the site. The variable Year is the year (2003 to 2007). The experimental sites
were at the Sierra Foothills Research and Extension Center (Site == "SF"),
which is northeast of Sacramento on the east side of the Central Valley of
California, and at the Hopland Research and Extension center (Site = "Hop"),
which is in the California Coastal Ranges north of San Francisco. Hopland
receives 30% more rainfall and has a less severe summer drought than Sierra
foothills. The best surrogate of �tness in these data is the Spike component of
the response vector. Thus we form the �interaction� with the indicator of this
component and all scienti�cally interesting predictors (Section 4 above).

7.2 Random E�ects Model

The random e�ects model of interest is complicated because interactions
were statistically signi�cant in the normal-normal (normal data, normal random
e�ects) analysis, and we include them here too.

E�ect Type
Site �xed
Year random
Gen �xed
Fam random
Gen ∗ Site �xed
Gen ∗Year random
Site ∗ Fam random
Year ∗ Fam random

Note that the interaction of a �xed e�ect and a random e�ect is a random e�ect.
Each of these random e�ects is a vector whose components are assumed to have
the same variance, so there is one variance component for each. And we need
one random e�ects model matrix for each.

The following statements �t the random e�ects model.

> data(oats)

> pred <- c(0,1)

> fam <- c(1,3)

> rout <- reaster(resp ~ varb + fit : (Gen * Site),

+ list(year = ~ 0 + fit : Year, fam = ~ 0 + fit : Fam,

+ fam.site = ~ 0 + fit : Fam : Site, fam.year = ~ 0 + fit : Fam : Year,

+ gen.year = ~ 0 + fit : Gen : Year),

+ pred, fam, varb, id, root, data = oats)

> summary(rout)

Call:

reaster.formula(fixed = resp ~ varb + fit:(Gen * Site), random = list(year = ~0 +

fit:Year, fam = ~0 + fit:Fam, fam.site = ~0 + fit:Fam:Site,

fam.year = ~0 + fit:Fam:Year, gen.year = ~0 + fit:Gen:Year),
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pred = pred, fam = fam, varvar = varb, idvar = id, root = root,

data = oats)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.86833 0.36873 7.779 7.31e-15

varbSurv -15.15044 0.48600 -31.174 < 2e-16

fit:GenM 0.27250 0.13975 1.950 0.05118

fit:SiteSF -0.32606 0.09609 -3.393 0.00069

fit:GenX:SiteSF 0.09138 0.14293 0.639 0.52259

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

year 0.70794 0.25524 2.774 0.00277

fam 0.00000 NA NA NA

fam.site 0.17502 0.03013 5.810 3.13e-09

fam.year 0.18193 0.02538 7.168 3.80e-13

gen.year 0.10987 0.06078 1.807 0.03534

Again we have made an �interaction� with fit and all scienti�cally interesting
e�ects, either �xed or random, as explained in Section 4.

We see that all variance components are signi�cantly di�erent from zero ex-
cept for the fam random e�ect, which is estimated to be exactly zero. This
happens in aster models with random e�ects, just like it happens in traditional
normal-normal (normal data, normal random e�ects) random e�ects models.
In this case, asymptotic normality does not hold. Part of the asymptotic dis-
tribution of the maximum likelihood estimator is an atom at zero, and any
distribution having an atom is not normal. For this reason, the standard error
for this variance component is reported as NA and similarly for the z-value and
P -value. Anyway, there is no point in a P -value for testing whether this vari-
ance component is nonzero (when the data favor the null hypothesis, you don't
need a P -value to accept the null hypothesis).

7.3 Does this Reanalysis Change Biological Conclusions?

In short, no. Latta (2009) did not do a random e�ects aster analysis be-
cause it had not yet been invented (instead he assumed normal response and
did a conventional normal-normal random e�ects analysis). Nevertheless his
conclusions hold up.

Local adaptation, which would have been shown by an interaction of ecotype
with site was of interest, but was not found in the analysis by Latta (2009) using
a conventional normal-normal random e�ects model. Instead it was found that
the mesic ecotype had higher �tness (survived and reproduced better) in all en-
vironments. Our analysis here using aster models with random e�ects con�rms
this �nding. This interaction is the coe�cient named (by R) fit:GenX:SiteSF,
which is the ecotype by site interaction. A statistically signi�cantly nonzero
value of this parameter would have indicated local adaptation if the pattern of
mean values for ecotypes in the various sites had been as expected with local
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adaptation (each ecotype �tter in its home environment); these mean values are
given in Latta (2009) (and do not show the pattern expected for local adapta-
tion, so this test is moot, nevertheless we look at its P -value anyway). However
this interaction is not statistically signi�cant (P = 0.523). Like in our reanal-
ysis, Latta (2009) did not �nd evidence of local adaptation. Instead, he found
that the mesic ecotype had more �tness in all environments.

