
Aster Models with Random E�ects and Additive Genetic Variance

for Fitness

By
Charles J. Geyer and Ruth G. Shaw

Technical Report No. 696
School of Statistics

University of Minnesota
July 10, 2013

Abstract

This technical report is a minor supplement to the paper Geyer et al.
(in press) and its accompanying technical report Geyer et al. (2012). It
shows how to move variance components from the canonical parameter
scale to the mean value parameter scale. This is useful in estimating
additive genetic variance for �tness, and that appears in Fisher's funda-
mental theorem of natural selection, which predicts the rate of increase in
�tness via natural selection.

1 R

Assuming the aster package has been installed, we load it

> library(aster)

The version of the package used to make this document is 1.1-3. The version of
R used to make this document is 4.3.2.

2 Data and Aster Model Fits

We use data on the partridge pea (Chamaecrista fasciculata) described in
Section 8 of Geyer et al. (2012) and contained in the dataset chamae3 in the
R contributed package aster. For each individual, two response variables are
observed, connected by the following graphical model

1
Ber−−−−→ y1

0-Poi−−−−→ y2

y1 being an indicator of whether any fruits were produced, y2 being the count
of the number of fruits produced, the unconditional distribution of y1 being
Bernoulli, and the conditional distribution of y2 given y1 being zero-truncated
Poisson.

We load the data

> data(chamae3)

> names(chamae3)

[1] "SIRE" "DAM" "POP" "SITE" "ROW" "BLK" "varb" "resp" "id" "root"

[11] "fit"

> levels(chamae3$varb)

[1] "fecund" "fruit"

Then set up the graphical model

> pred <- c(0, 1)

> fam <- c(1, 3)

> sapply(fam.default(), as.character)[fam]

[1] "bernoulli" "truncated.poisson(truncation = 0)"

First we subset the data, looking at each site-population pair separately.
Make a list whose components are nine data frames (the data for the separate
analyses).

> names(chamae3)

[1] "SIRE" "DAM" "POP" "SITE" "ROW" "BLK" "varb" "resp" "id" "root"

[11] "fit"

> site <- as.character(chamae3$SITE)

> pop <- as.character(chamae3$POP)

> usite <- sort(unique(site))

> upop <- sort(unique(pop))

> usite

[1] "K" "M" "O"

> upop

[1] "1" "2" "3"

> rsite <- rep(usite, times = length(upop))

> rpop <- rep(upop, each = length(usite))

> cbind(rsite, rpop)

rsite rpop

[1,] "K" "1"

[2,] "M" "1"

[3,] "O" "1"

[4,] "K" "2"

[5,] "M" "2"

[6,] "O" "2"

[7,] "K" "3"

[8,] "M" "3"

[9,] "O" "3"

> nsitepop <- paste(rsite, rpop, sep = "")

> nsitepop

[1] "K1" "M1" "O1" "K2" "M2" "O2" "K3" "M3" "O3"

> subdata <- list()

> for (i in seq(along = rsite))

+ subdata[[nsitepop[i]]] <- droplevels(subset(chamae3,

+ site == rsite[i] & pop == rpop[i]))

> length(subdata)

[1] 9

> sapply(subdata, nrow)

K1 M1 O1 K2 M2 O2 K3 M3 O3

2108 2054 2034 2342 2256 2292 2020 1894 2062

2

> sapply(subdata, function(x) unique(x$SITE))

K1 M1 O1 K2 M2 O2 K3 M3 O3

K M O K M O K M O

Levels: K M O

> sapply(subdata, function(x) unique(x$POP))

K1 M1 O1 K2 M2 O2 K3 M3 O3

1 1 1 2 2 2 3 3 3

Levels: 1 2 3

We see we have successfully done the subsetting.
Following Section 8.6 in Geyer et al. (2012) we look at only two subsets

(merely to illustrate the method): the Kansas population in the Kansas site and
in the Oklahoma site. These are the "K2" and "O2" elements of the sublist

made above.

> subsubdata <- subdata[c("K2", "O2")]

> names(subsubdata)

[1] "K2" "O2"

> sapply(subsubdata, class)

K2 O2

"data.frame" "data.frame"

Then we do the analysis. Since this analysis takes quite a bit of time, we
save the results and load them from a �le if they are already done.

