
Supporting Data Analysis for “An Integrated Analysis
of Phenotypic Selection on Insect Body Size

and Development Time”
By

Daniel J. Eck, Ruth G. Shaw,
Charles J. Geyer, and Joel G. Kingsolver

Technical Report No. 698
School of Statistics

University of Minnesota
May 13, 2015

Revised July 2, 2015

Abstract

This technical report (TR) gives details of the data analysis backing
up a paper having the same authors as this TR and having the title
that is quoted in the title of this TR. It uses the R package knitr to
process its source file (Rnw file) containing LATEX and R, so that all
R that appears in this document is not cut-and-pasted but actually
run and actually produces the results that it appears to produce. This
document reproduces all tables and figures from the paper and hence
the entire data analysis reported in the paper. The data for the analysis
are in the R object hornworm in the R package aster2, which is a
CRAN package. An appendix of this technical report shows how this
R object of class "asterdata" was created from the raw data, a comma
separated values (CSV) file.

1 Introduction

In the paper that this technical report supplements, we describe a new
generation of aster models (Geyer, Wagenius, and Shaw, 2007) that incor-
porate age of first reproduction in the model for fitness. Aster models are
implemented in the R statistical computing language (R Development Core
Team, 2014) via the CRAN package aster (Geyer, 2014, originally available
in 2005). This package does not allow accounting for variation in generation
time in the expression of fitness. To allow for this component of fitness, the
CRAN package aster2 (Geyer, 2015) has the added capability of specifying
“dependence groups,” such that life history stages, e. g., insect larval instars,
pupa, and adult, and, in particular, variation in the age at which individ-
uals reach these stages, are included in the model for fitness. Here we use
aster2 to take these stages into account in conducting selection analyses
for a dataset from a previous study of phenotypic selection on body size and
age at different developmental stages in Manduca sexta (Kingsolver, et al.,
2012). That study estimated selection on each fitness component separately,
and therefore could not quantify how selection operates over the lifecycle,
nor identify potential trade-offs in selection among fitness components. Our
aster analyses of these data provide an integrated view of phenotypic se-
lection on size and age across development and fitness components in this
study system. We discuss how these methods can be applied to selection
analyses in other systems.

2 R

This document was processed with R, version 4.3.2, using the CRAN
packages aster2, version 0.3, and knitr, version 1.45.

library(aster2)

Loading required package: Matrix

This is beta software.

Unless you need to do aster models with dependence groups,

use package "aster" instead.

See help(aster2-package) for differences from package "aster"

and examples.

3 Data

Data are in the R object hornworm in the aster2 package. We are also
going to use data as a synonym of this data object (because that was what
we called it when we started this analysis, the name hornworm came later).

data(hornworm)

data <- hornworm

We show how this data set, an R object of class "asterdata", was
created in the appendix.

4 Graph

The aster graph for females in these data is shown below.

1 P-

T330

T331

T332

@
@R

-
�
��

B33

6

T341

T342

-
�
��

B34

6

T351

T352

-
�
��

B35

6

T361

T362

-
�
��

B36

6

T371

T372

-
�
��

B37

6

T381

T382

-
�
��

B38

6

T391

T392

-
�
��

B39

6

T401

T402

-
�
��

B40

6

2

The aster graph for males and unknown (sex not determined because died
before pupation) is the same except there are no Bx nodes.

Arrows go from predecessor nodes to successor nodes. Lines (that are
not arrows) link dependence groups. Nodes are labeled by their associated
variables. P node is pupation indicator, T nodes are survival and eclosion
indicators, B nodes are ovariole counts. Subscripts indicate age (in days),
subsubscripts indicate variables in the same dependence group (0 = death,
1 = surviving but pre-eclosion, 2 = eclosion at this time). All deaths before
reproduction were modeled as occurring on day 33 because the day of death
for individuals who died after pupation but before eclosion was not recorded.

As in all aster graphs, predecessor equals zero implies successor equals
zero. If the variable at any node is zero, then the variables at all downstream
nodes are also zero (all nodes one gets to by following arrows from a node
where the variable is zero). Thus at most one variable of any Tx dependence
group is nonzero, and the nonzero Txy variables indicate the path the life
history for an individual takes. Similarly, at most one Bx variable is nonzero
(because at most one Tx2 variable is nonzero), the one where x is the day
the individual actually eclosed (if it did).

Our measure of Darwinian fitness for this graph is at first (Section 7
below) total ovariole count, the sum of all the Bx nodes. Since at most one
of these nodes is nonzero (as explained above), this is just the number of
ovarioles the individual had if it survived to eclosion (and zero otherwise).
Later (Section 9 below) our measure of Darwinian fitness is a weighted sum
of ovariole counts, weighted according to age and population growth rate,
with weights given by (7). This is fitness adjusted for population growth
rate.

5 A Digression on Aster Model Theory

Because a referee of the paper this technical report accompanies asked
for it, we give a brief explanation of aster models and their theory. This
section can be skipped by readers who want to get on to the analysis.

The full aster graph has a node for every measured component of fitness
for every individual and also a constant node for every individual. The
figure on p. 2 is only the part of the full graph for one female individual.
The node marked 1 indicates that this part of the graph is for one individual
(in some data sets data on multiple individuals is lumped together and then
the constant node says how many individuals that is).

The response vector y of an aster model contains every measured compo-

3

nent of fitness for every individual, one component for every node in the full
graph except for constant nodes. Every component of y belongs to exactly
one dependence group G. Some components are in dependence groups by
themselves. For example, in the figure on p. 2 the nodes T330 , T331 , and T332
form a dependence group of size 3, the nodes T340 and T341 form a depen-
dence group of size 2, the node B35 forms a dependence group of size 1 (a
group by itself), and the node P is another group by itself. Each dependence
group G has exactly one predecessor node q(G). In the figure on p. 2 the
predecessor of {T330 , T331 , T332} is P , the predecessor of {T340 , T341} is T331 ,
the predecessor of B35 is T352 , and the predecessor of P is the constant node.

The saturated aster model has one parameter for every component of
the response vector. The part of the response vector yG containing the
components in dependence group G is exponential family with sample size
q(G) and hence makes contribution to the log likelihood

yTGθG − yq(G)cG(θG)

(Geyer, et al., 2007, equation (2), and Geyer, 2010, Section 2.4). The vector
θ whose parts are θG is the conditional canonical parameter vector. The
function cG is the cumulant function for dependence group G. The whole
aster model is also an exponential family (not just the conditional distribu-
tions of its dependence groups). The whole log likelihood is the sum over
all dependence groups for all individuals

l(θ) =
∑
G∈G

[
yTGθG − yq(G)cG(θG)

]
where G is the family of all dependence groups. To see that this has expo-
nential family form, we rewrite it as

l(θ) =
∑
j∈J

yj

θj − ∑
G∈G
q(G)=j

cG(θG)

−∑
G∈G
j /∈J

yq(G)cG(θG)

where J =
⋃
G the set of all nonconstant nodes of the full graph, and match

it to the exponential family form

l(ϕ) = yTϕ− c(ϕ)

seeing that this works with

ϕj = θj −
∑
G∈G
q(G)=j

cG(θG) (1)

4

and
c(ϕ) =

∑
G∈G
j /∈J

yq(G)cG(θG) (2)

The vector ϕ having components ϕj is the unconditional canonical parameter
vector, and the function c is the cumulant function of the saturated model.
Equation (1) is called the aster transform. It defines an invertible infinitely
differentiable change of parameter (Geyer, et al., 2007, Section 2.3). It may
seem odd that (2) purports to define a function of ϕ by giving it as a function
of θ, but this is valid because of the invertibility of the aster transform.

Neither θ nor ϕ has a simple connection with the components of y.
For that we want mean value parameters. The unconditional mean value
parameter is the vector µ having components

µj = E(yj)

and the conditional canonical parameter is the vector ξ having components

ξj = E(yj |yp(j) = 1)

where p(j) = q(G) for the uniqueG that contains j, so yp(j) is the predecessor
of yj like yq(G) is the predecessor of yG. It is a fundamental property of aster
models that means multiply

µj = ξjµp(j) (3)

(Geyer, et al., 2007, eq. (12)), so applying (3) recursively we have

µj = ξjξp(j)µp(p(j))

µj = ξjξp(j)ξp(p(j))µp(p(p(j)))

µj = ξjξp(j)ξp(p(j))ξp(p(p(j)))µp(p(p(p(j))))

and so forth going all the way back to when the µ on the right-hand side
is at a constant node and hence is just the constant (the expectation of a
constant is that constant). In short, unconditional means are products of
conditional means.

