Note:

Slide 2-49 are for 1-hr talk in the Tropical Research and Education Center

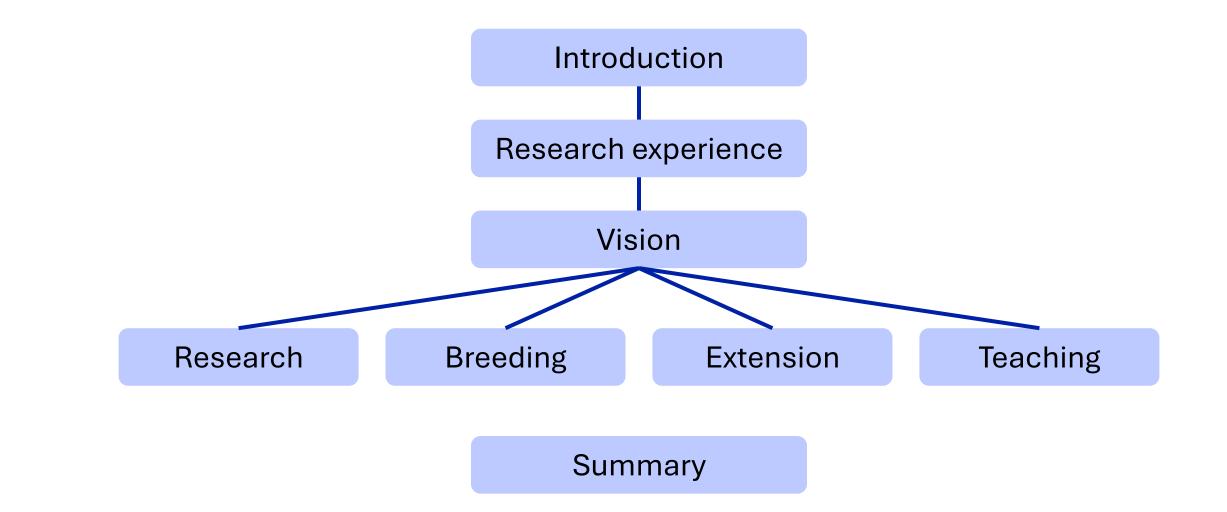
Slide 50-99 are for 1-hr talk in the Department of Horticulture

From theory to practice: applying quantitative genetics and simulation in tropical fruit crop research and breeding

CJ Yang

Homestead, FL

Nov 13, 2023


About me

1. Malaysia

- 2. Indiana (BSc Biotech, Maths)
- 3. Wisconsin (PhD Genetics)
- 4. Freising, DE (Postdoc)
- 5. Edinburgh, UK (Postdoc)

Talk outline

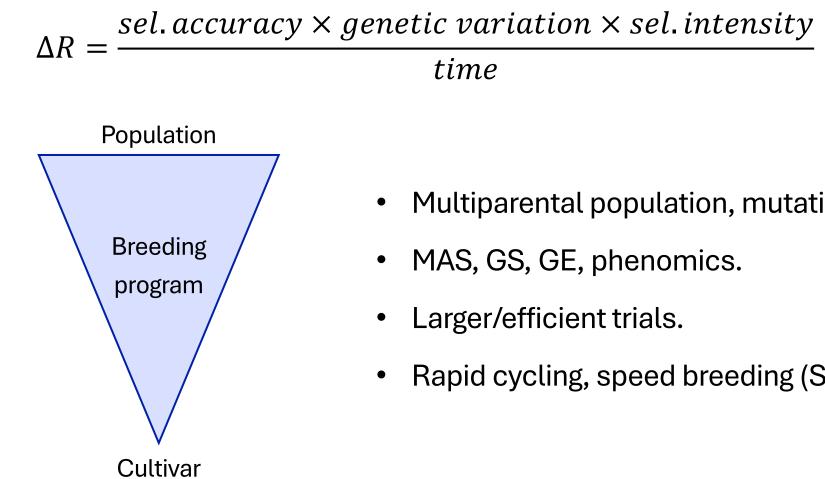
Introduction

Plant breeding and genetic gain

Plant Breeding

- BREEDING 2.0
- Statistical and experimental design to improve selection effort

Wallace et al (2018)



- Domestication
- Improvement
- Experimental design
- Marker assisted selection (MAS)
- Genomic/Phenomic selection (GS/PS)
- Biology-Breeding
- Functional variants
- Gene editing (GE)
- Machine learning (ML/AI)

Genetic Gain

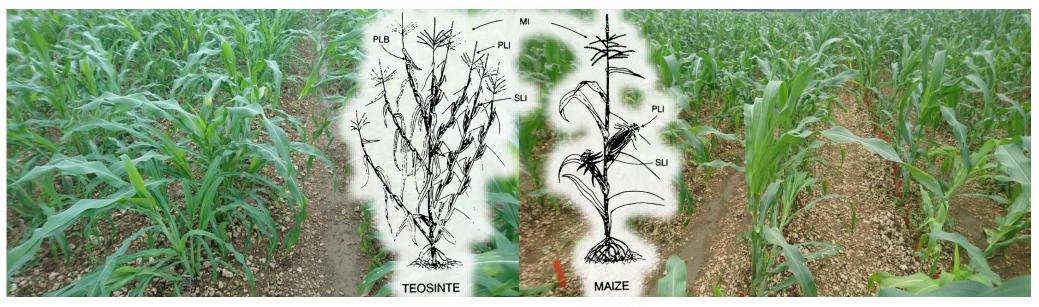
Breeder's equation (Lush 1937)	Rate of genetic gain
$R = h^2 S$	$\Delta R = \frac{h\sigma_g i}{t}$
$R = \frac{\sigma_g^2}{\sigma_p^2} \sigma_p i$	$\Delta R = \frac{sel.accuracy \times genetic \ variation \times sel.intensity}{time}$
$R = \frac{\sigma_g}{\sigma_p} \sigma_g i$	
$R = h\sigma_g i$	Framework for quantitative genetics

Improving ΔR

Multiparental population, mutation, pre-breeding.

Rapid cycling, speed breeding (SB/RGA).

Research experience

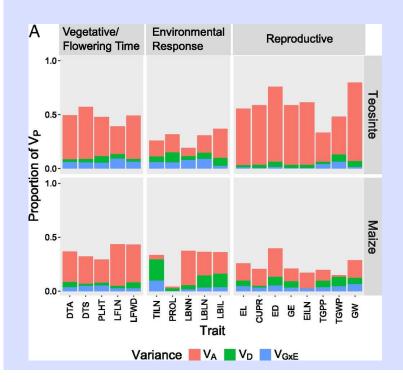

Plant breeding: a journey through time

Domestication

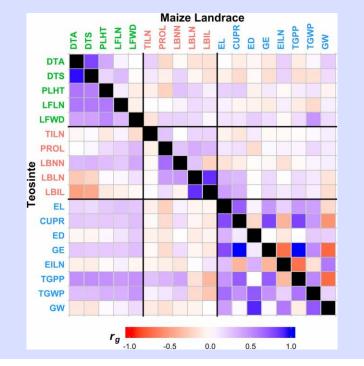
This earliest form of <u>plant breeding</u> is known as <u>domestication</u>, where plants were selected to be more productive, easier to harvest, or more aesthetically or gastronomically pleasing (Flint-Garcia 2013).

Domestication

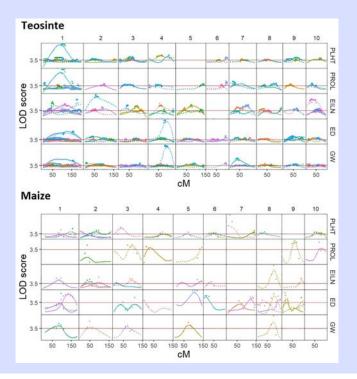
This earliest form of <u>plant breeding</u> is known as <u>domestication</u>, where plants were selected to be more productive, easier to harvest, or more aesthetically or gastronomically pleasing (Flint-Garcia 2013).



Teosinte (left) and maize (right) in Homestead, FL, 2013-2017.

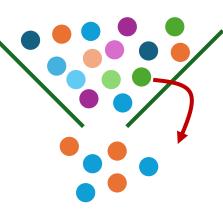

Drawings from Doebley et al (1990)

QG modelling of domestication


Reduction in genetic variances.

Change in genetic correlations.

Increase in inbreeding depression. Decrease in rare deleterious alleles.

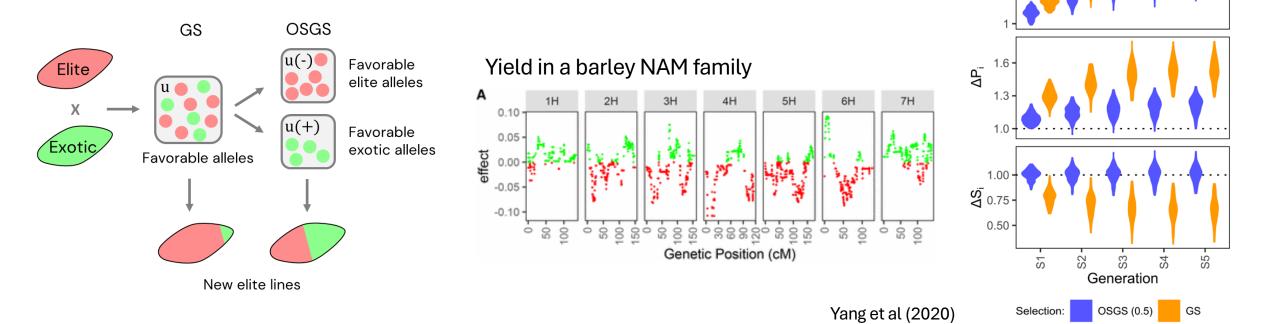


Yang et al (2019), Chen et al (2020, 2021), Samayoa et al (2021)

Shuffling genetic diversity

Domestication/Improvement

- Bottleneck
- Selection



Marker assisted selection (MAS)

- Great for oligogenic traits.
- E.g. disease resistance.
- Inefficient for polygenic traits.