8 Partridge Pea Data

8.1 Data

We use data on the partridge pea (Chamaecrista fasciculata) described by
Etterson (2004a,b) and Etterson and Shaw (2001) and contained in the dataset
chamae3 in the R contributed package aster. For each individual, two response
variables are observed, connected by the following graphical model

1
Ber−−−−→ y1

0-Poi−−−−→ y2

y1 being an indicator of whether any fruits were produced, y2 being the count
of the number of fruits produced, the unconditional distribution of y1 being
Bernoulli, and the conditional distribution of y2 given y1 being zero-truncated
Poisson.

We load the data

> data(chamae3)

> names(chamae3)

[1] "SIRE" "DAM" "POP" "SITE" "ROW" "BLK" "varb" "resp" "id"

[10] "root" "fit"

> levels(chamae3$varb)

[1] "fecund" "fruit"

This is a �long format� data frame produced by the R command reshape from
�wide format� data. The variable varb indicates which components of the re-
sponse vector (variable resp) corresponded to which original variables in the
�wide format� data (components of �tness). The variable fit is the indicator
of the best surrogate of �tness in these data, which is the last node (y2) of the
graph and the "fruit" level of varb.

Then set up the graphical model

> pred <- c(0, 1)

> fam <- c(1, 3)

> sapply(fam.default(), as.character)[fam]

[1] "bernoulli"

[2] "truncated.poisson(truncation = 0)"

We show more information about variables in this dataset.

> levels(chamae3$POP)
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[1] "1" "2" "3"

> levels(chamae3$SITE)

[1] "K" "M" "O"

> nlevels(chamae3$SIRE)

[1] 146

> nlevels(chamae3$DAM)

[1] 438

> head(chamae3$SIRE)

[1] 3030 3136 3004 1129 3175 1145

146 Levels: 1004 1021 1022 1026 1029 1030 1033 1034 1039 1040 ... 3199

> head(chamae3$DAM)

[1] 3149 3119 3190 1086 3008 1096

438 Levels: 1001 1002 1003 1005 1006 1007 1008 1009 1010 1011 ... 3201

C. fasciculata grows in the Great Plains of North America from southern Min-
nesota to Mexico. Three focal populations were sampled in the following loca-
tions

1. Kellog-Weaver Dunes, Wabasha County, Minnesota

2. Konza Prairie, Riley County, Kansas

3. Pontotoc Ridge, Pontotoc County, Oklahoma

(the numbers for the list items correspond to the levels of the variable POP in
the dataset). These sites are progressively more arid from north to south and
also di�er in other characteristics. Seed pods were collected from 200 plants
in each of these three natural populations, crosses were done, germinated, and
raised in the greenhouse. The parent plants are indicated by the variables SIRE
and DAM in the dataset. The seedlings from the greenhouse were planted using
a randomized block design (Etterson, 2004b) in three �eld sites

"O" Robert S. Kerr Environmental Research Center, Ada, Oklahoma

"K" Konza Prairie Research Natural Area, Manhatten, Kansas

"M" University of Minnesota, St. Paul Minnesota

(the characters for the list items correspond to the levels of the variable SITE

in the dataset). The Oklahoma �eld site was 30 km northwest of the Oklahoma
natural population; the Kansas �eld site was 5 km from the Kansas natural
population; the Minnesota �eld site was 110 km northwest of the Minnesota
natural population.
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These data are a subset of data previously analyzed by non-aster methods
by Etterson (2004a,b) and Etterson and Shaw (2001) and by aster but not
random e�ects aster methods by Shaw et al. (2008). Seed counts were also
observed on up to three seed pods per plant and fecundity was estimated as
average seed count × pod number with some exceptions. In some cases, espe-
cially Minnesota genotypes in the Oklahoma site, pods had dehisced and the
plants senesced, in which case the number of pedicels that had remnant pod
fragments still attached were counted and fecundity was imputed using the av-
erage seed count of the other full-sib replicate within the block or, if that was
not available, the average seed count of the full-sib family across blocks. Be-
cause of the complexity of the seed count data, aster analysis that uses the seed
counts is di�cult (Shaw et al., 2008) and complicated and does not serve as a
good example. Thus here we analyze only the pod number data (level "fruit"
of variable varb), which does have straightforward aster analysis and serves as
a better example, even though this makes our reanalysis not really comparable
with the analysis in Etterson (2004b) which does use the seed counts. Shaw et
al. (2008, p. E43) explain two alternative experimental designs that would have
enabled straightforward aster analysis (including random e�ects aster models),
but, of course, this experiment was done before aster models were invented, so
there would have seemed no point to such designs at the time. Stanton-Geddes,
Shaw and Ti�n (2012) used one of these designs, but their data do not address
the questions we investigate here.