> suppressWarnings(foo <- try(load("subsubout.rda"), silent = TRUE))

> done <- (! inherits(foo, "try-error"))

> done

[1] TRUE

> if (! done) {

+ subsubout <- lapply(subsubdata, function(x) reaster(resp ~ varb + fit:BLK,

+ list(sire = ~ 0 + fit:SIRE, dam = ~ 0 + fit:DAM),

+ pred, fam, varb, id, root, data = x))

+ save(subsubout, file = "subsubout.rda")

+ }

> names(subsubout)

[1] "K2" "O2"

> sapply(subsubout, class)

K2 O2

[1,] "reaster.formula" "reaster.formula"

[2,] "reaster" "reaster"

[3,] "asterOrReaster" "asterOrReaster"

The summaries for these analyses are shown in Appendix B of Geyer et al.
(2012) and so need not be shown here.

3

3 Mapping Variance Components

3.1 Theory

So now we need to �gure out how to map canonical parameters to mean
value parameters. The only tool for this in the aster package being the function
predict.aster. Start with the formula, equation (3) in Geyer et al. (2012),

ϕ = a+Mα+ Zb

where ϕ is the saturated model canonical parameter vector, where a is a known
vector, M and Z are known matrices, b is a normal random vector with mean
vector zero and variance matrix D. The vector a is called the o�set vector and
the matricesM and Z are called the model matrices for �xed and random e�ects,
respectively. The transformation from the canonical to mean value parameter
vector, equation (1) in Geyer et al. (2012), is

µ(ϕ) = c′(ϕ), (1a)

where c is the cumulant function of the saturated aster model exponential family.
And this transformation has derivative

W (ϕ) = µ′(ϕ) = c′′(ϕ), (1b)

equation (2) in Geyer et al. (2012). The R function predict.aster calculates
the transformation (1a) and, if asked for, the derivative (1b). More precisely, if
given an origin a, a new model matrixMnew, another matrix A, and a regression
coe�cient vector α, it will calculate

ATµ(a+Mnewα) (2a)

and its derivative with respect to α

ATW (a+Mnewα)Mnew (2b)

(Geyer, et al., 2007, Equations (19) and (20)). None of this description of
what predict.aster does makes any mention of random e�ects, and as far
as predict.aster knows, there are no random e�ects. It was designed to do
�xed-e�ect aster models. If we are going to get it to say anything useful about
variance components, we are going to have to trick it. We are going to have to
�nd an A and Mnew so (2a) and (2b) tell us what we want to know.

One last comment about the function predict.aster: when the optional
argument se.fit = TRUE is given, this function returns a list, the fit compo-
nent of which is (2a) and the gradient component of which is (2b). The latter
is undocumented. The gradient component was initially designed for testing
and debugging, but sometimes is useful in scienti�c inference, as in the current
situation.

The way the delta method works is to treat a nonlinear function as a lin-
ear one using the Taylor series up through �rst derivatives. So if we linearize
ATµ(a+Mα+Zb), thought of as a function of b, and expanding around b = 0,
we get

ATµ(a+Mα+ Zb) ≈ ATµ(a+Mα) +ATW (a+Mα)Zb

4

and the variance of this is what we want (variance of b transferred to the mean
value parameter scale), that is,

ATW (a+Mα)ZDZTW (a+Mα)A. (3)

The �rst thing we observe is that on the canonical parameter scale the variance
matrix D of the random e�ect vector b is diagonal (this is a limitation of the
R function reaster and the paper Geyer et al. (in press) it is based on), but
(3) is a general variance matrix (not necessarily diagonal and not even usually
diagonal).

When computing �additive genetic variance for �tness� (which is a scalar
quantity) the latter issue does not arise because A is a column vector so (3) is
a scalar (or a one-by-one matrix).

More precisely, (3) is a scalar when we compute variance for �tness for one
individual, which we make a (made-up) typical individual.

3.2 Practice

3.2.1 Try 1

In aid of this we �rst �t an entirely �xed e�ects model, ignoring dam e�ects,
which is the same as setting them to zero (evaluating for a �typical dam e�ect�).

