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Background

A

A
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Mendelian genetics

Dominant vs recessive alleles

DNA

Pray L (2008)

Recombination



Background

Genetic linkage Quantitative traits

https://www.pinterest.com/pin/570620215266518401/

Evolution

Mackay et al (2021)

Doebley and Stec (1991)



Motivation for understanding genetic relationships

Academic research perspective

• Understanding of selection, adaptation, ecology and evolution.

• Gene mapping.

• Quantitative genetics and complex traits.

• Method development.

Breeding perspective

• Genetic diversity management, optimal parental selection.

• Target environment breeding.

• Marker-based mapping and selection.



Identity-by-descent (IBD)

“Two alleles that have originated from the replication of one single 

allele in a previous generation may be called identical by descent”

Falconer and Mackay (1996) Introduction to Quantitative Genetics

IBD

AB CD

AC AD

AA

not IBD

AB CD

AC AD

AD

Example with 4 alleles



Coefficient of coancestry/consanguinity/kinship (𝒇)

𝑓 = Probability of two alleles are IBD.

1 2

3

𝑓12

𝐹3

Coefficient of inbreeding

If 1 and 2 do not share a recent 

common ancestor, 𝑓12 → 0

0 ≤ 𝑓12 ≤ 1



Example 1

1 2

3 4

𝑓34



Example 1

1 2

3 4

𝑓34

?

Hypothetical progeny



Example 1

AB CD

A- A-

AA

AB CD

B- B-

BB

AB CD

C- C-

CC

AB CD

D- D-

DD

½
½

½ ½

𝑓34 =
1

2

4

+
1

2

4

+
1

2

4

+
1

2

4

=
1

4
Dirty method



Example 2

1 2

3 4 5

6 7

8



Example 2

1 2

3 4 5

6 7

8

𝒊 𝒋 𝒇𝒊𝒋

1 1

2 1

2 2

3 1

3 2

3 3

4 1

4 2

4 3

4 4

5 1

5 2

5 3

5 4

5 5

6 1

6 2

6 3

𝒊 𝒋 𝒇𝒊𝒋

6 4

6 5

6 6

7 1

7 2

7 3

7 4

7 5

7 6

7 7

8 1

8 2

8 3

8 4

8 5

8 6

8 7

8 8

1. Create a table and 

arrange it from oldest to 

youngest generations.



Example 2

1 2

3 4 5

6 7

8

𝒊 𝒋 𝒇𝒊𝒋

1 1 0.5

2 1 0

2 2 0.5

3 1

3 2

3 3

4 1

4 2

4 3

4 4

5 1 0

5 2 0

5 3 0

5 4 0

5 5 0.5

6 1

6 2

6 3

𝒊 𝒋 𝒇𝒊𝒋

6 4

6 5 0

6 6

7 1

7 2

7 3

7 4

7 5

7 6

7 7

8 1

8 2

8 3

8 4

8 5

8 6

8 7

8 8

2. Fill in the known and 

easy ones.

𝑓𝑖𝑖 =
1

2
1 + 𝐹𝑖

Without additional 

information, we assume 

𝐹1 = 𝐹2 = 𝐹5 = 0 and 

𝑓21 = 𝑓51 … 𝑓54 = 𝑓65 = 0.

𝑓𝑖𝑗 = 𝑓𝑗𝑖



Example 2

1 2

3 4 5

6 7

8

𝒊 𝒋 𝒇𝒊𝒋

1 1 0.5

2 1 0

2 2 0.5

3 1 0.25

3 2 0.25

3 3

4 1 0.25

4 2 0.25

4 3

4 4

5 1 0

5 2 0

5 3 0

5 4 0

5 5 0.5

6 1

6 2

6 3

𝒊 𝒋 𝒇𝒊𝒋

6 4

6 5 0

6 6

7 1

7 2

7 3

7 4

7 5

7 6

7 7

8 1

8 2

8 3

8 4

8 5

8 6

8 7

8 8

3. Fill in the rest.

𝑓𝑖𝑗 is the average of 𝑓’s 

between 𝑗 and parents of 𝑖.

𝑓𝑖𝑗 =
1

2
𝑓𝑝𝑗 + 𝑓𝑞𝑗

Note: 𝑝 and 𝑞 are the 

parents of 𝑖.

e.g. 𝑓31 =
𝑓11+𝑓21

2
.



Example 2

1 2

3 4 5

6 7

8

𝒊 𝒋 𝒇𝒊𝒋

1 1 0.5

2 1 0

2 2 0.5

3 1 0.25

3 2 0.25

3 3

4 1 0.25

4 2 0.25

4 3 0.25

4 4

5 1 0

5 2 0

5 3 0

5 4 0

5 5 0.5

6 1

6 2

6 3

𝒊 𝒋 𝒇𝒊𝒋

6 4

6 5 0

6 6

7 1

7 2

7 3

7 4

7 5

7 6

7 7

8 1

8 2

8 3

8 4

8 5

8 6

8 7

8 8

If 𝑖 and 𝑗 are in the same 

generation, we can also 

calculate 𝑓𝑖𝑗 as the 

average of 𝑓’s between 

parents of 𝑖 and 𝑗.

𝑓𝑖𝑗 =
1

4
𝑓𝑝𝑟 + 𝑓𝑝𝑠 + 𝑓𝑞𝑟 + 𝑓𝑞𝑠

Note: 𝑟 and 𝑠 are the 

parents of 𝑗.

e.g. 𝑓43 =
𝑓11+𝑓12+𝑓21+𝑓22

4
.



Example 2

1 2

3 4 5

6 7

8

𝒊 𝒋 𝒇𝒊𝒋

1 1 0.5

2 1 0

2 2 0.5

3 1 0.25

3 2 0.25

3 3 0.5

4 1 0.25

4 2 0.25

4 3 0.25

4 4 0.5

5 1 0

5 2 0

5 3 0

5 4 0

5 5 0.5

6 1

6 2

6 3

𝒊 𝒋 𝒇𝒊𝒋

6 4

6 5 0

6 6

7 1

7 2

7 3

7 4

7 5

7 6

7 7

8 1

8 2

8 3

8 4

8 5

8 6

8 7

8 8

Recall these.

𝐹𝑖 = 𝑓𝑝𝑞

𝑓𝑖𝑖 =
1

2
1 + 𝐹𝑖

e.g. 𝑓33 =
1

2
1 + 𝑓12 .



Example 2

1 2

3 4 5

6 7

8

𝒊 𝒋 𝒇𝒊𝒋

1 1 0.5

2 1 0

2 2 0.5

3 1 0.25

3 2 0.25

3 3 0.5

4 1 0.25

4 2 0.25

4 3 0.25

4 4 0.5

5 1 0

5 2 0

5 3 0

5 4 0

5 5 0.5

6 1 0.25

6 2 0.25

6 3 0.375

𝒊 𝒋 𝒇𝒊𝒋

6 4 0.375

6 5 0

6 6 0.625

7 1 0.125

7 2 0.125

7 3 0.125

7 4 0.25

7 5 0.25

7 6 0.1875

7 7 0.5

8 1 0.1875

8 2 0.1875

8 3 0.25

8 4 0.3125

8 5 0.125

8 6 0.40625

8 7 0.34375

8 8 0.59375

𝐹𝑖 = 𝑓𝑝𝑞

𝑓𝑖𝑖 =
1

2
1 + 𝐹𝑖

𝑓𝑖𝑗 =
1

2
𝑓𝑝𝑗 + 𝑓𝑞𝑗

e.g. 𝑓76 =
1

2
𝑓46 + 𝑓56 .

Use these to complete 

the rest.



