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Notation109

Basic mathematical notation110

∅ The empty set, i.e. ∅ = {}111

#S The number of elements in the finite set S (also referred to as “cardinality of the112

set S”). By convention, #∅ = 0113

x ∈ S Represents that x is an element of S. If x is a variable such that x ∈ S, we will114

say that “x has type S”, i.e. the unordered collection of objects S represents all115

the values that x can take116

S \ T Set difference of sets S and T , i.e. S \ T = {x ∈ S : x 6∈ T} (voiced “the set of117

elements x in S such that x is not in T”)118

S ⊆ T S is a subset of T , i.e. x ∈ S ⇒ x ∈ T119

S ⊂ T S is a proper (or “strict”) subset of T , i.e. x ∈ S ⇒ x ∈ T ∧ ∃y ∈ T, y 6∈ S120

S = T S ⊆ T ∧ T ⊆ S121

S ∪ T Union of set S and set T , i.e. {x : x ∈ S ∨ x ∈ T}122

S ∩ T Intersection of set S with set T , i.e. {x : x ∈ S ∧ x ∈ T}123

f : S → T Function f that maps elements of the non-empty set S, the “domain”, to the124

non-empty set T , the “codomain”125

N Set of natural numbers. N+ represents N \ {0} = {1, 2, . . .}, where {n, . . .} rep-126

resents the application of the successor operator Succ(n) = n+ 1, defined by the127

Peano axioms, infinitely many times128

Z Set of integers, i.e. {. . . ,−2,−1, 0, 1, 2, . . .}, where {. . . , n} represents the appli-129

cation of the predecessor operator Pred(n) = n− 1 infinitely many times130

Q,R Set of rational, real numbers131

[n] Set {0, . . . , n− 1}, where n ∈ N132

{a, . . . , b} Set of integers from a through b inclusive, where a ≤ b133
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(a0, a1, . . . , an−1) n-tuple, i.e. ordered collection of items of length n. If n = 1, we call134

it a “singleton”, if n = 2, we call the tuple a “pair”. Finally, if n = 3, we call it135

a “triple”. We use the terms “tuples” and “lists” interchangeably.136

S × T Cartesian product of sets S and T , i.e. set of all ordered pairs {(x, y) : x ∈ S ∧ y ∈ T}137

Sn n-fold Cartesian product of S with itself, i.e. Sn = {(x0, . . . , xn−1) : xi ∈ S ∀i ∈138

[n]}, where n ∈ N139

Λ General notation for an alphabet, i.e. a non-empty finite set such that every string140

(ordered collection of symbols, or letters, all in Λ) has a unique decomposition.141

The number of symbols in a string is denoted the “length” of the string142

ε The empty string. ε is a string over any alphabet.143

Λn Set of all strings, defined over alphabet Λ, containing n symbols (i.e. “of length144

n”)145

Λ∗ The Kleene star of Λ represents the set of all strings of finite length, defined over146

alphabet Λ, including the empty string ε, i.e. Λ∗ =
⋃
n∈N Λn147

length(x) length : Λ∗ → N computes the length of a string x defined over Λ, i.e. length(x)148

returns the number of symbols composing the string x. By convention, length(ε) =149

0150

x‖y Infix notation for the concatenation function, ‖ : Λ∗ × Λ∗ → Λ∗. If length(x) =151

n, length(y) = m and (n,m) ∈ N2, then for z = x‖y holds length(z) = n+m152

truncx(k) trunc : Λ∗ → Λk is the truncation function that returns the sequence formed153

from the first k elements of x, where x ∈ Λ∗. If k > length(x), then truncx(k) = x154

x[a:b] [:] : Λn × N × N → Λ≤b−a is the slice function that, if b ≥ a, returns the string155

starting at index min(n, a) of x and finishing at index min(n, b). The function156

additionally intereprets x[:b] as x[0:b] and x[a:] as x[a:n]157

padn(x) pad : Λ≤n → Λn is the padding function which pads x by 0’s to reach a size of158

n. The padding depends on the variable type and endianness.159

append(l, x) append : Dn ×D → Dn+1 is the algorithm that appends x to the list of n160

element(s) l, if all x and l share the same data type D161

B Alphabet of binary symbols, i.e. {0, 1}162

〈g1, . . . , gl〉 Cyclic group generated by {g1, . . . , gl}163

(q,G, g,⊗) Description of the cyclic group G = 〈g〉 of order q, with operation ⊗164