> mydata <- subsubdata[[1]]

> aout <- aster(resp ~ varb + fit : (BLK + SIRE),

+ pred, fam, varb, id, root, data = mydata)

> summary(aout)

Call:

aster.formula(formula = resp ~ varb + fit:(BLK + SIRE), pred = pred,

fam = fam, varvar = varb, idvar = id, root = root, data = mydata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.033e+02 1.589e+00 -65.020 < 2e-16 ***

varbfruit 1.090e+02 1.589e+00 68.619 < 2e-16 ***

fit:BLK1 -5.562e-01 5.821e-03 -95.552 < 2e-16 ***

fit:BLK2 -2.758e-01 5.313e-03 -51.915 < 2e-16 ***

fit:BLK3 -7.060e-02 5.049e-03 -13.983 < 2e-16 ***

fit:SIRE2003 -3.883e-02 1.873e-02 -2.073 0.038134 *

fit:SIRE2010 -2.123e-01 1.960e-02 -10.832 < 2e-16 ***

fit:SIRE2012 -1.947e-02 1.864e-02 -1.044 0.296310

fit:SIRE2016 -2.000e-01 1.997e-02 -10.013 < 2e-16 ***

fit:SIRE2020 -2.134e-01 2.007e-02 -10.633 < 2e-16 ***

fit:SIRE2024 -3.312e-01 2.026e-02 -16.346 < 2e-16 ***

fit:SIRE2031 -3.663e-01 2.047e-02 -17.894 < 2e-16 ***

fit:SIRE2038 4.300e-02 1.836e-02 2.342 0.019159 *

fit:SIRE2045 -1.251e-01 1.942e-02 -6.443 1.17e-10 ***

fit:SIRE2049 1.111e-01 1.806e-02 6.150 7.76e-10 ***

fit:SIRE2051 6.709e-02 1.848e-02 3.630 0.000284 ***

fit:SIRE2056 -5.204e-01 1.949e-02 -26.693 < 2e-16 ***

5

fit:SIRE2072 -3.090e-01 2.014e-02 -15.349 < 2e-16 ***

fit:SIRE2074 -1.197e-01 1.912e-02 -6.261 3.83e-10 ***

fit:SIRE2079 -2.868e-01 2.018e-02 -14.211 < 2e-16 ***

fit:SIRE2082 2.630e-01 1.746e-02 15.064 < 2e-16 ***

fit:SIRE2084 -1.108e-01 1.908e-02 -5.807 6.37e-09 ***

fit:SIRE2085 -5.036e-01 1.948e-02 -25.853 < 2e-16 ***

fit:SIRE2087 -1.972e-02 1.912e-02 -1.031 0.302532

fit:SIRE2089 -2.279e-01 1.968e-02 -11.580 < 2e-16 ***

fit:SIRE2093 -1.817e-01 2.003e-02 -9.071 < 2e-16 ***

fit:SIRE2094 2.051e-02 1.846e-02 1.111 0.266547

fit:SIRE2095 -2.134e-01 1.987e-02 -10.739 < 2e-16 ***

fit:SIRE2098 7.369e-02 1.822e-02 4.044 5.25e-05 ***

fit:SIRE2102 -2.410e-01 1.976e-02 -12.200 < 2e-16 ***

fit:SIRE2108 -1.378e-01 1.921e-02 -7.174 7.27e-13 ***

fit:SIRE2116 -4.661e-02 1.877e-02 -2.484 0.012990 *

fit:SIRE2117 -2.692e-02 1.867e-02 -1.442 0.149346

fit:SIRE2124 -9.518e-02 1.942e-02 -4.900 9.57e-07 ***

fit:SIRE2133 2.214e-01 1.783e-02 12.419 < 2e-16 ***

fit:SIRE2134 -5.822e-02 1.882e-02 -3.094 0.001978 **

fit:SIRE2141 -9.246e-02 1.952e-02 -4.738 2.16e-06 ***

fit:SIRE2150 -3.158e-01 2.041e-02 -15.477 < 2e-16 ***

fit:SIRE2151 1.484e-01 1.811e-02 8.193 2.55e-16 ***

fit:SIRE2166 3.272e-02 1.840e-02 1.778 0.075410 .