Origin specific genomic selection (OSGS)

OSGS: selection on favorable parental contribution.

Α

 ΔBV_{i}

5

Developing a breeding program for purslane

- Env: Vertical farm
- Trait: Omega-3 level

TABLE 2: Plant sources of omega-3 fatty acids (g/100 g).		
Category	Fruits/vegetables	Amount (g)
	Avocados, California raw	0.1
	Broccoli	0.1
	Strawberries	0.1
	Cauliflower, raw	0.1
Low	Kale, raw	0.2
Low	Spinach, raw	0.1
	Peas, garden dry	0.2
	Cowpeas, dry	0.3
	Beans, navy, sprouted, cooked	0.3
	Corn, germ	0.3
	Bean, common dry	0.6
	Leeks, freeze-dried, raw	0.7
	Wheat, germ	0.7
	Spirulina, dried	0.8
Medium	Purslane	0.9
	Oat, germ	1.4
	Beachnuts	1.7
	Soybeans kernels, roasted	1.5
	Soybeans, green	3.2
	Uddin et	al (2014)

Identify breeding targets.

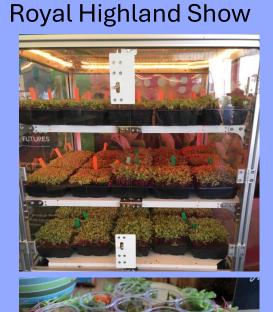
Survey variation in phenotypes, GxExM.

Engage with stakeholders.

Register varieties.

Create populations and select.

Trial in vertical farms.


Short vs long day

Fluorescent vs LED

Developing a breeding program for purslane

Identify breeding targets.

Survey variation in phenotypes, GxExM.

Engage with stakeholders.

Register varieties.

Create populations and select.

Trial in vertical farms.

Developing a breeding program for purslane

GBIF (2014-2023)

Identify breeding targets.

Survey variation in phenotypes, GxExM.

Engage with stakeholders.

Register varieties.

Create populations and select.

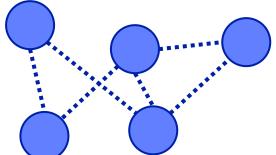
Trial in vertical farms.

Growth chambers

Hydroponic trials VF – under construction

Research vision

Applying innovations from modern quantitative genetics to:

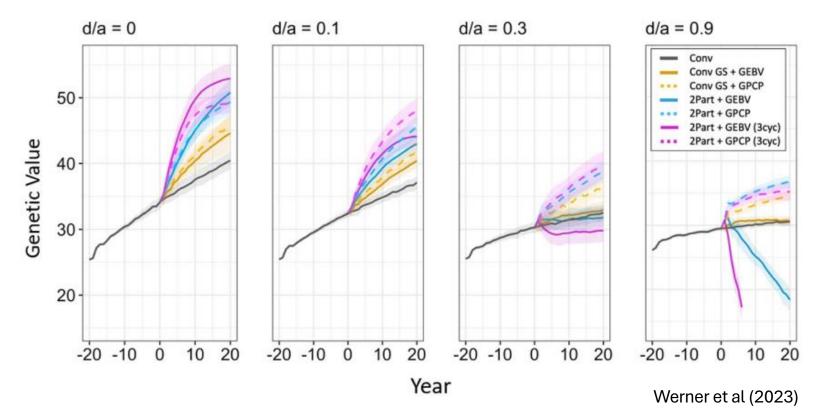

- identify ways to breed for improved tropical fruit cultivars
- understand tropical fruit genetics
- design efficient and resilient breeding programs

Area 1: Genomic selection (GS)

Genomic selection models: G-BLUP, RR-BLUP, LASSO, Bayes?, etc...

y = Xb + g + e \implies Decompose phenotype into various effects.

Considerations

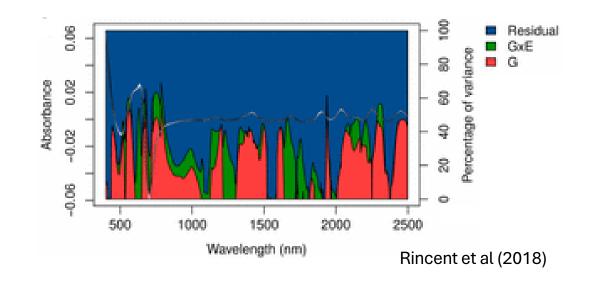

GS requires

- relationship between training and testing populations
- reliable genotyping platform
- good phenotyping quality, reasonable trials
- heritable polygenic traits
- sufficient computational power
- justifiable benefit over phenotypic selection

GS gives

- increase selection accuracy
- increase selection intensity
- reduce breeding cycle time

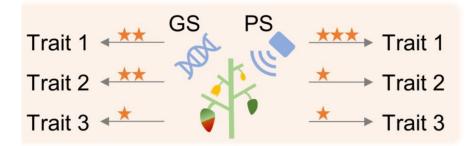
Clonal breeding example


- Evaluate breeding strategy using simulation.
- Strawberry breeding example.
- 3 breeding programs.
- 2 parental selection methods.
- Effect of dominance on

genetic gain.

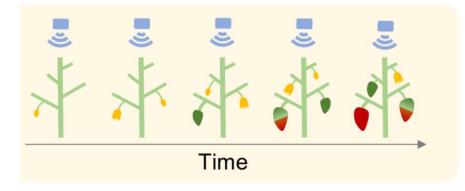
Area 2: Phenomic selection (PS)

y = Xb + g + e $g \sim N(0, K\sigma_g^2)$

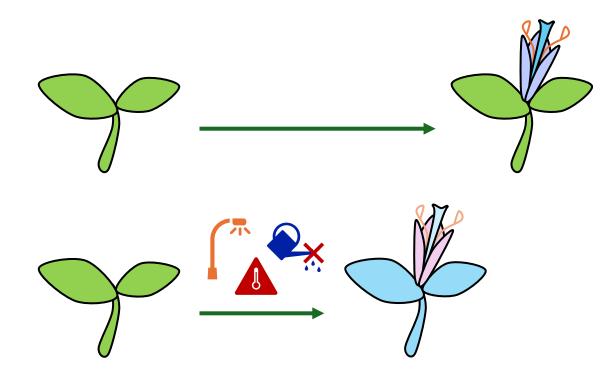

Previously, we showed the role of genotypic relationship K in the GS model.

- Replace genome by phenome in calculating *K*.
- Phenome can be near-infrared spectra (NIRS), image data, other omics, etc.
- Part of the phenome is heritable.
- Phenome captures G x E x M.
- Phenome is cheap(?).

Opportunities in PS


Compare GS and PS in different traits.


Develop methods for simulating phenome.

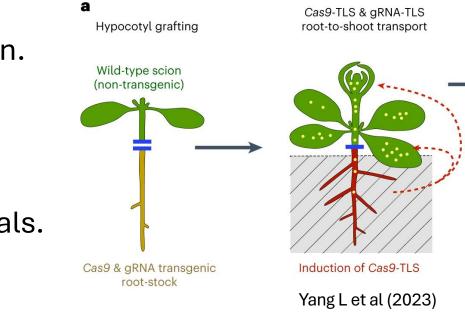

Evaluate PS across developmental time points.

Quantify "phenomic architecture" of traits.

Area 3: Speed breeding (SB)

Example in pine.

https://www.theguardian.com/environment/2022/oct/01/sco tland-vertical-farming-boost-tree-stocks-hydroponics


- SB reduces the juvenile phase and breeding cycle.
- Feasible? Limited controlled environment space, short-day (photoperiod sensitive) plants.

Standing variation

- Apply selection for early (stable) flowering and reduced photoperiod sensitivity.
 Induced diversity
- Random: apply EMS mutagenesis, TILLING population.
- Targeted: comparative genomics and gene editing.

Other approach

Graft* breeding individuals onto gene edited individuals.

Collaboration and funding

Interdisciplinary projects

- Quantitative Genetics
- Simulation
- Statistics
- Bioinformatics
- Phenomics

- Crop production
- Agronomy
- Plant physiology
- Molecular biology
- Gene editing

- Plant pathology
- Entomology
- Environmental Hort
- Agroecology
- Economics

PRESTON B. BIRD AND MARY HEINLEIN FRUIT&SPICE PARK

Breeding vision

- Breed for the needs of local growers.
- Ensure continuity in pre-existing breeding programs.
- Identify opportunities for improvement (evidence-based).

Tropical fruits

Banana

Longan

Papaya

Passion fruit

Sapodilla

Pitaya

Avocado

https://commons.wikimedia.org/wiki/ File:Avacado_on_tree_(closeup).JPG

Mango https://commons.wikimedia.org/wiki/

File:Mango_%27Julie%27_Fruits.jpg

Lychee https://commons.wikimedia.org/wiki/ File:Litchi_chinensis_fruits.JPG

https://commons.wikimedia.org/wiki/ File:Guava_Fruit.jpg

Guava

Mamey sapote https://commons.wikimedia.org/wiki/ File:Mamey.jpg

Sugar apple https://commons.wikimedia.org/wiki/ File:Sugar_apple_on_tree.jpg

Vanilla https://commons.wikimedia.org/wiki/Fil e:Vanilla_planifolia_(6998639597).jpg

Production data

Tropical Fruit Acreage in Florida

Jonathan H. Crane, UF/IFAS TREC and Jeff Wasielewski, UF/IFAS Extension Miami-Dade County

Common Name	Scientific Name	Miami-Dade County	Other Counties in FL
Atemoya	Annona cherimola x A. squamosa	Limited	Limited
Avocado	Persea americana	6,600	55
Banana	Musa hybrids	510	50
Caimito (star apple)	Chyrsophyllum cainito	10	1
Canistel (egg fruit)	Pouteria campechiana	3	0
Carambola	Averrhoa carambola	40	110
Guanabana	Annona muricata	10	0
Guava	Psidium guajava	700	14
Jackfruit	Artocarpus heterophyllus	12	4

Jujube	Ziziphus jujube	10	2
Longan	Dimocarpus longan	1,100	167
Lychee	Litchi chinensis	400	208
Mamey Sapote	Pouteria sapota	600	0
Mango	Mangifera indica	800	551
Miracle Fruit	Synsepalum dulcificum	20	0
Papaya	Carica papaya	300	56
Passion Fruit	Passiflora edulis	60	12
Pitaya	Hylocereus undatus and hybrids	600	121
Sapodilla	Manilkara zapota	200	55
Soursop	Annona muricata	Limited	0
Spondias	Spondias species	4	0
Sugar Apple	Annona squamosa	25	6
Wax Jambu	Syzygium samarangense	2	0

Information compiled in 2018

https://sfyl.ifas.ufl.edu/media/sfylifasufledu/miami-dade/documents/tropical-fruit/Tropical-Fruit-Acreage.pdf

Production data

- Acreage changes over time.
- Growers' and consumers' demands evolve.

