Note:

Slide 2-38 are for 1-hr research talk

Slide 39-63 are for 1-hr teaching talk

Shuffling Genetic Diversity for Crop Improvement

CJ Yang

Dec 7th, 2022

Talk outline

- 1. Introduction
- 2. Previous/current work
- 3. Research vision @UNL
- 4. Short term research plan
- 5. Long term research plan
- 6. Diversity, Equity, Inclusion (DEI) commitment

Research experience and interest

Graduate

- Maize, teosinte, domestication
- QTL mapping, fine-mapping
- Molecular biology
- Quantitative genetics

Postdoc

- Genomic selection
- Crop registration system
- Population design
- Selection mapping
- Breeding

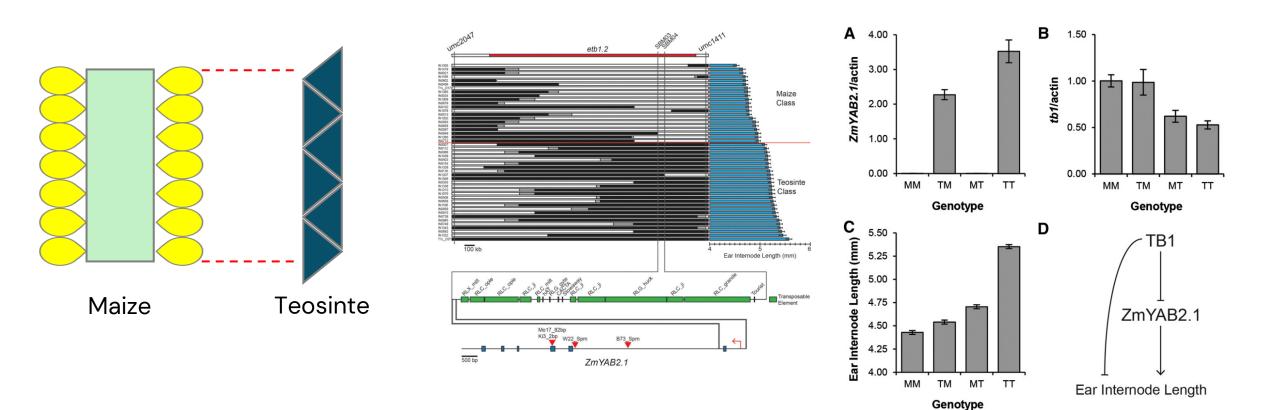
Interest in using

Quantitative genetics Statistics Programming

to understand and work with

Genetic diversity Sustainability Biology Interaction Training

Previous work: QTL fine-mapping


Ear internode length

- Measure of kernel compactness
- ZmYAB2.1 Transcription Factor

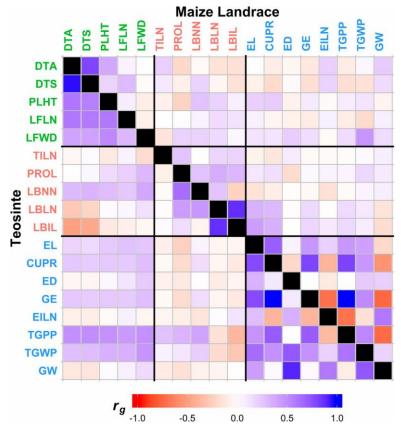
A gene for genetic background in Zea mays: fine-mapping enhancer of teosinte branched 1.2 to a YABBY class transcription factor

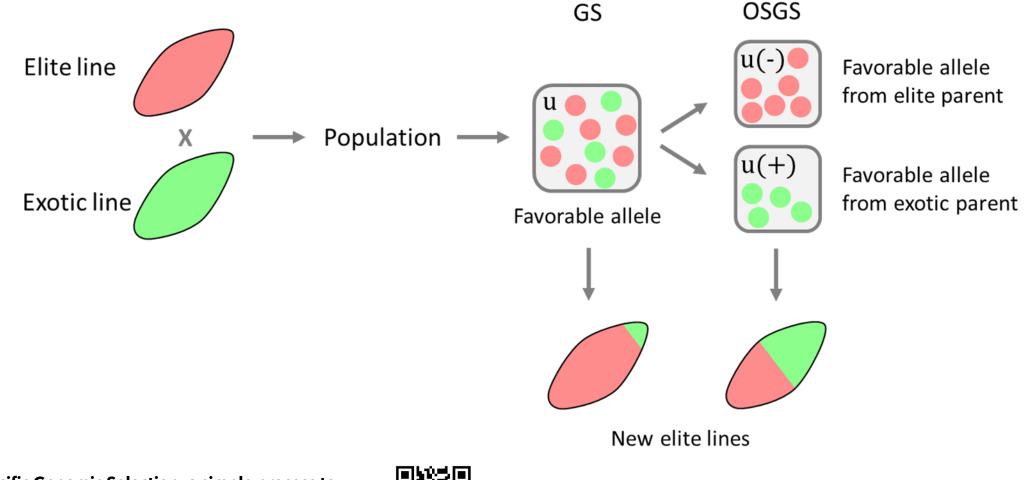
Yang CJ, Kursel LE, Studer AJ, Bartlett ME, Whipple CJ, Doebley JF

Previous work: QG of domestication

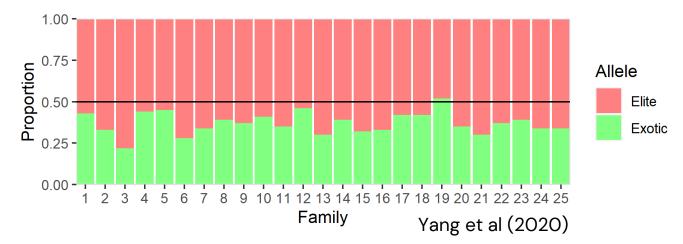
Conservation and changes in

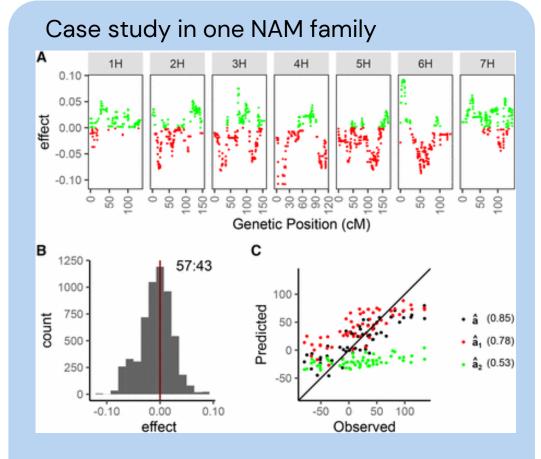
genetic variances and correlations




The genetic architecture of teosinte catalyzed and constrained maize domestication

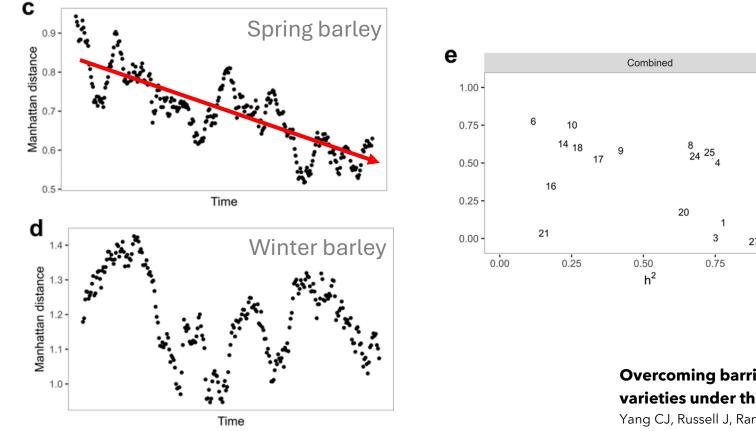
Yang CJ, Samayoa LF, Bradbury PJ, Olukolu BA, Xue W, York AM, Tuholski MR, Wang W, Daskalska L, Neumeyer MA, Sanchez-Gonzalez J, Romay MC, Glaubitz JC, Sun Q, Buckler ES, Holland JB, Doebley JF


Previous work: Origin Specific Genomic Selection (OSGS)



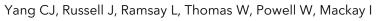
Previous work: Origin Specific Genomic Selection (OSGS)

- Dataset: Yield from HEB-25 barley NAM (Maurer et al. 2015).
- *Hordeum vulgare* ssp. *vulgare* (Barke) x ssp. *spontaneum*.
- Unequal proportions of favorable alleles (elite > exotic).



A: Partition the effects into favorable elite (negative) and exotic (positive).

B: Unequal proportions of favorable alleles (elite > exotic).C: Trait predictions using all markers, elite-only and exotic-only favorable markers.