fit:SIRE2172 -1.113e-01 1.908e-02 -5.836 5.35e-09 ***

fit:SIRE2173 5.040e-02 1.874e-02 2.690 0.007148 **

fit:SIRE2174 1.267e-02 1.849e-02 0.685 0.493174

fit:SIRE2178 6.268e-02 1.844e-02 3.398 0.000678 ***

fit:SIRE2184 -1.036e-01 1.929e-02 -5.371 7.85e-08 ***

fit:SIRE2191 1.321e-01 1.798e-02 7.349 2.00e-13 ***

fit:SIRE2192 -2.602e-01 1.986e-02 -13.100 < 2e-16 ***

fit:SIRE2195 1.448e-01 1.792e-02 8.078 6.58e-16 ***

fit:SIRE2196 1.673e-01 1.795e-02 9.318 < 2e-16 ***

fit:SIRE2200 2.894e-02 1.842e-02 1.571 0.116152

fit:SIRE2204 -4.064e-01 2.071e-02 -19.623 < 2e-16 ***

fit:SIRE2214 -8.665e-02 1.896e-02 -4.570 4.87e-06 ***

fit:SIRE2215 -2.780e-02 1.868e-02 -1.488 0.136709

fit:SIRE2224 -4.431e-02 1.876e-02 -2.363 0.018149 *

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Original predictor variables dropped (aliased)

fit:BLK4

Now we want to use as �newdata� the data for just one individual

> id <- mydata$id

> inies <- id == min(id)

> mynewdata <- mydata[inies,]

> dim(mynewdata)

6

[1] 2 11

Now we do the prediction, which we want to do at the parameter values for the
random e�ects �t.

> rout <- subsubout[[1]]

> alpha.hat <- rout$alpha

> b.hat <- rout$b

> fred <- c(alpha.hat, b.hat)

> idx <- match(names(aout$coefficients), names(fred))

> idx

[1] 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

[26] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

[51] 52 53 54 55

> head(fred[- idx])

fit:SIRE2001 fit:DAM2002 fit:DAM2004 fit:DAM2007 fit:DAM2008 fit:DAM2009

0.03439038 0.07186533 -0.08213122 0.10718912 -0.07539800 0.18907438

We see the omitted regression co�cients in our �xed e�ects �t aout are not
important. We do not care that sire 2001 was dropped, because we are only
going to predict for one �generic� sire and we do not care which. Similarly we
deliberately dropped all the dams.

> pout <- predict(aout, varvar = varb, idvar = id, root = root,

+ newdata = mynewdata, se.fit = TRUE, newcoef = fred[idx])

> foo <- pout$gradient

> rownames(foo) <- levels(chamae3$varb)

> colnames(foo) <- names(aout$coefficients)

> t(head(t(foo), n = 11))

(Intercept) varbfruit fit:BLK1 fit:BLK2 fit:BLK3 fit:SIRE2003

fecund 8.983133e-21 8.919344e-21 8.919344e-21 0 0 0

fruit 1.398260e+02 1.398260e+02 1.398260e+02 0 0 0

fit:SIRE2010 fit:SIRE2012 fit:SIRE2016 fit:SIRE2020 fit:SIRE2024

fecund 0 0 0 0 8.919344e-21

fruit 0 0 0 0 1.398260e+02

> thegradient <- foo["fruit", "fit:SIRE2024"]

> thegradient

[1] 139.826

We see that there are only two di�erent nonzero numbers in the gradient, one
in the �rst row corresponding to the �rst component in the graph and one in
the second row corresponding to the second component in the graph, which is
our measure of �tness. Thus we want the latter.

Finally we can apply the delta method. The additive genetic variance for
�tness (or its best surrogate in these data, the sire variance transferred to the
mean value parameter scale) is

7

> thevariance1 <- thegradient^2 * rout$nu["sire"]

> thevariance1

sire

285.5482

3.2.2 Try 2

In aid of repeating the preceding analysis, we make a function to do it.