Example 1.1

What if 1 and 2 have inbreeding history? 

1 2

3 4

𝑓34

?

𝑓34 =
1

4
𝑓11 + 𝑓12 + 𝑓21 + 𝑓22

𝑓11 =
1

2
1 + 𝐹1

𝑓12 = 𝑓21 = 0

𝑓22 =
1

2
1 + 𝐹2

𝑓34 =
1

4

1

2
1 + 𝐹1 + 𝑓12 + 𝑓12 +

1

2
1 + 𝐹2 =

1

4
+

1

8
𝐹1 +

1

8
𝐹2



Example 1.2

1 2

3 4

𝑓34

?

What if 1 and 2 have inbreeding history and they are also related? 

𝑓34 =
1

4
𝑓11 + 𝑓12 + 𝑓21 + 𝑓22

𝑓11 =
1

2
1 + 𝐹1

𝑓12 = 𝑓21 ≠ 0

𝑓22 =
1

2
1 + 𝐹2

𝑓34 =
1

4

1

2
1 + 𝐹1 + 𝑓12 + 𝑓12 +

1

2
1 + 𝐹2 =

1

4
+

1

8
𝐹1 +

1

8
𝐹2 +

1

2
𝑓12



Example 3

Bi-parental crosses, 𝑓12 ≠ 0
1 2

3

4 5

6 7

𝑓33 =
1

2
1 + 𝐹3 =

1

2
1 + 𝑓12

𝑓34 =
1

2
𝑓33 + 𝑓33 = 𝑓33

𝑓45 =
1

2
𝑓34 + 𝑓34 = 𝑓34

𝑓56 =
1

2
𝑓45 + 𝑓45 = 𝑓45

𝑓67 =
1

2
𝑓56 + 𝑓56 = 𝑓56 =

1

2
1 + 𝑓12



Coefficient of fraternity (𝒅)

𝑑 = Probability of two genotypes are IBD.

p q

i
𝑑𝑖𝑗

r s

j



Coefficient of fraternity (𝒅)

𝑑 = Probability of two IBD genotypes.

p q

i
𝑑𝑖𝑗

r s

j

p q

i
𝑑𝑖𝑗

r s

j

𝑓𝑝𝑟 𝑓𝑞𝑠

𝑓𝑝𝑠

𝑓𝑞𝑟

Only possible if the parents are related. 𝑑𝑖𝑗 = 𝑓𝑝𝑟𝑓𝑞𝑠 + 𝑓𝑝𝑠𝑓𝑞𝑟



Example 2

1 2

3 4 5

6 7

8

𝒊 𝒋 𝒇𝒊𝒋 𝒅𝒊𝒋

1 1 0.5 1

2 1 0 0

2 2 0.5 1

3 1 0.25 0

3 2 0.25 0

3 3 0.5 1

4 1 0.25 0

4 2 0.25 0

4 3 0.25

4 4 0.5 1

5 1 0 0

5 2 0 0

5 3 0 0

5 4 0 0

5 5 0.5 1

6 1 0.25 0

6 2 0.25 0

6 3 0.375

𝒊 𝒋 𝒇𝒊𝒋 𝒅𝒊𝒋

6 4 0.375

6 5 0 0

6 6 0.625 1

7 1 0.125 0

7 2 0.125 0

7 3 0.125

7 4 0.25

7 5 0.25 0

7 6 0.1875

7 7 0.5 1

8 1 0.1875 0

8 2 0.1875 0

8 3 0.25

8 4 0.3125

8 5 0.125 0

8 6 0.40625

8 7 0.34375

8 8 0.59375 1

1. Fill in the known and 

easy ones.

With itself, 𝑑𝑖𝑖 = 1.

Assume 𝑑𝑖𝑗 = 0 if 𝑖 ≠ 𝑗 

and 𝑖/𝑗 does not have 

known parents.



Example 2

1 2

3 4 5

6 7

8

𝒊 𝒋 𝒇𝒊𝒋 𝒅𝒊𝒋

1 1 0.5 1

2 1 0 0

2 2 0.5 1

3 1 0.25 0

3 2 0.25 0

3 3 0.5 1

4 1 0.25 0

4 2 0.25 0

4 3 0.25 0.25

4 4 0.5 1

5 1 0 0

5 2 0 0

5 3 0 0

5 4 0 0

5 5 0.5 1

6 1 0.25 0

6 2 0.25 0

6 3 0.375 0.125

𝒊 𝒋 𝒇𝒊𝒋 𝒅𝒊𝒋

6 4 0.375 0.125

6 5 0 0

6 6 0.625 1

7 1 0.125 0

7 2 0.125 0

7 3 0.125 0

7 4 0.25 0

7 5 0.25 0

7 6 0.1875 0

7 7 0.5 1

8 1 0.1875 0

8 2 0.1875 0

8 3 0.25 0.0625

8 4 0.3125 0.0625

8 5 0.125 0

8 6 0.40625 0.140625

8 7 0.34375 0.09375

8 8 0.59375 1

2. Compute the rest 

with this formula.

e.g. 

𝑑34 = 𝑓11𝑓22 + 𝑓12𝑓21 

𝑑36 = 𝑓13𝑓24 + 𝑓14𝑓23 

𝑑𝑖𝑗 = 𝑓𝑝𝑟𝑓𝑞𝑠 + 𝑓𝑝𝑠𝑓𝑞𝑟



Some known values for 𝒇 and 𝒅

Relationship 𝒇 𝒅

Parent - progeny 1/4 0

Half siblings 1/8 0

Full siblings 1/4 1/4

First cousins 1/16 0

Monozygotic twins 1/2 1

These values assume no inbreeding history.



Applications of IBD

1. QTL linkage mapping

2. Marker genotype imputation and phasing

3. Genetic relationship matrix (GRM) calculation

4. Breeding and evolutionary history understanding

5. Population demographic inference

6. Genealogy and ancestry identification

7. Forensics



Genotype a 

bi-parental 

population
ID1 A G C A

ID2 A C C T

ID3 G C C T

ID1 1 1 .5 1

ID2 1 1 .5 0

ID3 0 0 .5 0

Compute P(IBD) 

using hidden 

Markov model

P(IBD) with founder 1

What is a hidden Markov model (HMM)?

As you leave your home every morning, you look up to the sky and wonder if it will 

be rainy or sunny later in the day.

Assume that the weather forms a Markov chain, you pause at your front door for a 

second. You check the cloud cover, feel the breeze, look around and try to remember 

what happened in the last few days. Then you decide if you should pack an umbrella.

Cloud, breeze = marker genotype

Weather = founder IBD

IBD in QTL linkage mapping

Dall-E (2024)



Similarly, P(IBD) can also be calculated in 

multi-parental populations.

Here is an example showing P(IBD) in a 

RIL from the Arabidopsis 19-founder 

MAGIC population (Kover et al 2009).

IBD in QTL linkage mapping (multiparental population)



ID1 A/A G/G C/C A/A

ID2 A/A C/C C/C T/T

ID3 G/A G/C C/C A/T

ID4 G/G N/N C/C T/T

ID5 A/G C/C C/C N/N

ID1
A G C A

A G C A

Phase

Impute

This process is similar to the 

previous application in QTL 

linkage mapping.

It starts with using HMM to 

identify (phase) the parent 

origin of each allele.

Then, it uses the phase 

information to fill in (impute) 

the missing data.

ID2
A C C T

A C C T

ID3
A G C A

G C C T

ID4
G N C T

G N C T

ID5
A G C N

G G C N

P1
A G C A

A G C A

P2
G C C T

G C C T

IBD in marker genotype imputation and phasing



STITCH (Davies et al 2016) FILLIN/FSFHap (Swarts et al 2014)

AlphaImpute (Hickey et al 2012)

Beagle (Browning et al 2021)

Many options, but they are fundamentally similar – identify founder haplotype, 

fill in missing data from others that shared the same haplotype.