GCUR Safe subgroup of the cyclic group induced by the set of points on the elliptic curve165

Curve (i.e. elliptic curve subgroup suited for cryptographic use, in which hardness166

assumptions hold)167
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Z/rZ Quotient group defined as the set of equivalence classes modulo r. Z/rZ, also writ-168

ten Zr, is an additive group. If r = p a prime number, then Zp = {0, . . . , p− 1} =169

Z/pZ is a finite field of elements modulo prime p, also denoted Fp, where 0Fp and170

1Fp respectively represent the additive and multiplicative identity171

Fq Finite field of cardinality q = pm, where p is prime, and m ∈ N172

JxK Represents the encoding of the scalar x in a group G described as (p,G, 〈g〉,⊗),173

i.e. JxK = x · J1K = g⊗ . . .⊗ g (x times). Thus, by convention, J1K = g174

• Represents an inline operator for bilinear pairing. That is for a bilinear pairing175

from G1 ×G2 to GT and elements JaK1 , JbK2 we write JabKt = JaK1 • JbK2176

dxe Round x ∈ R to the next integer177

bxc Round x ∈ R to the previous integer178

logb(x) Logarithm with respect to base b, i.e. x = by, logb(x) = y179

Algorithmic notation180

x←$X Element chosen uniformly at random from set X181

x← y The value y is assigned to the variable x (i.e. “x receives the value y”)182

PPT Probabilistic polynomial time. A polynomial time algorithm A is one for which183

there exists a polynomial f such that the running time of A on input x ∈ {0, 1}∗184

is f(|x|). A probabilistic algorithm has the ability to “flip” random coins and use185

the result of these coin tosses in its computation186

NUPPT Non-uniform probabilistic polynomial time187

O(f) Big-O notation188

il, kl, nl, rl, ol The input il, key kl, nonce nl, randomness rl and output ol length189

Cryptography notation190

OX(n) Public oracle for algorithm X which can be accessed at most n times; OX is an191

unrestricted oracle for algorithm X192

λ Security parameter (λ ∈ N)193

negl Negligible function. In this document, negligible will usually mean O
(
2−λ

)
194

poly Polynomial function195

A Adversary algorithm196
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AdvpropF,A (λ) Advantage of the adversary A with regard to the attack game prop on F197

(e.g. F can be a function, a family of functions or a group on which a given198

property represented by the game prop is supposed to hold)199

propA Adversary A running a security game prop200

Zeth notation201

π Output of the proving algorithm of a zk-SNARK scheme. π is also informally202

referred to as a “zk-SNARK proof”, “zk-proof”, or simply “proof”203

PZ Standard notation for a Zeth user204

M̃ixer The mixer smart-contract instance205

EncSch In-band encryption scheme used to share Zeth notes206

Ethereum notation207

Account Standard notation for an Ethereum account object208

C̃ntrct Standard notation for an Ethereum smart-contract instance209

PE Standard notation for an Ethereum user210

ς Mapping representing the Ethereum state (i.e. “World state”)211

ς[a] Account object stored at address a in ς if it exists, ⊥ is returned otherwise212

Constants213

ADDRLEN The bit-length of an Ethereum address 160 bits214

BLAKE2sCLEN Output size of Blake2s compression function [ANWOW13] 256 bits215

FIELDCAPBLS Field capacity of FrBLS . blog2 rBLSc = 252 bits216

FIELDLENBLS Bit-length of a field element x ∈ FrBLS dlog2 rBLSe = 253 bits217

FIELDCAPBN Field capacity of FrBN . blog2 rBNc = 253 bits218

FIELDLENBN Bit-length of a field element x ∈ FrBN dlog2 rBNe = 254 bits219

BYTELEN Bit-length of a byte 8 bits220

ENCZETHNOTELEN Size of an encrypted note (see Section 3.5.3) CTBYTELEN∗BYTELEN bits221