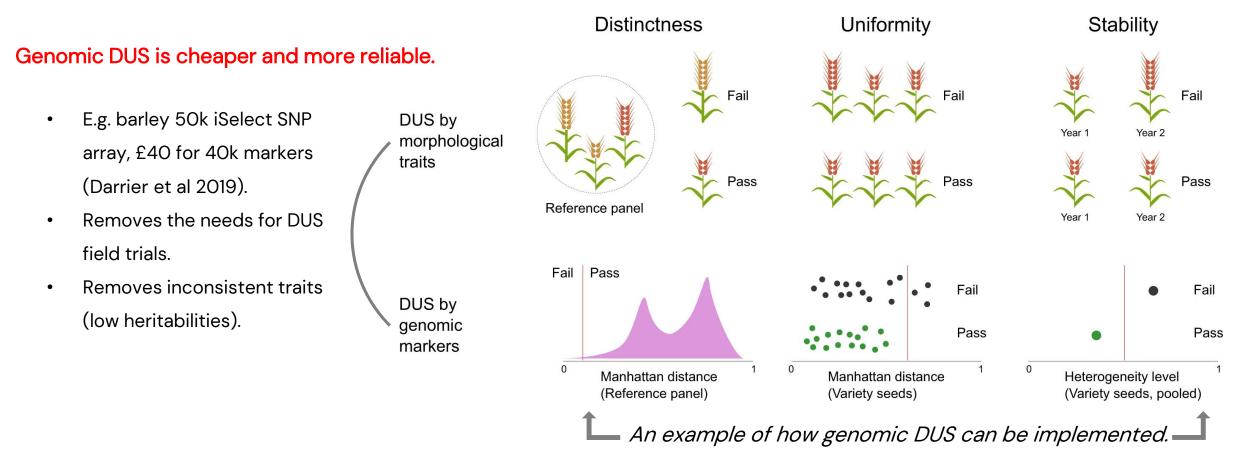

Previous work: Distinctness, Uniformity, Stability (DUS)

- DUS is a Plant Variety Rights (PVR) granting system by UPOV (International Union for the Protection of New Varieties of Plants).
- DUS for barley in the UK uses 28 morphological traits (e.g. season type, row number, pigmentation, etc...).

- Y-axis: proportion of DUS trait inconsistencies across organizations.
- X-axis: trait heritabilities.
- DUS traits: low heritabilities,
 inconsistent across environments.

Overcoming barriers to the registration of new plant varieties under the DUS system

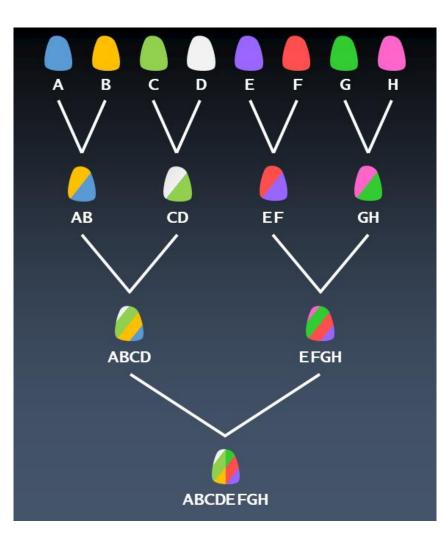
r = -0.67


22

1.00

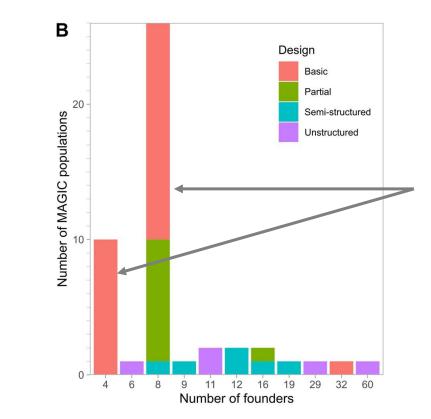
UK spring barley varieties are getting increasingly similar in their DUS traits (declining distance).

Previous work: Distinctness, Uniformity, Stability (DUS)

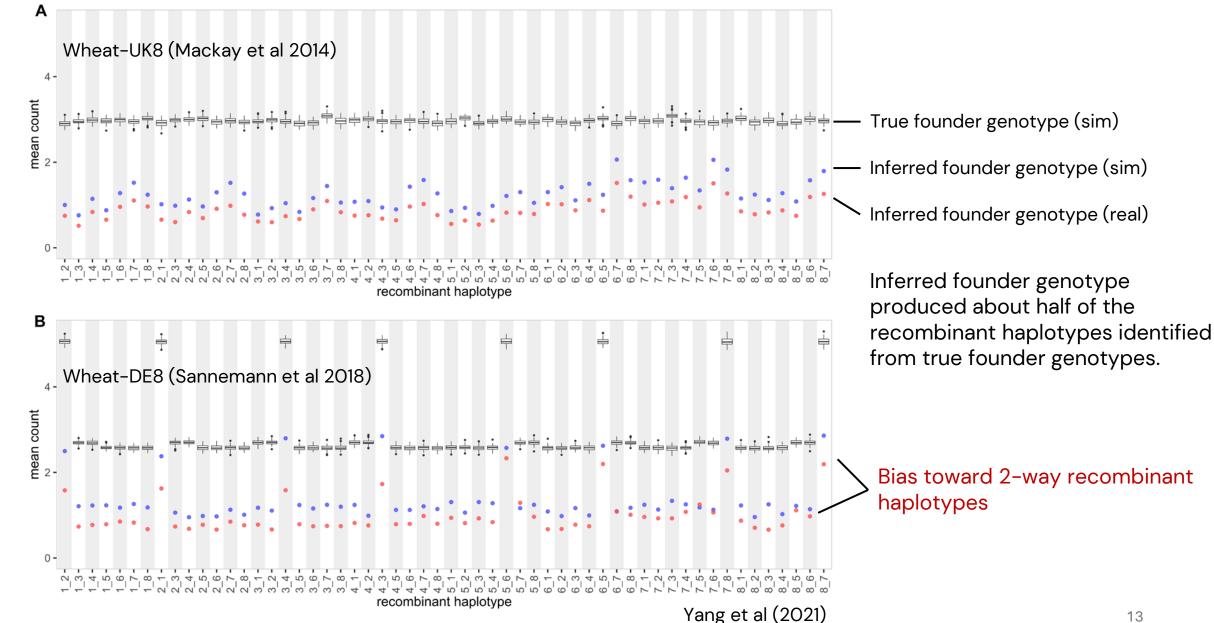


Yang et al (2021)

Previous work: R/magicdesign


Crafting for a better MAGIC: systematic design and test for Multiparental Advanced Generation Inter-Cross population Yang CJ, Edmondson RN, Piepho H-P, Powell W, Mackay I

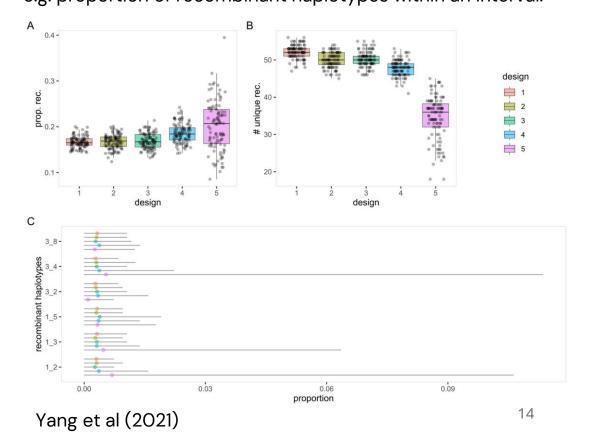
Multiparental Advanced Generation Inter Cross (MAGIC)


- Population with a rich recombination landscape.
- Create novel genetic/haplotype diversity.
- Multi-purpose: QTL (gene) mapping, genomic selection, genetic resource.

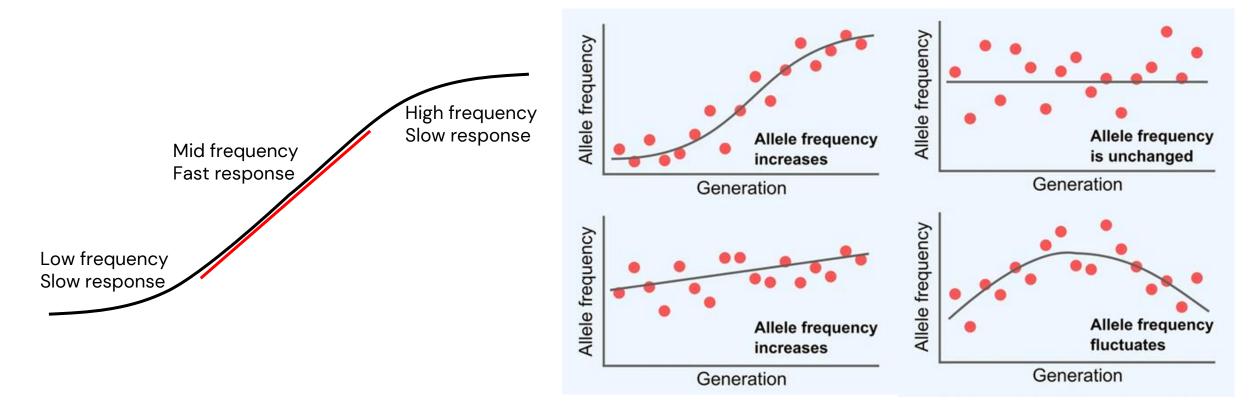
Despite having many ways to construct the crossing schemes, many populations use the same, single-funnel crossing scheme (as shown in the pedigree on the left).

