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Introduction – Plant Breeding

Wallace et al (2018)

• Domestication

• Improvement

• Experimental design

• Marker assisted selection (MAS)

• Genomic selection (GS)

• Phenomic selection (PS)

• Biology-Breeding

• Functional variants

• Gene editing (GE)

• Machine learning (ML/AI)



Introduction – Genetic Gain

Breeder’s equation

(Lush 1937)
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∆𝑅 =
𝑠𝑒𝑙. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 × 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 × 𝑠𝑒𝑙. 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑡𝑖𝑚𝑒

Framework for quantitative genetics
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Primitive Technology 101: Domestication

This earliest form of plant breeding is known as domestication, where plants 

were selected to be more productive, easier to harvest, or more aesthetically 

or gastronomically pleasing (Flint-Garcia 2013).



Primitive Technology 101: Domestication

This earliest form of plant breeding is known as domestication, where plants 

were selected to be more productive, easier to harvest, or more aesthetically 

or gastronomically pleasing (Flint-Garcia 2013).

Teosinte (left) and maize (right) in Homestead, FL, 2013-2017. 
Drawings from Doebley et al (1990)



Primitive Technology 101: Domestication

Domestication reduced the genetic variances and changed the genetic correlations.

Yang et al (2019), see also Chen et al (2020, 2021) and Samayoa et al (2021)



Shuffling genetic diversity

Selection reduces genetic diversity.

Rely on exotic sources (wild/landrace) for novel alleles, e.g. stress tolerance/resistance.

Linkage drag is a challenge.

Yamasaki et al (2005)



Shuffling genetic diversity

Selection reduces genetic diversity.

Rely on exotic sources (wild/landrace) for novel alleles, e.g. stress tolerance/resistance.

Linkage drag is a challenge.

Yamasaki et al (2005)

Gorjanc et al (2016)

CIMMYT Seeds of Discovery



Selection bias

Exotic (landrace)

Exotic x Elite

• Simulation study by Gorjanc et al (2016)

• Selection within exotic is slow.

• Selection within exotic x elite reconstitutes the 

elite genome.

Breeding value

Kinship w/ elite

Gorjanc et al (2016)



Selection bias

Exotic (landrace)

Exotic x Elite

• Simulation study by Gorjanc et al (2016)

• Selection within exotic is slow.

• Selection within exotic x elite reconstitutes the 

elite genome.

Validation of 
simulation 
outcomes in 
experimental 
data.

Singh et al (2021)

Breeding value

Kinship w/ elite

Gorjanc et al (2016)



Origin Specific Genomic Selection (OSGS)

Yang et al (2020)

How do we improve selection in exotic x elite?

Can we target favorable exotic alleles?

Yield in a barley NAM family (BC1)



Origin Specific Genomic Selection (OSGS)

• Simulation with 60:40 split in 

favorable alleles between the elite 

and exotic parents.

• OSGS prevents selection on the 

favorable alleles from the elite 

parent.

BC

1

×

×

F2 ×

Yang et al (2020)



Origin Specific Genomic Selection (OSGS)

• Simulation with 60:40 split in 

favorable alleles between the elite 

and exotic parents.

• OSGS prevents selection on the 

favorable alleles from the elite 

parent.

• The advantage of OSGS 

diminishes in BC population.

BC1 ×

×

F2 ×

Yang et al (2020)



Vertical farming of purslane

Green purslane Golden purslane

• Rich in Omega-3.

• Novel crop in the UK.

• Not adapted to the UK climate.



Purslane cultivation

Growing media Short vs long day Fluorescent light

LED

• Evaluate and optimize growing conditions (recipes).

• Green = 4 weeks, golden = 3 weeks.



Extension activities with purslane

• Royal Highland Show (state fair).

• Taste test, survey, flyer, talk, demonstration.

• Other work: PhD student, nutritional profiling, 

variety registration, market development.
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• Innovative strategy

• Technology evaluation

• Method development

Applied science

• Small grains breeding

• Cultivar delivery

• SunGrains
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Research vision

Basic science

• Breeding program design

• Innovative strategy

• Technology evaluation

• Method development

Applied science

• Small grains breeding

• Cultivar delivery

• SunGrains

• Population development

Research: lab, field, 
greenhouse, statistics, 
simulation, programming

Dissemination: publications, 
talks, posters, websites, 
social media, outreach

Funding: federal, 
state, industry, 
commodity board

Collaboration: 
projects, grants, 
interdisciplinary

Engagement: stakeholders, 
seed industries, growers, 
consumers

Training: capacity 
building, independence



Breeding strategy

An example with 2-part strategy (Gaynor et al 2017)

• Isolate breeding program into PI and PD.

• Allows us take advantage of GS and SB.

How can we improve breeding strategy to deliver higher rate of genetic gain?

Questions to follow:

• Trade-off between speed and genetic diversity?

• Trade-off between speed and prediction accuracy?

• Compatibility with crop types?

• How does it work for different traits?