We now have four parameterizations of the saturated model θ, ϕ, ξ, and
µ. All have their purposes. Any may be needed in some application. In most
aster models all of the transformations between any of these parameters are
invertible and infinitely differentiable and can be calculated by the computer.
For models having multinomial dependence groups like our hornworm data,

5

the θ and ϕ parameterizations are not identifiable because each part of the
response vector yG for a multinomial dependence group satisfies the linear
constraint ∑

j∈G
yj = yq(G)

and any linear constraint satisfied by the canonical statistic of an expo-
nential family causes nonidentifiability (Geyer, 2009, Theorem 1 and the
following discussion). This nonidentifiability is broken by fixing one compo-
nent of θG for each multinomial dependence group G if we are using the θ
parameterization and similarly for ϕ. With that proviso all of the parameter
transformations are invertible and infinitely differentiable.

Of course, saturated models are uninteresting for data analysis because
they have too many parameters. They are just the largest model within
which we seek parsimonious submodels. Modeling mean values as linear
functions of means, like linear models (LM) do, is nonsense because of the
constraints on means (conditional means for both Bernoulli and multinomial
are between zero and one, those for zero-truncated Poisson are nonnegative).
Even generalized linear models (GLM) don’t do that. Instead GLM that
are exponential families (logistic regression and Poisson regression with log
link) model canonical parameters linearly. Aster models do the same. The
question is which canonical parameter vector θ or ϕ? The best answer
is ϕ because that is the parameter that makes the whole aster model an
exponential family. An unconditional canonical affine submodel has

ϕ = a+Mβ

where a is a known vector and M a known matrix, called the offset vector
and model matrix in the terminology of the R functions lm which fits LM
and glm which fits GLM and of the R package aster2 (the R package aster
says “origin” instead of “offset”), and where β is the submodel parameter
vector. This makes the submodel a full exponential family. The submodel
log likelihood is

l(β) = yT (a+Mβ)− c(a+Mβ) = yTa+ yTMβ − c(a+Mβ)

and the term not containing the parameter β can be dropped giving

l(β) = yTMβ − c(a+Mβ) = (MT y)Tβ − csub(β)

and this shows we have another exponential family with canonical statistic
MT y, canonical parameter β and cumulant function csub. The submodel

6

mean value parameter is the expectation of the canonical statistic

τ = E(MT y) = MTµ

With the proviso about fixing one component of ϕ or θ in each multinomial
dependence group and with the additional proviso that M is full rank, we
have six identifiable parameterizations θ, ϕ, ξ, µ, β, and τ and all of the
transformations between them are invertible and infinitely differentiable.

The following diagram shows these parameters and some of their trans-
formations.

θ ϕ β

ξ µ τ

aster transform

inverse aster transform ϕ =Mβ

ξG = ∇cG(θG) µ = ∇c(ϕ) τ = ∇csub(β)

τ =MTµmultiplication

division

As the diagram shows, transformations from canonical to mean value param-
eters are given by differentiating cumulant functions. The inverses of these
transformations have no closed form expression but can be done by solving
optimization problems, they are essentially equivalent to doing maximum
likelihood.

Maximum likelihood estimation for the submodel differentiates the sub-
model log likelihood

∇l(β) = MT y −∇csub(β) = MT y −MTEβ(y)

sets the derivative equal to zero and solves for β. Thus the maximum like-
lihood estimate (MLE) for β satisfies

MT y = ∇csub(β̂) = MTEβ̂(y)

By invariance of maximum likelihood the MLE for τ is what the MLE for β
maps to under the parameter transformation

τ̂ = ∇csub(β̂) = MT y

Everything in this paragraph holds for every full exponential family (nothing
special about aster models here). MLE for them satisfy the “observed equals

7

expected” property (the MLE of the mean value parameter is the observed
value of the canonical statistic, in this case τ̂ = MT y).

Exponential families give aster unconditional canonical affine submodels
many more good properties: the multivariate monotonicity property of maps
from canonical to mean value parameters (Geyer, 2010, sec. 2.9 and Shaw
and Geyer, 2010, appendix), the sufficient dimension reduction property
(all MLE are sufficient statistics, Geyer, 2010, sec. 2.10), and the maximum
entropy property (Geyer, 2010, sec. 2.12). In particular, the multivariate
monotonicity property of the maps ϕ←→ µ enables much important theory
(Shaw and Geyer, 2010, appendix). All of these properties and more (Geyer,
2010, discussion) make unconditional canonical affine submodels by far the
most useful.

Conditional canonical affine submodels model θ affinely

θ = a+Mβ

These are not full exponential families. They are, of course curved expo-
nential families because they are smooth submodels of the saturated model.
But that doesn’t give them any of the desirable properties of the uncon-
ditional canonical affine submodels. Generally, conditional submodels are
a lot less parsimonious than unconditional submodels (Geyer, et al., 2007;
Geyer, 2010). As far as we know there are only two published examples of
conditional submodels: Example 1 in Shaw, et al. (2008), which arguably
could have been done with an unconditional submodel, and Shaw, et al.
(2015), which had to use a conditional submodel because of time-dependent
covariates (the first essential use of such models). We ignore conditional sub-
models for the rest of this technical report because the R package aster2

currently has no way to fit them.

6 Model Fitting

Fitting an aster model using the aster2 package is not as easy as using
the aster package. The aster2 package has no model fitting function that
takes a formula and fits a model, like the aster function in the aster pack-
age. Nor does it have generic summary, anova, and predict functions that
support doing hypothesis tests and confidence intervals. The aster2 pack-
age is the only way to do aster models with dependence groups. Currently,
for everything else, use the aster package.

The aster2 package has parameter transformation functions that do
all transformations between all parameterizations of aster models shown in

8

the diagram on p. 7. In being able to do all of these transformations, the
aster2 package is superior to the aster package, which only does some of
them (using the functions predict and astertransform).

But it does require more work to do maximum likelihood using the
aster2 package than the aster package. The observed equals expected
property applied to aster models says that the MLE of the submodel mean
value parameter τ̂ is equal to the submodel sufficient statistic MT y. Then
by invariance of maximum likelihood, the MLE of the submodel canonical
parameter β̂ is the transformation of τ̂ . Thus maximum likelihood in the
aster2 package is done as follows.

1. Make the model matrix M . The R function model.matrix can be
used to do this.

2. Make the submodel sufficient statistic MT y = τ̂ .

3. Transform τ̂ to β̂ using the R function transformUnconditional.

Then, the MLE having been obtained, there is no support for hypothesis
tests or confidence intervals. But the aster2 package can calculate Fisher
information for any of these parameters. The Fisher information matrix for
β is

I(β) = ∇2csub(β) = ∇h(β)

where h is the transformation β −→ τ . The Fisher information matrix for
τ is

I(τ) =
[
∇2csub(β)

]−1
= ∇h−1(τ)

And the Jacobian matrices ∇h(β) and ∇h−1(τ) are computed by the R
function jacobian.

Then from Fisher information one can compute various hypothesis tests
and confidence intervals. In this document we only do Rao tests. The
aster2 package does not have a function that calculates log likelihoods (in
the aster package both R functions aster and mlogl do this), so we have
no easy way to calculate likelihood ratios and likelihood ratio test statistics.
That is why we do not do likelihood ratio tests.

7 Model selection

Our analysis selects a best model via backwards selection. We start with
a model that is full quadratic in all three covariates (age at second instar,
mass at second instar, and mass at eclosion). We then show by doing a Rao

9

test of model comparison that we can drop quadratic terms involving age.
We then show by doing more Rao tests of model comparison that we cannot
drop any other terms.

To conduct such a test, the score function and inverse observed Fisher
information need to be calculated under the null model. The score function
is

MT
alterY −∇c(Malterβ̂null) (4)

where Malter and β̂null are the model matrix for the full quadratic model and
the MLE for β using the null model, respectively (we do not have an offset
vector in any of our models). We first calculate the term on the left in (4).

offspring <- as.numeric(grepl("B",data$redata$varb))

modmat.alt <- model.matrix(resp ~ varb +

offspring:(Mass_Repro + Mass_2nd +

I(Mass_Repro^2) + I(Mass_2nd^2) + I(Mass_2nd*Mass_Repro) +

Time_2nd + I(Time_2nd^2) + I(Mass_2nd*Time_2nd) +

I(Time_2nd*Mass_Repro)), data = data$redata)

tau.alt <- crossprod(modmat.alt, data$redata$resp)

We now calculate β̂null by mapping τ̂null to the β parameterization using
the transformUnconditional function, this null hypothesis being the one
in which Time_Repro is linear and the other two covariates are quadratic.

modmat.null <- model.matrix(resp ~ varb +

offspring:(Mass_Repro + Mass_2nd +

I(Mass_Repro^2) + I(Mass_2nd^2) + I(Mass_2nd*Mass_Repro) +

Time_2nd), data = data$redata)

tau <- crossprod(modmat.null, data$redata$resp)

beta <- beta.null <- transformUnconditional(tau, modmat.null,

data, from = "tau", to = "beta", tolerance = 1e-100)

The term on the right in (4) is calculated using the transformUnconditional
function.

tau.null <- transformUnconditional(c(beta.null,rep(0,3)),

modmat.alt, data, from = "beta", to = "tau")

score <- tau.alt - tau.null

Observed Fisher information is calculated using the jacobian function.
Three zeros are added to β̂null in order to calculate observed Fisher infor-
mation for the alternative model at the MLE for the null model. The three

10

zeros are for the terms (the quadratic term for age at second instar and the
two crossproduct terms of age at second instar with one of the mass covari-
ates) that are present in the alternative but absent in the null (which is the
same as being set to zero).