ETHWORDLEN Width of a storage cell on the Ethereum Virtual Machine stack, i.e. size of222

a word on the EVM 256 bits223
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FIELDCAP Field capacity of FrCUR , defined as the maximum bit length l such that all224

numbers x encoded on l bits are elements of FrCUR . In other words, FIELDCAP =225

maxx∈FrCUR {dlog2 xe} s.t.
∑

i∈[FIELDCAP] 2
i ∈ FrCUR226

FIELDLEN Bit-length of elements in field element x ∈ FrCUR dlog2 rCURe bits227

JSIN, JSOUT, JSMAX The number of inputs and outputs of a joinsplit and JSMAX = max {JSIN, JSOUT}228

KEK256DLEN Message digest size of Keccak256 [GJMG11] 256 bits229

MKDEPTH The depth of the Merkle tree used to store commitments230

pBLS Characteristic of the prime (base) finite field over which curve BLS12-377 is de-231

fined, pBLS = 2586644260129690940106527336948935335363935127549146605398232

84262666720468348340822774968888139573360124440321458177 [BCG+20]233

pBN Characteristic of the prime (base) finite field over which curve BN-254 is defined,234

pBN = 2188824287183927522224640574525727508869631115729782366268903789235

4645226208583 [Rk19]236

pSECP Characteristic of the prime (base) finite field over which curve secp256k1 is de-237

fined, pSECP = 115792089237316195423570985008687907853269984665640564039238

457584007908834671663 [wik]239

rBLS Characteristic of the scalar field of BLS12-377, rBLS = 84444617494283704242488240

24938781546531375899335154063827935233455917409239041 [BCG+20]241

rBN Characteristic of the scalar field of BN-254, rBN = 21888242871839275222246405242

745257275088548364400416034343698204186575808495617 [Rk19]243

rCUR Characteristic of the scalar field of some chosen curve Curve244

rSECP Characteristic of the scalar field of secp256k1, rSECP = 1157920892373161954235245

70985008687907852837564279074904382605163141518161494337 [wik]246

SHA256BLEN Block size of SHA256 [oST15, Figure 1] 512 bits247

SHA256DLEN Message digest size of SHA256 [oST15, Figure 1] 256 bits248

SHA256MLEN Message size of SHA256 [oST15, Figure 1] < 264 bits249

DGAS The default/intrinsic cost of an Ethereum transaction 21000 gas250

ZVALUELEN Size in bits of the transferable maximal value 64 bits251
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Chapter 1302

Preliminaries303

Zeth is a protocol which enables private transactions on Ethereum [Woo19]. It is a modi-304

fication of the Decentralized Anonymous Payment (DAP) system ZeroCash [BSCG+14].305

The design described in [RZ19] presents the mechanisms by which ZeroCash can be used306

on Ethereum, and argues that the information leakages of the solution are well defined307

and controlled. This document, however, serves as a specification of the protocol and308

provides security fixes and optimizations from the first proof of concept release of the309

protocol [Cle19].310

This document assumes familiarity with blockchain and Ethereum in particular. It311

does not, in any way, aim at replacing the Ethereum yellow paper [Woo19]. The reader is312

strongly advised to read about Ethereum before delving into this specification document.313

The key words MUST, MUST NOT, SHOULD, SHOULD NOT, MAY, and RECOMMENDED in this314

document are to be interpreted as described in [Bra97] when they appear in ALL CAPS.315