• Is there indirect selection (SSD/SB, epigenetics)?

• Any uptake in real-world breeding?



2P: speed vs genetic diversity

Higher genetic gain in 2P at a cost of 

depleting genetic variance.

Gaynor et al (2017) Gorjanc et al (2018)

Optimal Contribution Selection (OCS) 

to sustain the genetic gain.



OSGS in cultivar development

Recall from earlier slides…

In general,

Polygenic traits = Genomic Selection (GS)

Oligogenic traits = Marker Assisted Selection (MAS)

• Introgression of polygenic traits.

• E.g. tolerance to abiotic stresses (drought, 

heat, salinity).

• Important traits for climate change.



Improvement to OSGS

Currently, OSGS has only been shown in 

single trait in bi-parental populations.

OSGS

mvOSGS

Traits: multi-trait mixed model

Parents: parental probability or 

haplotype approach



Improvement to OSGS

• Does the normality assumption still hold 

when the two parents are vastly different?

• Is there any bias introduced by the model?

Currently, OSGS has only been shown in 

single trait in bi-parental populations.

OSGS

mvOSGS

Traits: multi-trait mixed model

Parents: parental probability or 

haplotype approach

And we assume 𝑢~𝑁(0, 𝐼𝜎𝑢
2).

The SNP-BLUP model is 𝑦 = 𝑋𝛽 + 𝑊𝑢 + 𝜀.

Yang et al (2020)



Phenomic selection

𝑦 = 𝑋𝛽 + 𝑍𝑔 + 𝜀

The following is a conventional mixed model for genomic BLUP (gBLUP).

𝑔~𝑁(0, 𝐾𝜎𝑔
2)

In phenomic selection, the genomic markers (𝑀) are replaced by phenome. 

𝐾 = 𝑀𝑀′

Rincent et al (2018)

• Phenome can be near-infrared 

spectra (NIRS), image data, etc.

• Part of the phenome is heritable.

• Phenome is cheap(?).

• Phenome captures G x E x M.



Current states of phenomic selection

• Maize lines (elite, landrace populations).

• PS vs GS depends on populations and traits.

• ~40 biparental families 

in wheat.

• GS ignores family effect.

Weiss et al (2022)

Jackson et al (2023)



Opportunities in phenomic selection

Compare GS and PS for different traits. Predictions from PS are biased toward information 
within the predictors, Dallinger et al (2023).

Simulation is an important part of GS, how 
can we do that for PS?

Evaluate PS across developmental time points.

Grain Protein Yield

Direct vs indirect selection



Summary

Past Present Future

Domestication

OSGS

DUS

QTL fine-mapping

MAGIC

RALLY

Purslane

Heterosis

RL system

GEM in CE

Mutation GS

Breeding strategy

OSGS in breeding

Phenomic selection

Quantitative genetics, plant breeding

???
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Breeding 

program

Population

Cultivar

Research background

QTL fine-mapping

Gene identification, 

functional characterization

Maize domestication

Quantitative genetics-based 

modeling

Origin specific GS

Polygenic introgression

DUS system

Variety registration

MAGIC population

Population design, crossing 

scheme

RALLY

Selection mapping

Hybrid wheat

Heterosis and epistasis

Purslane vertical farming

Market development, 

extension, outreach

Recommended list

OVT, GxE modeling

Mutation GS

GS in mutant population

GxExM in Controlled Env
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• Simulation

• Statistics

• Data analysis

• Method development

• Maize, barley, wheat

Small grains breeding



Background – Small Grains Breeding

• Small grains: wheat, barley, oats, rye, triticale, etc.

• 6% of NC total crop production value in 2022 (USDA NASS).

• Winter wheat ranked fifth with a production value of $202 millions.

• Primary use: flour.

• Other uses: feed, malt, cover crop.

• Availability of crop insurance?

• Line breeding, GS, hybrid?

• SunGrains (NC, AR, FL, GA, LA, SC, TX): cooperative breeding, royalty.

https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NORTH%20CAROLINA


Soft red winter wheat

• Low protein content (8.5-10.5%)

• Flour for cake, pastry, dessert, etc.

https://kswheat.com/news/which-wheat-for-what

https://www.uswheat.org/working-with-buyers/wheat-classes/
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Research and breeding vision

Basic science

• Breeding program design

• Innovative strategy

• Technology evaluation

• Method development

Applied science

• Small grains breeding

• Cultivar delivery

• SunGrains

• Population development

• Link between basic and applied science – test and apply innovations.

• Incorporate end users' interest into breeding.

• Create new markets.

• Maintain/develop healthy relationship with industry/public breeders, growers.

• Train future breeders.

• Learn the process and ensure continuity.



Relevant research areas

Breeding strategy 

improvement.

Origin specific genomic 

selection (OSGS) for 

polygenic introgression.

Phenomic selection 

optimization.



Closing

Broad research experience in quantitative genetics and plant breeding.

Vision for small grains breeding at NCSU.

Basic research Small grains breeding
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