> doit <- function(mydata, rout)

+ {

+ aout <- aster(resp ~ varb + fit : (BLK + SIRE),

+ pred, fam, varb, id, root, data = mydata)

+ id <- mydata$id

+ inies <- id == min(id)

+ mynewdata <- mydata[inies,]

+

+ alpha.hat <- rout$alpha

+ b.hat <- rout$b

+ fred <- c(alpha.hat, b.hat)

+ idx <- match(names(aout$coefficients), names(fred))

+

+ pout <- predict(aout, varvar = varb, idvar = id, root = root,

+ newdata = mynewdata, se.fit = TRUE, newcoef = fred[idx])

+ foo <- pout$gradient

+ rownames(foo) <- levels(chamae3$varb)

+ bar <- foo["fruit",]

+ bar <- bar[bar != 0]

+ baz <- unique(bar)

+ stopifnot(all.equal(max(baz), min(baz)))

+ baz[1]

+ }

and then we try it out, seeing if it repeats the analysis of the preceding section.

> thegradient.redo <- doit(subsubdata[[1]], subsubout[[1]])

> identical(thegradient, thegradient.redo)

[1] TRUE

3.2.3 Try 3

And we apply this function to do the analysis for the other data set.

> thegradient.too <- doit(subsubdata[[2]], subsubout[[2]])

> thegradient

[1] 139.826

> thegradient.too

8

[1] 52.79209

These are the gradients of the mappings from the canonical parameter scale to
the mean value parameter scale.

> thevariance2 <- thegradient.too^2 * subsubout[[1]]$nu["sire"]

> thevariance1

sire

285.5482

> thevariance2

sire

40.70436

These are the sire variance component for two di�erent population-site combi-
nations, both mapped to the mean value parameter scale.

4 Mean Fitness

To apply the fundamental theorem of natural selection we also need mean
�tness.

> meanfit1 <- with(subsubdata[[1]], mean(resp[as.character(varb) == "fruit"]))

> meanfit2 <- with(subsubdata[[2]], mean(resp[as.character(varb) == "fruit"]))

> meanfit1

[1] 227.7575

> meanfit2

[1] 57.774

5 Fundamental Theorem of Natural Selection

We can now apply Fisher's fundamental theorem of natural selection to
predict the rate of increase in �tness as the ratio of the additive genetic variance
for �tness to the mean �tness. This evolutionary principle has been highly
in�uential conceptually but, as noted by Shaw and Shaw (2013), has not been
implemented empirically. For the mating design used in this experiment, dams
nested within sires (NC I), quantitative genetic theory shows that the component
of variance due to sires estimates 1/4 of the additive genetic variance (Falconer
and Mackay, 1996, Chapter 9).

> 4 * thevariance1 / meanfit1

sire

5.014952

> 4 * thevariance2 / meanfit2

9

sire

2.818179

Thus, we predict that this Kansas population would increase in absolute �tness
by about 5 fruits per plant, over a generation of selection in the Kansas site. In
the Oklahoma site, this population is predicted to increase in �tness somewhat
less, about 3 fruits per plant over one generation. These predictions are made
on the assumption that the environment within each site has the same e�ect on
�tness each generation. Nevertheless, these estimates are important as quanti-
tative predictors of the rate of change in �tness to be expected through genetic
change due to natural selection under current environmental conditions.

References

Falconer, D. S., and Mackay, T. F. C. (1996). Introduction to Quantitative

Genetics, 4th ed. Pearson Education Ltd., Harlow, U. K.

Geyer, C. J., Ridley, C. E., Latta, R. G., Etterson, J. R., and Shaw, R. G.
(2012). Aster Models with Random E�ects via Penalized Likelihood. Techni-
cal Report 692, University of Minnesota School of Statistics. http://purl.

umn.edu/135870.

Geyer, C. J., Ridley, C. E., Latta, R. G., Etterson, J. R., and Shaw, R. G. (in
press). Local Adaptation and Genetic E�ects on Fitness: Calculations for
Exponential Family Models with Random E�ects. To appear in Annals of

Applied Statistics.

Geyer, C. J., Wagenius, S., and Shaw, R. G. (2007). Aster models for life history
analysis. Biometrika 94 415�426.

Shaw, R. G., and Shaw, F. H. (2013). Quantitative genetic study of the adaptive
process. Heredity, doi:10.1038/hdy.2013.42.

10