These words may also appear in this document in lower case as plain English words,316

absent their normative meanings.317

1.1 Data structures and representation318

1.1.1 Structured data319

When describing the operations to be performed and the data to be manipulated as320

part of the protocol, we commonly employ tuples of related data where each element321

of the tuple has some associated semantic meaning and which must often satisfy some322

conditions. In this section, we develop a framework to reason about such structured323

data, where a single datum may consist of one or more logical parts (called fields). The324

framework is built on top of simple mathematical concepts such as sets, and mappings325

between them, ensuring that we can always reason about structured data in a rigorous326

way. We also define notation to aid the specification of structured data, and to refer to327

specific components of a datum. This will be used extensively in the specification of the328

protocol.329
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As a simple motivating example, consider a protocol that processes data relating to330

individual people. This fictional system may send and receive data such as name, age331

and address for a single person, grouping this data into a logical unit. Further, each332

piece of data must satisfy specific conditions (name must be a series of characters from333

some alphabet, age must be a positive integer, etc.) We shall make use of this example334

several times during the formulation below.335

In what follows, let STR = {a, b, . . . , y, z}∗ (the Kleene star of the Roman alphabet).336

In our formulation, field names fi will be elements in this set.337

Remark 1.1.1. Note that a similar formulation could be made using an arbitrary set,338

such as the same alphabet augmented with specific symbols, or the alphabet of a different339

language. Our choice of STR here is for simplicity.340

We begin by defining a data type as a set of values called “fields”, each with a “name”341

from STR. Abstract sets are used to constrain the values of each field.342

Definition 1.1.2 (Structured Data Type). Let f0, . . . , fn−1 be n distinct elements of
STR and let V0, . . . , Vn−1 be sets, for some n ∈ N. We define the structured data type T

with fields {(fi, Vi)}i∈[n] to be a set of values:

T = V0 × · · · × Vn−1

with associated post-fix “dot” operators .fi : T→ Vi for i = 0, . . . , n−1, acting on values
x ∈ T to extract the individual elements:

x.fi = vi, where x = (v0, . . . , vn−1) ∈ T

Here, we say that the i-th field has field name fi, with value set Vi. Each “dot”343

operator .fi extracts the i-th component, or the value with field name fi.344

Example 1.1.3. Consider our example protocol that processes information about peo-
ple. A potentially useful structured data type Person may be defined with fields:{

(name,STR), (age,N), (height ,R+)
}

Values p in Person are simply tuples in STR× N× R+, with semantic meaning (name,345

age, height) assigned to each component of p.346

Examples of valid elements in Person include a = (alice, 28, 1.65) and b = (bob, 31, 1.74),
where the following equalities hold:

a.name = alice,

b.age = 31,

b.height = 1.74;

For clarity, structured data types may be specified using tables of names, descriptions347

and value sets, rather than sets of the form {(fi, Vi)}i∈[n]. Similarly, it is frequently348

convenient to include the field names alongside values when specifying structured data349

values.350
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Example 1.1.4. Person from Example 1.1.3 might be described in table-form as follows:351

Field Description Data type

name Name of the person STR

age Age in years N

height Height in meters R+

Example 1.1.5. The values a and b in Example 1.1.3 might be written as follows:

a = {name : alice, age : 28, height : 1.65}
b = {name : bob, age : 31, height : 1.74}

Remark 1.1.6 (“dot” operators in assignment). The “dot” operators may be used in352

algorithm descriptions to indicate assignment to a specific component. For example353

a.age ← 29 means that the value of the age field of a is replaced by the value 29.354

Formally, for a structured data type T with fields {(fi, Vi)}i∈[n] where x = (v0, . . . , vn−1) ∈
T and v′i ∈ Vi:

x.fi ← v′i

is equivalent to:
x← (v0, . . . , vi−1, v

′
i, vi+1, . . . , vn−1)

We define one further operator and related assignment notation, convenient in cases355

where Vi = Xm for sets X and m ∈ N.356

Definition 1.1.7 (Square bracket operator). For m ∈ N and set X, define the operator
[ ] : Xm × [m]→ X as:

x[i] = xi where x = (x0, . . . , xm)

For the set X∗, the operator takes the form [ ] : X∗ × N→ X, defined as:

x[i] =

{
xi if length(x) > i where x = (x0, . . .)