IBD in marker genotype imputation and phasing – common software



Pedigree-based additive genetic relationship matrix (A)

1     2     3     4     5     6

1  1.00  0.00  0.50  0.50  0.50  0.50

2  0.00  1.00  0.50  0.50  0.50  0.50

3  0.50  0.50  1.00  0.50  0.75  0.75

4  0.50  0.50  0.50  1.00  0.75  0.75

5  0.50  0.50  0.75  0.75  1.25  0.75

6  0.50  0.50  0.75  0.75  0.75  1.25

3 4

1 2

5 6

Coefficient of additive genetic covariance between individuals, 𝐴𝑖𝑗 = 2𝑓𝑖𝑗.

Recall that 𝑓𝑖𝑖 =
1

2
1 + 𝐹𝑖 , so the diagonals are 1 + 𝐹𝑖.

Note: A is a symmetric matrix, 𝐴𝑖𝑗 = 𝐴𝑗𝑖.

Similar can be done for the dominance GRM.

IBD in genetic relationship matrix (GRM) calculation



Li et al (2019) The HuangZaoSi maize genome provides insights into genomic variation and improvement history of maize.

This highlights the 

prevalence of a single 

variety in the Chinese 

maize breeding history.

IBD in breeding and evolutionary history understanding



Similar work in cattle, this shows 

the genome-wide Holstein 

introgression in Danish cattle.

IBD in breeding and evolutionary history understanding

Zhang et al. (2018) Human-mediated introgression of haplotypes in a modern dairy cattle breed



Saada et al. (2020) Identity-by-descent detection across 487,409 

British samples reveals fine scale population structure and ultra-

rare variant associations

IBD in population demographic inference

• Historical migration patterns

• Population admixture

• Genetic diseases



IBD haplotype inference as a commercial product.

IBD in genealogy and ancestry identification



• Matching IBD segments between crime scene 

samples and database/relatives.

• Cooler in TV than it actually is.

IBD in forensics

Dall-E (2024)



Challenges in working with IBD

• Genotypic data quality (errors, missing data)

• Complicated population demography

• Assumptions in estimating coefficients

• Small sample size

• Recombination

• Limitation in computational power

• Ethical concerns in data usage

• It is average, at best



Identity-by-state (IBS)

Two of the same alleles regardless of their ancestral origins are considered 

identical by state. 

If the parents are “unrelated”, then they are IBS.

If the parents are related, then they are IBD.

If two alleles are IBD, they are also IBS.

But, if two alleles are IBS, they are not necessarily IBD.



IBS is often described in the context of molecular markers.

Biallelic single nucleotide polymorphisms (SNP) vs multiallelic gene.

AGC

AGC

AGC

ATC

ATC

IBS

IBS

TCG

TCG

T-G

T-G

T-G

IBS

IBS

AGCTCG

AGCT-G

ATCTCG

ATCT-G

For example, there are 4 

alleles in the founders.

Some generations later, we genotype the descendants and 

find these polymorphisms.

AGCTCG

AGCTCG

AGCT-G

ATCTCG

ATCTCG

IBD

IBD

Example 1



IBS can happen due to convergent evolution.

Example 2

Environment 1

A

C

A

C

Environment 2

A

A

C

C

Stern (2013)

Ability to feed on poisonous milkweed



https://knowyourmeme.com/memes/spider-man-pointing-at-spider-man

IBS, in a nutshell

SNP A
SNP A



Applications of IBS

1. Genetic relationship matrix (GRM) calculation

2. Linkage disequilibrium identification

3. Association mapping



m01 m02 m03 m04 m05 m06 m07 m08 m09 m10

id1   2   2   0   0   0   2   0   0   2   2

id2   2   2   0   0   0   2   2   2   0   2

id3   0   2   0   2   0   0   0   2   0   0

id4   0   0   0   0   2   0   0   0   0   0

id5   2   0   2   2   0   0   2   2   0   0

id6   0   0   2   0   2   0   0   0   0   0

Genomic-based (vs pedigree-based)

id1   id2   id3   id4   id5   id6

id1  2.50  1.00 -0.65 -0.65 -1.25 -0.95

id2  1.00  2.20 -0.35 -1.25 -0.05 -1.55

id3 -0.65 -0.35  1.60 -0.20  0.10 -0.50

id4 -0.65 -1.25 -0.20  1.60 -0.80  1.30

id5 -1.25 -0.05  0.10 -0.80  2.20 -0.20

id6 -0.95 -1.55 -0.50  1.30 -0.20  1.90

𝐾 =
𝑊𝑊′

σ 2𝑝𝑗(1 − 𝑝𝑗)

𝑊𝑖𝑗 = 𝑋𝑖𝑗 − 2𝑝𝑗

Suppose we have a genotype matrix (X) with 6 individuals and 10 markers,

we can calculate the K matrix as 

where

and 𝑝𝑗 is the allele frequency for 𝑗𝑡ℎ marker.

IBS in genetic relationship matrix (GRM) calculation



Additive GRM is often denoted as 𝑲𝑨.

Given a genotype matrix 𝑿 with 𝑛 rows of 

individuals and 𝑚 columns of markers 

coded as 0/1/2, there are several variants 

of how 𝑲𝑨 can be calculated. 𝑲𝑨 =
𝑾𝑾′

𝑚
 𝑤ℎ𝑒𝑟𝑒 𝑊𝑖𝑗 =

𝑋𝑖𝑗 − 2𝑝𝑗

2𝑝𝑗 1 − 𝑝𝑗

VanRaden (2008) method 2

Yang et al. (2011) GCTA

𝑲𝑨 =
𝑾𝑾′

σ 2𝑝𝑗(1 − 𝑝𝑗)
 𝑤ℎ𝑒𝑟𝑒 𝑊𝑖𝑗 = 𝑋𝑖𝑗 − 2𝑝𝑗

VanRaden (2008) method 1

Endelman and Jannink (2012) rrBLUP

𝑲𝑨 =
𝑾𝑾′

𝑚
 𝑤ℎ𝑒𝑟𝑒 𝑊𝑖𝑗 =

𝑋𝑖𝑗 − 2𝑝𝑗

2𝑝𝑗 1 − 𝑝𝑗

∙
𝜔𝑗𝑚

σ 𝜔𝑗

Speed et al. (2012) LDAK

Note: 𝜔𝑗 is the marker weight adjusted by LD.

Additive GRM



𝑲𝑫 =
𝑾𝑾′

σ 2𝑝𝑗(1 − 𝑝𝑗) 1 − 2𝑝𝑗(1 − 𝑝𝑗)
 𝑤ℎ𝑒𝑟𝑒 𝑊𝑖𝑗 = 𝐻𝑖𝑗 − 2𝑝𝑗 1 − 𝑝𝑗

𝑲𝑫 =
𝑾𝑾′

𝑚
 𝑤ℎ𝑒𝑟𝑒 𝑊𝑖𝑗 =

𝐻𝑖𝑗 − 2𝑝𝑗
2

2𝑝𝑗 1 − 𝑝𝑗

Zhu et al. (2015) GCTA

Su et al. (2012)

𝐻𝑖𝑗 = ൞

0 𝑖𝑓 𝑋𝑖𝑗 = 0 

1 𝑖𝑓 𝑋𝑖𝑗 = 1

0 𝑖𝑓 𝑋𝑖𝑗 = 2

𝐻𝑖𝑗 = ൞

0 𝑖𝑓 𝑋𝑖𝑗 = 0 

2𝑝𝑗  𝑖𝑓 𝑋𝑖𝑗 = 1 

4𝑝𝑗 − 2 𝑖𝑓 𝑋𝑖𝑗 = 2

Dominance GRM

Dominance GRM is often denoted as 𝑲𝑫.