Table 3. Land planted to minor tropical fruits in Dade County, Florida, 1982.

Fruit crop	Hectares
Banana and plantain (Musa hybrids)	142
Papaya (Carica papaya L.)	142
Mamey sapote (Calocarbum sapota [lacg.] Merrill)	805
Acerola, Barbados cherry (Malpighia punicifolia L.)	12
Annonas (A. squamosa L., A. squamosa x A. cherimola Miller)	28
Carambola (Averrhoa carambola L.)	16
Longan <i>(Euphoria longan</i> [Lour.] Steud.) Lychee <i>(Litchi chinensis</i> Sonn.)	12
Lychee (Litchi chinensis Sonn.)	60×
Sapodilla (Manilkara zapota [L.] Van Royen	8

Knight et al (1984)

Fruit	1982	2018	Fold
Banana	351	510	1.5
Рарауа	351	300	0.9
Mamey Sapote	198	600	3
Annonas	69	25	0.4
Carambola	40	40	1
Longan	30	1100	37.7
Lychee	148	400	2.7
Sapodilla	20	200	10

Target traits

Avocado

- West Indian, Guatemalan, Mexican types.
- Hermaphroditic flowers: first female, second male.
- A: first AM, second PM; B: first PM, second AM.
- The only breeding program is in California?
- Bergh (1976) gives a comprehensive list of traits.
- Target: fruit quality, handling, yield, stress, etc.

Longan

- Propagate by air layering.
- Kohala is the predominant cultivar.
- Erratic bearing habit.
- Poor adaptation in other cultivars.
- No known breeding program?
- Target: bearing habit, yield, quality, etc.

Target traits

Pitaya/dragon fruit

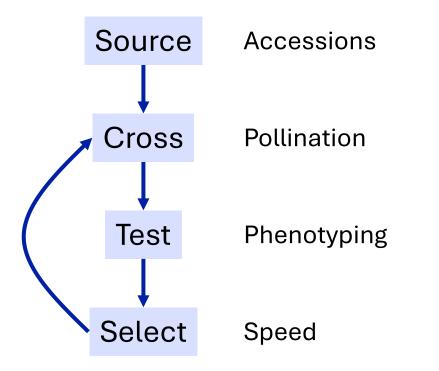
- Cultivar classifications are poorly documented.
- Multi-species (Hylocereus undatus, H. monacanthus, H. megalanthus, etc)
- Varying ploidy and self-compatibility.
- Nocturnal flowers.
- Target: fruit quality, post-harvest, etc.

Vanilla

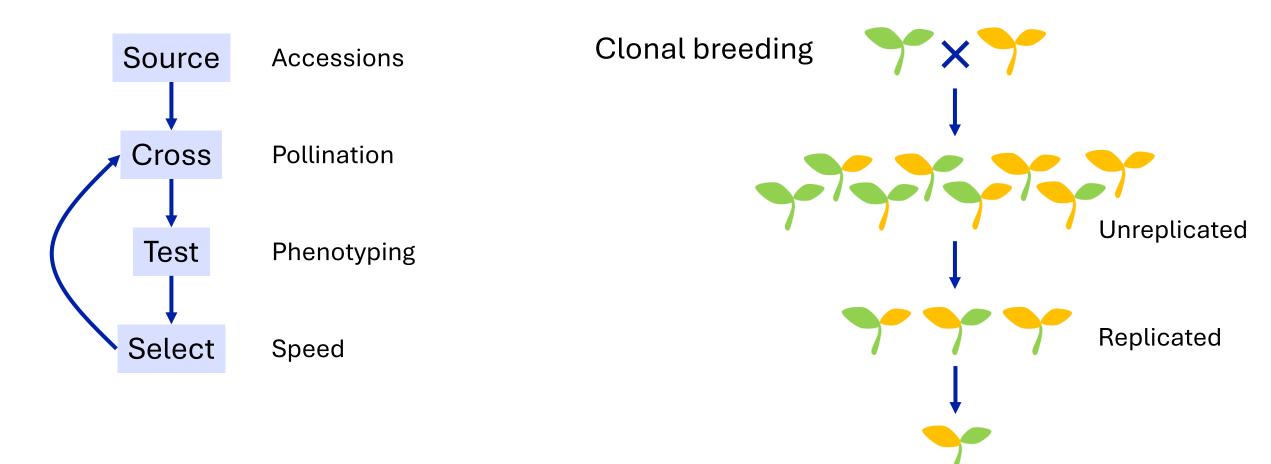
- Reference genome, accessions, breeding programs already exist.
- Cultivar registration: high value,

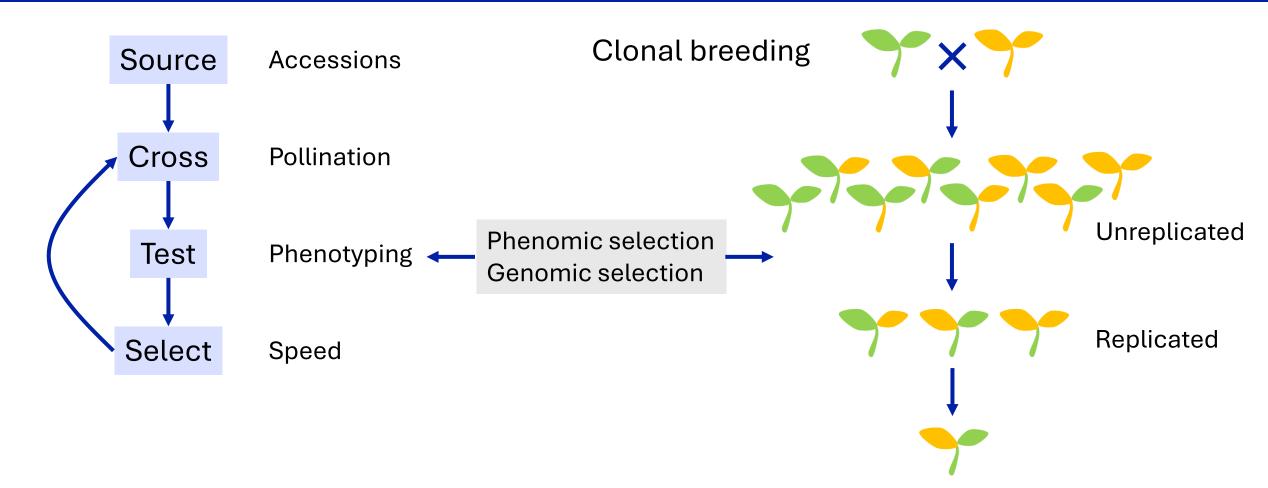

unknown sources are risky to growers.

 Target: straight bean, self-pollination (rostellum), etc.



Target environment


- Oolitic limestones (rocky/marl calcareous), alkaline, > 5" (IFAS).
- Nutrient/water management.
- Works for most crops?
- Ideal temperature.
- Close to sea level.
- Tropical storms.
- Insect pest outbreak.


Breeding strategy

Breeding strategy

Breeding strategy

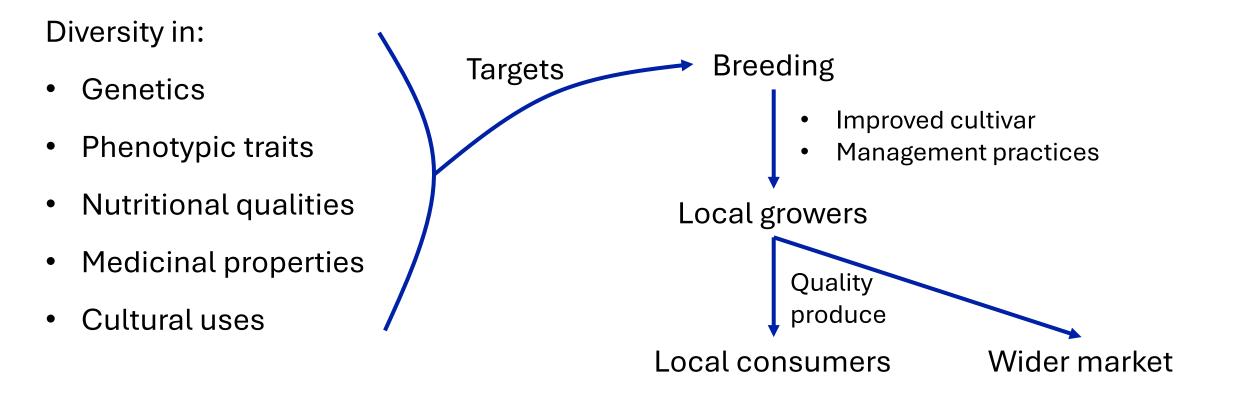
Extension vision

- Generate new knowledge.
- Give back to the local community.