Fisher.null <- jacobian(c(beta.null,rep(0,3)), data,

transform = "unconditional", from = "beta",

to = "tau", modmat = modmat.alt)

We now construct the Rao test statistic. The reference distribution
for this test is χ2

3 and the p-value suggests that we fail to reject the null
hypothesis when testing at the 0.05 significance level.

Rao <- t(score) %*% solve(Fisher.null, tol = 1e-100) %*% score

pchisq(Rao, df = 3, lower = FALSE)

[,1]

[1,] 0.1048548

All less complicated models are found to be insignificant when testing
at the 0.05 significance level. Our final model includes the full quadratic
structure between the two mass terms and a linear term for the age at
which an individual M. sexta reaches its second instar larval stage as useful
predictors of unconditional expected ovariole counts. First, we consider
removing the quadratic terms for mass at second instar. The p-value is
small enough to reject this smaller model at any reasonable significance
level. The steps to conduct this test are similar to those that conducted our
first hypothesis test.

modmat.null <- model.matrix(resp ~ varb +

offspring:(Mass_Repro + I(Mass_Repro^2) + Time_2nd +

Mass_2nd),

data = data$redata)

tau <- crossprod(modmat.null, data$redata$resp)

beta.null <- transformUnconditional(tau, modmat.null,

data, from = "tau", to = "beta", tolerance = 1e-100)

modmat.alt <- model.matrix(resp ~ varb +

offspring:(Mass_Repro + I(Mass_Repro^2) + Time_2nd +

Mass_2nd + I(Mass_Repro*Mass_2nd) + I(Mass_2nd^2)),

11

data = data$redata)

tau.alt <- crossprod(modmat.alt, data$redata$resp)

tau.null <- transformUnconditional(c(beta.null,rep(0,2)),

modmat.alt, data, from = "beta", to = "tau")

score <- tau.alt - tau.null

Fisher.null <- jacobian(c(beta.null,rep(0,2)), data,

transform = "unconditional", from = "beta",

to = "tau", modmat = modmat.alt)

Rao <- t(score) %*% solve(Fisher.null, tol = 1e-100) %*% score

pchisq(Rao, df = 2, lower = FALSE)

[,1]

[1,] 3.371453e-08

We now consider removing the quadratic terms for mass at eclosion.
The p-value is small enough to reject this smaller model at any reasonable
significance level.

modmat.null <- model.matrix(resp ~ varb +

offspring:(Mass_2nd + I(Mass_2nd^2) + Time_2nd +

Mass_Repro),

data = data$redata)

tau <- crossprod(modmat.null, data$redata$resp)

beta.null <- transformUnconditional(tau, modmat.null,

data, from = "tau", to = "beta", tolerance = 1e-100)

modmat.alt <- model.matrix(resp ~ varb +

offspring:(Mass_2nd + I(Mass_2nd^2) + Time_2nd +

Mass_Repro + I(Mass_Repro^2) + I(Mass_Repro*Mass_2nd)),

data = data$redata)

tau.alt <- crossprod(modmat.alt, data$redata$resp)

tau.null <- transformUnconditional(c(beta.null,rep(0,2)),

modmat.alt, data, from = "beta", to = "tau")

score <- tau.alt - tau.null

Fisher.null <- jacobian(c(beta.null,rep(0,2)), data,

transform = "unconditional", from = "beta",

12

to = "tau", modmat = modmat.alt)

Rao <- t(score) %*% solve(Fisher.null, tol = 1e-100) %*% score

pchisq(Rao, df = 2, lower = FALSE)

[,1]

[1,] 6.739063e-89

Finally, we consider removing the linear term for age that individuals
reach their second instar stage. The p-value is small enough to reject this
smaller model at any reasonable significance level.

modmat.null <- model.matrix(resp ~ varb +

offspring:(Mass_2nd + I(Mass_2nd^2) + Mass_Repro +

I(Mass_Repro^2) + I(Mass_Repro*Mass_2nd)),

data = data$redata)

tau <- crossprod(modmat.null, data$redata$resp)

beta.null <- transformUnconditional(tau, modmat.null,

data, from = "tau", to = "beta", tolerance = 1e-100)

modmat.alt <- model.matrix(resp ~ varb +

offspring:(Mass_2nd + I(Mass_2nd^2) + Mass_Repro +

I(Mass_Repro^2) + I(Mass_Repro*Mass_2nd) + Time_2nd),

data = data$redata)

tau.alt <- crossprod(modmat.alt, data$redata$resp)

tau.null <- transformUnconditional(c(beta.null,0),

modmat.alt, data, from = "beta", to = "tau")

score <- tau.alt - tau.null

Fisher.null <- jacobian(c(beta.null,0), data,

transform = "unconditional", from = "beta",

to = "tau", modmat = modmat.alt)

Rao <- t(score) %*% solve(Fisher.null, tol = 1e-100) %*% score

pchisq(Rao, df = 1, lower = FALSE)

[,1]

[1,] 7.878988e-05

The results of the tests that compare our final model to smaller models
are concisely summarized in Table 1.

13

null model df P -value

removes quadratic terms for mass at second instar 2 3.37× 10−8

removes quadratic terms for mass at eclosion 2 < 10−10

removes linear term for age at second instar 1 7.88× 10−5

Table 1: Rao tests for smaller models. P -values and degrees of freedom
for Rao tests of three smaller models against the larger model that includes
linear, quadratic, and interaction term for the two mass traits and a linear
term for age at second larval instar stage.

8 Fitness landscapes

Now that we have selected the best model, we want to plot fitness land-
scape, unconditional expected fitness as a function of covariates. We do this
by predicting, on the basis of the model, values for fitness for all observed
values of age at second instar and samples of 101 values of mass at second
instar and 101 values of mass at eclosion. Since this is a four-dimensional
graph (fitness versus three covariates), it cannot be visualized, and we make
one three-dimensional graph for each age at 2nd instar using the R func-
tion contour. Covariate values that maximize expected fitness are also of
interest.

Before we do this we need to extract some useful information from the
hornworm dataset.

vars <- levels(hornworm$redata$varb)

pred <- hornworm$pred

group <- hornworm$group

code <- hornworm$code

families <- hornworm$families

Now the 1012 hypothetical individuals with unique mass traits reaching
their second instar larval stage at age 2 are generated

x <- seq(from = 0, to = 0.016, by = 0.016/100)

y <- seq(from = 0, to = 2.3, by = 2.3/100)

days <- 2:6 / 7

long.sex <- factor(rep("F", 101^2), levels = c("F", "M", "U"))

mnew <- data.frame(long.sex, rep(days[1], 101^2),

rep(x, times = 101), rep(y, each = 101))

mnew <- cbind(mnew, matrix(rep(0, 26*101^2), ncol = 26))

14

mnames <- c("Sex", "Time_2nd", "Mass_2nd", "Mass_Repro", vars)

names(mnew) <- mnames

We then make the object of class asterdata for this new data and the
model matrix for our best model and these new data.

data.mnew <- asterdata(mnew, vars = vars, pred = pred,

group = group, code = code, families = families)

foo <- as.character(data.mnew$redata$varb)

offspring.mnew <- as.numeric(grepl("B", foo))

data.mnew$redata <- transform(data.mnew$redata,

offspring.mnew = offspring.mnew)

modmat.mnew <- model.matrix(resp ~ varb +

offspring.mnew:(Mass_Repro + Mass_2nd +

I(Mass_Repro^2) + I(Mass_2nd^2) + I(Mass_2nd*Mass_Repro) +

Time_2nd), data = data.mnew$redata)

This model matrix is then used to find the MLE of the saturated model
unconditional canonical parameter ϕ.

phi <- modmat.mnew %*% beta

Estimates on the canonical scale are not directly interpretable. We need
estimates for the mean-value parameters of the unconditional model (µ).
These are found using the transformSaturated function. Only the es-
timates corresponding to ovariole count nodes are of interest. For every
hypothetical individual there are eight predictions of ovariole count, one for
every age that the individual can reach its reproduction stage. These pre-
dictions are summed to arrive at an estimate of expected ovariole count for
each of the 1012 hypothetical individuals.

Of course, in this biological system observed fitness for a single individ-
ual is nonzero at only one age, the age at which the individual reproduces
(at most one Bx variable in the graph on p. 2 is nonzero). But expected fit-
ness is nonzero at all ages (all components of the unconditional mean value
parameter vector µ are nonzero). Adding the components of µ for all the Bx
nodes of the graph adds the contribution to expected fitness of reproduction
at all ages.