All individuals descended from all three natural populations were planted
in all three �eld sites, so these data can address local adaptation and previ-
ous analyses Etterson (2004b, Discussion) did �nd local adaptation. But local
adaptation is not the main point of interest for our analysis here. Instead we
investigate whether sire e�ects, which we treat as random e�ects, as did the
previous conventional quantitative genetics analysis (Etterson, 2004b) actually
appear to be normally distributed. We focus on sire e�ects although dam e�ects
are also treated as random e�ects because in this experimental design sire e�ects
are expected to correspond closely to pure breeding values but dam e�ects will
be confounded with maternal and dominance e�ects.

8.2 Analysis

First we do the aster analysis, analyzing each of the nine population-site
pairs separately. Since these analyses take a long time we save the results and
restore them here

> suppressWarnings(foo <- try(load("chamae-reaster.rda"), silent = TRUE))

> done <- (! inherits(foo, "try-error"))

> done

[1] FALSE

If done is TRUE then the analyses are already done and their results restored.
Otherwise we have to do them. First we subset the data, making a list whose
components are nine data frames (the data for the separate analyses).

> names(chamae3)
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[1] "SIRE" "DAM" "POP" "SITE" "ROW" "BLK" "varb" "resp" "id"

[10] "root" "fit"

> site <- as.character(chamae3$SITE)

> pop <- as.character(chamae3$POP)

> usite <- sort(unique(site))

> upop <- sort(unique(pop))

> usite

[1] "K" "M" "O"

> upop

[1] "1" "2" "3"

> rsite <- rep(usite, times = length(upop))

> rpop <- rep(upop, each = length(usite))

> cbind(rsite, rpop)

rsite rpop

[1,] "K" "1"

[2,] "M" "1"

[3,] "O" "1"

[4,] "K" "2"

[5,] "M" "2"

[6,] "O" "2"

[7,] "K" "3"

[8,] "M" "3"

[9,] "O" "3"

> nsitepop <- paste(rsite, rpop, sep = "")

> nsitepop

[1] "K1" "M1" "O1" "K2" "M2" "O2" "K3" "M3" "O3"

> if (! done) {

+ subdata <- list()

+ for (i in seq(along = rsite))

+ subdata[[nsitepop[i]]] <- droplevels(subset(chamae3,

+ site == rsite[i] & pop == rpop[i]))

+ }

> length(subdata)

[1] 9

> sapply(subdata, nrow)

K1 M1 O1 K2 M2 O2 K3 M3 O3

2108 2054 2034 2342 2256 2292 2020 1894 2062

> sapply(subdata, function(x) unique(x$SITE))
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K1 M1 O1 K2 M2 O2 K3 M3 O3

K M O K M O K M O

Levels: K M O

> sapply(subdata, function(x) unique(x$POP))

K1 M1 O1 K2 M2 O2 K3 M3 O3

1 1 1 2 2 2 3 3 3

Levels: 1 2 3

We see we have successfully done the subsetting.
Then we do the analysis.

> if (! done) {

+ pea.analysis.time <- system.time(

+ subout <- lapply(subdata, function(x) reaster(resp ~ varb + fit:BLK,

+ list(sire = ~ 0 + fit:SIRE, dam = ~ 0 + fit:DAM),

+ pred, fam, varb, id, root, data = x))

+ )

+ sumout <- lapply(subout, summary)

+ save(subdata, subout, sumout, pea.analysis.time,

+ file = "chamae-reaster.rda")

+ }

Because the results of these analyses are voluminous, we put them in Ap-
pendix B. The nine invocations of the reaster took 0 hours, 13 minutes, and
54.9 seconds all together.

8.3 Signi�cance Levels

> pp <- sapply(sumout, function(foo) foo$sigma["sire", "Pr(>|z|)/2"])

> round(pp, 4)

K1 M1 O1 K2 M2 O2 K3 M3 O3

0.0009 0.5000 0.0406 0.0000 0.0565 0.0305 0.0068 0.3771 0.0001

We see that the sire variance components for the Minnesota and Oklahoma
natural population are not close to statistically signi�cant at the Minnesota �eld
site. All the other sire variance components are at least borderline statistically
signi�cant.

8.4 Comparison of Breeding Values

Etterson (2004b, Figure 3) made scatterplots of breeding values (sire random
e�ects) and we do the same. First we need to get the sire e�ects.