This creates a bias toward recombinations from earlier crosses.

Previous work: R/magicdesign

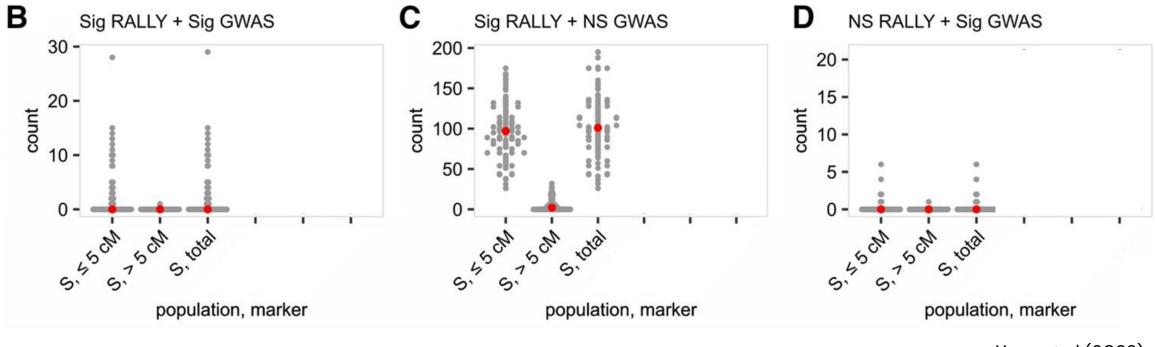


Previous work: R/magicdesign

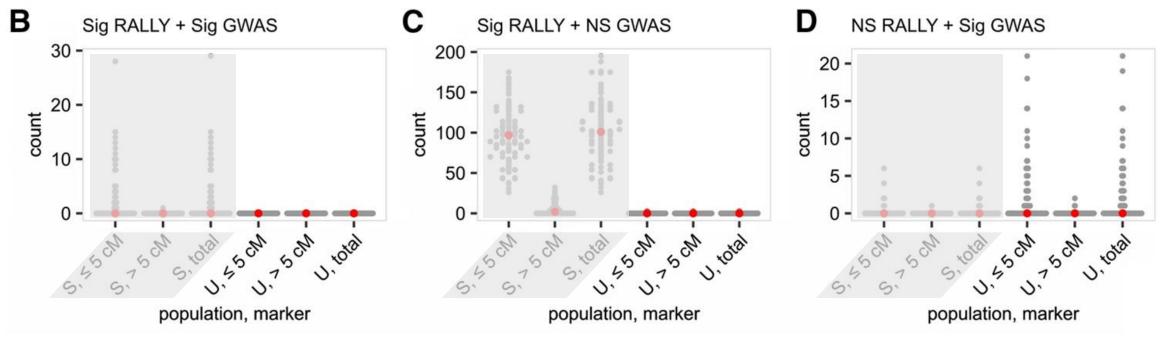

- R package for designing and testing various MAGIC population designs by simulations.
- Available at https://github.com/cjyang-work/magicdesign
- R/magicdesign allows us to explore more crossing schemes.

```
Sample codes in R/magicdesign:
8 founders, 49 (7 x 7) funnels, 1 x 3 x 4 replicates, and 4 selfing
generations = 588 RILs.
```

Sample output to evaluate 5 different crossing scheme. e.g. proportion of recombinant haplotypes within an interval.


Logistic regression to model allele frequency changes

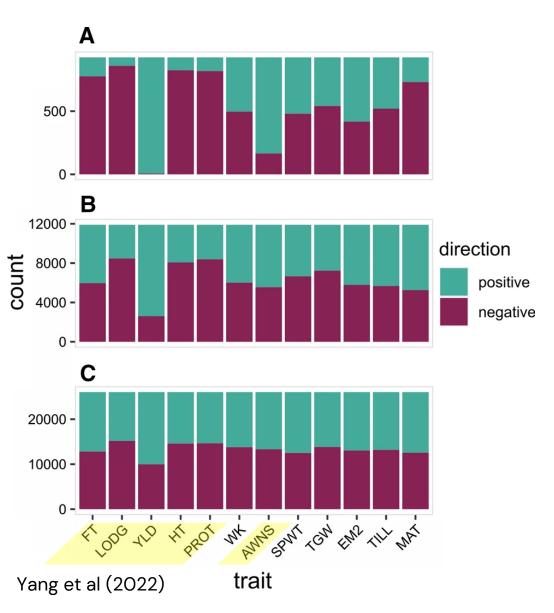
Analysis of historical selection in winter wheat Yang CJ, Ladejobi O, Mott R, Powell W, Mackay I


Simulate 50 generations of selection (S) – repeat 100X.

Yang et al (2022)

In the presence of selection, RALLY has more mapping power than GWAS.

Similarly, simulate 50 generations of control, i.e. no selection (U).



Yang et al (2022)

In the absence of selection, RALLY finds no significant markers.

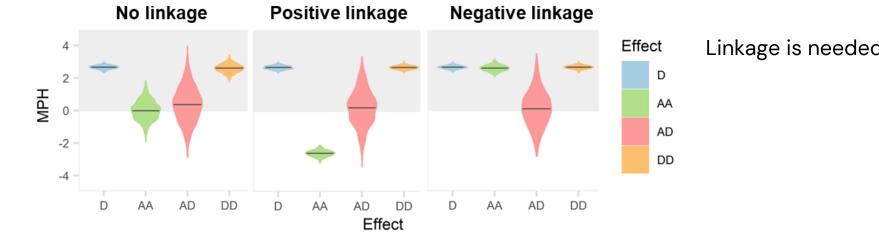
False positive control in RALLY uses Parametric Control = Genomic Control + Delta Control.

- Analysis in the Triticeae Genome (TG) dataset.
- 333 winter wheat varieties, DE/FR/UK, 1948–2007.
- 38,852 GBS markers (m).
- Fit standard ridge regression BLUP model.
- Match marker effect directions to RALLY directions.
- Partition the markers into sets.
- A: markers with RALLY p < 0.05/m.
- **B**: markers with RALLY 0.05/m < p < 0.05.
- C: markers with RALLY p > 0.05.

Current work: Phantom epistasis and heterosis

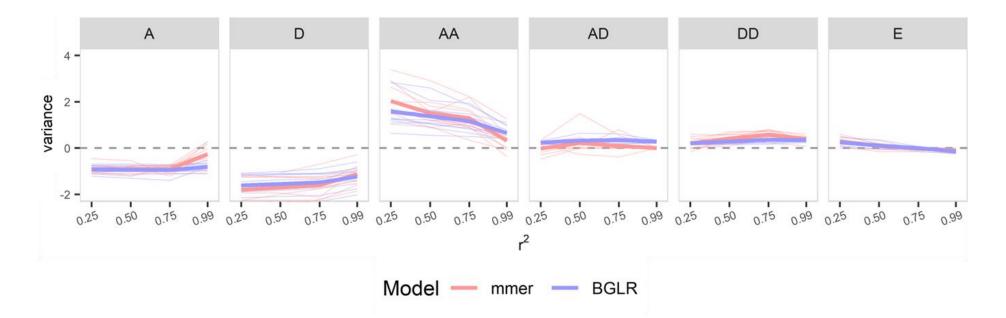
A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Jiang et al (2017)

Negative dominance and dominance-by-dominance epistatic effects reduce grain-yield heterosis in wide crosses in wheat. Boeven et al (2020) Within the genetic variance (V_G) accounting for heterosis: 16/11% Dominance (V_D) 50/61% Additive x additive (V_{AA}) 21/17% Additive x dominance (V_{AD}) 13/11% Dominance x dominance (V_{DD})


This is contradictory to the conventional expectation of "heterosis is caused by dominance".

Current work: Phantom epistasis and heterosis

A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Jiang et al (2017)


Negative dominance and dominance-by-dominance epistatic effects reduce grain-yield heterosis in wide crosses in wheat. Boeven et al (2020) Within the genetic variance (V_G) accounting for heterosis: 16/11% Dominance (V_D) 50/61% Additive x additive (V_{AA}) 21/17% Additive x dominance (V_{AD}) 13/11% Dominance x dominance (V_{DD})

This is contradictory to the conventional expectation of "heterosis is caused by dominance".

Linkage is needed for non-zero MPH due to AA.

Current work: Phantom epistasis and heterosis

- Use wheat hybrid marker data (Zhao et al 2015, 120 + 15 parents, 1604 hybrids, 2701 markers).
- Simulate trait with A + D (V_A = 1 and O < D < 2A).
- Thin marker data according to its linkage with simulated QTLs.
- Estimate variance components.

Full talk is available at the Roslin CGDG YouTube channel https://youtu.be/ThbKA6VzGOU

Research vision @UNL

- 1. Improved genetic diversity management for sustainable crop breeding.
- 2. Development of major and minor/novel crop breeding.
- 3. Holistic research training.
- 4. Contribution toward UNL N2O25 aims.

Aim

Increasing research impact.

Interdisciplinary collaboration.

Broadening stakeholders' engagement.

Fostering professional development.