Knowledge in tropical fruit crops

Diversity in:

- Genetics
- Phenotypic traits
- Nutritional qualities
- Medicinal properties
- Cultural/ethnobotanical uses



Redland market village

Tropical fruit and spice park

Knowledge in tropical fruit crops

- 1. Contribute to extension publications, e.g. Ask IFAS, eXtension.org, etc.
- 2. Provide trainings to extension agents.
- 3. Apply for extramural funding, e.g. federal (NIFA), local commodity group.
- 4. Participate/organize extension outreach events, e.g. workshops, seminars
- 5. Contribute to training programs for local growers.
- 6. Provide technology transfer opportunities.
- 7. Design breeding programs based on growers' inputs, e.g. participatory plant breeding.
- 8. Describe our research projects in group website and social media.

Summary	Contributors
Search by Title, Author, DLN, or IPN	
Showing 25 of 25 Publications	
Atemoya Growing in the Florida Home Lan	dscape
MG332/HS64	
by Jonathan H. Crane, Carlos F. Balerdi, and	d lan Maguire
January 7th, 2020	
Provides homeowners with an expanded an atemoya in the home landscape. Tables inc month, fertilizer program, and flowering be	lude information on cultural practices by
Avocado Growing in the Florida Home Lan	dscape
MG213/CIR1034	
by Jonthan H. Crane, Carlos F. Balerdi, and	lan Maguire

https://edis.ifas.ufl.edu/collections/mg_s_fruit_crops

January 7th 2020

Teaching vision

- Engage in IFAS land-grant mission: Research, Teaching, Extension.
- Impart learning skills to students.
- Support mentees toward research independence and excellence.

2013: Teaching assistant for General Genetics, University of Wisconsin-Madison. 2021/2024: Guest lecturer for Int'l Master in Plant Genetics, Genomics and Breeding, CIHEAM Zaragoza. 2022: Guest lecturer for Genetic Improvement of Crops, University of Edinburgh. Now: Developing module on Horticulture Biotechnology I (3rd year BSc in Horticulture). Now: Developing module on Plant Biotechnology (MSc in Applied Plant Science).

Methods: combinations of lecture, discussion and practical (in-person/online).

Impart learning skills to students.

- *Adapt* teaching style and course contents to overall/individual needs.
- Analogize teaching materials using clear examples.
- Assess learning progress, students' needs and interests.

Cultivate a comfortable and enjoyable learning environment for every student.

Mentoring experience

- 1. Fine-mapping of *etb1.2*, a QTL regulating ear internode length in maize and teosinte, 2013; Jordan M.
- 2. Mapping prolificacy QTL in maize and teosinte, 2015-2016; Lexi C.
- 3. QTL mapping of domestication traits in the teosinte nested association mapping population, 2015-2018; Aria P, Bailey S, Brandon K, Craig D, Isaac B, Jack S, Joe P, Kyle K, Laura B, Lora D, Michael N, Sam L.
- 4. Genetics of sexual determination in maize/teosinte terminal lateral inflorescence, 2016; Amanda M.
- 5. Perennial ryegrass under speed vernalization and speed breeding conditions, 2023-2024; Leontien H.
- 6. Rapid domestication of purslane in a vertical farm environment, 2023-2027; Emma I.

JOURNAL ARTICLE

Mapping Prolificacy QTL in Maize and Teosinte @ Liyan Yang, Chin Jian Yang, Qi Cheng, Wei Xue, John F. Doebley & Author Notes

Journal of Heredity, Volume 107, Issue 7, 2016, Pages 674–678, https://doi.org/10.1093/jhered/esw064 Published: 22 September 2016 Article history v

The genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication

RESEARCH ARTICLE | BIOLOGICAL SCIENCES | 8 The genetic architecture of teosinte

catalyzed and constrained maize domestication

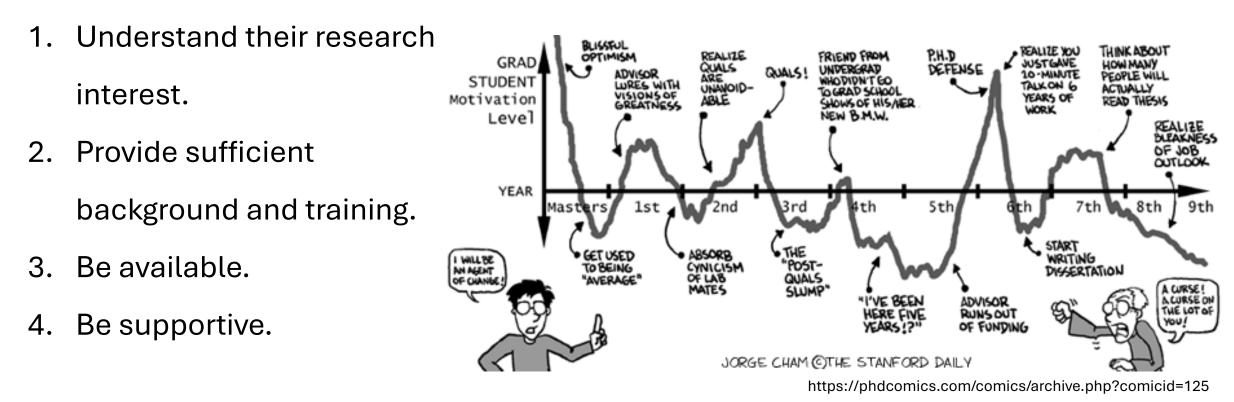
Chin Jian Yang. Luis Fernando Samayon. Peter L. Jardsbury. Bode A. Olukolu. Wei Xue, Alessandra M. York, Michael R. Tubobdiki. Weideng: Wang. Lora. L. Jackalaki. Michael A. Neumyer: Jose de Jesus Sancher-Gornatte. Maria Carla Bromy. Hefferg: C. Glabaltz: Qi Sun. Edward S. Buckler 🗣 James B. Holland. and John F. Doebley. 🌆 authors info. A. Affiliations

March 6, 2019 116 (12) 5643-5652 https://doi.org/10.1073/pnas.1820997116

JOURNAL ARTICLE

f 🌶 in 🖻 🊨

TeoNAM: A Nested Association Mapping Population for Domestication and Agronomic Trait Analysis in Maize @


Qiuyue Chen, Chin Jian Yang, Alessandra M York, Wei Xue, Lora L Daskalska, Craig A DeValk, Kyle W Krueger, Samuel B Lawton, Bailey G Spiegelberg, Jack M Schnell, Michael A Neumeyer, Joseph S Perry, Aria C Peterson, Brandon Kim, Laura Bergstrom, Liyan Yang, Isaac C Barber, Feng Tian, John F Doebley 🕿 Author Notes

Genetics, Volume 213, Issue 3, 1 November 2019, Pages 1065–1078, https://doi.org/10.1534/genetics.119.302594 Published: 01 November 2019 Article history • Chapter 2

Genetic Regulation of Male-to-Female Conversion of the Terminal Lateral Inflorescence and Related Traits in Maize during Domestication Auker: Chi Jia Yang, Anada Alwa de Meli, Jaeph S. Perry, Ryle W. Krongel Tara Yang, Ana P. Deday

Mentoring approaches

Support mentees toward research independence and excellence.

Summary

• Wrap-up of today's talk.

Summary

Plant breeding and genetics

- Domestication
- Genomic selection
- Breeding program

Vision

Research: QG, simulation, state-of-the-art

- Breeding: demand-driven, continuity, innovation
- Extension: knowledge exchange

Teaching: learning skills, independence

Summary

Plant breeding and genetics

- Domestication
- Genomic selection
- Breeding program

Vision

Research: QG, simulation, state-of-the-art

Breeding: demand-driven, continuity, innovation

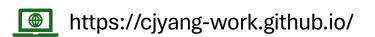
Extension: knowledge exchange

Teaching: learning skills, independence

Activities

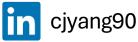
- Research directions
- Breeding work
- Securing funding
- Developing collaboration
- Results dissemination
- Stakeholder engagement
- Training

Acknowledgement


Many thanks to the Search Committee, Tropical Research and Education Center, Department of Horticultural Sciences and UFL for the opportunity to present the talk!

Wisconsin + Others John Doebley Ali York Qiuyue Chen Wei Xue Weidong Wang Mike Tuholski Natalia de Leon Claudia Calderón Jim Holland L Fernando Samayoa Ed Buckler M Cinta Romay Peter Bradbury Many more...