15

mus2 <- transformSaturated(phi, data.mnew, from = "phi",

to = "mu")

ind <- which(grepl("B",rownames(data.frame(modmat.mnew))))

qux2 <- matrix(mus2[ind], nrow = 101^2, ncol = 8)

colnames(qux2) <- paste("c", 1:8, sep = "")

rownames(qux2) <- c(1:101^2)

sums2 <- as.numeric(apply(qux2, 1, sum))

zday2 <- matrix(sums2, nrow = 101)

The maximum function, defined below, is used to find the two mass values
yielding the highest expected fitness.

maximum <- function(sums){
max.ind <- which(sums == max(sums))

column <- floor(max.ind / 101)

row <- max.ind - 101 * column

point <- c(x[row], y[column])

return(point)

}

To make the plot we need to pull more things out of the hornworm

dataset. The data are in the redata component of the asterdata object.
We pull it out. This is an object in so-called long format (in the terminology
of the R function reshape) so all of the covariates are repeated as many times
as there are nodes in the graph. We get rid of this repetition because we are
only interested in covariates here. And then we keep the data for females
only.

mass.second <- hornworm$redata$Mass_2nd

mass.reprod <- hornworm$redata$Mass_Repro

sex <- as.character(hornworm$redata$Sex)

unique(sex)

[1] "F" "M" "U"

time.second <- hornworm$redata$Time_2nd

id <- data$redata$id

u <- unique(id)

idx <- match(u, id)

mass.second <- mass.second[idx]

16

mass.reprod <- mass.reprod[idx]

sex <- sex[idx]

time.second <- time.second[idx]

mass.second <- mass.second[sex == "F"]

mass.reprod <- mass.reprod[sex == "F"]

The fitness landscape for these 1012 hypothetical individuals reaching
the second instar stage at age 2 is plotted in Figure 1.

The code below constructs the fitness landscape plots for hypothetical
individuals reaching the second instar larval stage at ages 3, 4, and 5.

mnew <- data.frame(long.sex, rep(days[2], 101^2),

rep(x, times = 101), rep(y, each = 101))

mnew <- cbind(mnew, matrix(rep(0, 26*101^2), ncol = 26))

mnames <- c("Sex", "Time_2nd", "Mass_2nd", "Mass_Repro", vars)

names(mnew) <- mnames

data.mnew <- asterdata(mnew, vars = vars, pred = pred,

group = group, code = code, families = families)

foo <- as.character(data.mnew$redata$varb)

offspring.mnew <- as.numeric(grepl("B", foo))

data.mnew$redata <- transform(data.mnew$redata,

offspring.mnew = offspring.mnew)

modmat.mnew <- model.matrix(resp ~ varb +

offspring.mnew:(Mass_Repro + Mass_2nd +

I(Mass_Repro^2) + I(Mass_2nd^2) + I(Mass_2nd*Mass_Repro) +

Time_2nd), data = data.mnew$redata)

phi <- crossprod(t(modmat.mnew), beta)

mus3 <- transformSaturated(phi, data.mnew, from = "phi",

to = "mu")

ind <- which(grepl("B",rownames(data.frame(modmat.mnew))))

qux3 <- matrix(mus3[ind], nrow = 10201, ncol = 8)

colnames(qux3) <- paste("c", 1:8, sep = "")

rownames(qux3) <- c(1:10201)

sums3 <- as.numeric(apply(qux3, 1, sum))

zday3 <- matrix(sums3, nrow = 101)

mnew <- data.frame(long.sex, rep(days[3], 101^2),

17

plot(mass.second, pch = 20,

mass.reprod, xlab = "Mass at

2nd instar", ylab = "Mass at Reproduction",

main = "Fitness Landscape for Ovariole Counts vs. Mass")

points(maximum(sums2)[1], maximum(sums2)[2], col = "red",

pch = 19)

contour(x,y,zday2, add = TRUE, nlevels = 8, levels =

c(100,150,200,250,300,325,350,360))

0.006 0.008 0.010 0.012 0.014

0.
0

0.
5

1.
0

1.
5

2.
0

Fitness Landscape for Ovariole Counts vs. Mass

Mass at
 2nd instar

M
as

s
at

 R
ep

ro
du

ct
io

n

 100

 150

 200

 250

 250

 300

 325

 350

 360

Figure 1: Fitness Landscape for Those Reaching Second Instar at Day 2.

18

rep(x, times = 101), rep(y, each = 101))

mnew <- cbind(mnew, matrix(rep(0, 26*101^2), ncol = 26))

mnames <- c("Sex", "Time_2nd", "Mass_2nd", "Mass_Repro", vars)

names(mnew) <- mnames

data.mnew <- asterdata(mnew, vars = vars, pred = pred,

group = group, code = code, families = families)

foo <- as.character(data.mnew$redata$varb)

offspring.mnew <- as.numeric(grepl("B", foo))

data.mnew$redata <- transform(data.mnew$redata,

offspring.mnew = offspring.mnew)

modmat.mnew <- model.matrix(resp ~ varb +

offspring.mnew:(Mass_Repro + Mass_2nd +

I(Mass_Repro^2) + I(Mass_2nd^2) + I(Mass_2nd*Mass_Repro) +

Time_2nd), data = data.mnew$redata)

phi <- crossprod(t(modmat.mnew), beta)

mus4 <- transformSaturated(phi, data.mnew, from = "phi",

to = "mu")

ind <- which(grepl("B",rownames(data.frame(modmat.mnew))))

qux4 <- matrix(mus4[ind], nrow = 10201, ncol = 8)

colnames(qux4) <- paste("c", 1:8, sep = "")

rownames(qux4) <- c(1:10201)

sums4 <- as.numeric(apply(qux4, 1, sum))

zday4 <- matrix(sums4, nrow = 101)

mnew <- data.frame(long.sex, rep(days[4], 101^2),

rep(x, times = 101), rep(y, each = 101))

mnew <- cbind(mnew, matrix(rep(0, 26*101^2), ncol = 26))

mnames <- c("Sex", "Time_2nd", "Mass_2nd", "Mass_Repro", vars)

names(mnew) <- mnames

data.mnew <- asterdata(mnew, vars = vars, pred = pred,

group = group, code = code, families = families)

foo <- as.character(data.mnew$redata$varb)

offspring.mnew <- as.numeric(grepl("B", foo))

data.mnew$redata <- transform(data.mnew$redata,

offspring.mnew = offspring.mnew)

modmat.mnew <- model.matrix(resp ~ varb +

19

offspring.mnew:(Mass_Repro + Mass_2nd +

I(Mass_Repro^2) + I(Mass_2nd^2) + I(Mass_2nd*Mass_Repro) +

Time_2nd), data = data.mnew$redata)

phi <- crossprod(t(modmat.mnew), beta)

mus5 <- transformSaturated(phi, data.mnew, from = "phi",

to = "mu")

ind <- which(grepl("B",rownames(data.frame(modmat.mnew))))

qux5 <- matrix(mus5[ind], nrow = 10201, ncol = 8)

colnames(qux5) <- paste("c", 1:8, sep = "")

rownames(qux5) <- c(1:10201)

sums5 <- as.numeric(apply(qux5, 1, sum))

zday5 <- matrix(sums5, nrow = 101)

The code below builds the fitness landscapes. These fitness landscapes
appear in the left hand column of Figure 2 in the paper, which is called
Figure 4 in this technical report. In the paper, the fitness landscapes appear
smaller than those on display in Figure 2.

par(mfrow = c(2, 2), mar = rep(0.5, 4),

oma = c(4, 4, 0, 0) + 0.1)

day 2

plot(mass.second,

mass.reprod,

axes = FALSE, xlab = "", ylab = "", pch = 20)

box()

axis(side = 2, outer = TRUE)

mtext("mass at eclosion", outer = TRUE, line = 3,

side = 2, at = 0.50)

mtext("mass at 2nd instar stage", outer = TRUE, line = 3,

side = 1, at = 0.50)

points(maximum(sums2)[1], maximum(sums2)[2], pch = 0)

levels <- seq(50, 350, by = 50)

contour(x, y, zday2, add = TRUE, levels = levels)

day 3

plot(mass.second,

mass.reprod,

axes = FALSE, xlab = "", ylab = "", pch = 20)

box()

20

points(maximum(sums3)[1], maximum(sums3)[2], pch = 0)

contour(x, y, zday3, add = TRUE, levels = levels)

day 4

plot(mass.second,

mass.reprod,

axes = FALSE, xlab = "", ylab = "", pch = 20)

box()

axis(side = 1, outer = TRUE)

axis(side = 2, outer = TRUE)

points(maximum(sums4)[1], maximum(sums4)[2], pch = 0)

contour(x, y, zday4, add = TRUE, levels = levels)

day 5

plot(mass.second,

mass.reprod,

axes = FALSE, xlab = "", ylab = "", pch = 20)

box()

axis(side = 1, outer = TRUE)

points(maximum(sums5)[1], maximum(sums5)[2], pch = 0)

contour(x, y, zday5, add = TRUE, levels = levels)

Figure 2 displays the entire fitness landscape for all hypothetical indi-
viduals. The fitness landscapes generated show that expected unconditional
ovariole count is predominantly explained by an individual’s mass at eclo-
sion. As mass at eclosion increases, expected fitness increases with a maxi-
mum fitness found for female M. sexta weighing roughly 2 grams at eclosion.
Expected fitness is also influenced by age at which individuals reach the sec-
ond instar larval stage. The contours show that individuals reaching the
second instar larval stage earlier have higher expected numbers of offspring.
The contours suggest that fitness depends only weakly on mass at the second
instar stage. However, the formal hypothesis test shows that this relation-
ship is highly significant. In addition, expected unconditional ovariole count
declines with increasing age to 2nd instar (Fig. 2). For example, maximum
expected ovariole count declines by 16% as age to 2nd instar increases from
2 (upper left panel) to 5 (lower right panel) days. This effect is largely due
to the effects of age at 2nd instar on survival to eclosion: slower development
(later age at 2nd instar) is associated with lower survival.