⊥ otherwise

Remark 1.1.8 (Square bracket operators in assignment). Similarly to Remark 1.1.6, we
develop assignment notation for the square bracket operator [ ]. Let x = (x0, . . . , xm−1)
be a member of Xm, and x′i be some element in X. The statement:

x[i]← x′i

is equivalent to:
x← (x0, . . . , xi−1, x

′
i, xx+1, . . . , xm−1)

Informally, this can be interpreted as replacing the i-th component of x with x′i.357
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Remark 1.1.9 (Deep structures and chained “dot” operators). Consider the case of358

structured data T with fields {(fi, Vi)}i∈[n] for n ∈ N. Let T′ be another structured data359

type with fields {(f ′i , V ′i )}i∈[n′] for n′ ∈ N, and assume that Vj = T′ for some j ∈ [n].360

Informally, the values of the j-th field of elements of T are themselves structured data361

of type T′.362

In this case, “dot” operators may be chained, so that x.fj .f
′
k refers to the k-th field363

v′k of the j-th field vj of x ∈ T.364

Example 1.1.10. Define a structured data type Address with fields (country , STR), (zipcode,STR).365

We redefine the structured data type Person from Example 1.1.3, with an extra field366

address of type Address. That is, Person is the structured data type with fields:367

Field Description Data type

name Name of the person STR

age Age in years N

height Height in meters R+

address Address of the person Address

An example element a in Person is:

a = {
name : alice,

age : 28,

height : 1.65,

address : (country : UK , zipcode : SW1A)

}

In this case, the following equalities using the dot and square bracket operators all hold:

a.name = alice

a.height = 1.65

a.address.country = UK

a.address.zipcode = SW1A

a.address.country [1] = K

1.1.2 Representations368

The binary alphabet {0, 1}, denoted B, is used to represent the presence or absence of an369

electrical signal in a computer. In fact, every piece of information in a computer is rep-370

resented as a string of bits. We assume the existence of an efficient binary representation371

for some set of primitive datatypes (such as the natural numbers N, or alphanumeric372
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characters). Structured data types built up from primitive types (as described above)373

can then recursively be assigned similarly efficient representations. This is used to define374

the following functions to encode data to its bit-string representation, and to decode such375

bit-strings back to elements of the original type.376

Definition 1.1.11. For a set X of values which are to be represented as bit strings, we
define functions:

encodeX : X → B∗

decodeX : B∗ → X ∪ ⊥

satisfying
decodeX(encodeX(x)) = x ∀x ∈ X

to be the functions which encode (resp. decode) elements of X into (resp. from) the377

bit-string representations chosen above. We note that decodeX may return ⊥ in the case378

that the input bit-string is malformed.379

Without ambiguity, we overload the functions encode and decode to mean encodeX380

and decodeX where the set X is clear from context.381

In the following sections, we assume that elements of N are encoded as big-endian
binary numbers in the natural way. We denote by Nb the set of natural numbers that can
be uniquely encoded in this way using b bits (possibly with padding). In other words,

Nb =
{
x ∈ N s.t. encodeN(x) ∈ Bb

}
1.2 Ethereum382

In a nutshell, Ethereum is a distributed deterministic state machine, consisting of a glob-383

ally accessible singleton state (“the World state”) and a virtual machine that applies384

changes to that state [AG18]. State transitions in the state machine are represented385

by transactions on the system. As such, each transaction represents a change in the386

global state represented as a Merkle Patricia Tree [wc] whose nodes are objects called387

“accounts” (Section 1.2.1). The Ethereum Virtual Machine (EVM) allows state transi-388

tions to be specified by creating a type of accounts which are associated with a piece389

of code (smart-contracts). The code of such accounts, and so, the corresponding state390

transitions, can be executed to transition to another state in the automata, by creating391

a transaction that calls the given piece of code (Section 1.2.2).392

To prevent unbounded state transitions in the state machine, each instruction exe-393

cuted by the EVM is associated with a cost in Wei, referred to as “the gas necessary to394

run the operation”. The “gas cost” of a transaction needs to be paid by the transaction395

originator (deduced from their account balance), and is awarded to the miner (added396

to their account balance) who successfully mines the block containing the transaction.397