Ian Mackay Wayne Powell **Rajiv Sharma** David Marshall **Gregor Gorjanc** Sarah Hearne **Rodney Edmondson** Hans-Peter Piepho Joanne Russell Like Ramsay **Bill Thomas** Funmi Ladejobi **Richard Mott**


SRUC + Collaborators

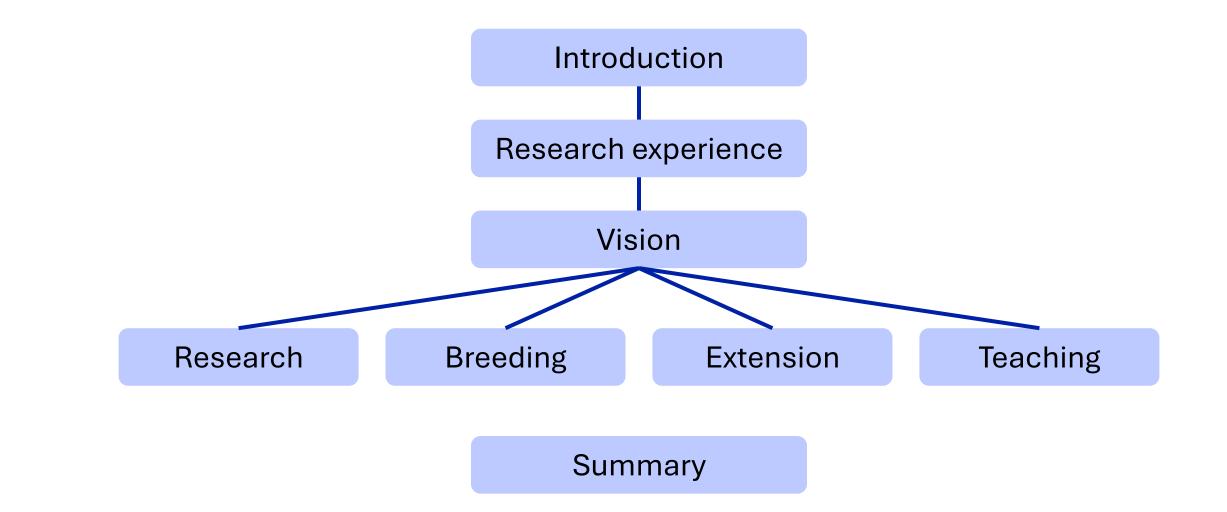
XXX 🔀

From theory to practice: applying quantitative genetics and simulation in tropical fruit crop research and breeding

CJ Yang

Gainesville, FL

Nov 14, 2023


About me

1. Malaysia

- 2. Indiana (BSc Biotech, Maths)
- 3. Wisconsin (PhD Genetics)
- 4. Freising, DE (Postdoc)
- 5. Edinburgh, UK (Postdoc)

Talk outline

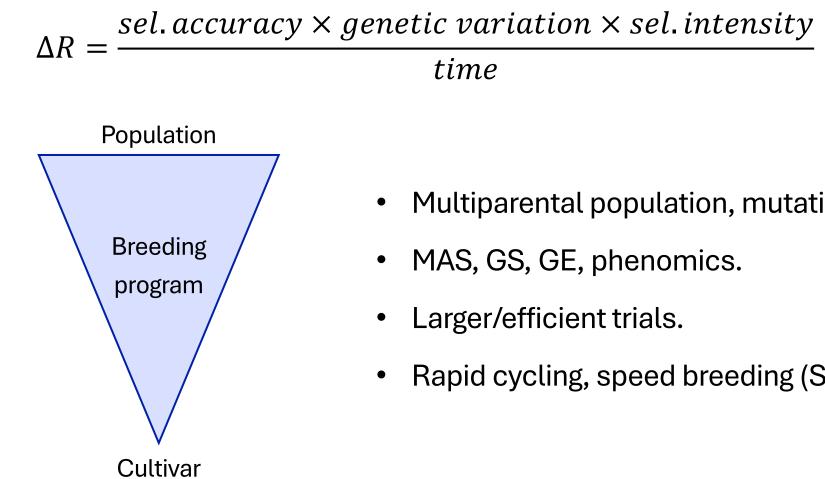
Introduction

Plant breeding and genetic gain

Plant Breeding

- BREEDING 2.0
- Statistical and experimental design to improve selection effort

Wallace et al (2018)



- Domestication
- Improvement
- Experimental design
- Marker assisted selection (MAS)
- Genomic/Phenomic selection (GS/PS)
- Biology-Breeding
- Functional variants
- Gene editing (GE)
- Machine learning (ML/AI)

Genetic Gain

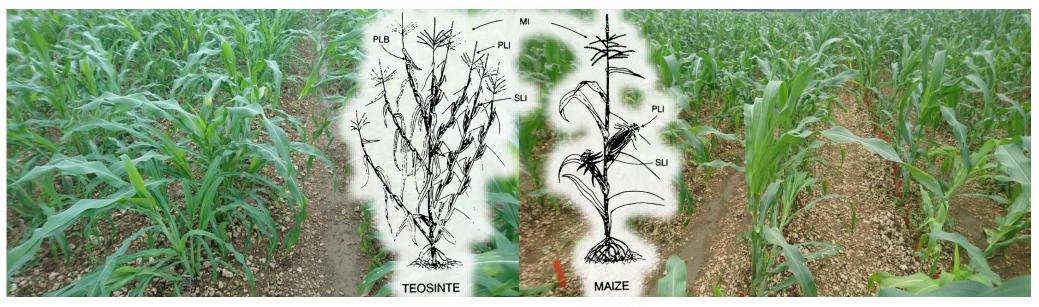
Breeder's equation (Lush 1937)	Rate of genetic gain
$R = h^2 S$	$\Delta R = \frac{h\sigma_g i}{t}$
$R = \frac{\sigma_g^2}{\sigma_p^2} \sigma_p i$	$\Delta R = \frac{sel.accuracy \times genetic \ variation \times sel.intensity}{time}$
$R = \frac{\sigma_g}{\sigma_p} \sigma_g i$	
$R = h\sigma_g i$	Framework for quantitative genetics

Improving ΔR

Multiparental population, mutation, pre-breeding.

Rapid cycling, speed breeding (SB/RGA).

Research experience

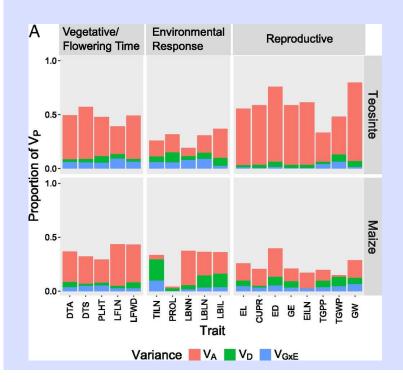

Plant breeding: a journey through time

Domestication

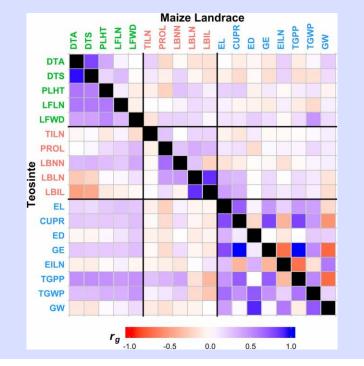
This earliest form of <u>plant breeding</u> is known as <u>domestication</u>, where plants were selected to be more productive, easier to harvest, or more aesthetically or gastronomically pleasing (Flint-Garcia 2013).

Domestication

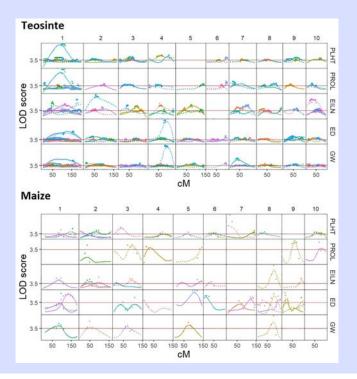
This earliest form of <u>plant breeding</u> is known as <u>domestication</u>, where plants were selected to be more productive, easier to harvest, or more aesthetically or gastronomically pleasing (Flint-Garcia 2013).



Teosinte (left) and maize (right) in Homestead, FL, 2013-2017.

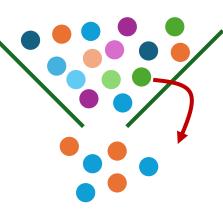

Drawings from Doebley et al (1990)

QG modelling of domestication


Reduction in genetic variances.

Change in genetic correlations.

Increase in inbreeding depression. Decrease in rare deleterious alleles.

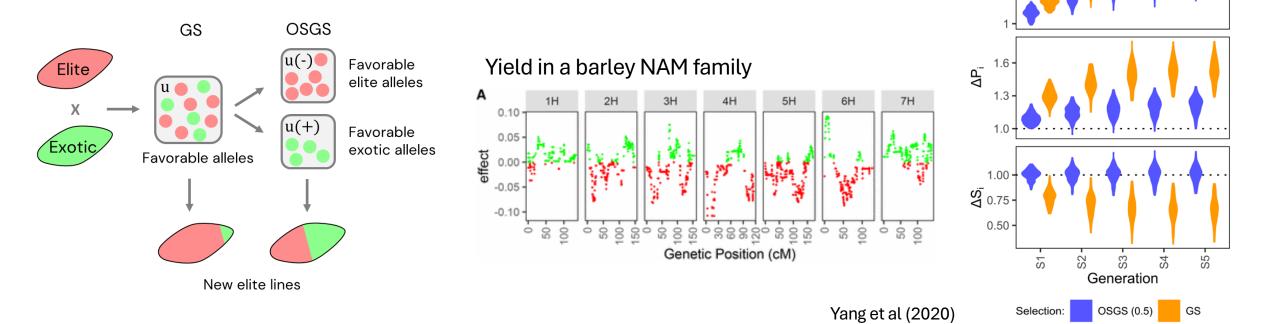


Yang et al (2019), Chen et al (2020, 2021), Samayoa et al (2021)

Shuffling genetic diversity

Domestication/Improvement

- Bottleneck
- Selection



Marker assisted selection (MAS)

- Great for oligogenic traits.
- E.g. disease resistance.
- Inefficient for polygenic traits.

Origin specific genomic selection (OSGS)

OSGS: selection on favorable parental contribution.

Α

 ΔBV_{i}

5

Developing a breeding program for purslane

- Env: Vertical farm
- Trait: Omega-3 level

TABLE 2: Plant sources of omega-3 fatty acids (g/100 g).		
Category	Fruits/vegetables	Amount (g)
Low	Avocados, California raw	0.1
	Broccoli	0.1
	Strawberries	0.1
	Cauliflower, raw	0.1
	Kale, raw	0.2
	Spinach, raw	0.1
	Peas, garden dry	0.2
	Cowpeas, dry	0.3
	Beans, navy, sprouted, cooked	0.3
	Corn, germ	0.3
Medium	Bean, common dry	0.6
	Leeks, freeze-dried, raw	0.7
	Wheat, germ	0.7
	Spirulina, dried	0.8
	Purslane	0.9
	Oat, germ	1.4
	Beachnuts	1.7
	Soybeans kernels, roasted	1.5
	Soybeans, green	3.2
Uddin et al (2014)		

Identify breeding targets.