21

0.
0

0.
5

1.
0

1.
5

2.
0

m
as

s
at

 e
cl

os
io

n

mass at 2nd instar stage

 50

 100

 150

 200

 250

 250

 300

 350

 50

 100

 150

 200

 250

 300

0.006 0.008 0.010 0.012 0.014

0.
0

0.
5

1.
0

1.
5

2.
0

 50

 100

 150

 200

 200

 250

 300

0.006 0.008 0.010 0.012 0.014

 50

 100

 150

 200

 200

 250

 300

Figure 2: Fitness landscapes for expected unconditional ovariole counts vs.
mass at eclosion and mass at 2nd instar stage. Different panels are for dif-
ferent ages (in days since hatching) at which individuals reached the second
instar larval stage (age 2 is top left, age 3 is top right, age 4 is bottom left,
and age 5 is bottom right). Mass at second instar stage is on the x-axis,
and mass at eclosion is on the y-axis. The boxes denote the maxima. The
maximum values are 363.6 (top left), 342.4 (top right), 322.4 (bottom left),
and 303.6 (bottom-right).

22

9 Population growth rate

The preceding analysis accounts for survival and ovariole count as com-
ponents of fitness, but does not take into account the role of variation in
timing of reproduction in fitness variation. To incorporate this effect we
must consider the expected population growth rate. The population growth
rate parameter (λ) for the observed population of M. sexta is estimated
from the stable age equation discussed in (Fisher, 1930, p. 26), as the basis
of accounting for individuals’ age at reproduction in its lifetime fitness. In
our context, this is

1 =
1

n

n∑
i=1

40∑
x=33

µixe
−λx (5)

where µix is the unconditional expected ovariole count for individual i at
day x which is given below.

mu.star <- tau.alt[grepl("varbB", rownames(tau.alt))]

Having e−λx instead of ρx in (5) follows Charlesworth (1980). The popu-
lation growth rate parameter λ is calculated here using the uniroot function.

nind <- length(unique(hornworm$redata$id))

nind

[1] 162

n <- nind

gr <- function(lam){
n - sum(mu.star * exp(-(lam * (32 + seq(along = mu.star)))))

}
lout <- uniroot(gr, lower = -105, upper = 105)

lambda.hat <- lout$root

lambda.hat

[1] 0.1215653

In most treatments of the stable age equation, starting with Fisher, the
term µix in (5) is written as the product of probability of survival to age
x and the conditional expectation of number of offspring at age x given
survival to age x, but we do not do that because µix is calculated directly
by the aster software. Most treatments of the stable age equation, starting

23

with Fisher, do not average over all individuals in the data, the (1/n)
∑n

i=1

in (5). That is because those treatments do not allow for variation among
individuals. Consequently, they use the same model for all individuals and
apply the stable age equation to one individual (and hence to all because
all are the same according to the model). Here, where µix is different for
different individuals because of the covariates in the model (mass at second
instar, mass at eclosion, and age at second instar), we replace the means for
a typical individual with the average over all individuals in the data.

From the µ̂ix produced by the aster model and (5) we obtain the esti-
mate λ̂ = 0.122. The positive value of λ indicates a growing population.
This very large value of λ̂, indicating that the population grows by a factor
of exp(λ̂) = 1.129 per day, results from the fact that many sources of mor-
tality in natural populations were excluded from the experiment (e. g., low
densities of larvae, the netting to exclude predation by birds, and lack of
predation before larvae were moved from the lab to the field garden). Such
overestimates of population growth rate are typical of experiments that do
not have all sources of natural mortality and all sources of failure to repro-
duce.

We examine the effects that λ has on expected fitness by reweighting the
fitness landscape according to

w(z) =
40∑

x=33

µx(z)e−λx, (6)

where µx(z) is now expected reproduction at age x for a hypothetical in-
dividual having trait values given by z (Charlesworth, 1980, p. 134). The
weights according to the population growth rate used are

weight <- function(t) exp(-lambda.hat * (32 + t))

weight(c(1:8))

[1] 0.018103415 0.016031176 0.014196139 0.012571153 0.011132173 0.009857909

[7] 0.008729506 0.007730268

Fitness is now reweighted to incorporate the population growth rate. We
refit the model using weights

wj = fje
−λtj (7)

where fj are the zero or one weights indicating nodes that contribute di-
rectly to fitness and tj is the age of the individual at node j. This weighting

24

accounts for population growth rate (Charlesworth, 1980, p. 134). We in-
corporate the weights using the code below.

foo <- data$redata$varb

offspring <- as.numeric(grepl("B", foo))

bar <- grepl("B", foo)

baz <- offspring

baz[bar] <- sub("B", "", foo)[bar]

baz <- as.numeric(baz)

baz[bar] <- weight(baz[bar] - 32)

offspring <- baz

offspring <- offspring * 100

A new model matrix is created that incorporates reweighted fitness.

modmat.full <- model.matrix(resp ~ varb +

offspring:(Mass_Repro + Mass_2nd +

I(Mass_Repro^2) + I(Mass_2nd^2) + I(Mass_2nd*Mass_Repro) +

Time_2nd), data = data$redata)

We now obtain the new aster submodel mean-value parameter τ asso-
ciated with reweighted fitness. The transformUnconditional function is
used to find the corresponding submodel canonical parameter vector β.

tau.full <- crossprod(modmat.full, data$redata$resp)

beta.full <- transformUnconditional(tau.full,

modmat.full, data, from = "tau", to = "beta")

The same hypothetical individuals used to build the fitness landscape
before adjusting for the population growth rate are used to build the fitness
landscape after we adjust for the population growth rate.

x <- seq(from = 0, to = 0.016, by = 0.016/100)

y <- seq(from = 0, to = 2.3, by = 2.3/100)

days <- 2:6 / 7

mnew <- data.frame(long.sex, rep(days[1], 101^2),

rep(x, times = 101), rep(y, each = 101))

mnew <- cbind(mnew, matrix(rep(0, 26*101^2), ncol = 26))

mnames <- c("Sex", "Time_2nd", "Mass_2nd", "Mass_Repro", vars)

names(mnew) <- mnames

25

This model matrix is converted into an asterdata object in order to
find estimates of fitness using the aster2 package.

data.mnew <- asterdata(mnew, vars = vars, pred = pred,

group = group, code = code, families = families)

The population growth rate is now incorporated into the model matrix
for the hypothetical individuals.

foo <- as.character(data.mnew$redata$varb)

bar <- grepl("B", foo)

offspring.mnew <- as.numeric(bar)

baz <- offspring.mnew

baz[bar] <- sub("B", "", foo)[bar]

baz <- as.numeric(baz)

baz[bar] <- weight(baz[bar] - 32)

offspring.mnew <- baz

offspring.mnew <- 100 * offspring.mnew

data.mnew$redata <- transform(data.mnew$redata,

offspring.mnew = offspring.mnew)

µx(z) is calculated in two steps. We first transform from β to ϕ manually
and then use the transformSaturated function to transform from ϕ to µ
as done previously.

modmat.mnew <- model.matrix(resp ~ varb +

offspring.mnew:(Mass_Repro + Mass_2nd +

I(Mass_Repro^2) + I(Mass_2nd^2) + I(Mass_2nd*Mass_Repro) +

Time_2nd), data = data.mnew$redata)

phi <- crossprod(t(modmat.mnew), beta.full)

mus.fit2 <- transformSaturated(phi, data.mnew, from = "phi",

to = "mu")

We now build the fitness landscape after adjusting for the population
growth rate. The fitness landscape calculated using the code below is only
for individuals that reach their second instar stage at age 2. The figure
generated compares the fitness landscape constructed here to the fitness
landscape unadjusted for λ for individuals that reach their second instar
stage at age 2.