> subbreed <- lapply(subout, function(foo) foo$b)

> head(names(subbreed[[1]]))

[1] "fit:SIRE1004" "fit:SIRE1021" "fit:SIRE1022" "fit:SIRE1026"

[5] "fit:SIRE1029" "fit:SIRE1030"
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> renames <- paste0("fit:SIRE", as.character(levels(chamae3$SIRE)))

> head(renames)

[1] "fit:SIRE1004" "fit:SIRE1021" "fit:SIRE1022" "fit:SIRE1026"

[5] "fit:SIRE1029" "fit:SIRE1030"

> subsire <- lapply(subout, function(foo) foo$b[renames])

> sapply(subsire, length)

K1 M1 O1 K2 M2 O2 K3 M3 O3

146 146 146 146 146 146 146 146 146

> sapply(subsire, function(foo) sum(is.finite(foo)))

K1 M1 O1 K2 M2 O2 K3 M3 O3

48 48 48 50 50 50 48 48 48

The following code

> subsubsire <- subsire[paste0(c("M", "K", "O"), 1)]

> pairs(as.data.frame(subsubsire))

makes the pairwise scatter plots (Figure 3). We don't see anything interest-
ing but that is perhaps because the breeding values for the Minnesota natural
population are small.

We then repeat the same procedure for the other two natural populations.
The code

> subsubsire <- subsire[paste0(c("M", "K", "O"), 2)]

> pairs(as.data.frame(subsubsire))

makes Figure 4, which is the Kansas natural population. The code

> subsubsire <- subsire[paste0(c("M", "K", "O"), 3)]

> pairs(as.data.frame(subsubsire))

makes Figure 5, which is the Oklahoma natural population.

8.5 Gaussianity of Breeding Values

Maximum likelihood makes the estimates of sire e�ects look normally dis-
tributed, even if the actual e�ects are not very normally distributed. This
section looks at this issue.

The code

> qqnorm(subsire$K2)

> qqline(subsire$K2)

makes Figure 6, which is for the Kansas-Kansas (Kansas natural population and
Kansas �eld site) sire e�ects. It shows them to be normally distributed.

These sire e�ects are penalized maximum likelihood estimators with quadratic
penalty (b∗ in the notation of Section 1.4 above) with penalty parameter (re-
ciprocal variance component) estimated by approximate maximum likelihood
(minimizing q de�ned in that section).
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Figure 3: Pairwise scatter plots of sire e�ects for the Minnesota natural popu-
lation at the various �eld sites (M1 is Minnesota site, K1 is Kansas site, and O1

is Oklahoma site.
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Figure 4: Pairwise scatter plots of sire e�ects for the Kansas natural population
at the various �eld sites (M2 is Minnesota site, K2 is Kansas site, and O2 is
Oklahoma site.
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Figure 5: Pairwise scatter plots of sire e�ects for the Oklahoma natural popu-
lation at the various �eld sites (M3 is Minnesota site, K3 is Kansas site, and O3

is Oklahoma site.
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Figure 6: Q-Q plot of sire e�ects for the Kansas natural population at the
Kansas �eld site.
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If we broaden our context, such penalized maximum likelihood estimators are
nothing new (Good and Gaskins, 1971; Hoerl and Kennard, 1970; Green, 1987;
Hastie, Tibshirani and Friedman, 2009) and are widely used in statistics. What
is di�erent here is that elsewhere the penalty parameter (the multiplier of the
penalty function) is chosen by cross-validation or AIC or some such device. The
penalty parameter is not considered to be a parameter like other parameters,
but as a constant to be adjusted to get good �t or good predictions.

If we take o� our �normal random e�ects� hat and stop believing that there
really random variables (the sire e�ects) that, although unobserved and unob-
servable even in principle, are exactly homoscedastically normally distributed,
then we can still use penalized maximum likelihood. Let us see what happens
when we use much smaller penalty (larger sire variance component) than the
maximum likelihood penalty. We cannot use zero penalty because the sire ef-
fects are confounded with other e�ects (with the intercept and also with the
dam e�ects). But we can use any nonzero penalty.

We try �rst with one-tenth the penalty (10 times the maximum likelihood
sire variance component). There is not a nice function like reaster to do this.
We have to use some of the �plumbing� functions that reaster calls.

> alpha.mle <- subout$K2$alpha

> sigma.mle <- subout$K2$sigma

> c.mle <- subout$K2$c

> sigma.penal10 <- c(sqrt(10), 1) * sigma.mle

> fixed <- subout$K2$fixed

> random <- subout$K2$random

> obj <- subout$K2$obj

> tout <- trust(objfun = penmlogl2, parinit = c.mle, rinit = 1, rmax = 10,

+ alpha = alpha.mle, sigma = sigma.penal10, fixed = fixed,

+ random = random, obj = obj)

> stopifnot(tout$converged)

> oldsire <- subsire$K2[is.finite(subsire$K2)]

> neweff <- tout$argument * tout$scale

The code

> newsire10 <- neweff[grep("SIRE", names(neweff))]

> plot(oldsire, newsire10, xlab = "MLE sire effects",

+ ylab = "sire effects with 1 / 10 the MLE penalty")

> abline(line(oldsire, newsire10))

makes Figure 7, which is still for the Kansas-Kansas sire e�ects but now plots
the MLE e�ects against e�ects with smaller penalty. This doesn't show any
non-normality. There is almost perfect linearity between the old and new sire
e�ects. If one looks normal, then so will the other.