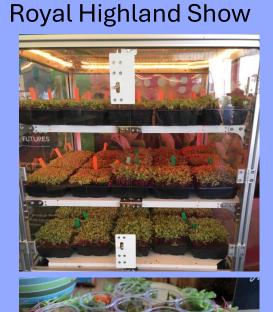
Survey variation in phenotypes, GxExM.

Engage with stakeholders.

Register varieties.

Create populations and select.

Trial in vertical farms.


Short vs long day

Fluorescent vs LED

Developing a breeding program for purslane

Identify breeding targets.

Survey variation in phenotypes, GxExM.

Engage with stakeholders.

Register varieties.

Create populations and select.

Trial in vertical farms.

Developing a breeding program for purslane

GBIF (2014-2023)

Identify breeding targets.

Survey variation in phenotypes, GxExM.

Engage with stakeholders.

Register varieties.

Create populations and select.

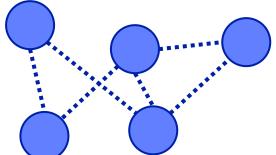
Trial in vertical farms.

Growth chambers

Hydroponic trials VF – under construction

Research vision

Applying innovations from modern quantitative genetics to:

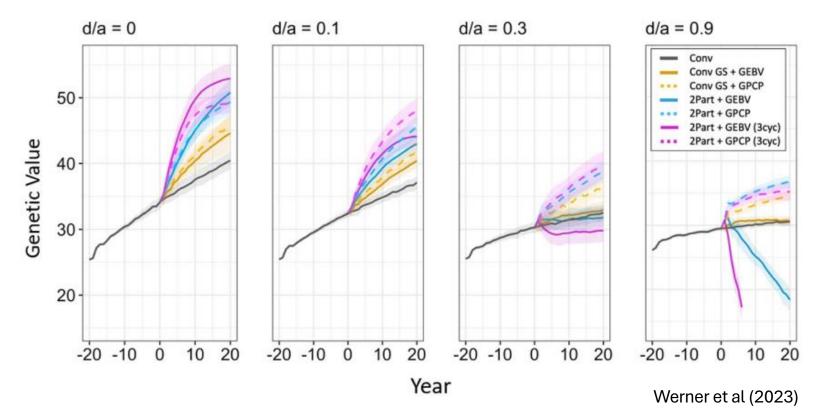

- identify ways to breed for improved tropical fruit cultivars
- understand tropical fruit genetics
- design efficient and resilient breeding programs

Area 1: Genomic selection (GS)

Genomic selection models: G-BLUP, RR-BLUP, LASSO, Bayes?, etc...

y = Xb + g + e \implies Decompose phenotype into various effects.

Considerations

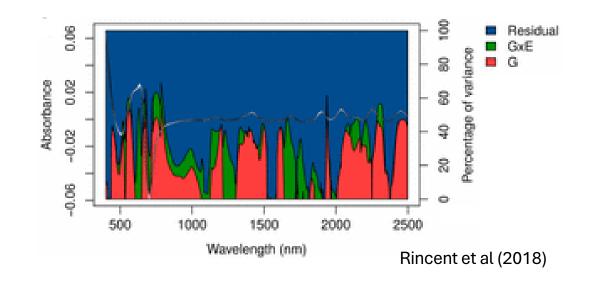

GS requires

- relationship between training and testing populations
- reliable genotyping platform
- good phenotyping quality, reasonable trials
- heritable polygenic traits
- sufficient computational power
- justifiable benefit over phenotypic selection

GS gives

- increase selection accuracy
- increase selection intensity
- reduce breeding cycle time

Clonal breeding example


- Evaluate breeding strategy using simulation.
- Strawberry breeding example.
- 3 breeding programs.
- 2 parental selection methods.
- Effect of dominance on

genetic gain.

Area 2: Phenomic selection (PS)

y = Xb + g + e $g \sim N(0, K\sigma_g^2)$

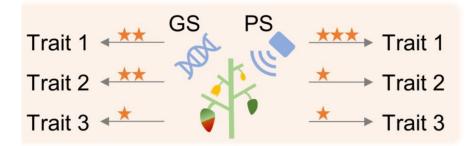
Previously, we showed the role of genotypic relationship K in the GS model.

- Replace genome by phenome in calculating *K*.
- Phenome can be near-infrared spectra (NIRS), image data, other omics, etc.
- Part of the phenome is heritable.
- Phenome captures G x E x M.
- Phenome is cheap(?).

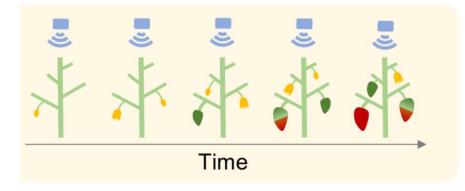
Current state of PS

- Results on PS is mixed.
- PS vs GS depends on population and trait.
- Post-flowering phenome (e.g. seeds) may be inefficient.

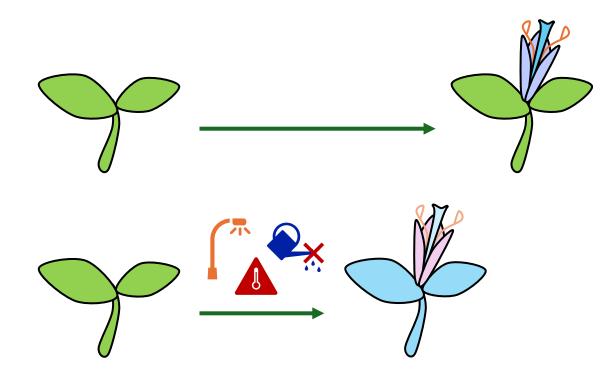
 \mathbf{Q} Line 1, Env 1 \longrightarrow Line 1, Env 2


• Biased toward information within the predictors (Dallinger et al, 2023).

Opportunities in PS


Compare GS and PS in different traits.


Develop methods for simulating phenome.


Evaluate PS across developmental time points.

Quantify "phenomic architecture" of traits.

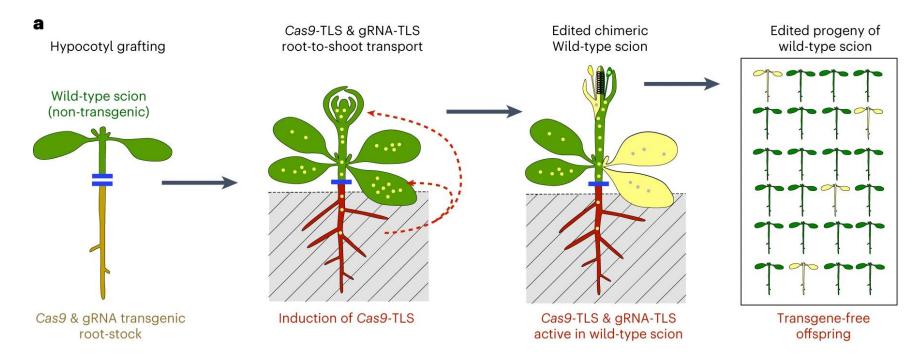
Area 3: Speed breeding (SB)

Example in pine.

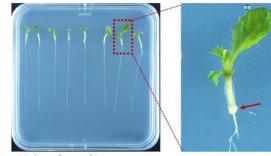
https://www.theguardian.com/environment/2022/oct/01/sco tland-vertical-farming-boost-tree-stocks-hydroponics

- SB reduces the juvenile phase and breeding cycle.
- Feasible? Limited controlled environment space, short-day (photoperiod sensitive) plants.

Standing variation


- Apply selection for early (stable) flowering and reduced photoperiod sensitivity. Induced diversity
- Random: apply EMS mutagenesis, TILLING population.
- Targeted: comparative genomics and gene editing.

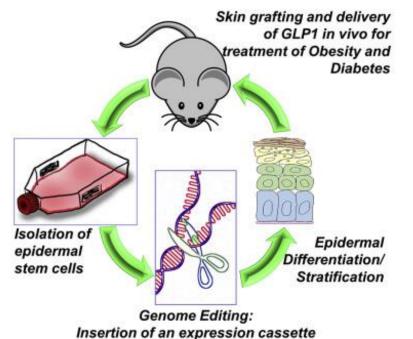
Other approach


• Graft* breeding individuals onto gene edited individuals.

Gene editing and grafting

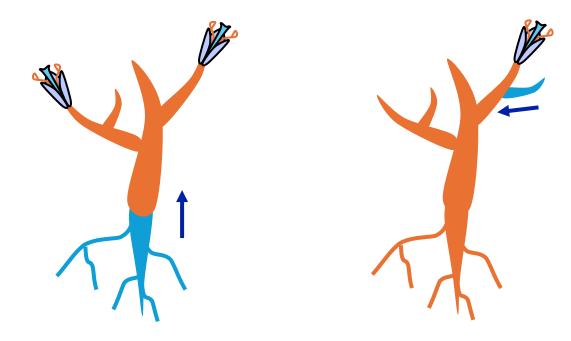
Recently demonstrated in Arabidopsis and Brassica rapa.

a Grafted B. Rapa/Arabidopsis plants


20 days after grafting

40 days after grafting

Yang L et al (2023)


Gene editing and grafting

nsertion of an expression cassette for controllable release of GLP-1

Yue et al (2017)

- Similar experiment has been shown in mice.
- Many possibilities: not limited to gene editing rootstock.

Collaboration and funding

Interdisciplinary projects

- Quantitative Genetics
- Simulation
- Statistics
- Bioinformatics
- Phenomics

- Crop production
- Agronomy
- Plant physiology
- Molecular biology
- Gene editing

- Plant pathology
- Entomology
- Environmental Hort
- Agroecology
- Economics

PRESTON B. BIRD AND MARY HEINLEIN FRUIT&SPICE PARK

Breeding vision

- Breed for the needs of local growers.
- Ensure continuity in pre-existing breeding programs.
- Identify opportunities for improvement (evidence-based).