Typically, any quantitative trait can be partitioned into mean (𝜇), genetic (𝑔) and residual (𝑒) effects.

𝑌 = 𝜇 + 𝑔 + 𝑒

To do that, we need to know the relationships of 𝑔 and 𝑒 among the individuals in a population.

𝑒 is assumed uncorrelated among the individuals, so the relationship is just an identity matrix.

𝑔 is assumed correlated among the individuals, and the relationship is the GRM.

So, GRM is important in modern quantitative genetics – principal components, GWAS, genomic 

prediction, variance components, etc.

Uses of GRM



IBS in linkage disequilibrium (LD) identification

LD blocks

Weber et al (2007)

LD in a teosinte population

A C A T G

C G G T G

A C A C C

LD decay

LD

Distance



Association mapping

• GRM to correct for genetic 

background effect.

• Biallelic SNP testing.

• LD between significant 

SNP and candidate genes.

GWAS in barley varieties

Cockram et al (2010)



Challenges in working with IBS

• Genotypic data quality (errors, missing data)

• Complicated population demography

• Small sample size

• Limitation in computational power

• Lack of genealogical support for biological significance



A measure of genetic divergence between populations or sub-populations.

Genetic distance

Common causes:

Selection Mutation Drift



Selection

Quantitative trait

Directional/truncation

Disruptive

Balancing

Gaynor et al (2017)



Mutation

Natural mutation

• Inherent mutation rate

• Long term divergence

• Can be important for crop evolution

Induced mutation

• Random: mutagen like EMS, γ-ray

• Targeted: transgenic, gene editing

• Common approach for breeding 

vegetable and ornamental

Wang et al (2005)

E.g. tga1 in maize

Novel variation by interfering with the DNA replication and repair system



Drift

• Unpredictable.

• Follows a multinomial distribution.

• Binomial distribution in the case of two alleles.

• Mean = 𝑝𝑖.

• Variance = 
𝑝𝑖 (1−𝑝𝑖)

2𝑁𝑖+1
.

• In the absence of mutation, 𝐹𝑡 = 1 − 1 −
1

2𝑁

𝑡
.

• Heterozygosity, 𝐻𝑡 = 1 − 𝐹𝑡 = 1 −
1

2𝑁

𝑡
.

1 2 3

1 1 3

1 1

3

1 1 1

2

3

4

1

1

1

Alleles

Inbreeding



Wahlund effect

𝐻1+2 = combined heterozygosity

𝐻 = overall heterozygosity

Under Hardy-Weinberg equilibrium (HWE), presence of subpopulations 

can reduce overall heterozygosity even without inbreeding.

Flowers in the morning

Flowers in the afternoon

𝐻1+2 < 𝐻 𝑖𝑓 𝑝1 ≠ 𝑝2



Note:

𝑛 is the population size

𝑝 is the allele frequency

𝜔1 + 𝜔2 =
𝑛1

𝑛1 + 𝑛2
+

𝑛2

𝑛1 + 𝑛2
= 1

𝐻1 = 2𝑝1 1 − 𝑝1

𝐻2 = 2𝑝2 1 − 𝑝2

𝐻1+2 = 𝜔1𝐻1 + 𝜔2𝐻2

Proof for Wahlund effect

Under HWE, 𝑃 𝐴𝐴 + 𝑃 𝐴𝑎 + 𝑃 𝑎𝑎 = 𝑝2 + 2𝑝 1 − 𝑝 + 1 − 𝑝 2 = 1

𝐻 = 2𝑝 1 − 𝑝Heterozygosity is

Heterozygosities in subpopulation 1 and 2 are

Combined heterozygosity is the weighted average of 𝐻1 and 𝐻2

𝐻1+2 = 2𝜔1𝑝1 1 − 𝑝1 + 2𝜔2𝑝2 1 − 𝑝2

𝐻1+2 = 2𝜔1𝑝1 − 2𝜔1𝑝1
2 + 2𝜔2𝑝2 − 2𝜔2𝑝2

2



Proof for Wahlund effect

𝐻 = 2𝑝 1 − 𝑝Overall heterozygosity is and because 𝑝 = 𝜔1𝑝1 + 𝜔2𝑝2

𝐻 = 2 𝜔1𝑝1 + 𝜔2𝑝2 1 − 𝜔1𝑝1 + 𝜔2𝑝2

𝐻 = 2𝜔1𝑝1  − 2𝜔1
2𝑝1

2 − 2𝜔1𝜔2𝑝1𝑝2 + 2𝜔2𝑝2 − 2𝜔1𝜔2𝑝1𝑝2 − 2𝜔2
2𝑝2

2

𝐻 = 2𝜔1𝑝1  − 2𝜔1
2𝑝1

2 + 2𝜔2𝑝2 − 2𝜔2
2𝑝2

2 − 4𝜔1𝜔2𝑝1𝑝2

𝐻 = 2𝜔1𝑝1  − 2𝜔1𝑝1
2 + 2𝜔1𝑝1

2 − 2𝜔1
2𝑝1

2 + 2𝜔2𝑝2 − 2𝜔2𝑝2
2 + 2𝜔2𝑝2

2 − 2𝜔2
2𝑝2

2 − 4𝜔1𝜔2𝑝1𝑝2

𝐻 = 𝐻1+2 + 2𝜔1𝑝1
2 − 2𝜔1

2𝑝1
2 + 2𝜔2𝑝2

2 − 2𝜔2
2𝑝2

2 − 4𝜔1𝜔2𝑝1𝑝2

𝐻 = 𝐻1+2 + 2𝜔1𝑝1
2 − 2𝜔1 1 − 𝜔2 𝑝1

2 + 2𝜔2𝑝2
2 − 2𝜔2 1 − 𝜔1 𝑝2

2 − 4𝜔1𝜔2𝑝1𝑝2

𝐻 = 𝐻1+2 + 2𝜔1𝑝1
2 − 2𝜔1𝑝1

2 + 2𝜔1𝜔2𝑝1
2 + 2𝜔2𝑝2

2 − 2𝜔2𝑝2
2 + 2𝜔1𝜔2𝑝2

2 − 4𝜔1𝜔2𝑝1𝑝2

𝐻 = 𝐻1+2 + 2𝜔1𝜔2𝑝1
2 + 2𝜔1𝜔2𝑝2

2 − 4𝜔1𝜔2𝑝1𝑝2

𝐻 = 𝐻1+2 + 2𝜔1𝜔2 𝑝1
2 + 𝑝2

2 − 2𝑝1𝑝2

𝐻 = 𝐻1+2 + 2𝜔1𝜔2 𝑝1 − 𝑝2
2

Expand the equation

Rearrange the terms

Tricks

Replace the terms

Tricks

Expand the equation

Simplify the equation

Rearrange the terms

Recall 𝐻1+2 = 2𝜔1𝑝1 − 2𝜔1𝑝1
2 + 2𝜔2𝑝2 − 2𝜔2𝑝2

2

𝐻1+2 < 𝐻 𝑖𝑓 𝑝1 ≠ 𝑝2



How to compute genetic distance? • 𝑝𝑥,𝑖𝑗 and 𝑝𝑦,𝑖𝑗 are the frequencies of allele 𝑗 

at locus 𝑖 in population 𝑥 and 𝑦.