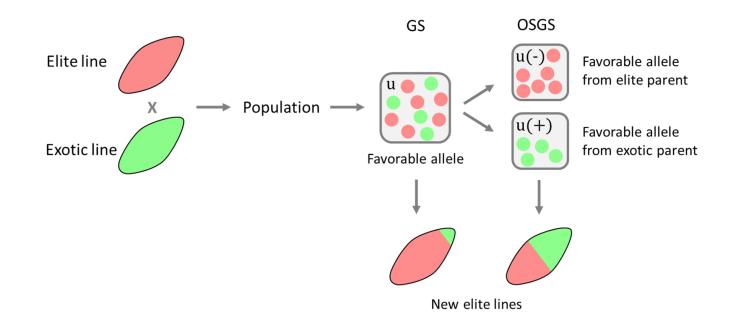
Promoting diversity, equity and inclusion. Enhancing student experience.

Strategy

Training, innovative research, collaboration, publications, funding.
Teamwork, Center of Plant Science Innovation, IANR communities.
Knowledge exchange and transfer, participatory breeding.
Training, alternative opportunities, progress tracking.
Training, recruitment, respect, well-being.
Research experience.

Short-term research plan

Computational route

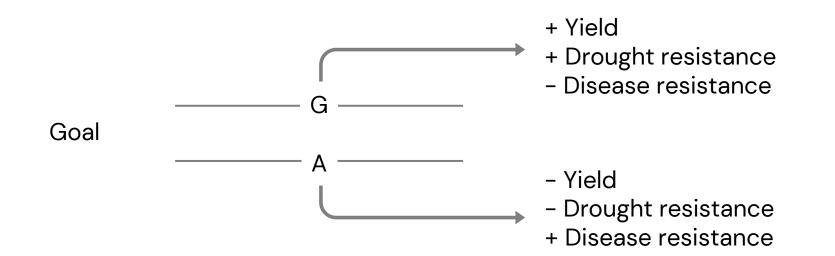

- Statistical analysis
 - (collaborator/public/simulated data).
- Method development.
- Training.
- Immediate research outputs.

Experimental route

- Population development.
- Experimental validation.
- Method testing.
- Training.
- Delayed research outputs.

Establishing a research program.

Recall previously that we can partition the favorable parental contributions using OSGS.

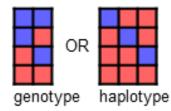

However, this only works with in a single trait, bi-parental setting.

An upgrade is necessary to make it more practical.

First, how do we deal with multi-trait?

There are 3 immediate options:

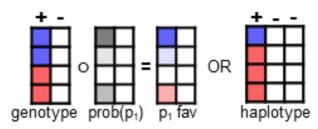
- 1. Fit each trait by itself assumes no covariances among traits.
- 2. Fit all traits at once using SNP-BLUP model, e.g. ridge regression, elastic net, LASSO.
- 3. Fit all traits at once using G-BLUP model, then apply linear transformation of $u_i = Z'_i K^{-1} g$ (Ning et al 2018).

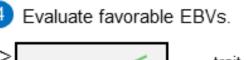

Next, how do we deal with multi-parent?

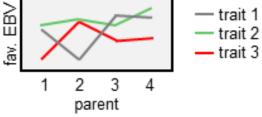
There are two immediate options:

1. Fit genotype matrix.

ID	Allele	P(P1)	P(P2)	P(P3)	Fav-P1
Parent-1	1	1.0	0	0	NA
Parent-2	1	0	1.0	0	NA
Parent-3	-1	0	0	1.0	NA
Progeny-1	1	0.8	0.2	0	0.8
Progeny-2	-1	0	0	1.0	0
Progeny-3	1	0.1	0.9	0	0.1


Use marker genotype or parental haplotype.

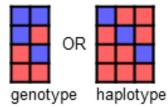



Fit multi-trait mixed models.

$$\begin{cases} y_1 = X\beta_1 + Zu_1 + \varepsilon_1 \\ \vdots \\ y_t = X\beta_t + Zu_t + \varepsilon_t \end{cases}$$

Identify favorable markers.

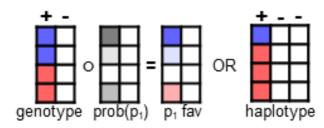
26

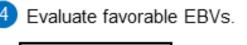

Next, how do we deal with multi-parent?

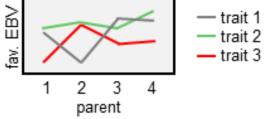
There are two immediate options:

2. Fit parental haplotype matrix.

ID	М1	м2	H1 H2 H3 Fa	lv-H1
Parent-1	G	Т	1 -1 -1	NA
Parent-2	G	С	-1 1 -1	NA
Parent-3	Α	Т	-1 -1 1	NA
Parent-4	A	С	-1 -1 -1	NA
Progeny-1	G	С	-1 1 -1	0
Progeny-2	Α	С	-1 -1 -1	0
Progeny-3	G	Т	1 -1 -1	1

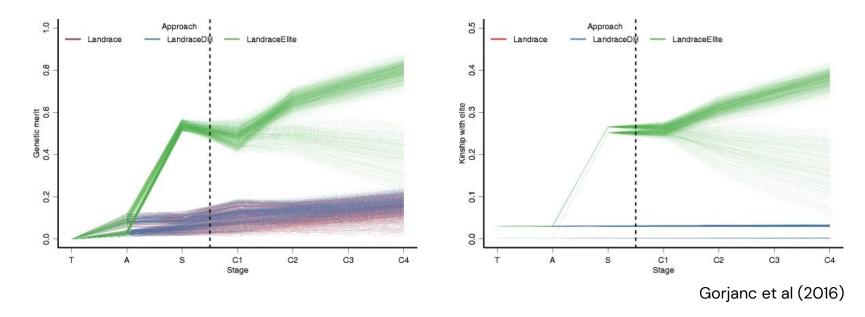

 Use marker genotype or parental haplotype.

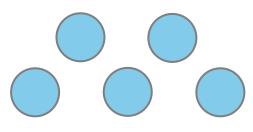


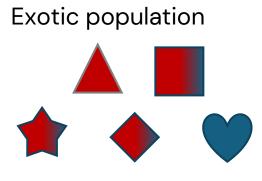

2 Fit multi-trait mixed models.

$$\begin{cases} y_1 = X\beta_1 + Zu_1 + \varepsilon_1 \\ \vdots \\ y_t = X\beta_t + Zu_t + \varepsilon_t \end{cases}$$

Identify favorable markers.





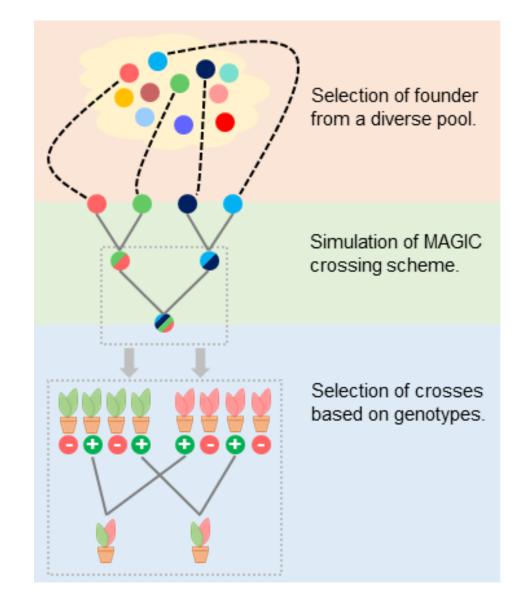

What is mvOSGS useful for?

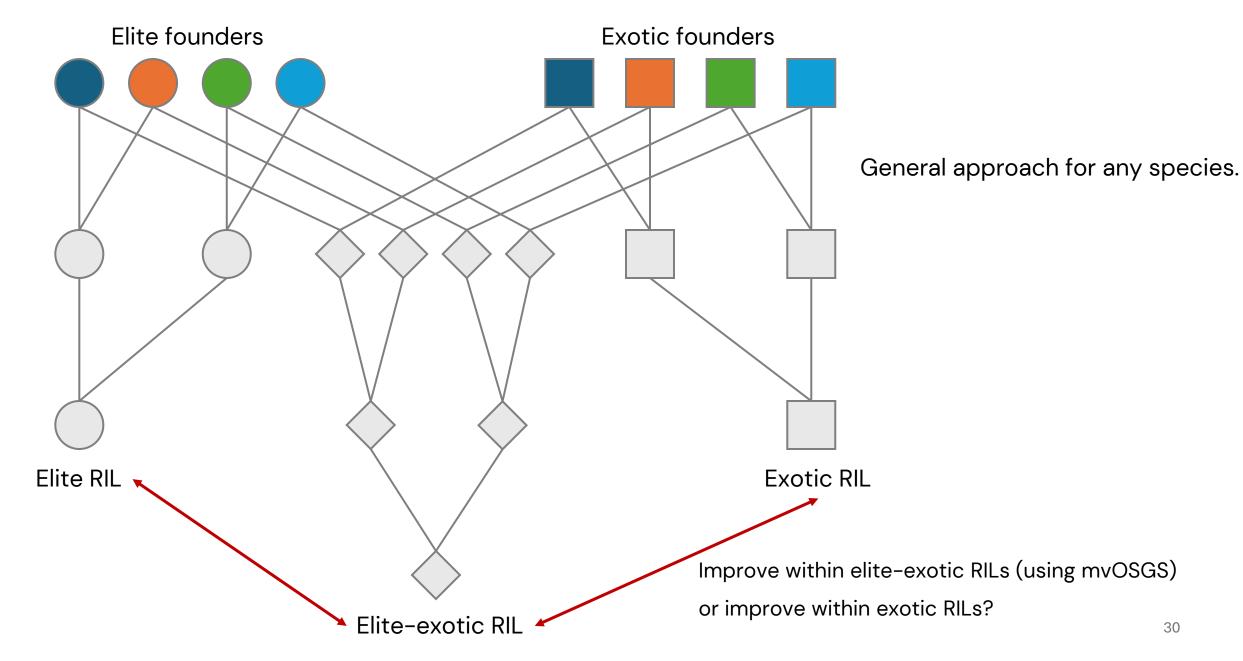
- Just like OSGS, it can be used to introgress novel alleles from exotic.
- Just like OSGS, it prevents reconstitution of elite genome.