So try again with one-hundredth the penalty (100 times the maximum like-
lihood sire variance component).

> sigma.penal100 <- c(sqrt(100), 1) * sigma.mle

> tout <- trust(objfun = penmlogl2, parinit = tout$argument, rinit = 1, rmax = 10,

+ alpha = alpha.mle, sigma = sigma.penal100, fixed = fixed,

+ random = random, obj = obj)
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Figure 7: Plot of sire e�ects for the Kansas natural population at the Kansas
�eld site estimated with the MLE penalty parameter (variance component) and
1 / 10 of that penalty.
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Figure 8: Plot of sire e�ects for the Kansas natural population at the Kansas
�eld site estimated with the MLE penalty parameter (variance component) and
1 / 100 of that penalty.

> stopifnot(tout$converged)

> neweff <- tout$argument * tout$scale

The code

> newsire100 <- neweff[grep("SIRE", names(neweff))]

> plot(oldsire, newsire100, xlab = "MLE sire effects",

+ ylab = "sire effects with 1 / 100 the MLE penalty")

> abline(line(oldsire, newsire100))

makes Figure 8, which is still for the Kansas-Kansas sire e�ects but now plots
the MLE e�ects against e�ects with even smaller penalty. This again doesn't
show any non-normality.

So try again with one-millionth the penalty (106 times the maximum likeli-
hood sire variance component).

> sigma.penal1e6 <- c(sqrt(1e6), 1) * sigma.mle

> tout <- trust(objfun = penmlogl2, parinit = tout$argument, rinit = 1, rmax = 10,

+ alpha = alpha.mle, sigma = sigma.penal1e6, fixed = fixed,

+ random = random, obj = obj)

> stopifnot(tout$converged)

> neweff <- tout$argument * tout$scale
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Figure 9: Plot of sire e�ects for the Kansas natural population at the Kansas
�eld site estimated with the MLE penalty parameter (variance component) and
1 / 1,000,000 of that penalty.

The code

> newsire1e6 <- neweff[grep("SIRE", names(neweff))]

> plot(oldsire, newsire1e6, xlab = "MLE sire effects",

+ ylab = "sire effects with 1 / 1,000,000 the MLE penalty")

> abline(line(oldsire, newsire1e6))

makes Figure 9, which is still for the Kansas-Kansas sire e�ects but now plots
the MLE e�ects against e�ects with a lot smaller penalty. This again doesn't
show any non-normality.

In conclusion (of this section), there doesn't seem to be any evidence of
non-normality in the particular population-site combination (Kansas-Kansas)
we examined in detail. The other population-site combinations (not shown)
are similar with only a few moderate outliers (points o� the line, one out-
lier in Minnesota-Minnesota, two outliers in Kansas-Oklahoma, four outliers in
Minnesota-Oklahoma, one outlier in Oklahoma-Oklahoma). None of these mod-
erate outliers cause any apparent non-normality in Q-Q plots (not shown), nor
do they have statistically signi�cant non-normality as measured by the Shapiro-
Wilk test (not shown, R function shapiro.test).
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8.6 Mapping Breeding Values to Mean Values

The issue in the section title makes no sense without further clari�cation.
The mapping between canonical and mean value parameter values in an aster
model (or any exponential family model) is invertible. So there is no question
that there is a one-to-one correspondence between canonical and mean value
parameter values in the aster model. But this says nothing about random
e�ects. It doesn't say anything about �e�ects� of any kind.

Since this one-to-one transformation is nonlinear, the phenomenon one has in
linear models (where this transformation is the identity transformation, that is,
canonical and mean value parameters are the same) that one can consider how
much a change in one e�ect induces a change in mean values without considering
other e�ect values does not occur. In generalized linear models and aster models,
the amount of change depends on the values of the other e�ects. So one must
carefully say what one is doing.

Here we are interested in mapping the sire e�ects to the mean value param-
eter scale. To do this we have specify the values of the other e�ects, both �xed
and random. We set the other random e�ects (the dam e�ects) to zero (taking
this to be a typical value), set the �xed e�ects to their maximum likelihood
values, and predict for hypothetical individuals that are all in block 1 (so block
e�ects do not in�uence the comparison of the sire e�ects).

Note that block 1 in one site has nothing to do with block 1 in another site,
so this is arguably not the right thing to do, but it is not obvious that any other
procedure is unarguably right either.

We want to make just two plots (merely to illustrate the method), the Kansas
population in the Kansas site and in the Oklahoma site. These are the "K2"

and "O2" elements of the various lists made above (which contain all nine site-
population pairs).