• 𝑚 is the number of markers.
Roger’s distance (~ Euclidean)

𝐷 =
1

𝑚
෍

𝑖

1

2
෍

𝑗

𝑝𝑥,𝑖𝑗 − 𝑝𝑦,𝑖𝑗
2

Pop A1 A2 A3

X 0.2 0.5 0.3

Y 0.3 0.1 0.6

𝐷 =
1

𝑚
෍

𝑖

𝑝𝑥,𝑖𝑗 − 𝑝𝑦,𝑖𝑗Special case: biallelic

Pop B1 B2 B3

X 0.4 0.2 0.4

Y 0.4 0.5 0.1

𝐷 =
1

2

1

2
0.2 − 0.3 2 + 0.5 − 0.1 2 + 0.3 − 0.6 2 +

1

2
0.4 − 0.4 2 + 0.2 − 0.5 2 + 0.4 − 0.1 2

𝐷 = 0.3303



How to compute genetic distance?

𝐷 = −𝑙𝑛
σ𝑖 σ𝑗 𝑝𝑥,𝑖𝑗𝑝𝑦,𝑖𝑗

σ𝑖 σ𝑗 𝑝𝑥,𝑖𝑗
2 ∙ σ𝑖 σ𝑗 𝑝𝑦,𝑖𝑗

2

• 𝑝𝑥,𝑖𝑗 and 𝑝𝑦,𝑖𝑗 are the frequencies of allele 𝑗 

at locus 𝑖 in population 𝑥 and 𝑦.

• 𝑚 is the number of markers.
Nei’s distance (Nei 1972)

There are many other ways to compute genetic distance that we will not cover here.

Pop A1 A2 A3

X 0.2 0.5 0.3

Y 0.3 0.1 0.6

Pop B1 B2 B3

X 0.4 0.2 0.4

Y 0.4 0.5 0.1

𝐷 = 0.3132

𝐷 = −𝑙𝑛
0.2 ∙ 0.3 + 0.5 ∙ 0.1 + 0.3 ∙ 0.6 + 0.4 ∙ 0.4 + 0.2 ∙ 0.5 + 0.4 ∙ 0.1

0.22 + 0.52 + 0.32 + 0.42 + 0.22 + 0.42 ∙ 0.32 + 0.12 + 0.62 + 0.42 + 0.52 + 0.12



Wright’s F statistics, 𝑭𝑺𝑻

In the presence of inbreeding, the genotype frequencies in a population are:

𝑃 𝐴𝐴 = 𝑝2 + 𝐹𝑝 1 − 𝑝

𝑃 𝐴𝑎 = 2𝑝 1 − 𝑝 1 − 𝐹

𝑃(𝑎𝑎) = 1 − 𝑝 2 + 𝐹𝑝 1 − 𝑝

1
2

4 5

3

6

In the presence of sub-populations, the genotype frequencies are:

𝑃 𝐴𝐴 = 𝑝𝑖
2 + 𝐹𝑖𝑝𝑖 1 − 𝑝𝑖

𝑃 𝐴𝑎 = 2𝑝𝑖 1 − 𝑝𝑖 1 − 𝐹𝑖

𝑃(𝑎𝑎) = 1 − 𝑝𝑖
2 + 𝐹𝑖𝑝𝑖 1 − 𝑝𝑖



Wright’s F statistics, 𝑭𝑺𝑻

Let the heterozygosity of sub-population 𝑖 be the same as the population, we have

𝐹𝑆𝑇,𝑖 = 1 −
2𝑝𝑖 1 − 𝑝𝑖

2𝑝 1 − 𝑝

2𝑝𝑖 1 − 𝑝𝑖 1 − 𝐹𝑖 = 2𝑝 1 − 𝑝 1 − 𝐹

1 − 𝐹

1 − 𝐹𝑖
=

2𝑝𝑖 1 − 𝑝𝑖

2𝑝 1 − 𝑝

1 − 𝐹

1 − 𝐹𝑖
= 1 − 𝐹𝑆𝑇,𝑖

1 − 𝐹 = 1 − 𝐹𝑆𝑇,𝑖 1 − 𝐹𝑖

1 − 𝐹𝐼𝑇 = 1 − 𝐹𝑆𝑇 1 − 𝐹𝐼𝑆

Rearrange the terms

Tricks

Rearrange the terms

𝐹𝐼𝑇 is the population (overall) inbreeding coefficient.

𝐹𝐼𝑆 is the sub-population inbreeding coefficient.

𝐹𝑆𝑇 is the fixation index, i.e. population differentiation. 0?



𝐹𝑆𝑇 =
𝑉𝑎𝑟 𝑝′

𝑝(1 − 𝑝)

𝐹𝑆𝑇,𝑖 = 1 − 1 −
1

2𝑁𝑖

𝑡

𝐹𝑆𝑇,𝑖 =
𝜋𝑏 − 𝜋𝑤,𝑖

𝜋𝑏

𝜋𝑏 is the nucleotide diversity (average number of pairwise difference) 

between sub-pops. 𝜋𝑤,𝑖 is the nucleotide diversity within sub-pop 𝑖.

Alternative ways to compute 𝑭𝑺𝑻

𝐹𝑆𝑇 =
1

𝑛
෍ 𝐹𝑆𝑇,𝑖 Overall 𝐹𝑆𝑇 while ignoring sub-population size differences.

Can be derived from the above.

Note that 𝑉𝑎𝑟 𝑝′  is the variance of sub-population allele frequencies.

𝐹𝑆𝑇 for sub-population under drift alone.

Note that 𝑁𝑖 is the sub-population size and 𝑡 is the number of generation.

𝐹𝑆𝑇,𝑖 =
𝑀𝑤,𝑖 − 𝑀𝑏

1 − 𝑀𝑏

𝑀 is the average allele matches (Weir and Goudet 2017).

And many more methods not described here.



Using 𝑛 = 2 as example,

𝐹𝑆𝑇 =
1

2
෍ 𝐹𝑆𝑇,𝑖

=
1

2
1 −

𝑝1 1 − 𝑝1

𝑝 1 − 𝑝
+ 1 −

𝑝2 1 − 𝑝2

𝑝 1 − 𝑝

=
1

2

𝑝 1 − 𝑝 − 𝑝1 1 − 𝑝1 + 𝑝 1 − 𝑝 − 𝑝2 1 − 𝑝2

𝑝 1 − 𝑝

=
1

2

2𝑝 + 𝑝1
2 + 𝑝2

2 − 2𝑝2 − 𝑝1 − 𝑝2

𝑝 1 − 𝑝

Note that 𝑝1 + 𝑝2 = 2𝑝=
1

2

𝑝1
2 + 𝑝2

2 − 2𝑝2

𝑝 1 − 𝑝

=
1

2

𝑝1
2 + 𝑝2

2 + 2𝑝2 − 4𝑝2

𝑝 1 − 𝑝

=
1

2

𝑝1
2 + 𝑝2

2 + 2𝑝2 − 4𝑝
𝑝1 + 𝑝2

2
𝑝 1 − 𝑝

=
1

2

𝑝1
2 + 𝑝2

2 + 2𝑝2 − 2𝑝𝑝1 − 2𝑝𝑝2

𝑝 1 − 𝑝

=
1

2

𝑝1
2 − 2𝑝𝑝1 + 𝑝2 + 𝑝2

2 −2𝑝𝑝2 + 𝑝2

𝑝 1 − 𝑝

=
1

2

𝑝1 − 𝑝 2 + 𝑝2 − 𝑝 2

𝑝 1 − 𝑝

=
1

𝑝(1 − 𝑝)

1

2
෍(𝑝𝑖 − 𝑝)2

=
𝑉𝑎𝑟(𝑝′)

𝑝(1 − 𝑝)

How to derive 𝑭𝑺𝑻 =
𝑽𝒂𝒓(𝒑′)

𝒑(𝟏−𝒑)



𝑄𝑆𝑇 is a measure of population differentiation in quantitative traits.