In addition to the cost of every instruction executed as part of a state transition, every398
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transaction has an intrinsic cost of DGAS gas [Woo19, Appendix G]. Bounding modifica-399

tions to the Ethereum state by the amount of Wei held in the transaction originator’s400

account allows the system to avoid the Halting problem1 and protects against a range401

of Denial of Service (DOS) attacks.402

1.2.1 Ethereum account403

An Ethereum account [Woo19, Section 4.1] is an object containing 4 attributes, as rep-404

resented Table 1.1. We distinguish two types of accounts:405

• “Externally Owned Accounts” (EOA), that are created by derivation of an ECDSA se-406

cret key; and407

• Smart-contract accounts, that are derived from EVM code specifying a state tran-408

sition on the state machine.409

Each account object is accessible in the Merkle Patricia Tree representing the “World410

state” by a unique ADDRLEN-bit long identifier called the address. In the context of EOA,411

the address is obtained by generating a new ECDSA [JMV01] key pair (sk , vk) over curve412

secp256k1 [Qu99] and taking the rightmost ADDRLEN bits of the Keccak256 hash of the413

verification key vk .414

Field Description Data type

nce The nonce of an account is a scalar value representing
the number of transactions that have originated from the
account, starting at 0.

NETHWORDLEN

bal The balance of an account is a scalar value representing
the amount of Wei in the account.

NETHWORDLEN

sRoot The storage root is the Keccak256 hash representing the
storage of the account.

BKEK256DLEN

codeh The code hash is the hash of the EVM code governing
the account. If this field is the Keccak256 hash of the
empty string, then the account is said to be an “Exter-
nally owned Account” (EOA), and is controlled by the
corresponding ECDSA private key. If, however, this field
is not the Keccak256 hash of the empty string, the ac-
count represents a smart contract whose interactions are
governed by its EVM code.

BKEK256DLEN

Table 1.1: Ethereum Account structure

1https://en.wikipedia.org/wiki/Halting_problem
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Note

In the rest of this document, we will refer to an Ethereum user UE as a per-
son, modeled as an object, holding onea secret key, sk (object attribute), asso-
ciated with an existing EOA in the “World state”. We denote by UE .Addr the
Ethereum address of UE derived from UE .sk , and which allows UE to access the
state of their account ς[UE .Addr ].

We denote by ˜SmartC a smart-contract instance/object (i.e. deployed smart-

contract with an address, Section 1.2.2), and denote by ˜SmartC.Addr its address.

aThe same physical person may correspond to multiple “Ethereum users” and thus control
multiple accounts in the Merkle Patricia Tree.

415

1.2.2 Ethereum transaction416

We now briefly mention what Ethereum transactions [Woo19, Section 4.2] are, and how417

they are created, signed and validated. Once more, the reader is highly encouraged to418

refer to [Woo19] for a detailed presentation. Informally, a transaction object (tx ) is a419

signed message originating from an Ethereum user UE (the transaction originator, or420

simply sender) that represents a state transition on the distributed state machine (i.e. a421

change in the “World state” ς).422

Raw transaction423

In the following, we define a raw transaction as an unsigned transaction (Table 1.2).424

Field Description Data type

nce Transaction nonce NETHWORDLEN

gasP gasPrice NETHWORDLEN

gasL gasLimit NETHWORDLEN

to Recipient’s address BADDRLEN

val Value of the transaction in Wei NETHWORDLEN

init / data
Contract Creation data init

Message call data data
B∗

Table 1.2: Structure of a raw transaction data type TxRawDType

Finalizing raw transactions425

A raw transaction needs to be finalized to be accepted. In the context of this document,426

“finalizing a raw transaction” will be a synonym of “signing a raw transaction”. The427

transaction structure is represented in Table 1.3.428
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Field Description Data type

tx raw Raw transaction object TxRawDType

v Field v of ECDSA signature used for public key recovery BBYTELEN

r Field r of ECDSA signature [Por13] FrSECP

s Field s of ECDSA signature [Por13] FrSECP

Table 1.3: Structure of a (finalized) transaction data type TxDType

We define the transaction generation function, cf. Fig. 1.1, as the function taking the
sender’s ECDSA signing key and the components of a raw transaction as arguments, and
returning a signed (or finalized) transaction (tx final or tx for short).