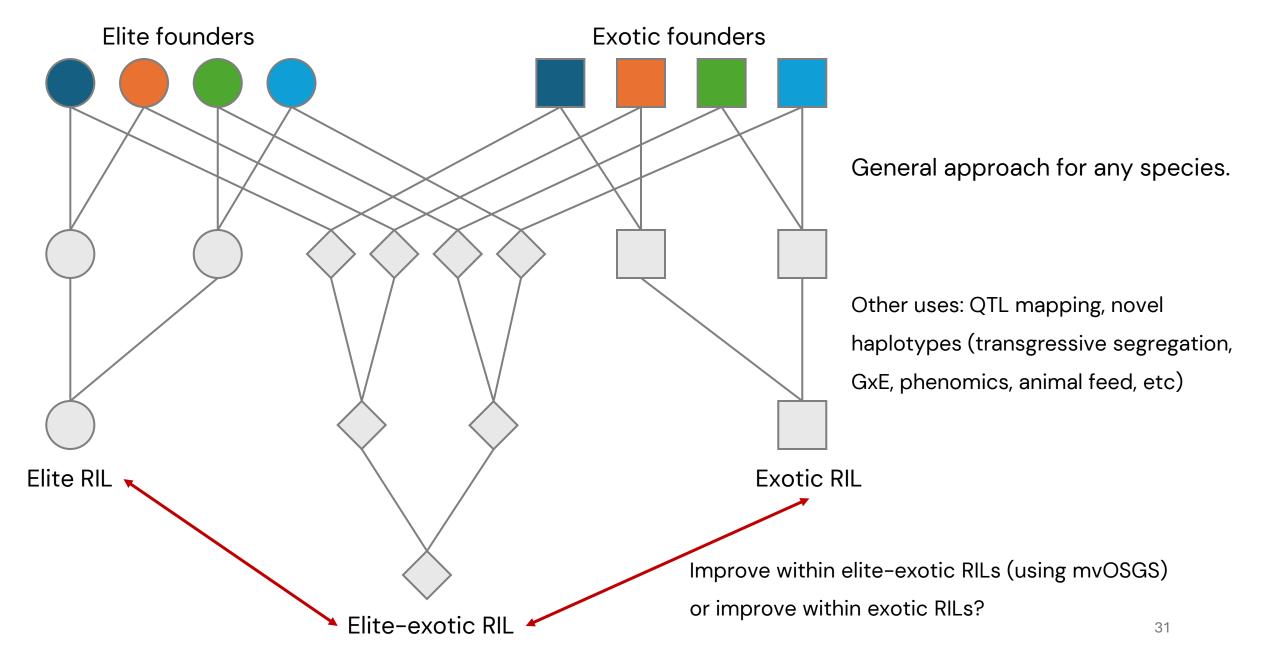
Elite population

Mildly favorable Strongly favorable Strongly unfavorable

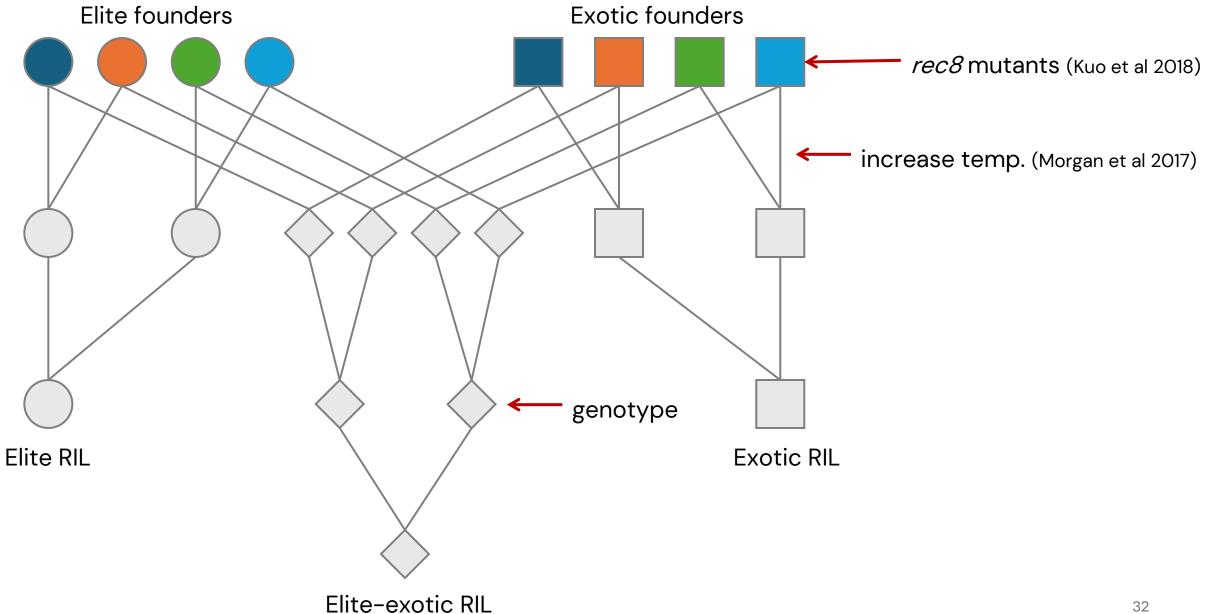
• Unlike OSGS, it accounts for multiple founders and traits.

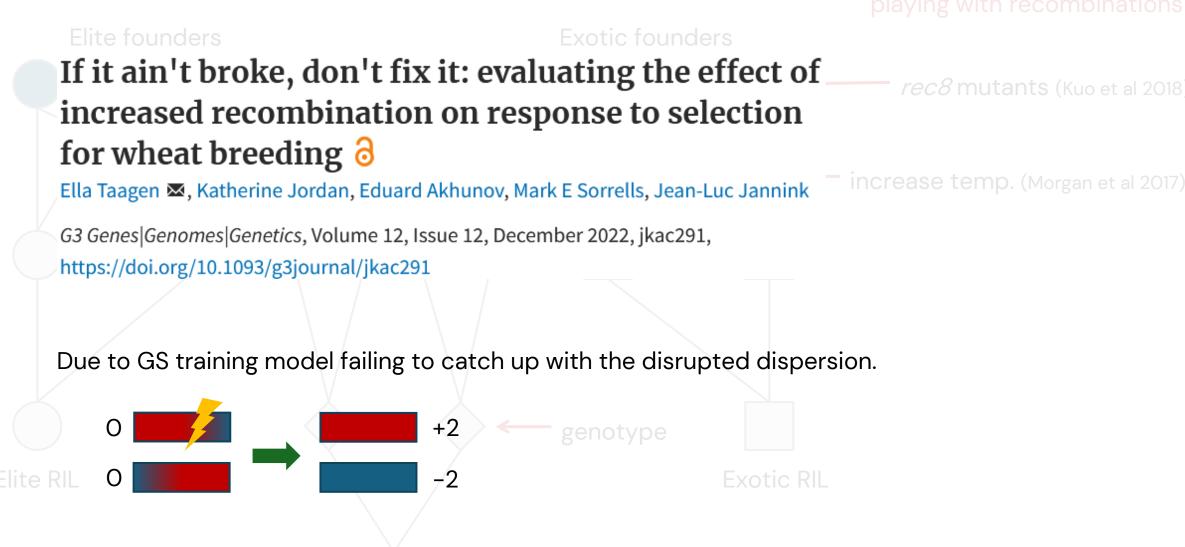

Plan 2: R/magicdesign


Founders' information >>> Create funnels >>> Simulate

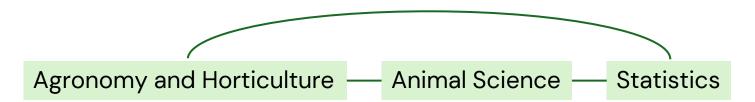

It is currently very basic and would benefit from including additional functions.

- Founder selection diversity measures, e.g. Manhattan distance, F_{ST}, simulated annealing (Kirkpatrick et al 1983).
- 2. Crosses' genotypes identify and select for crosses that would maximize unique recombinations.