𝑄𝑆𝑇 =
𝑉𝐺,𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑉𝐺,𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 2𝑉𝐺,𝑤𝑖𝑡ℎ𝑖𝑛 Figure 1. The distribution of neutral 𝐹𝑆𝑇 and 𝑄𝑆𝑇. 

Each value in these histograms is derived from 

a single neutral locus or a single neutral trait in 

an island model with 10 demes sampled. The 

solid lines are the χ2 distribution predicted by 

Lewontin & Krakauer (1973) and are the same 

in both figures. For these simulations, the local 

population size was N = 100, and the migration 

rate was m = 0.05. The traits were controlled by 

five unlinked loci with mutational effects chosen 

from an exponential distribution.

𝑸𝑺𝑻

Whitlock (2008)



Figure 6. Comparing a single 𝑄𝑆𝑇 value to the 

distribution of 𝐹𝑆𝑇. The 𝑄𝑆𝑇 value for Trait 1 is 

greater than the mean 𝐹𝑆𝑇 (= 0.0475), but it is 

not unrepresentative of the distribution of 𝐹𝑆𝑇 

values. It would be quite likely to generate a 

𝑄𝑆𝑇 value like 𝑄𝑆𝑇,1 from a neutral trait. Trait 2 

has a 𝑄𝑆𝑇 value that is in the tail of the 

distribution of 𝐹𝑆𝑇; this trait has a 𝑄𝑆𝑇 value that 

would be very unusual for a neutral trait.

𝑄𝑆𝑇 vs 𝐹𝑆𝑇 comparison for identifying possible selection.

𝑸𝑺𝑻 vs 𝑭𝑺𝑻

Whitlock (2008)



𝜋𝑤,1 =
∆12 + ∆13 + ∆14 + ∆23 + ∆24 + ∆34

6
=

1 + 0 + 1 + 1 + 0 + 1

6
=

2

3

What are 𝜋𝑤,2 and 𝐹𝑆𝑇,2?

Example 1a

𝐹𝑆𝑇,𝑖 =
𝜋𝑏 − 𝜋𝑤,𝑖

𝜋𝑏

Ind Sub-pop Marker

1 A 2

2 A 1

3 A 2

4 A 1

5 B 0

6 B 0

7 B 1

8 B 1

1. Make all possible pairwise comparisons within sub-pop A.

∆𝑖𝑗

2. Make all possible pairwise comparisons between sub-pop A and B.

𝜋𝑏 =
∆15 + ∆16 + ∆17 + ∆18 + ∆25 + ∆26 + ∆27 + ∆28 + ∆35 + ∆36 + ∆37 + ∆38 + ∆45 + ∆46 + ∆47 + ∆48

16

𝜋𝑏 =
2 + 2 + 1 + 1 + 1 + 1 + 0 + 0 + 2 + 2 + 1 + 1 + 1 + 1 + 0 + 0

16
= 1

𝐹𝑆𝑇,1 =
1 −

2
3

1
=

1

3

3. Apply the formula.

This method is biased when the sub-population 

sizes are different.



𝑀𝑤,1 =
𝑚12 + 𝑚13 + 𝑚14 + 𝑚23 + 𝑚24 + 𝑚34

6
=

1
2 + 1 +

1
2 +

1
2 +

1
2 +

1
2

6
=

7

12

What are 𝑀𝑤,2 and 𝐹𝑆𝑇,2?

Example 1b

Ind Sub-pop Marker

1 A 2

2 A 1

3 A 2

4 A 1

5 B 0

6 B 0

7 B 1

8 B 1

1. Compute all pairwise matches within sub-pop A.

2. Make all possible pairwise comparisons between sub-pop A and B.

𝜋𝑏 =
𝑚15 + 𝑚16 + 𝑚17 + 𝑚18 + 𝑚25 + 𝑚26 + 𝑚27 + 𝑚28 + 𝑚35 + 𝑚36 + 𝑚37 + 𝑚38 + 𝑚45 + 𝑚46 + 𝑚47 + 𝑚48

16

𝑀𝑏 =
0 + 0 +

1
2

+
1
2

+
1
2

+
1
2

+
1
2

+
1
2

+ 0 + 0 +
1
2

+
1
2

+
1
2

+
1
2

+
1
2

+
1
2

16
=

3

8

𝐹𝑆𝑇,1 =

7
12

−
3
8

1 −
3
8

=
1

3

3. Apply the formula.
𝐹𝑆𝑇,𝑖 =

𝑀𝑤,𝑖 − 𝑀𝑏

1 − 𝑀𝑏

𝑚𝑖𝑗

If any individual is taken out, this 𝐹𝑆𝑇 value will 

be different from the previous slide.



Applications of genetic distance

1. Identifying the impact of selection and breeding.

2. Understanding evolution from a population genetics angle.

3. Phylogenetics.

4. Data encryption.



Selection evidence from genome-wide 𝐹𝑆𝑇 .

Figure 3. Highly divergent regions (top 5%; FST≥ 0.57) and nonsynonymous SNPs (top 5%; FST ≥ 0.70) 

between the East Asian and Eurasian groups. Green vertical bars higher than the dashed line (FST = 

0.70) indicate highly divergent regions; purple dots indicate highly divergent nonsynonymous SNPs.

Identifying the impact of selection and breeding

Qi et al (2013)



POLLED locus – simple trait PLAG1 locus – complex trait

Identifying the impact of selection and breeding

𝐹𝑆𝑇 may not always produce selection evidence.

Kemper et al (2014)



• Example of isolation-by-distance.

• Genetic distance vs geographical 

distance.

• Higher dispersal distance in Florida 

Scrub-Jay females than males.

• At short distance, the males are more 

genetically similar to each other than 

the females.

Understanding evolution from a population genetics angle

Aquillon et al (2017)



The relationship between genetic 

distance and geographical distance is 

not that straightforward.

It also depends on the landscape, which 

determines how much gene flow vs drift 

between sub populations.

Landscape genetics

van Strien et al (2015)



Phylogenetics

Phylogenetic trees are built from 

distance matrix.

Randi et al (1991)



• Conversion of genomic 

markers into distances from 

reference individuals as a 

form of data encryption.

• May have potential for use in 

crop and animal breeding in 

terms of data sharing.

Data encryption

Kim et al (2019)



Challenges in working with genetic distance

• Distance choice

• Genotypic data quality (errors, missing data)

• Assumptions in evolution rate, molecular clock, etc

• Genetic marker type: SNP, InDel, SSR, etc

• Statistical significance threshold (e.g. 𝐹𝑆𝑇)



Population structure

A consequence of genetic divergence between sub-populations.

Principal 

component 

analysis (PCA)

PCA

STRUCTURE

Control
STRUCTURE

Population structure 

control

https://knowyourmeme.com/photos/1630278-why-

is-it-when-something-happens-its-always-you-three



m01 m02 m03 m04 m05 m06 m07 m08 m09 m10

id1   2   0   0   0   0   0   2   0   0   2

id2   2   0   0   0   0   0   0   0   0   2

id3   2   0   0   2   0   0   2   0   0   2

id4   0   0   2   0   2   2   0   2   2   0

id5   0   2   2   0   2   0   0   0   0   0

id6   0   0   2   0   2   0   0   0   0   0

Principal component analysis (PCA)

Reduce dimensionality in data to a form that is easier to understand.