> subsubout <- subout[c("K2", "O2")]

There is no function to do �prediction� for random e�ects. (It is not clear what
such a function should do!) Thus we �predict� using the function predict.aster,
which only understands �xed e�ects. We hand this function the object of class
"aster" which is inside the object of class "reaster" produced by the R func-
tion "reaster"

> names(subsubout[[1]])

[1] "obj" "fixed" "random" "dropped" "sigma"

[6] "nu" "c" "b" "alpha" "zwz"

[11] "response" "origin" "iterations" "counts" "deviance"

[16] "formula" "call"

> class(subsubout[[1]]$obj)

[1] "aster" "asterOrReaster"

> hoom <- predict(subsubout[[1]]$obj, subsubout[[1]]$alpha)

> hoom <- matrix(hoom, ncol = 2)

> hoom <- hoom[ , 2]

> unique(hoom)
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[1] 158.5290 212.5000 260.4795 280.3276

These are the predicted values for the four blocks (not necessarily in order of
block number). Let's restrict to block 1.

> hoom <- predict(subsubout[[1]]$obj, subsubout[[1]]$alpha)

> hoom <- matrix(hoom, ncol = 2)

> boom <- subsubout[[1]]$obj$modmat[ , , "fit:BLK1"] == 1

> unique(hoom[boom])

[1] 158.529

Our strategy will be to use the �prediction� (mean value parameter value) for
any one of these individuals in block 1 and add to the block 1 e�ect the sire
e�ect. First we �nd one of those individuals.

> idx <- subsubout[[1]]$obj$modmat[ , , "fit:BLK1"]

> idx <- matrix(idx, ncol = 2)

> idx <- idx[ , 2]

> idx <- seq(along = idx)[idx == 1]

> idx <- min(idx)

> idx

[1] 1

It turns out that block 1 comes �rst in the data (no surprise), so the �rst
individual is in block 1.

Now get sire e�ects.

> subsubsire <- lapply(subsubout, function(x) x$b)

> subsubsire <- lapply(subsubsire, function(x) x[grep("SIRE", names(x))])

This means the following code gives mean value parameters for the �rst element
of subsubout

> psire <- function(x) {

+ newcoef <- subsubout[[1]]$alpha

+ newcoef["fit:BLK1"] <- newcoef["fit:BLK1"] + x

+ hoom <- predict(subsubout[[1]]$obj, newcoef = newcoef)

+ hoom <- matrix(hoom, ncol = 2)

+ hoom[1, 2]

+ }

> musire1 <- unlist(Map(psire, subsubsire[[1]]))

And the following does the same for the second element

> psire <- function(x) {

+ newcoef <- subsubout[[2]]$alpha

+ newcoef["fit:BLK1"] <- newcoef["fit:BLK1"] + x

+ hoom <- predict(subsubout[[2]]$obj, newcoef = newcoef)

+ hoom <- matrix(hoom, ncol = 2)

+ hoom[1, 2]

+ }
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Figure 10: Plot of sire e�ects on the mean value parameter scale for an individual
in block 1 having the various sire e�ects in the data. Panel a is the Kansas
population in the Kansas �eld site. Panel b is the Kansas population in the
Oklahoma �eld site.

> musire2 <- unlist(Map(psire, subsubsire[[2]]))

> musire <- list(musire1, musire2)

> names(musire) <- names(subsubout)

Now we make density plots

> subsubdens <- lapply(musire, density)

Then we do the plot. The code

> par(mar = c(5, 1.5, 1, 1) + 0.1, mfrow = c(1, 2), oma = c(0, 2.5, 0, 0))

> for (i in seq(along = subsubdens)) {

+ plot(subsubdens[[i]], ylab = "", xlab = "fruits per individual", main = "")

+ foo <- par("usr")

+ text(0.85 * foo[1] + 0.15 * foo[2], 0.15 * foo[3] + 0.85 * foo[4],

+ letters[i], cex = 2)

+ }

> mtext("density", side = 2, line = 1, outer = TRUE, at = 0.6)

makes Figure 10, which does both of these density plots in one �gure.
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The apparent non-Gaussianity of these plots is an artifact of small sample
side. A Shapiro-Wilk test shows no statistically signi�cant non-Gaussianity.

> lapply(subsubsire, shapiro.test)

$K2

Shapiro-Wilk normality test

data: X[[i]]

W = 0.97181, p-value = 0.2738

$O2

Shapiro-Wilk normality test

data: X[[i]]

W = 0.9729, p-value = 0.3025

> lapply(musire, shapiro.test)

$K2

Shapiro-Wilk normality test

data: X[[i]]

W = 0.98499, p-value = 0.7713

$O2

Shapiro-Wilk normality test

data: X[[i]]

W = 0.97541, p-value = 0.3782

A Cholesky

How do we calculate log determinants and derivatives thereof? R has a
function determinant that calculates the log determinant. It uses LU decom-
position.