Tropical fruits

Banana

Longan

Papaya

Passion fruit

Sapodilla

Pitaya

Avocado

https://commons.wikimedia.org/wiki/ File:Avacado_on_tree_(closeup).JPG

Mango https://commons.wikimedia.org/wiki/

File:Mango_%27Julie%27_Fruits.jpg

Lychee https://commons.wikimedia.org/wiki/ File:Litchi_chinensis_fruits.JPG

https://commons.wikimedia.org/wiki/ File:Guava_Fruit.jpg

Guava

Mamey sapote https://commons.wikimedia.org/wiki/ File:Mamey.jpg

Sugar apple https://commons.wikimedia.org/wiki/ File:Sugar_apple_on_tree.jpg

Vanilla https://commons.wikimedia.org/wiki/Fil e:Vanilla_planifolia_(6998639597).jpg

Production data

Tropical Fruit Acreage in Florida

Jonathan H. Crane, UF/IFAS TREC and Jeff Wasielewski, UF/IFAS Extension Miami-Dade County

Common Name	Scientific Name	Miami-Dade County	Other Counties in FL
Atemoya	Annona cherimola x A. squamosa	Limited	Limited
Avocado	Persea americana	6,600	55
Banana	Musa hybrids	510	50
Caimito (star apple)	Chyrsophyllum cainito	10	1
Canistel (egg fruit)	Pouteria campechiana	3	0
Carambola	Averrhoa carambola	40	110
Guanabana	Annona muricata	10	0
Guava	Psidium guajava	700	14
Jackfruit	Artocarpus heterophyllus	12	4

Jujube	Ziziphus jujube	10	2
Longan	Dimocarpus longan	1,100	167
Lychee	Litchi chinensis	400	208
Mamey Sapote	Pouteria sapota	600	0
Mango	Mangifera indica	800	551
Miracle Fruit	Synsepalum dulcificum	20	0
Papaya	Carica papaya	300	56
Passion Fruit	Passiflora edulis	60	12
Pitaya	Hylocereus undatus and hybrids	600	121
Sapodilla	Manilkara zapota	200	55
Soursop	Annona muricata	Limited	0
Spondias	Spondias species	4	0
Sugar Apple	Annona squamosa	25	6
Wax Jambu	Syzygium samarangense	2	0

Information compiled in 2018

https://sfyl.ifas.ufl.edu/media/sfylifasufledu/miami-dade/documents/tropical-fruit/Tropical-Fruit-Acreage.pdf

Production data

- Acreage changes over time.
- Growers' and consumers' demands evolve.

Table 3. Land planted to minor tropical fruits in Dade County, Florida, 1982.

Fruit crop	Hectares
Banana and plantain (Musa hybrids)	142
Papaya (Carica papaya L.)	142
Mamey sapote (Calocarbum sapota [lacg.] Merrill)	805
Acerola, Barbados cherry (Malpighia punicifolia L.)	12
Annonas (A. squamosa L., A. squamosa x A. cherimola Miller)	28
Carambola (Averrhoa carambola L.)	16
Longan <i>(Euphoria longan</i> [Lour.] Steud.) Lychee <i>(Litchi chinensis</i> Sonn.)	12
Lychee (Litchi chinensis Sonn.)	60×
Sapodilla (Manilkara zapota [L.] Van Royen	8

Knight et al (1984)

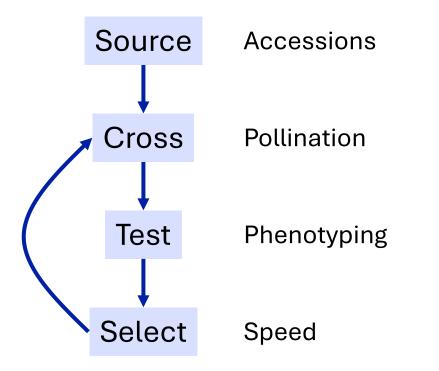
Fruit	1982	2018	Fold
Banana	351	510	1.5
Рарауа	351	300	0.9
Mamey Sapote	198	600	3
Annonas	69	25	0.4
Carambola	40	40	1
Longan	30	1100	37.7
Lychee	148	400	2.7
Sapodilla	20	200	10

Target traits

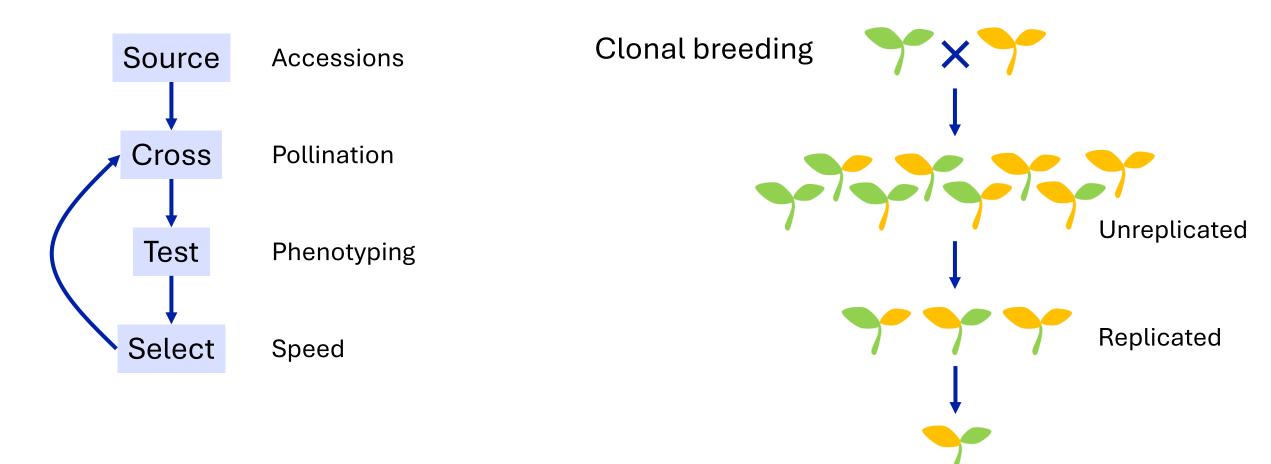
Avocado

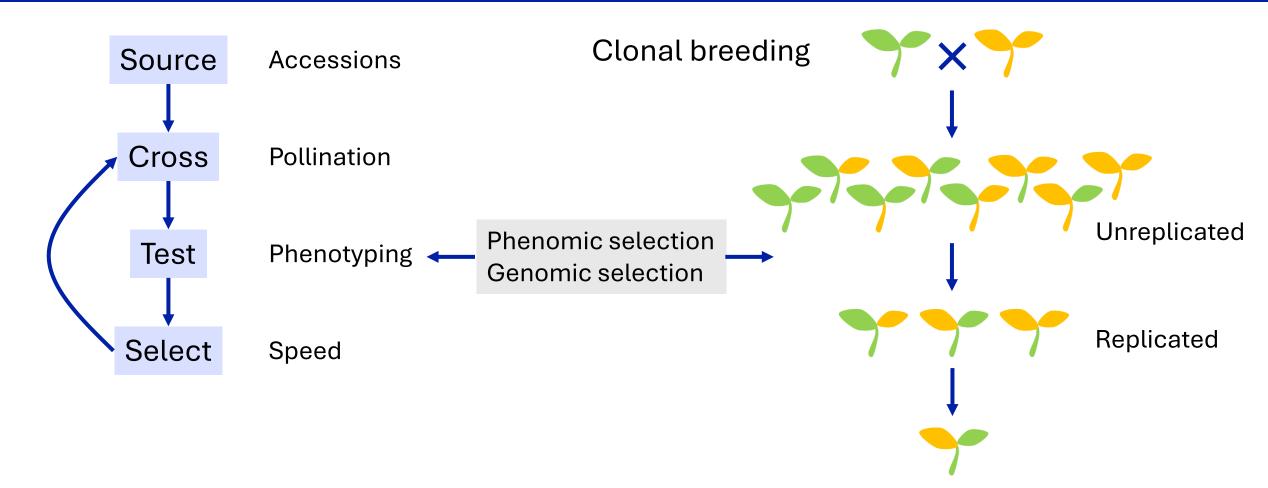
- West Indian, Guatemalan, Mexican types.
- Hermaphroditic flowers: first female, second male.
- A: first AM, second PM; B: first PM, second AM.
- The only breeding program is in California?
- Bergh (1976) gives a comprehensive list of traits.
- Target: fruit quality, handling, yield, stress, etc.


Longan


- Propagate by air layering.
- Kohala is the predominant cultivar.
- Erratic bearing habit.
- Poor adaptation in other cultivars.
- No known breeding program?
- Target: bearing habit, yield, quality, etc.

Target environment


- Oolitic limestones (rocky/marl calcareous), alkaline, > 5" (IFAS).
- Nutrient/water management.
- Works for most crops?
- Ideal temperature.
- Close to sea level.
- Tropical storms.
- Insect pest outbreak.