Given a set of genetic marker data, how can we quickly infer the population structure?

1. Calculate the correlations (e.g. K-matrix/GRM: genetic relationship matrix).



m01 m02 m03 m04 m05 m06 m07 m08 m09 m10

id1   2   0   0   0   0   0   2   0   0   2

id2   2   0   0   0   0   0   0   0   0   2

id3   2   0   0   2   0   0   2   0   0   2

id4   0   0   2   0   2   2   0   2   2   0

id5   0   2   2   0   2   0   0   0   0   0

id6   0   0   2   0   2   0   0   0   0   0

Principal component analysis (PCA)

1a. Calculate the allele frequencies and means.

m01 m02 m03 m04 m05 m06 m07 m08 m09 m10

p 0.50 0.17 0.50 0.17 0.50 0.17 0.33 0.17 0.17 0.50

𝜇 = 2𝑝

1b. Center the marker data by the means.

m01    m02  m03    m04  m05    m06    m07    m08    m09  m10

id1    1  -0.33   -1  -0.33   -1  -0.33   1.33  -0.33  -0.33    1

id2    1  -0.33   -1  -0.33   -1  -0.33  -0.67  -0.33  -0.33    1

id3    1  -0.33   -1   1.67   -1  -0.33   1.33  -0.33  -0.33    1

id4   -1  -0.33    1  -0.33    1   1.67  -0.67   1.67   1.67   -1

id5   -1   1.67    1  -0.33    1  -0.33  -0.67  -0.67  -0.33   -1

id6   -1  -0.33    1  -0.33    1  -0.33  -0.67  -0.67  -0.33   -1



Principal component analysis (PCA)

1c. Multiply the matrix by its transpose.

× =𝑀 𝑀𝑇

𝑛 × 𝑛

𝑝 × 𝑛

𝑛 × 𝑝

id1   id2   id3   id4   id5   id6

id1  6.33  3.67  5.67 -6.33 -5.00 -4.33

id2  3.67  5.00  3.00 -5.00 -3.67 -3.00

id3  5.67  3.00  9.00 -7.00 -5.67 -5.00

id4 -6.33 -5.00 -7.00 13.00  2.33  3.00

id5 -5.00 -3.67 -5.67  2.33  7.67  4.33

id6 -4.33 -3.00 -5.00  3.00  4.33  5.00

1d. Divide the matrix by σ 2𝑝 1 − 𝑝  [not actually needed for PCA].

id1   id2   id3   id4   id5   id6

id1  1.65  0.96  1.48 -1.65 -1.30 -1.13

id2  0.96  1.30  0.78 -1.30 -0.96 -0.78

id3  1.48  0.78  2.35 -1.83 -1.48 -1.30

id4 -1.65 -1.30 -1.83  3.39  0.61  0.78

id5 -1.30 -0.96 -1.48  0.61  2.00  1.13

id6 -1.13 -0.78 -1.30  0.78  1.13  1.30

𝐾



Principal component analysis (PCA)

2. Perform eigen-decomposition (𝑲𝑣𝑖 = λ𝑖𝑣𝑖).

-0.42   -0.06   -0.08   -0.14    0.79   -0.41

-0.30    0.02   -0.73   -0.05   -0.45   -0.41

-0.48 , -0.11 ,  0.66 ,  0.10 , -0.38 , -0.41

 0.52   -0.74    0.01   -0.13   -0.01   -0.41

 0.36    0.58    0.17   -0.57   -0.06   -0.41

 0.32    0.31   -0.02    0.79    0.12   -0.41

8.08

2.21

0.93

0.44

0.34

0.00

𝑣𝑖 = λ𝑖 =

eigenvectors eigenvalues

3. Plot the eigenvectors (principal components).

% variation explained (𝑃𝑉𝐸 =
λ𝑖

σ λ𝑖
∙ 100).

PC1 explains 67% variation;

PC2 explains 18% variation.



Remember from physics classes, a vector has direction and magnitude.

0 1 2 3

1

2

3

Vector  
1
1

 is represented by the red arrow.

Let’s try to transform the vector by  
1 2
2 1

 .

 
1 2
2 1

 ×  
1
1

 =  
3
3

 

0 1 2 3

1

2

3

Notice that  
3
3

 = 3  
1
1

 , so the transformation 

changed the magnitude by 3 but not the direction.

In that case, we can call  
1
1

 as the eigenvector 

and 3 as the corresponding eigenvalue.

Eigenvectors and eigenvalues



Remember from physics classes, a vector has direction and magnitude.
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1
1
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Notice that  
3
3

 = 3  
1
1

 , so the transformation 

changed the magnitude by 3 but not the direction.

In that case, we can call  
1
1

 as the eigenvector 

and 3 as the corresponding eigenvalue.

Eigenvectors and eigenvalues

Think of 𝑣𝑖 as a slice of 𝑲, 

and λ𝑖 is the measure of 

how big the slice is.

Dall E (2024)



Interpreting PCA plot

• Clear separation on the first axis (PC1).

• Finer-scale separation on PC2.

Price et al (2006)



Interpreting PCA plots

Extended Data Figure 1. PCA 

with genotyping-by-sequencing 

data of 19,778 varieties of 

domesticated barley sampled 

from the gene bank of the 

IPK9. The first six principal 

components are shown. 

Samples are colored according 

to geographic origin, row type 

or annual growth habit.

Jayakodi et al (2020)



STRUCTURE et al

• These are software to model population admixture.

• Typically uses Bayesian clustering methods (𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑃𝑟𝑖𝑜𝑟 × 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛).

• The model takes a prior (𝐾 clusters of populations), adjusts it according to 

observation (allele frequencies) over many iterations, and produces the posterior 

(ancestry admixture estimate).

𝐾 = 3



STRUCTURE in action: Welwitschia

Jurgens et al (2021)

powo.science.kew.org/taxon/urn%3Alsid%3Aipni.org%3 Anames%3A383591-1

Both ssp, 𝐾 = 2

ssp mirabilis, 𝐾 = 4

ssp namibiana, 𝐾 = 4



STRUCTURE in action: Eteline snapper

E coruscans, 𝐾 = 2 E carbunculus, 𝐾 = 2

Andrews et al (2020)

www.fishbase.se/summary/1385 www.fishbase.se/summary/Etelis-carbunculus



STRUCTURE in action: canine

Parker et al (2004)



ADMIXTURE in action: canine

Ramos-Madrigal et al (2021)



PCA + STRUCTURE + Phylogenetics in action: Wheat

Khadka et al (2020)

www.teagasc.ie/crops/soil--soil-fertility/crop-

n-p-k-advice/spring-cereals/spring-wheat/



“As population structure can result in 

spurious associations, it has constrained 

the use of association studies in human 

and plant genetics”.

Population structure and spurious associations

Yu et al (2006)



Without control.

With control.

Population structure control

Korte and Farlow (2013)

• Commonly used in GWAS.

• Many spurious results without 

control.

• Control is not perfect.



How to control for population structure?

Fix it Avoid it

1. Structured association, e.g. 

MLM Q + K. 

2. Genomic/delta control (GC/DC).

3. Stepwise regression.

4. Machine learning.

5. Functional validation.

6. Replicated studies.

1. Family-based, e.g. transmission 

disequilibrium test (TDT).

2. Mapping population design.



𝑦 = 𝜇 + 𝑚𝑎𝑟𝑘𝑒𝑟 + 𝑄 + 𝐾 + 𝑒

Here is an “incorrect” GWAS 

model to illustrate the point.

𝑄 = principal components

𝐾 = GRM.