Training opportunity for group members.



playing with recombinations

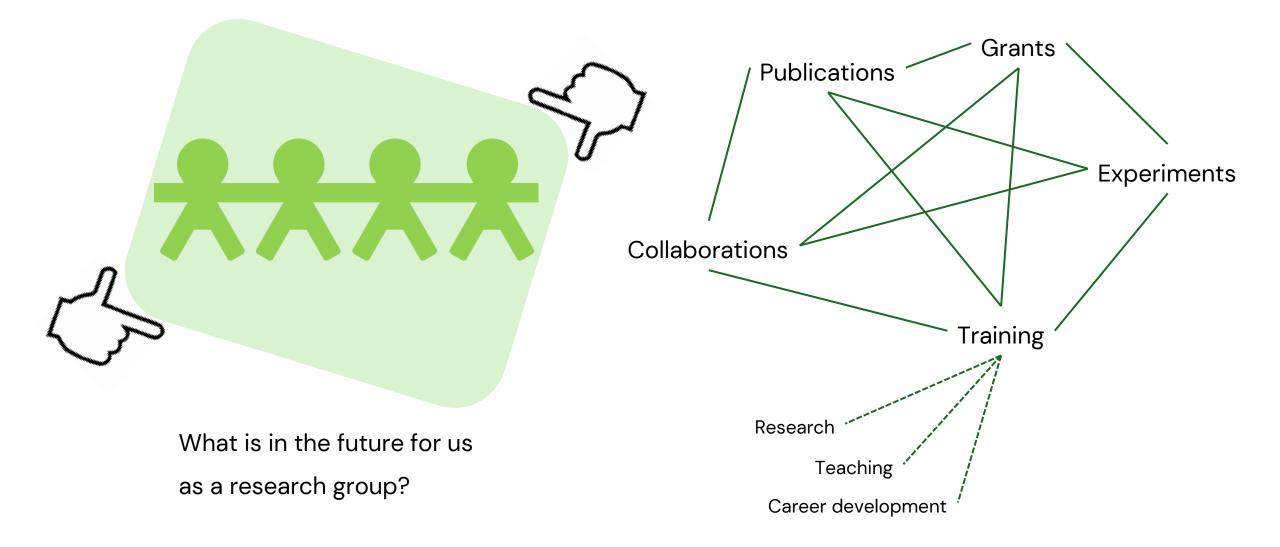

Not a problem in MAGIC – new haplotypes are captured in the GS training model.

Elite-exotic RIL

Collaboration opportunities

See a strong commitment toward collaboration at UNL.

- IANR communities: Computational science, Economic vitality, Healthy humans, Healthy systems, Stress biology, Science literacy.
- Center for Plant Science Innovation: combines genetics, genomics, phenomics, microbiome, immunology, bioinformatics.

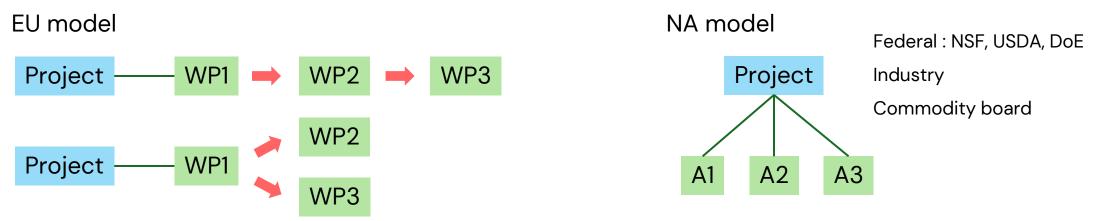

Various exciting research in breeding and genetics.

- Genomics, phenomics, microbiome, animal nutrition, mixed model, experimental design.
- Knowledge exchange (we can offer those developed in the short-term plans).

Extension - deliver direct impact.

Training – plenty of opportunities.

Long-term research plan



Long-term research plan

External grant funding is the key to keep the research group going.

Grant experience

- MAGS: Mutation breeding for quantitative traits with genomic selection (IAEA, 2022–2027).
- BARGAIN: Mobilizing untapped genetic diversity (RESAS, 2022–2027).
- The impact of novel crops and farming practices on the Scottish agricultural landscape (RESAS, 2022–2027).
- Development of high-value bio-products from wild-harvested and farmed Scottish seaweed (IBioIC, 2022-2023).
- Rapid domestication of purslane in a vertical farm environment (EASTBIO, student pending).
- Development of a data-driven breeding program for sugar kelp (SAIC, submitted).

Commitment toward Diversity, Equity and Inclusion (DEI)

Past experience

- Mentoring of a diverse group of undergraduates.
- Assistance in scientific presentations.
- Meetings, symposiums, conferences, publications.
- Various supports.

DEI Vision

D: open door to diversity (women, PoC, LGBT+, disabled, first-gen, more).
E: support in all areas, be aware and act on invisible disadvantages.
I: communication, cultural exchange, be accommodating, well-being.

Every person and every interaction matters – UNL N2O25 Strategic Plan

Acknowledgement

Many thanks to you all for joining today!

And big thanks to:

- UNL IANR Search Committee for the opportunity to present.
- Kay McClure-Kelly for organizing and scheduling.
- Past and current mentors for their continuous guidance and support.
- All collaborators as none of the work would have been possible without them.

Teaching students to learn effectively

CJ Yang

Dec 8th, 2022

Talk outline

- 1. Introduction
- 2. Teaching experience
- 3. Teaching vision/philosophy
- 4. Teaching approaches
- 5. Teaching examples
- 6. Diversity, Equity, Inclusion (DEI) commitment

Introduction

Education & Research

2009 – 2012	Indiana University Bloomington (IU)	BSc Biotechnology, Mathematics
2012 - 2018	University of Wisconsin (UW)-Madison	PhD Genetics
2018 - 2019	Technical University of Munich (TUM)	Postdoc
2019 – now	Scotland's Rural College (SRUC)	Postdoc

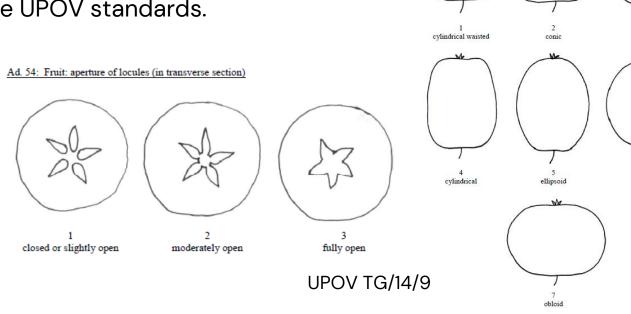
Teaching

2013	Teaching Assistant (TA)	General genetics	UW-Madison
2021	Guest lecturer	Plant genetics, genomics and breeding	CIHEAM Zaragoza
2022	Guest lecturer	Genetics improvement of crops	University of Edinburgh

Teaching experience: TA for General Genetics

Just as many of you are familiar with:

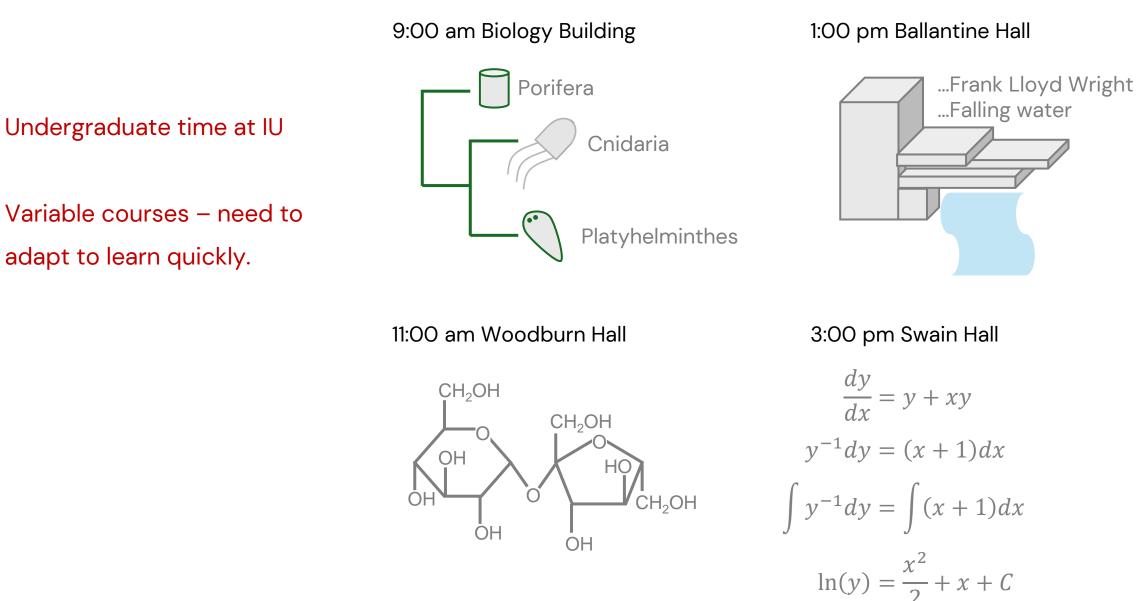
- Provide support to the students in understanding lecture materials through discussions.
- Maintain two-way communications to assess the students' understanding.
- Made myself flexible with the students.
- Good introduction into teaching (for me).