Breeding strategy

Breeding strategy

Breeding strategy

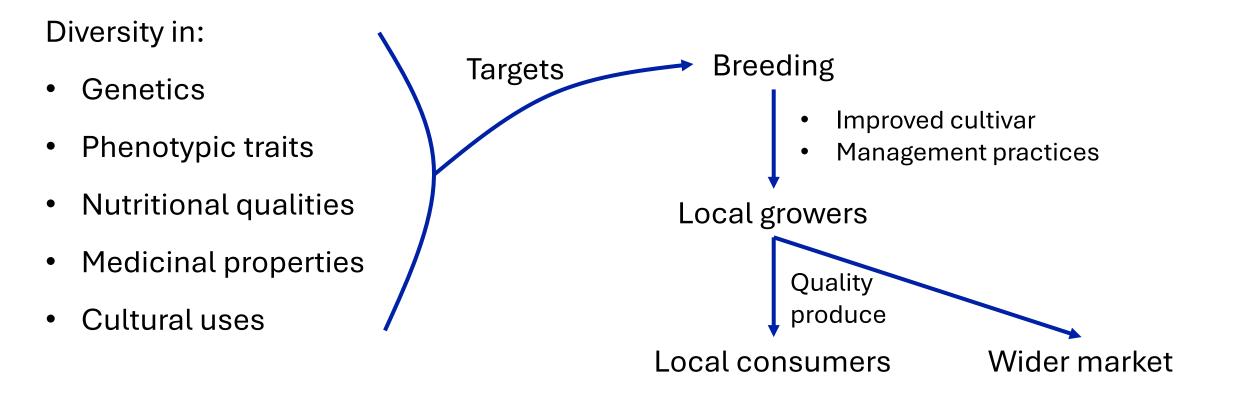
Extension vision

- Generate new knowledge.
- Give back to the local community.

Knowledge in tropical fruit crops

Diversity in:

- Genetics
- Phenotypic traits
- Nutritional qualities
- Medicinal properties
- Cultural/ethnobotanical uses



Redland market village

Tropical fruit and spice park

Knowledge in tropical fruit crops

- 1. Contribute to extension publications, e.g. Ask IFAS, eXtension.org, etc.
- 2. Provide trainings to extension agents.
- 3. Apply for extramural funding, e.g. federal (NIFA), local commodity group.
- 4. Participate/organize extension outreach events, e.g. workshops, seminars
- 5. Contribute to training programs for local growers.
- 6. Provide technology transfer opportunities.
- 7. Design breeding programs based on growers' inputs, e.g. participatory plant breeding.
- 8. Describe our research projects in group website and social media.

Summary	Contributors
Search by Title, Author, DLN, or IPN	
Showing 25 of 25 Publications	
Atemoya Growing in the Florida Home Lan	dscape
MG332/HS64	
by Jonathan H. Crane, Carlos F. Balerdi, and	d lan <mark>M</mark> aguire
January 7th, 2020	
Provides homeowners with an expanded an atemoya in the home landscape. Tables inc month, fertilizer program, and flowering be	lude information on cultural practices by
Avocado Growing in the Florida Home Lan	dscape
MG213/CIR1034	
by Jonthan H. Crane, Carlos F. Balerdi, and	lan Maguire

https://edis.ifas.ufl.edu/collections/mg_s_fruit_crops

January 7th 2020

Teaching vision

- Engage in IFAS land-grant mission: Research, Teaching, Extension.
- Impart learning skills to students.
- Support mentees toward research independence and excellence.

2013: Teaching assistant for General Genetics, University of Wisconsin-Madison. 2021/2024: Guest lecturer for Int'l Master in Plant Genetics, Genomics and Breeding, CIHEAM Zaragoza. 2022: Guest lecturer for Genetic Improvement of Crops, University of Edinburgh. Now: Developing module on Horticulture Biotechnology I (3rd year BSc in Horticulture). Now: Developing module on Plant Biotechnology (MSc in Applied Plant Science).

Methods: combinations of lecture, discussion and practical (in-person/online).

Impart learning skills to students.

- *Adapt* teaching style and course contents to overall/individual needs.
- Analogize teaching materials using clear examples.
- Assess learning progress, students' needs and interests.

Cultivate a comfortable and enjoyable learning environment for every student.

Mentoring experience

- 1. Fine-mapping of *etb1.2*, a QTL regulating ear internode length in maize and teosinte, 2013; Jordan M.
- 2. Mapping prolificacy QTL in maize and teosinte, 2015-2016; Lexi C.
- 3. QTL mapping of domestication traits in the teosinte nested association mapping population, 2015-2018; Aria P, Bailey S, Brandon K, Craig D, Isaac B, Jack S, Joe P, Kyle K, Laura B, Lora D, Michael N, Sam L.
- 4. Genetics of sexual determination in maize/teosinte terminal lateral inflorescence, 2016; Amanda M.
- 5. Perennial ryegrass under speed vernalization and speed breeding conditions, 2023-2024; Leontien H.
- 6. Rapid domestication of purslane in a vertical farm environment, 2023-2027; Emma I.

JOURNAL ARTICLE

Mapping Prolificacy QTL in Maize and Teosinte @ Liyan Yang, Chin Jian Yang, Qi Cheng, Wei Xue, John F. Doebley & Author Notes

Journal of Heredity, Volume 107, Issue 7, 2016, Pages 674–678, https://doi.org/10.1093/jhered/esw064 Published: 22 September 2016 Article history v

The genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication

RESEARCH ARTICLE | BIOLOGICAL SCIENCES | 8 The genetic architecture of teosinte

catalyzed and constrained maize domestication

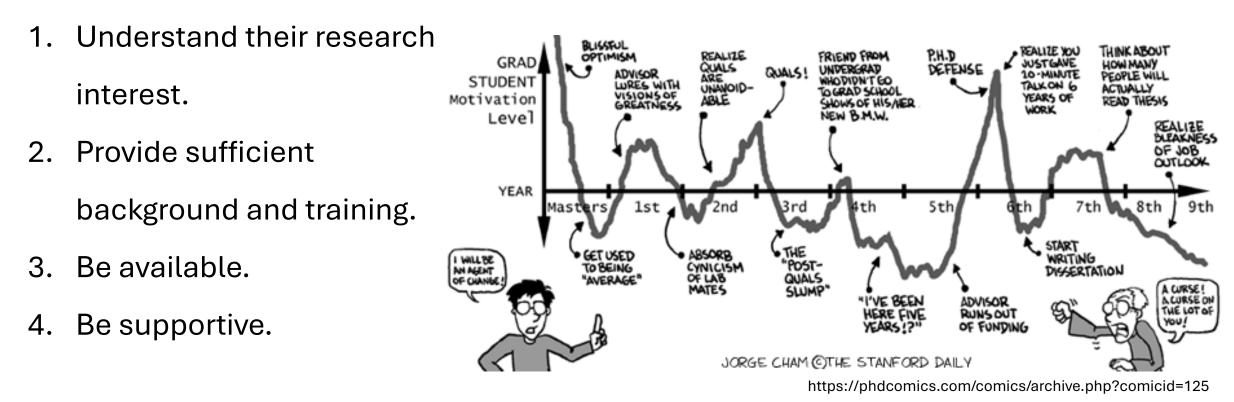
Chin Jian Yang. Luis Fernando Samayoa. Peter L. Jardsbury. Bode A. Olukolu. Wei Xue, Alessandra M. York, Michael R. Tubobdaki. Weideng: Wang. Lora. L. Jackalakia. Michael A. Neumyery: Jose de Jesus Sancher-Gornatte. Maria Carla Bromy, Jeffrey C. Glabaltz, Qi Sun, Edward S. Buckler 🗣 James B. Holland. and John F. Doebley. 🌆 authors info. A. Affiliations

March 6, 2019 116 (12) 5643-5652 https://doi.org/10.1073/pnas.1820997116

JOURNAL ARTICLE

f 🌶 in 🖻 🤮

TeoNAM: A Nested Association Mapping Population for Domestication and Agronomic Trait Analysis in Maize @


Qiuyue Chen, Chin Jian Yang, Alessandra M York, Wei Xue, Lora L Daskalska, Craig A DeValk, Kyle W Krueger, Samuel B Lawton, Bailey G Spiegelberg, Jack M Schnell, Michael A Neumeyer, Joseph S Perry, Aria C Peterson, Brandon Kim, Laura Bergstrom, Liyan Yang, Isaac C Barber, Feng Tian, John F Doebley 🕿 Author Notes

Genetics, Volume 213, Issue 3, 1 November 2019, Pages 1065–1078, https://doi.org/10.1534/genetics.119.302594 Published: 01 November 2019 Article history • Chapter 2

Genetic Regulation of Male-to-Female Conversion of the Terminal Lateral Inflorescence and Related Traits in Maize during Domestication Auker: Chi Jia Yang, Anada Alwa de Meli, Jaeph S. Perry, Ryle W. Krongel Tara Yang, Ana P. Deday

Mentoring approaches

Support mentees toward research independence and excellence.

Summary

• Wrap-up of today's talk.

Summary

Plant breeding and genetics

- Domestication
- Genomic selection
- Breeding program

Vision

Research: QG, simulation, state-of-the-art

- Breeding: demand-driven, continuity, innovation
- Extension: knowledge exchange

Teaching: learning skills, independence

Summary

Plant breeding and genetics

- Domestication
- Genomic selection
- Breeding program

Vision

Research: QG, simulation, state-of-the-art

Breeding: demand-driven, continuity, innovation

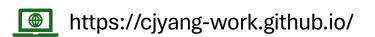
Extension: knowledge exchange

Teaching: learning skills, independence

Activities

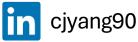
- Research directions
- Breeding work
- Securing funding
- Developing collaboration
- Results dissemination
- Stakeholder engagement
- Training

Acknowledgement


Many thanks to the Search Committee, Tropical Research and Education Center, Department of Horticultural Sciences and UFL for the opportunity to present the talk!

Wisconsin + Others John Doebley Ali York Qiuyue Chen Wei Xue Weidong Wang Mike Tuholski Natalia de Leon Claudia Calderón Jim Holland L Fernando Samayoa Ed Buckler M Cinta Romay Peter Bradbury Many more...

Ian Mackay Wayne Powell **Rajiv Sharma** David Marshall **Gregor Gorjanc** Sarah Hearne **Rodney Edmondson** Hans-Peter Piepho Joanne Russell Like Ramsay **Bill Thomas** Funmi Ladejobi **Richard Mott**


SRUC + Collaborators

XXX 🔀