tx final = TxGen(skECDSA,nce in , gasP in , gasLin , toin , val in , init in , data in)

tx final = {
nce : nce in ,
gasP : gasP in ,
gasL : gasLin ,
to : toin ,
val : val in ,
init/data : init in/data in ,


tx raw

v : σECDSA.v ,
r : σECDSA.r ,
s : σECDSA.s

 σECDSA

}

To sign a transaction, the sender first computes the hash of the raw transaction using429

Keccak256, cf. Eq. (1.1), and then uses their ECDSA signing key, skECDSA, to sign the430

obtained digest. cf. Eq. (1.2). The signature is then appended to the raw transaction to431

obtain a finalized transaction, cf. Fig. 1.1.432

digestECDSA = Keccak256(nce in , gasP in , gasLin , toin , val in , init in/data in) (1.1)

σECDSA = SigSchECDSA.Sig(skECDSA, digestECDSA) (= (v , r , s)) (1.2)
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TxGen(skECDSA,nce in , gasP in , gasLin , toin , val in , init in , data in)

1 : if toin = ∅ do

2 : tx raw ← {nce : ncein , gasP : gasP in , gasL : gasLin , to : toin , val : val in , init : init in};
3 : else

4 : tx raw ← {nce : ncein , gasP : gasP in , gasL : gasLin , to : toin , val : val in , data : datain};
5 : endif

6 : σECDSA ← SigSchECDSA.Sig(skECDSA,Keccak256(tx raw ));

7 : tx final ← {tx raw , v : σECDSA.v , r : σECDSA.r , s : σECDSA.s};
8 : return tx final ;

Figure 1.1: Transaction generation function TxGen

Remark 1.2.1. As one can see, there is no “from” attribute in a transaction. The433

sender’s Ethereum address can be recovered from the ECDSA signature. This method434

is defined in the Ethereum yellow paper as a “sender function” S [Woo19, Appendix F]435

which maps each transaction to its sender.436

Types of transactions437

While only two types of transactions are described in [Woo19, Section 4.2]; namely those438

which result in message calls and those which result in the creation of new accounts with439

associated code, we will instead differentiate the types of transactions based on their440

purpose. The reader is encouraged to read [Woo19] for a formal discussion.441

Informally, a transaction can be used to achieve three things: transferring Wei from442

an EOA to another EOA, creating a new account with associated code (i.e. “deploying443

a smart-contract”), and calling a function of a smart-contract. We will detail here the444

differences between these usages.445

Creating a contract The tx .to address is set to ∅ in the transaction. The contract446

creation data (tx .init) includes the new contract’s code. The contract address is447

computed as the rightmost ADDRLEN bits of the Keccak256 hash of the RLP en-448

coding [wc19] of the transaction originator’s address and account nonce [Woo19,449

Section 6].450

Calling a contract function The tx .to address is set to the address of the contract.451

The message call data byte array (tx .data) is set to the contract’s function address452

(or “Function Selector” [abi]) which are the first 4 bytes of the Keccak256 hash453

of the function signature, and the function input arguments (ETHWORDLEN bits per454

input) [Woo19, Section 8].455

Transferring Wei from an EOA to another EOA This corresponds to a “plain trans-456

action” spending Wei from an address to send them to another. In that case the457

tx .to address corresponds to the recipient’s address while the transaction data is458

left empty.459
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Note

In order to keep notations simple, we assume, in the rest of the document, that
smart-contract functions are uniquely determined by their name. As such, we
denote by FS(·) : B∗ → B4·BYTELEN the function that takes a function name as input
and returns its function selector.