Teaching experience: Plant Genetics, Genomics and Breeding

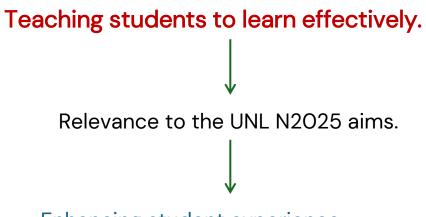
- Guest lecturer for the section on "IBD, IBS, Genetic Distance, Population Structure".
- 30 students with strong background in plant genetics and breeding.
- Online teaching meant to take place in Zaragoza, Spain in early 2021.
- 4 hours of lecture + 4 hours of lab practical.
- Lack of visual interaction encouraged the students to speak out or type in the chat boxes or emails.
- Had computational analyses in R for the lab practical (not easy...., need to debug).
- Spent extra time to divide up the analyses to make sure everyone was on the same page.
- Take home exercise with short answer questions with a focus on justifications to stimulate thinking.
- Happy to see students coming with questions on their own datasets.

Teaching experience: Genetic Improvement of Crops

- Guest lecturer for "Conventional vs Advanced Breeding Methods" and "Variety Identification".
- 3 students had more chance to be interactive.
- 2 hours of lecture + 3 hours of lab practical.
- Breeding exercise simulate a single cycle of selection in R.
- Challenging walk the students through.
- Identify apple varieties according to the UPOV standards.



Ad. 28: Fruit: general shape


ovoid

globose

Teaching vision/philosophy – backstory

Teaching vision/philosophy

- Enhancing student experience.
- Promoting diversity, equity and inclusion.
- Learning never ends.
- Improve students' learning skills.
- Everyone is unique space to develop personal learning style.
- Everyone should have the rights to learn outreach.

Teaching approaches

Adaptation: adjust teaching style and course contents to match the needs.

Analogy: use of prior knowledge (example) to understand unfamiliar topics.

Assessment: gauge students' needs and interests.

Teaching approaches: Adaptation

Motivation

- Everyone is unique.
- Space for everyone to develop their strengths in learning.

Examples

- Small vs large class how much can we deviate from the core syllabus?
- Students' interest is there any alternative teaching material that fit better? e.g. scientific literature.
- Students' background how advanced can we go? level-appropriateness of resources.
- Nature of the class is there any non-class component? e.g. field trip.
- Individual vs group work can we have both?


Teaching approaches: Analogy

Motivation

- More relatable and attractive.
- Clearer framework to understand and evaluate.

Examples

- Genotype imputation predicting weather from cloud cover and wind direction.
- CRISPR Photoshop, Find & Replace, ..., Bomb Removal Tool (https://www.statnews.com/2017/12/08/crispr-analogies-ranked/)
- After introducing the analogy,
 - highlight the core features
 - identify the parallel points
 - if needed, improve the analogy for next time

Ledford (2015)

Teaching approaches: Assessment

Motivation

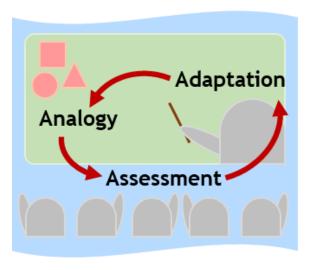
- Identify students' progress, strength/weakness, issue, misconception, need, interest. ٠
- Circulate back to adjust pace and adapt course plan. ٠

Examples

٠

- In-depth probe, minimal opportunity to act.
- Mid-term exam ٠
- Project report ٠

Final exam


- Survey •
- Quiz

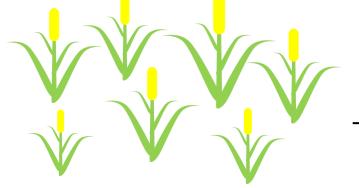
Understanding > Answer

Clicker question ٠

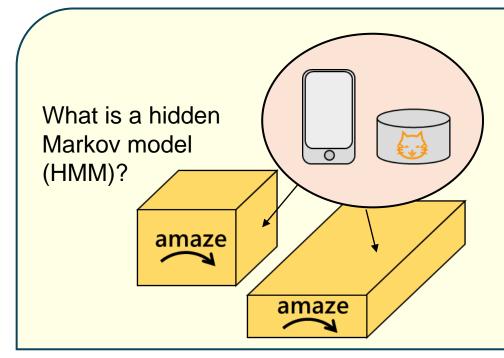
Shallow probe, plenty of opportunity to act.

Teaching approaches: 3A

- Adaptation, Analogy and Assessment form a loop.
- Stimulate students' critical thinking.
- Learning skill that extends beyond the class.
- As an instructor, be ready to improve.
- Improvement never ends go beyond any semester.
- Continuous curriculum update, e.g. Genomic Selection, CRISPR.


Teaching examples

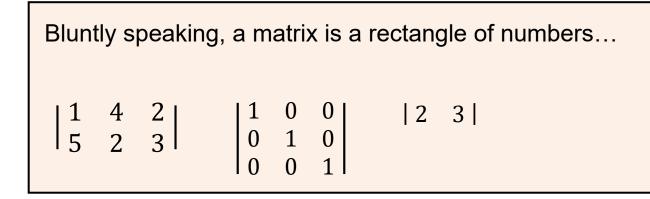
The next few slides are examples of my teaching slides.

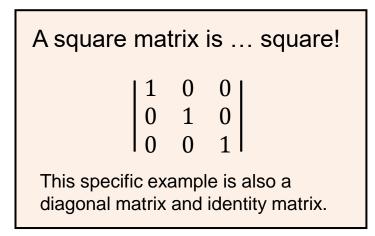

They will be presented as how I would when I am teaching.

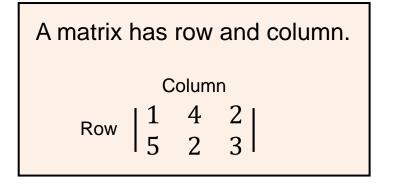
And then I will highlight the relevant points and possible improvement.

IBD in QTL mapping

Genotype a					Obtain P(IBD)		P(I	BD) w	ith foun	der 1
bi-parental	ID1	AC	G C	А	using hidden Markov model	ID1	1	1	• 5	1
population	→ ID2	AC	C C	Т	Markov model	ID2	1	0	.5	0
	ID3	G (C C	Т		ID3	0	0	• 5	0




Suppose you receive a package every day. How would you tell which item is in which package?


Assume the packages form a Markov chain (i.e. today's package depends on yesterday's), open the packages every day, keep track of the contents, make an educated guess.

Package = marker genotype Content = P(IBD)

A short detour – what is a matrix?

An $n \times m$ matrix has n rows and m columns.

Elements of ma	atrix <i>M</i>	are referred as M_{ij}	
$\left \begin{array}{c}M_{11}\\M_{21}\end{array}\right.$	M ₁₂ M ₂₂	$ \begin{array}{c c} M_{13} \\ M_{23} \end{array} \right $	

Time and cost (an example in potato breeding)

Cost analysis of the application of marker-assisted selection in potato breeding Model 1 conventional selection to G2 follower