26

ind <- which(grepl("B",rownames(data.frame(modmat.mnew))))

qux.fit2 <- matrix(mus.fit2[ind], nrow = 10201, ncol = 8)

sumslam.fit2 <- as.numeric(apply(qux.fit2, 1, sum))

zday.fit2 <- matrix(sumslam.fit2, nrow = 101)

We can see that the contours of the two fitness landscapes in Figure 3
differ. We now change the fitness landscape adjusted for the population
growth rate to a relative fitness landscape. This is done by dividing esti-
mated expected ovariole counts by the mean of estimated expected ovariole
counts.

mymu.full <- transformUnconditional(beta.full,

modmat.full, data, from = "beta", to = "mu")

names(mymu.full) <- rownames(modmat.full)

mymu.full.births <- mymu.full[grepl("B", names(mymu.full))]

mean.fitness <- mean(mymu.full.births)

mean.fitness <- mean.fitness * 8

zday.fit2 <- zday.fit2 / mean.fitness

The same routine is performed for the 30603 individuals that reach their
second instar life stage at ages 3, 4, and 5.

mnew <- data.frame(long.sex, rep(days[2], 101^2),

rep(x, times = 101), rep(y, each = 101))

mnew <- cbind(mnew, matrix(rep(0, 26*101^2), ncol = 26))

mnames <- c("Sex", "Time_2nd", "Mass_2nd", "Mass_Repro", vars)

names(mnew) <- mnames

data.mnew <- asterdata(mnew, vars = vars, pred = pred,

group = group, code = code, families = families)

foo <- as.character(data.mnew$redata$varb)

offspring.mnew <- as.numeric(bar)

baz <- offspring.mnew

baz[bar] <- sub("B", "", foo)[bar]

baz <- as.numeric(baz)

baz[bar] <- weight(baz[bar] - 32)

offspring.mnew <- baz

offspring.mnew <- 100 * offspring.mnew

data.mnew$redata <- transform(data.mnew$redata,

27

plot(mass.second, pch = 20,

mass.reprod, xlab = "Mass at

2nd instar", ylab = "Mass at Reproduction",

main = "Fitness Landscape for Ovariole Counts vs. Mass")

points(maximum(sums2)[1], maximum(sums2)[2], col = "red",

pch = 19)

contour(x,y,zday2, add = TRUE, nlevels = 8, levels =

c(100,150,200,250,300,325,350,360))

plot(mass.second, pch = 20,

mass.reprod, xlab = "Mass at

2nd instar", ylab = "Mass at Reproduction",

main = "Fitness Landscape for Ovariole Counts vs. Mass")

points(maximum(sumslam.fit2)[1], maximum(sumslam.fit2)[2],

col = "red", pch = 19)

contour(x,y,zday.fit2, add = TRUE, nlevels = 8)

0.006 0.008 0.010 0.012 0.014

0.
0

0.
5

1.
0

1.
5

2.
0

Fitness Landscape for Ovariole Counts vs. Mass

Mass at
 2nd instar

M
as

s
at

 R
ep

ro
du

ct
io

n

 100

 150

 200

 250

 250

 300

 325

 350

 360

0.006 0.008 0.010 0.012 0.014

0.
0

0.
5

1.
0

1.
5

2.
0

Fitness Landscape for Ovariole Counts vs. Mass

Mass at
 2nd instar

M
as

s
at

 R
ep

ro
du

ct
io

n

 50

 100

 150

 200

 250

 300

Figure 3: Fitness landscapes without (left panel) and with (right panel) ad-
justment for population growth rate λ for hypothetical individuals reaching
their second instar stage at age 2.

28

offspring.mnew = offspring.mnew)

modmat.mnew <- model.matrix(resp ~ varb +

offspring.mnew:(Mass_Repro + Mass_2nd +

I(Mass_Repro^2) + I(Mass_2nd^2) + I(Mass_2nd*Mass_Repro) +

Time_2nd), data = data.mnew$redata)

phi <- crossprod(t(modmat.mnew), beta.full)

mus.fit3 <- transformSaturated(phi, data.mnew, from = "phi",

to = "mu")

births.fit3 <- mus.fit3[ind]

quxlam.fit3 <- matrix(births.fit3, nrow = 10201)

sumslam.fit3 <- apply(quxlam.fit3, 1, sum)

zday.fit3 <- matrix(sumslam.fit3, nrow = 101)

zday.fit3 <- zday.fit3 / mean.fitness

mnew <- data.frame(long.sex, rep(days[3], 101^2),

rep(x, times = 101), rep(y, each = 101))

mnew <- cbind(mnew, matrix(rep(0, 26*101^2), ncol = 26))

mnames <- c("Sex", "Time_2nd", "Mass_2nd", "Mass_Repro", vars)

names(mnew) <- mnames

data.mnew <- asterdata(mnew, vars = vars, pred = pred,

group = group, code = code, families = families)

foo <- as.character(data.mnew$redata$varb)

offspring.mnew <- as.numeric(bar)

baz <- offspring.mnew

baz[bar] <- sub("B", "", foo)[bar]

baz <- as.numeric(baz)

baz[bar] <- weight(baz[bar] - 32)

offspring.mnew <- baz

offspring.mnew <- 100 * offspring.mnew

data.mnew$redata <- transform(data.mnew$redata,

offspring.mnew = offspring.mnew)

modmat.mnew <- model.matrix(resp ~ varb +

offspring.mnew:(Mass_Repro + Mass_2nd +

I(Mass_Repro^2) + I(Mass_2nd^2) + I(Mass_2nd*Mass_Repro) +

29

Time_2nd), data = data.mnew$redata)

phi <- crossprod(t(modmat.mnew), beta.full)

mus.fit4 <- transformSaturated(phi, data.mnew, from = "phi",

to = "mu")

births.fit4 <- mus.fit4[ind]

quxlam.fit4 <- matrix(births.fit4, nrow = 10201)

sumslam.fit4 <- apply(quxlam.fit4, 1, sum)

zday.fit4 <- matrix(sumslam.fit4, nrow = 101)

zday.fit4 <- zday.fit4 / mean.fitness

mnew <- data.frame(long.sex, rep(days[4], 101^2),

rep(x, times = 101), rep(y, each = 101))

mnew <- cbind(mnew, matrix(rep(0, 26*101^2), ncol = 26))

mnames <- c("Sex", "Time_2nd", "Mass_2nd", "Mass_Repro", vars)

names(mnew) <- mnames

data.mnew <- asterdata(mnew, vars = vars, pred = pred,

group = group, code = code, families = families)

foo <- as.character(data.mnew$redata$varb)

offspring.mnew <- as.numeric(bar)

baz <- offspring.mnew

baz[bar] <- sub("B", "", foo)[bar]

baz <- as.numeric(baz)

baz[bar] <- weight(baz[bar] - 32)

offspring.mnew <- baz

offspring.mnew <- 100 * offspring.mnew

data.mnew$redata <- transform(data.mnew$redata,

offspring.mnew = offspring.mnew)

modmat.mnew <- model.matrix(resp ~ varb +

offspring.mnew:(Mass_Repro + Mass_2nd +

I(Mass_Repro^2) + I(Mass_2nd^2) + I(Mass_2nd*Mass_Repro) +

Time_2nd), data = data.mnew$redata)

phi <- crossprod(t(modmat.mnew), beta.full)

mus.fit5 <- transformSaturated(phi, data.mnew, from = "phi",

to = "mu")

30

births.fit5 <- mus.fit5[ind]

quxlam.fit5 <- matrix(births.fit5, nrow = 10201)

sumslam.fit5 <- apply(quxlam.fit5, 1, sum)

zday.fit5 <- matrix(sumslam.fit5, nrow = 101)

zday.fit5 <- zday.fit5 / mean.fitness

We now make the eight-paneled plot that appears in the paper, see
Figure 4. The plots in these panels are slightly different than those that
appeared in Figure 3. We have zoomed out in order to capture more of the
contour shapes. This allows one to easily see the differences in the contours
before and after adjusting for the population growth rate.