Mixed linear model, Q + K

Yu et al (2006)



χ𝐺𝐶
2 =

χ𝑚𝑎𝑟𝑘𝑒𝑟
2

λ

Marker         n    Effect     SE   T-stat   F-stat           p

    m01     100       1.5     0.5          3          9     0.003

    m02     100       1.0     0.5          2          4     0.048

    m03     100       0.8     0.4          2          4     0.048

    m04     100       1.0     1.0          1          1     0.320

    m05     100       0.5     0.5          1          1     0.320

    m06     100       0.6     0.3          2          4     0.048

Using m03 to m06 as the background 

markers, λ =
2.5

0.456
= 5.482.

Note: λ =
𝑚𝑒𝑑𝑖𝑎𝑛 χ𝑏𝑔

2

0.456
 and for large n, 𝐹𝑑𝑓=1,𝑛 ≈ χ𝑑𝑓=1

2

With GC, then:

𝐹𝐺𝐶,𝑚01 =
9

5.482
= 1.642 𝑝𝐺𝐶,𝑚01 = 0.203

𝐹𝐺𝐶,𝑚02 =
4

5.482
= 0.730 𝑝𝐺𝐶,𝑚02 = 0.395

Genomic control (GC)



χ𝐺𝐶
2 = χ𝑚𝑎𝑟𝑘𝑒𝑟

2 − 𝛿2

Marker         n    Effect     SE   T-stat   F-stat           p

    m01     100       1.5     0.5          3          9     0.003

    m02     100       1.0     0.5          2          4     0.048

    m03     100       0.8     0.4          2          4     0.048

    m04     100       1.0     1.0          1          1     0.320

    m05     100       0.5     0.5          1          1     0.320

    m06     100       0.6     0.3          2          4     0.048

Using m03 to m06 as the background 

markers, δ2 =
4+1+1+4

4
= 2.5.

Note: δ2 ≈ 𝑚𝑒𝑎𝑛 χ𝑏𝑔
2  and for large n, 𝐹𝑑𝑓=1,𝑛 ≈ χ𝑑𝑓=1

2

With DC, then:

𝐹𝐷𝐶,𝑚01 = 9 − 2.5 = 6.5 𝑝𝐷𝐶,𝑚01 = 0.012

𝐹𝐷𝐶,𝑚02 = 4 − 2.5 = 1.5 𝑝𝐷𝐶,𝑚02 = 0.224

Delta control (DC)



• Identify 𝑛 individuals (progeny) with disease (simple trait).

• Genotype 𝑛 progeny and 2𝑛 parents.

• For each parent-progeny pair, classify the allele transmission.

parent _R parent _r

parent R_, 

transmits R
a b

parent r_, 

transmits r
c d

χ𝑑𝑓=1
2 =

𝑏 − 𝑐 2

𝑏 + 𝑐

Transmission disequilibrium test (TDT)

RR

R

a

Rr

R

b

Rr

r

c

rr

r

d

• Homozygous parents are uninformative, guaranteed to transmit same allele.

• Heterozygous parents can transmit either allele, b ≈ 𝑐 if the marker is not 

linked to the causative locus.

𝑎 + 𝑏 + 𝑐 + 𝑑 = 2𝑛



Mapping population design

Populations under random mating

• Uncommon.

• Require us to have already studied the population structure.

Bi-parental populations

• No population structure to worry about.

• Recombinations between the two parental genomes.

• QTL linkage mapping.

• Limited allelic diversity.



• Typically involves 𝑛 = 2𝑥 founders, e.g. 4, 8, 16.

• The founders are crossed at equal probabilities.

• Minimal population structure.

Mapping population design

Scott et al (2020)

An example with 4 founders.

All possible combinations:

(1 x 2) x (3 x 4)

(1 x 3) x (2 x 4)

(1 x 4) x (2 x 3)

Admixture analysis example:



Figure 2. NDM population 

design and haplotypic 

diversity. (a) Pedigree showing 

the construction of 504 

Recombinant Inbred Lines 

(RILs). One exemplar pedigree 

is highlighted to show how all 

16 founders are intercrossed 

into each RIL. (b) Founder 

haplotype groups at 73,982 

promoter-gene loci with SNP 

variation, where founders with 

the same haplotype have 

genotypic similarity fractions 

that exceed the corresponding 

threshold. (c) Pairwise 

similarity/dissimilarity between 

founders on chromosome 1A, 

determined using a dynamic 

programming algorithm to infer 

founder similarity and 

breakpoint position. Founders 

that are inferred to have similar 

haplotypes for each region are 

the same colour. (d) The total 

length of genomic blocks in 

NDM lines inferred to come 

from each founder; uncertain 

ancestry blocks have a 

maximum founder dosage of 

<90%. (e) Inferred founder 

dosage and ancestry mosaics 

across chromosome 1A for five 

example RILs, with founders 

colored as in (a).

MAGIC population in wheat with 16 founders

Scott et al (2021)



Applications related to population structure

1. Association mapping (discussed previously).

2. Pan-genome assembly.

3. Selection mapping.

4. Precision medicine.



• High level of presence/absence variants.

• Bias from alignment to a single reference genome.

Population structure: need for a pan-genome

McMullen et al (2009)

Hufford et al (2021)



One of many benefits of pan-genome

Coletta et al (2021)

Improvement to 

mapping power.



Selection mapping

Selection/breeding results in population structure.

Selection evidence in winter wheat can be identified using env/eigen-GWAS approaches .

Year of variety release as trait

PC as trait

Sharma et al (2021)



Precision medicine (as explained in plants)

• Assume the causative locus has not been identified.

• Case 1: find an association at the left marker in Pop 1 > this 

marker gets it wrong in Pop 3 and 4.

• Case 2: find an association at the right marker in Pop 3 > this 

marker gets it wrong in Pop 1 and 2.

Pop 1

Pop 2

Pop 3

Pop 4

If we know the population structure, 

then we know which marker is more 

appropriate for the populations.

1
2

3

4

PC1

PC2



Challenges in working with population structure

• Population structure vs true positive 

• What is the right 𝐾?

• Genotyping data quality (e.g. partially solved by pan-genome).

• Small sample size

• Statistical methods



Summary

Background. Why do we to study genetic relationship?

IBD. Definition: two alleles that have originated from the replication of one single 

allele in a previous generation  coefficient of coancestry and fraternity – methods 

for calculating them.

IBS. Definition: two of the same alleles regardless of their ancestral origins  IBS-

based coefficients.

Genetic distance. Definition: a measure of genetic divergence between populations 

or sub-populations  how do sub-populations diverge?  methods for computing 

genetic distance.

Population structure. Definition: a consequence of genetic divergence between 

sub-populations  common topics like PCA, admixture analysis, control approaches.



Resources

Methods for calculating coefficient of coancestry

https://doi.org/10.1007/978-3-030-83940-6_11

https://www.genetic-genealogy.co.uk/supp/calc_inbreeding_coan.html

Relevant references

GRM: vanRaden (2008) Efficient methods to compute genomic predictions.

MLM Q + K: Yu et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness.

GC: Devlin and Roeder (1999) Genomic control for association studies.

DC: Gorroochurn et al (2011) An improved delta-centralization method for population stratification.

TDT: Spielman et al (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM).

MAGIC: Cavanagh et al (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants.

Free online resources

https://github.com/cooplab/popgen-notes

https://felsenst.github.io/pgbook/pgbook.pdf

https://excellenceinbreeding.org/toolbox

Paid resources

Walsh and Lynch (2018) Evolution and selection of quantitative traits

Falconer and Mackay (1995) Introduction to quantitative genetics

Contact me

 cyang@sruc.ac.uk

 cjyang-work.github.io

 𝕏  @hataraku_cj
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