Anthony T. Slater ⁽²⁾, Noel O. I. Cogan & John W. Forster

Molecular Breeding 32, 299–310 (2013) Cite this article

Model 1 conventional selection to G2 followed by disease screening			disease	Model 2 conventional selection and G2 marker application				Model 4 G0 MAS then conventional screening without increasing the population $% \mathcal{A} = \mathcal{A} = \mathcal{A} + \mathcal{A}$			
	Intense	Moderate	Mild		Intense	Moderate	Mild		Intense	Moderate	Mild
G0 cost				G0 cost				G0 cost			
No. of seedlings ^a	100,000	20,000	6,667	No. of seedlings	100,000	20,000	6,667	No. of seedlings	100,000	20,000	6,667
Seedling tuber production	\$300,000	\$60,000	\$20,001	Seedling tuber production	\$300,000	\$60,000	\$20,001	Seedling tuber production	\$300,000	\$60,000	\$20,001
G1 cost				G1 cost				G0 marker application			
No. of seedlings	100,000	20,000	6,667	No. of seedlings	100,000	20,000	6,667	No. of seedlings	100,000	20,000	6,667
Plant spacing (m)	0.6	0.6	0.6	Plant spacing (m)	0.6	0.6	0.6	96 well plate samples	90	90	90
Row spacing (m)	0.82	0.82	0.82	Row spacing (m)	0.82	0.82	0.82	No. of plates	1,111	222	74
Paddock length (m)	100	100	100	Paddock length (m)	100	100	100	Cost per plate	736	736	736
Total area (ha)	4.92	0.98	0.33	Total area (ha)	4.92	0.98	0.33	Total marker cost	\$817,778	\$163,556	\$54,521
G1 cost ^b	\$164,731	\$32,946	\$10,983	G1 cost ^b	\$164,731	\$32,946	\$10,983	Simplex segregation	46.4 %	46.4 %	46.4 %
G1 selection rate	2 %	10 %	30 %	G1 selection rate	2 %	10 %	30 %	G1 seedlings			
G2 cost				G2 cost				No. G1 seedlings	46,400	9,280	3,094
No. of genotypes	2,000	2,000	2,000	No. of genotypes	2,000	2,000	2,000	Plant spacing (m)	0.6	0.6	0.6
Genotype spacing (m)	5	5	5	Genotype spacing (m)	5	5	5	Row spacing (m)	0.82	0.82	0.82
Row spacing (m)	2.2	2.2	2.2	Row spacing (m)	2.2	2.2	2.2	Paddock length (m)	100	100	100
Paddock length (m)	100	100	100	Paddock length (m)	100	100	100	Total area (ha)	2.28	0.46	0.15
No. of rows	100	100	100	No. of rows	100	100	100	G1 cost ^a	\$76,435	\$15,287	\$5,097
Total area (ha)	2.2	2.2	2.2	Total area (ha)	2.2	2.2	2.2	G1 selection rate	2 %	10 %	30 %
G2 cost ^c	\$119,552	\$119,552	\$119,552	G2 cost ^c	\$119,552	\$119,552	\$119,552	G2 cost			
G2 selection rate	10 %	10 %	10 %	G2 selection rate	10 %	10 %	10 %	No. of genotypes	928	928	928
G3 disease screening for F	CN resistan	ce		G2 marker application			Plant spacing (m)	5	5	5	
No. of genotypes	200	200	200	No. of genotypes	2,000	2,000	2,000	Row spacing (m)	2.2	2.2	2.2
Cost per cultivar	\$219.20	\$219.20	\$219.20	No. samples per 96 well plate	90	90	90	Paddock length (m)	100	100	100
PCN screening trial cost	\$43,840	\$43,840	\$43,840	No. of plates	22.2	22.2	22.2	Total area (ha)	1.02	1.02	1.02
				Cost per plate	736	736	736	G2 cost ^b	\$55,472	\$55,472	\$55,472
				Total marker cost	\$16,356	\$16,356	\$16,356	Total cost	\$1,249,685	\$294,315	\$135,091
Total cost	\$633,040	\$257,248	\$194,618	Total cost	\$605,556	\$229,764	\$167,133				

- Phenotypic screen for disease.
 MAS at G2
- 4 generations (G0 G3).

Cost = AUD 195k - 633k

٠

- 3 generations.
- Cost = AUD 167k 606k
- MAS at G0.
- 3 generations.
- Cost = AUD 135k 1,250k

55

Bandwagon and hype

Bandwagons I, too, have known

<u>Rex Bernardo</u> 🖂

Theoretical and Applied Genetics **129**, 2323–2332 (2016) Cite this article

5234 Accesses | 126 Citations | 35 Altmetric | Metrics

Abstract

Key message

Bandwagons come in waves. A plant breeder, just like a surfer, needs to carefully choose which waves to be on.

- The hype (excitement) phase of a bandwagon is important.
- It is the best opportunity for getting funding.
- In a way, bandwagon pushes advanced breeding methods forward.

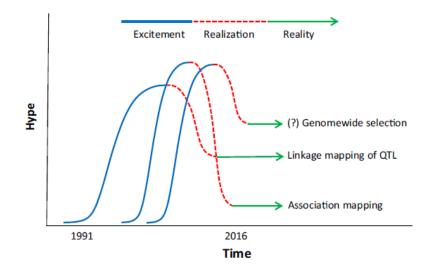
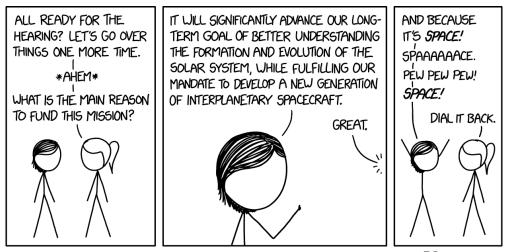
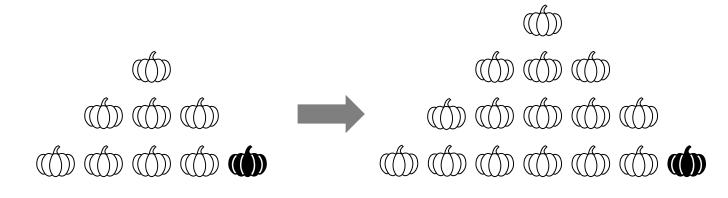



Fig. 1 Life cycle of a bandwagon, with QTL mapping, association mapping, and genomewide selection as examples. The reality level for association mapping is low, because the approach typically lacks power for detecting rare variants, which are what plant breeders most often seek. The (?) before genomewide selection indicates that the eventual level of usefulness of the procedure is still being discovered



https://xkcd.com/2124

Selection intensity

We can increase selection intensity by:

1. Increasing the population size (budget limitation!).

2. Reducing the cost of genotype evaluation (trial design, MAS, GS, phenomics).

3. Creating our target through GM/GE (maximum selection intensity).

Lab practical example

Next, we load the packages.

library(qtl2)
library(AlphaSimR)
library(ggplot2)

IBD calculation in a simulated bi-parental RIL population.

We set a seed number to keep our simulation reproducible.

```
set.seed(99999)
```

In this hypothetical species, it has only one chromosome with a total genetic length of 1 Morgan. We first create the parent/founder haplotype, f_{hap} , by setting haploid genotype of 0 for one founder and 1 for the other founder. We then create 101 markers that are 0.01 Morgan apart, as shown in pos.

```
fhap <- matrix(c(rep(0,101),rep(1,101)), nrow=2, byrow=T)
pos <- seq(0,1,0.01)
names(pos) <- paste("SITE", 1:101, sep="_")</pre>
```

Here, we begin with creating the founder population F0 using newMapPop and newPop functions from AlphaSimR. Notice that we set inbred=T and ploidy=2L since we want to use inbred founders and diploid species for simplicity. SP is an object required by AlphaSimR to keep track of various parameters in each generation.

Lab practical example

We will use the maize MAGIC population (Dell'Acqua et al 2015) for everything here. Conveniently, this dataset has already been prepared as an example data in qt12 package, so we can just get it from there directly.

maize_magic <- read_cross2("https://raw.github.com/rqtl/qtl2data/master/MaizeMAGIC/maize_magic.zip")</pre>

DIY1: Calculate IBD probabilities for maize_magic. This will take at least 5 minutes.

DIY2: Use the plot.gp function that we just created to plot a few individuals. Since there are 529 RILs in the maize MAGIC population and maize has 10 chromosomes, you can set the id to any value between 1 and 529,

and chr to any value between 1 and 10. Hint: The gmap argument can be set as gmap=maize_magic\$gmap.

Q1: Pick two plots that you find interesting. Choose a probability threshold that you want and describe how many founders would be identified based on that threshold. Do not worry about the specific founder since the color contrast can be a little hard to tell.

Online depository

Important to keep the class materials accessible!

🛱 cjyang	☐ cjyang-work / lecture Public					
<> Code	⊙ Issues \$1 Pull requests ⊙ Actions ⊞ Projects 🖽 Wi	iki 🛈 Security 🗠 Insights 🕸 Settings				
	<pre>% main - lecture / conv_adv_breeding /</pre>		Go to file Add file • ···			
	🧽 cjyang-work Update readme.md		383844f 13 days ago 🕉 History			
	BP.csv	Add files via upload	last month			
	Lecture_7_Conventional_Vs_Advanced_Breeding.pdf	Add files via upload	13 days ago			
	breeding_exercise_instructions.html	Add files via upload	last month			
	breeding_exercise_v2.R	Add files via upload	last month			
	breeding_exercise_v2_modified_to_fit_old_AlphaSimR.R	Add files via upload	last month			
	example_scripts.R	Add files via upload	last month			
	🗋 readme.md	Update readme.md	13 days ago			

readme.md	
	Folder containing files for breeding exercise and lecture slides on "conventional vs advanced breeding methods".

Ø

Teaching opportunities at UNL

Current classes that might be relevant to my research group

- AGRO 815: Introduction to Plant Breeding and Cultivar Development
- AGRO 896: Molecular Plant Breeding
- AGRO 932: Biometrical Genetics and Plant Breeding

Opportunities for classes in:

- Introduction to plant breeding (undergraduate)
- Introduction to quantitative genetics (undergraduate)
- Case studies in plant breeding: breeding program design
- Sustainable crop production
- Novel crop breeding
- Online classes

Commitment toward Diversity, Equity and Inclusion (DEI)

Diversity

- Remove recruitment barrier into research and education.
- Participate in outreach programs nurture scientific interest and bridge the gaps in HE.
- Be active in DEI committee.

Equity

- Be an observant educator to some extent, make use of 3A.
- Act on students' needs make sure everyone is on the same learning ground.

Inclusion

- Engage with students.
- Avoid "fitting the students into a box".

Important to maintain modesty and humility DEI standards evolve over time – flexible and stay up to date

Acknowledgement

Many thanks to you all for joining today (and yesterday)!

And big thanks to:

- UNL IANR Search Committee for the opportunity to present.
- Kay McClure-Kelly for organizing and scheduling.
- Past and current mentors for their continuous guidance and support.