xlim <- range(x)

ylim <- range(y)

par(mfrow = c(4, 2), mar = rep(0.5, 4),

oma = c(4, 4, 0, 4) + 0.1)

day 2

plot(mass.second,

mass.reprod,

axes = FALSE, xlab = "", ylab = "", pch = 20,

xlim = xlim, ylim = ylim)

box()

axis(side = 2, outer = TRUE)

mtext("mass at eclosion", outer = TRUE, line = 3, side = 2,

at = 0.50)

mtext("mass at 2nd instar stage", outer = TRUE, line = 3,

side = 1, at = 0.50)

mtext("age second instar stage reached", outer = TRUE,

line = 1, side = 4, at = 0.50)

mtext(as.character(2:5), outer = TRUE, line = 3,

side = 4, at = c(7, 5, 3, 1) / 8)

points(maximum(sums2)[1], maximum(sums2)[2], pch = 0)

levels <- seq(50, 350, by = 50)

contour(x, y, zday2, add = TRUE, levels = levels)

plot(mass.second,

mass.reprod,

31

axes = FALSE, xlab = "", ylab = "", pch = 20,

xlim = xlim, ylim = ylim)

box()

points(maximum(sumslam.fit2)[1], maximum(sumslam.fit2)[2],

pch = 0)

contour(x, y, zday.fit2, nlevels = 7, add = TRUE)

day 3

plot(mass.second,

mass.reprod,

axes = FALSE, xlab = "", ylab = "", pch = 20,

xlim = xlim, ylim = ylim)

box()

axis(side = 2, outer = TRUE)

mtext("mass at eclosion", outer = TRUE, line = 3,

side = 2, at = 0.50)

points(maximum(sums3)[1], maximum(sums3)[2], pch = 0)

contour(x, y, zday3, add = TRUE, levels = levels)

plot(mass.second,

mass.reprod,

axes = FALSE, xlab = "", ylab = "", pch = 20,

xlim = xlim, ylim = ylim)

box()

points(maximum(sumslam.fit3)[1], maximum(sumslam.fit3)[2],

pch = 0)

contour(x, y, zday.fit3, nlevels = 7, add = TRUE)

day 4

plot(mass.second,

mass.reprod,

axes = FALSE, xlab = "", ylab = "", pch = 20,

xlim = xlim, ylim = ylim)

box()

axis(side = 2, outer = TRUE)

mtext("mass at eclosion", outer = TRUE, line = 3,

32

side = 2, at = 0.50)

points(maximum(sums4)[1], maximum(sums4)[2], pch = 0)

contour(x, y, zday4, add = TRUE, levels = levels)

plot(mass.second,

mass.reprod,

axes = FALSE, xlab = "", ylab = "", pch = 20,

xlim = xlim, ylim = ylim)

box()

points(maximum(sumslam.fit4)[1], maximum(sumslam.fit4)[2],

pch = 0)

contour(x, y, zday.fit4, nlevels = 7, add = TRUE)

day 5

plot(mass.second,

mass.reprod,

axes = FALSE, xlab = "", ylab = "", pch = 20,

xlim = xlim, ylim = ylim)

box()

axis(side = 1, outer = TRUE)

axis(side = 2, outer = TRUE)

points(maximum(sums5)[1], maximum(sums5)[2], pch = 0)

contour(x, y, zday5, add = TRUE, levels = levels)

plot(mass.second,

mass.reprod,

axes = FALSE, xlab = "", ylab = "", pch = 20,

xlim = xlim, ylim = ylim)

box()

axis(side = 1, outer = TRUE)

points(maximum(sumslam.fit5)[1], maximum(sumslam.fit5)[2],

pch = 0)

contour(x, y, zday.fit5, nlevels = 7, add = TRUE)

33

0.
0

0.
5

1.
0

1.
5

2.
0

m
as

s
at

 e
cl

os
io

n

mass at 2nd instar stage

ag
e

se
co

nd
 in

st
ar

 s
ta

ge
 r

ea
ch

ed

2
3

4
5

 50

 100
 150

 200
 250

 250

 300

 350

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.
0

0.
5

1.
0

1.
5

2.
0

m
as

s
at

 e
cl

os
io

n

 50

 100
 150

 200
 250

 300

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.
0

0.
5

1.
0

1.
5

2.
0

m
as

s
at

 e
cl

os
io

n

 50

 100
 150

 200

 200

 250

 300

 0.2

 0.4

 0.6

 0.8

 0.8 0.8 1

 1.2

0.000 0.005 0.010 0.015

0.
0

0.
5

1.
0

1.
5

2.
0

 50

 100
 150

 200

 200

 250

 300

0.000 0.005 0.010 0.015

 0.2

 0.4

 0.6

 0.8

 0.8 0.8
 1

Figure 4: Fitness landscapes without (left column) and with (right column)
adjustment for population growth rate λ. Rows top to bottom are 2nd instar
stage reached at age 2, 3, 4, and 5. Numbers on contours are absolute fitness
(unconditional expected ovariole counts) in the left column and are relative
fitness (absolute fitness divided by its average over the population) in the
right column. All plots display fitness as contours vs. mass at eclosion and
mass at 2nd instar stage. Boxes denote locations of maxima. Maximum
values are (left column, from top to bottom) 363.6, 342.4, 322.4, 303.6,
(right column, from top to bottom) 1.39, 1.28, 1.20, 1.14.

34

A Make the Data

In this appendix we show how the hornworm dataset in the aster2 pack-
age was initially created starting from the data for the original analysis
(Kingsolver, et al., 2012), which was a comma separated values (CSV) file.
This file can be found at the same location at the University of Minnesota
Digital Conservancy (http://conservancy.umn.edu/) where this technical
report is found.

MSexta <- read.csv("MSexta.Aster.csv")

names(MSexta)

[1] "LarvaID" "Sex" "Surv_Eclose" "Time_2nd" "Mass_2nd"

[6] "Time_Eclose" "Mass_eclose" "total_eggs"

Some of the column names are changed for convenience. Any column
name that ends in Repro means that the data in that column pertains to
the eclosion stage of M. sexta.

names(MSexta)[c(3,6,7,8)] <- c("Surv_Repro","Time_Repro",

"Mass_Repro","Eggs")

names(MSexta)

[1] "LarvaID" "Sex" "Surv_Repro" "Time_2nd" "Mass_2nd"

[6] "Time_Repro" "Mass_Repro" "Eggs"

This dataset has two individuals that have an ovariole count but have
sex declared as NA. We change sex from NA to female for these individuals.

sex.change <- (! is.na(MSexta$Eggs)) & is.na(MSexta$Sex)

sum(sex.change)

[1] 2

MSexta[sex.change, "Sex"] <- "F"

Sex cannot be determined for M. sexta that die before pupation so the
dataset at this point has NA values recorded for the sex of such individuals.
The aster and aster2 packages do not allow NA values in covariates, so
change sex from NA to U for unobservable.

35

fred <- as.character(MSexta$Sex)

fred[is.na(fred)] <- "U"

MSexta$Sex <- as.factor(fred)

There is some data on female M. sexta that reached eclosion but had NA

recorded for ovariole count. Since the fitness of such individuals is unknown
(missing data), they provide no information about fitness, so we remove
them from the data.

condition <- (MSexta$Sex == "F") & is.na(MSexta$Eggs) &

(MSexta$Surv_Repro == 1)

sum(condition)

[1] 7

MSexta <- MSexta[!condition,]

We now add the survival to pupation variable, called P in the aster graph
(p. 2). This variable is constructed using the Sex variable. Every individual
that has sex recorded as male or female survived to pupation, and every
individual that has no sex recorded died before pupation.

P <- as.numeric(MSexta$Sex != "U")

MSexta <- data.frame(MSexta, P = P)

Other nodes in the graph are constructed using the survival to repro-
duction variables Surv_Repro and Time_Repro.

surv.repro <- MSexta$Surv_Repro

time.repro <- MSexta$Time_Repro

Time of death is not recorded for individuals that do not reach eclosion.

all(is.na(time.repro) == (surv.repro == 0))

[1] TRUE

So that NA values do not propagate into the variables we are creating,
we eliminate these NA values.

36

time.repro[is.na(time.repro)] <- 0

Since the day of death for individuals that did not survive to eclosion was
not recorded, we cannot say on what day death occurred for these individuals
and hence record the death at age 33 days. For all other individuals, we
record when they reached eclosion by creating all the indicator variables in
the graph. For each of the “T with subscripts” variables in the graph, we
create an R variable of that name except we flatten the subscripts (T351
becomes T351). Because all deaths after pupation are recorded on day 33,
that day is special. There is a T330 variable but no Tx0 variable for x > 33.
There are Tx1 and Tx2 variables for all x between 33 and 40.

T330 <- as.numeric((MSexta$Surv_Repro == 0) & (MSexta$P == 1))

for (j in 33:40) {
varname1 <- paste("T", j, "1", sep = "")

varname2 <- paste("T", j, "2", sep = "")

assign(varname1, as.numeric(time.repro > j))

assign(varname2, as.numeric(time.repro == j))

}

Now we also need the ovariole count variables, and we change NA to zero
there too, which is harmless because all females that survive to eclosion now
have egg counts.