An alternative method is to use Cholesky decomposition, but that only works
when the given matrix is symmetric. This may be better because there is a
sparse version (the chol function in the Matrix package) that may enable us to
do much larger problems (perhaps after some other issues getting in the way of
scaling are also �xed).

We need to calculate the log determinant that appears in (8) or (34), but the
matrix is not symmetric. It can, however, be rewritten so as to be symmetric.
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Assuming A is invertible

det
(
ZT ŴZA2 + I

)
= det

(
ZT ŴZA+A−1

)
det
(
A
)

= det
(
AZT ŴZA+ I

)
If A is singular, we can see by continuity that the two sides must agree there too.
That takes care of (34). The same trick works for (8); just replace A by D1/2,
which is the diagonal matrix whose diagonal components are the nonnegative
square roots of the corresponding diagonal components of D.

Cholesky can also be used to e�ciently calculate matrix inverses (done by
the chol2inv function in the Matrix package). So we investigate whether we
can use Cholesky to calculate derivatives.

A.1 First Derivatives

For the trace in the formula (37) for p̃σj
(α, c, σ) we have in case A is invertible

tr
(

[ZT ŴZA2 + I
]−1

ZT ŴZAEj

)
= tr

(
[A−1(AZT ŴZA+ I)A

]−1
ZT ŴZAEj

)
= tr

(
A−1[AZT ŴZA+ I

]−1
AZT ŴZAEj

)
= tr

(
[AZT ŴZA+ I

]−1
AZT ŴZAEjA

−1
)

= tr
(

[AZT ŴZA+ I
]−1

AZT ŴZEj

)
the next-to-last equality being tr(AB) = tr(BA) and the last equality using the
fact that A, Ej , and A

−1 are all diagonal so they commute. Again we see that
we get the same identity of the �rst and last expressions even when A is singular
by continuity.

For the trace in the formula (11) for pνk(α, b, ν) we have in caseD is invertible

tr
([
ZT ŴZD + I

]−1
ZT ŴZEk

)
= tr

(
D−1/2

[
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEk

)
= tr

([
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZD−1/2Ek

)
This, of course, does not work when D is singular. We already knew we cannot
di�erentiate p(α, b, ν) on the boundary of the constraint set.
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A.2 Second Derivatives

For the trace in the formula in Section 1.8 for pνjνk(α, b, ν) we have in case
D is invertible

tr
([
ZT ŴZD + I

]−1
ZT ŴZEj

[
ZT ŴZD + I

]−1
ZT ŴZEk

)
= tr

(
D−1/2

[
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEj

D−1/2
[
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEk

)
= tr

([
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEjD

−1/2[
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEkD

−1/2
)

Again, this does not work when D is singular.
The same trace occurs in the expression for qνjνk(α, ν) given in Section 1.12

and can be calculated the same way.

B Partridge Pea Analysis Printout

> for (i in seq(along = sumout)) {

+ cat("\n\nSITE =", rsite[i], "and POP =", rpop[i], "\n")

+ print(sumout[[i]])

+ }

SITE = K and POP = 1

Call:

reaster.formula(fixed = resp ~ varb + fit:BLK, random = list(sire = ~0 +

fit:SIRE, dam = ~0 + fit:DAM), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = x)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -18.48069 0.53273 -34.691 < 2e-16

varbfruit 22.35237 0.53469 41.804 < 2e-16

fit:BLK1 -0.29045 0.01335 -21.753 < 2e-16

fit:BLK2 -0.26231 0.01316 -19.929 < 2e-16

fit:BLK3 0.09342 0.01217 7.675 1.66e-14

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

sire 0.14743 0.04733 3.115 0.00092

dam 0.34368 0.02552 13.467 < 2e-16

SITE = M and POP = 1
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Call:

reaster.formula(fixed = resp ~ varb + fit:BLK, random = list(sire = ~0 +

fit:SIRE, dam = ~0 + fit:DAM), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = x)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -71.365940 0.756004 -94.399 < 2e-16

varbfruit 76.380414 0.756820 100.923 < 2e-16

fit:BLK1 -0.373650 0.007369 -50.705 < 2e-16

fit:BLK2 -0.381537 0.007304 -52.235 < 2e-16

fit:BLK3 -0.053340 0.007102 -7.511 5.89e-14

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

sire 0.000388 7.447842 0.00 0.5

dam 0.258927 0.018812 13.76 <2e-16

SITE = O and POP = 1

Call:

reaster.formula(fixed = resp ~ varb + fit:BLK, random = list(sire = ~0 +

fit:SIRE, dam = ~0 + fit:DAM), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = x)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.61590 0.38842 -17.033 < 2e-16

varbfruit 9.37809 0.39191 23.929 < 2e-16

fit:BLK1 0.00149 0.02198 0.068 0.945964

fit:BLK2 -0.07552 0.02132 -3.542 0.000396

fit:BLK3 -0.05968 0.02149 -2.778 0.005478

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

sire 0.09337 0.05353 1.744 0.0406

dam 0.30396 0.02391 12.712 <2e-16

SITE = K and POP = 2

Call:

reaster.formula(fixed = resp ~ varb + fit:BLK, random = list(sire = ~0 +

fit:SIRE, dam = ~0 + fit:DAM), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = x)
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Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -88.178261 1.429153 -61.70 <2e-16

varbfruit 93.779086 1.429651 65.60 <2e-16

fit:BLK1 -0.563040 0.005827 -96.63 <2e-16

fit:BLK2 -0.277439 0.005319 -52.16 <2e-16

fit:BLK3 -0.068424 0.005062 -13.52 <2e-16

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

sire 0.12085 0.02999 4.029 2.8e-05

dam 0.23771 0.01700 13.986 < 2e-16

SITE = M and POP = 2

Call:

reaster.formula(fixed = resp ~ varb + fit:BLK, random = list(sire = ~0 +

fit:SIRE, dam = ~0 + fit:DAM), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = x)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.330e+02 1.259e+00 -105.63 <2e-16

varbfruit 1.384e+02 1.260e+00 109.87 <2e-16

fit:BLK1 5.707e-02 5.351e-03 10.66 <2e-16

fit:BLK2 -9.622e-02 5.456e-03 -17.64 <2e-16

fit:BLK3 1.428e-01 5.176e-03 27.60 <2e-16

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

sire 0.07164 0.04520 1.585 0.0565

dam 0.26114 0.01865 14.000 <2e-16

SITE = O and POP = 2

Call:

reaster.formula(fixed = resp ~ varb + fit:BLK, random = list(sire = ~0 +

fit:SIRE, dam = ~0 + fit:DAM), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = x)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -32.74856 0.91077 -35.957 < 2e-16

varbfruit 36.81031 0.91162 40.379 < 2e-16
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fit:BLK1 -0.07041 0.01084 -6.493 8.39e-11

fit:BLK2 -0.02198 0.01055 -2.084 0.03712

fit:BLK3 -0.03174 0.01061 -2.990 0.00279

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

sire 0.06977 0.03725 1.873 0.0305

dam 0.22628 0.01673 13.526 <2e-16

SITE = K and POP = 3

Call:

reaster.formula(fixed = resp ~ varb + fit:BLK, random = list(sire = ~0 +

fit:SIRE, dam = ~0 + fit:DAM), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = x)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -65.469538 0.999465 -65.50 <2e-16

varbfruit 71.077217 1.000407 71.05 <2e-16

fit:BLK1 -0.803528 0.006651 -120.81 <2e-16

fit:BLK2 -0.996898 0.007204 -138.37 <2e-16

fit:BLK3 -0.107690 0.005456 -19.74 <2e-16

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

sire 0.10161 0.04118 2.467 0.00681

dam 0.27866 0.02050 13.596 < 2e-16

SITE = M and POP = 3

Call:

reaster.formula(fixed = resp ~ varb + fit:BLK, random = list(sire = ~0 +

fit:SIRE, dam = ~0 + fit:DAM), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = x)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.326e+02 8.745e-01 -151.61 <2e-16

varbfruit 1.381e+02 8.755e-01 157.77 <2e-16

fit:BLK1 -3.068e-01 5.535e-03 -55.44 <2e-16

fit:BLK2 -2.965e-01 5.425e-03 -54.66 <2e-16

fit:BLK3 -5.793e-02 5.734e-03 -10.10 <2e-16

Square Roots of Variance Components (P-values are one-tailed):

56



Estimate Std. Error z value Pr(>|z|)/2

sire 0.03736 0.11935 0.313 0.377

dam 0.31445 0.02350 13.379 <2e-16

SITE = O and POP = 3

Call:

reaster.formula(fixed = resp ~ varb + fit:BLK, random = list(sire = ~0 +

fit:SIRE, dam = ~0 + fit:DAM), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = x)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -24.44572 0.73122 -33.431 < 2e-16

varbfruit 28.41596 0.73383 38.723 < 2e-16

fit:BLK1 -0.06119 0.01155 -5.296 1.18e-07

fit:BLK2 0.14785 0.01115 13.258 < 2e-16

fit:BLK3 -0.01166 0.01128 -1.034 0.301

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

sire 0.16130 0.04273 3.775 7.99e-05

dam 0.32347 0.02431 13.307 < 2e-16
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