We have another problem that will not arise until we use the asterdata

function, but it is easiest to fix here. The graph for females is different from
the graph for males and unobserved. Females have egg counts, which are
the Bx nodes of the graph. Others don’t. But the R function asterdata

only deals with data such that every individual has the same graph. The
idea is do that first, and fix it later using the subset function to delete any
unwanted nodes. But if we do that, the males and unknown must have valid
egg counts (even though they are bogus and will be deleted later) or the
asterdata function will complain. Since we are using the zero-truncated
Poisson distribution for egg counts, every male who reaches eclosion must
have at least one egg (even though this is bogus and we are going to delete
his egg count node later). The unknowns do not reach eclosion, so no fix-up
is needed for them.

eggs <- MSexta$Eggs

sex <- as.character(MSexta$Sex)

37

eggs[sex == "M"] <- NA

all(is.na(eggs) == ((surv.repro == 0) | (sex != "F")))

[1] TRUE

eggs[is.na(eggs)] <- 0

eggs[(sex == "M") & (surv.repro == 1)] <- 1

The variable Bx is equal to the egg count for that individual if the indi-
vidual reached eclosion on day x and is zero otherwise.

for (j in 33:40) {
varname <- paste("B", j, sep = "")

assign(varname, ifelse(time.repro == j, eggs, 0))

}

Finally we need to fix the one covariate that still has NA values.

all(is.na(MSexta$Mass_Repro) == (MSexta$Surv_Repro == 0))

[1] TRUE

MSexta$Mass_Repro[is.na(MSexta$Mass_Repro)] <- 0

We now stuff all these variables into a data frame, in the process changing
the units on some of the variables: the units for Time_2nd change from
days to weeks, and the units for Mass_2nd and Mass_Repro change from
milligrams to grams. These changes of units were perhaps unnecessary, but
were done with the idea that they might make computations more stable.

Msextadata <- data.frame(LarvaID = MSexta$LarvaID, Sex = MSexta$Sex,

Time_2nd = MSexta$Time_2nd / 7, Mass_2nd = MSexta$Mass_2nd / 1000,

Mass_Repro = MSexta$Mass_Repro / 1000, P, T330, T331, T332, B33,

T341, T342, B34, T351, T352, B35, T361, T362, B36, T371, T372,

B37, T381, T382, B38, T391, T392, B39, T401, T402, B40)

And check for no NA values.

38

! any(is.na(Msextadata))

[1] TRUE

Now we need to specify the rest of the graph shown in Figure 1.

vars <- c("P", "T330", "T331", "T332", "B33", "T341", "T342",

"B34", "T351", "T352", "B35", "T361", "T362", "B36",

"T371", "T372", "B37", "T381", "T382", "B38", "T391",

"T392", "B39", "T401", "T402", "B40")

pred <- c(0, 1, 1, 1, 4, 3, 3, 7, 6, 6, 10, 9, 9, 13, 12, 12,

16, 15, 15, 19, 18, 18, 22, 21, 21, 25)

group <- c(0, 0, 2, 3, 0, 0, 6, 0, 0, 9, 0, 0, 12, 0, 0, 15,

0, 0, 18, 0, 0, 21, 0, 0, 24, 0)

families <- list("bernoulli", fam.multinomial(3),

fam.zero.truncated.poisson(), fam.multinomial(2))

code <- c(1, 2, 2, 2, 3, 4, 4, 3, 4, 4, 3, 4, 4, 3, 4, 4, 3,

4, 4, 3, 4, 4, 3, 4, 4, 3)

One of these variables that specify the graph is obvious. vars names
the variables that are pasted together to form the response vector (all the
variables at all the nodes of the graph). The others are less obvious. pred

specifies the arrows of the graph, and group specifies the lines. If pred[j]

is not zero, then there is an arrow from node pred[j] to node j. Otherwise,
there is a line from the initial node (marked 1 in the aster graph) to node j.
Similarly, if group[j] is nonzero, then there is a line from node group[j] to
node j. code is an index vector into the families vector; families[code[j]]
is the family for the conditional distribution of the dependence group con-
taining node j given its predecessor node. Since these are so hard to follow,
we check that these variables are set right.

charpred <- c("Initial", vars)[pred + 1]

groupidx <- seq(along = group)

for (j in seq(along = groupidx))

if (group[j] != 0)

groupidx[j] <- groupidx[group[j]]

data.frame(predecessor = charpred, successor = vars,

group = groupidx, code)

predecessor successor group code

39

1 Initial P 1 1

2 P T330 2 2

3 P T331 2 2

4 P T332 2 2

5 T332 B33 5 3

6 T331 T341 6 4

7 T331 T342 6 4

8 T342 B34 8 3

9 T341 T351 9 4

10 T341 T352 9 4

11 T352 B35 11 3

12 T351 T361 12 4

13 T351 T362 12 4

14 T362 B36 14 3

15 T361 T371 15 4

16 T361 T372 15 4

17 T372 B37 17 3

18 T371 T381 18 4

19 T371 T382 18 4

20 T382 B38 20 3

21 T381 T391 21 4

22 T381 T392 21 4

23 T392 B39 23 3

24 T391 T401 24 4

25 T391 T402 24 4

26 T402 B40 26 3

In each line here, predecessor is the predecessor (variable at the tail
of an arrow) and successor is the successor (variable at the head of an
arrow) for some arrow in the graph, group is now an arbitrary number
that is the same for successor nodes in the same dependence group and
different for successor nodes in different dependence groups, and code is
the same as before. We see that only {T330, T331, T332} form a three-node
dependence group, and their distribution is (same for all three, as it must be,
because this is their joint distribution) three-dimensional multinomial. We
see that {Tx1, Tx2} form a two-node dependence group for x > 33, and their
distribution is (same for both) two-dimensional multinomial. We see that P
is a dependence group all by itself, and its distribution is Bernoulli. We see
that Bx is a dependence group all by itself for x ≥ 33, and its distribution is
zero-truncated Poisson. We see that the predecessor of P is the initial node,

40

the predecessor of the T33 dependence group is P , the predecessor of the Tx
dependence group is the Tw1 node where w = x− 1 (the predecessor of Txy
is Tw1), and the predecessor of Bx is Tx2 for x ≥ 33. It all checks.

Now we make the asterdata object.

fred <- asterdata(Msextadata, vars = vars, pred = pred,

group = group, code = code, families = families)

dim(fred$redata)

[1] 4212 8

nrow(Msextadata) * length(vars)

[1] 4212

names(fred$redata)

[1] "LarvaID" "Sex" "Time_2nd" "Mass_2nd" "Mass_Repro"

[6] "varb" "resp" "id"

And then we remove nodes of the graph that are not supposed to be
there: ovariole count nodes for males and unknown.

condition2 <- (fred$redata$Sex == "F") | (! grepl("B", fred$redata$varb))

fred <- subset(fred, subset = condition2, successors = FALSE)

dim(fred$redata)

[1] 3348 8

nrow(Msextadata) * length(vars) -

sum(Msextadata$Sex != "F") * sum(grepl("B", vars))

[1] 3348

names(fred$redata)

[1] "LarvaID" "Sex" "Time_2nd" "Mass_2nd" "Mass_Repro"

[6] "varb" "resp" "id"

Now we check this against the hornworm dataset from the aster2 pack-
age.

41

identical(fred, hornworm)

[1] FALSE

If FALSE, this is i18n insanity, which is not really R’s fault. The details
section of help(Comparison) has an explicit disclaimer that sort order is
not guaranteed to work the same way on different machines.

foo <- fred$redata$LarvaID

bar <- hornworm$redata$LarvaID

identical(foo, bar)

[1] FALSE

foo <- as.character(foo)

bar <- as.character(bar)

identical(foo, bar)

[1] TRUE

baz <- levels(hornworm$redata$LarvaID)

all(foo %in% baz)

[1] TRUE

qux <- factor(foo, levels = baz)

fred$redata$LarvaID <- qux

identical(fred, hornworm)

[1] FALSE

42

References

Charlesworth, B. 1980. Evolution in age-structured populations. Cambridge
Univ. Press, Cambridge, U. K.

Fisher, R. A. 1930. The genetical theory of natural selection. Clarendon
Press, Oxford, U. K.

Geyer, C. J. (2009). Likelihood inference in exponential families and direc-
tions of recession. Electronic Journal of Statistics, 3, 259–289.

Geyer, C. J. (2010). A philosophical look at aster models. Technical Report
No. 676. School of Statistics, University of Minnesota. http://purl.umn.
edu/57163.

Geyer, C. J. 2014. R package aster (aster models), version 0.8-30. http:

//cran.r-project.org/package=aster.

Geyer, C. J. 2015. R package aster2 (aster models), version 0.2-1. http:

//cran.r-project.org/package=aster2.

Geyer, C. J., S. Wagenius, and R. G. Shaw. 2007. Aster models for life
history analysis. Biometrika 94:415–426.

Kingsolver, J. G., S. E. Diamond, S. A. Seiter, and J. K. Higgins. 2012.
Direct and indirect phenotypic selection on developmental trajectories in
Manduca sexta. Funct. Ecol. 26:598–607.

R Development Core Team. 2014. R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, Vienna, Aus-
tria. http://www.R-project.org.

Shaw, R. G., and C. J. Geyer. 2010. Inferring fitness landscapes. Evolution
64:2510–2520.

Shaw, R. G., C. J. Geyer, S. Wagenius, H. Hangelbroek, and J. R. Etterson.
2008. Unifying life-history analyses for inference of fitness and population
growth. Am. Nat. 172:E35–E47.

Shaw, R. G., Wagenius, S., and Geyer, C. J. (2015). The susceptibility of
Echinacea angustifolia to a specialist aphid: eco-evolutionary perspective
on genotypic variation and demographic consequences. Journal of Ecology,
103, 809–818.

43