460

Transaction validity461

Importantly, not all finalized transactions constitute valid state transitions on the state462

machine [Woo19, Section 6]. We denote by EthVerifyTx the function that takes an463

Ethereum transaction object tx as input and return true (resp. false) if tx is valid (resp. in-464

valid). To be deemed valid, a transaction MUST satisfy all the following conditions:465

1. The transaction is correctly RLP encoded, with no additional trailing bytes;466

2. the transaction signature (v , r , s) is valid;467

3. the transaction nonce (tx .nce) is valid, i.e. it is equal to the account nonce of the468

transaction originator;469

4. the gas limit is no smaller than the gas used by the transaction;470

5. the transactor has enough funds on his account balance to cover at least the cost471

tx .val + tx .gasP · tx .gasL.472

Lifecyle of a transaction, and miners’ incentives473

After the creation of an Ethereum transaction tx by a user from an Ethereum client (ma-474

chine running a piece of software that enables to be connected to the Ethereum network),475

the transaction is broadcasted to the network and received by a set of peers/nodes.476

The transaction is then stored in each node’s transaction pool, which is a data477

structure containing all transactions that should be validated (pending transactions) by478

the node and mined. To maximize miners’ returns, the transaction pools are ordered479

according to the gas price of the transactions. As such, transactions with the highest480

tx .gasP are subject to be validated and included into a block first. Once tx is selected481

from the transaction pool, it is validated (fed into EthVerifyTx), executed, and included482

into a block (i.e. “mined”). The block is then broadcasted to all the nodes of the network483

and is used as the predecessor for the next block to be mined on the network (i.e. “it is484

added to the chain”).485

1.2.3 Ethereum events and Bloom filters486

The EVM contains the set of “LOGX” instructions enabling smart-contract functions487

to “emit events” (i.e. log data) when they are executed2
488

2see https://ethgastable.info/
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As such, when a block is generated by a miner or verified by the rest of the network,489

the address of any logging contract, and all the indexed fields from the logs generated by490

executing those transactions are added to a Bloom filter [Blo70], which is included in the491

block header [Woo19, Section 4.3]. Importantly, the actual logs are not included in the492

block data in order to save space. As such, when an application wants to find (“consume”)493

all the log entries from a given contract, or with specific indexed fields (or both), the494

node can quickly scan over the header of each block, checking the Bloom filter to see if495

it may contain relevant logs. If it does, the node re-executes the transactions from that496

block, regenerating the logs, and returning the relevant ones to the application [Joh16].497

Note

The ability for a smart-contract function to “emit” some pieces of data when
executed, and for an application to “consume” such pieces of data, is used in
Zeth in order to construct a confidential receiver-anonymous channel [KMO+13].

498

1.3 zk-SNARKs499

In this section we introduce notions necessary to understand zero-knowledge proofs,500

define properties crucial for them, and introduce zk-SNARKs. We refer the reader501

to Section 3.6 in which we describe the zk-SNARK scheme used in Zeth.502

1.3.1 Preliminary definitions503

NP class of languages. Since the considered proof systems are designed to work with504

languages in NP we begin with defining this class. Intuitively, a language L belongs to505

NP if for each element prim from the language there is a short witness aux that allows506

to efficiently3 verify that in fact prim ∈ L.507

Definition 1.3.1 (NP class of languages, cf. [Gol01]). We say that a language L belongs508

to a class NP if there exist a polynomial p and a Turing machine M such that for every509

primary input prim ∈ {0, 1}∗, prim ∈ L iff there exists an auxiliary input aux such that510

M accepts the pair (prim, aux ) in time at most p(length(prim)).511

The set of all pairs (prim, aux ) acceptable by M constitutes an NP relation R corre-512

sponding to the language L.513

Non-interactive zero knowledge. A non-interactive zero-knowledge proof system514

NIZK for an NP language L is a tuple of four algorithms NIZK = (KGen,P,V,Sim). NIZK515

for a language L and instance prim ∈ L allows a party, called prover and denoted by P,516

to convince another party, called verifier and denoted by V, that prim ∈ L and nothing517

else.518

Without loss of generality, we focus on zk-proof systems that are universal, that519

is, are able to work with any given NP relation R. To that end, we define a relation520

3Informally we say that an algorithm is efficient if it runs in time polynomial in the size of its inputs.
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generator R that on input 1λ (i.e. the security parameter represented in unary) outputs521

an NP relation R. We assume that the security parameter λ can be easily deducted from522

R.523

We require from a NIZK to have three substantial properties, cf. [Gro06]:524

Completeness that assures that an honest prover, who proves that prim ∈ L succeeds,
i.e. gets his proof accepted by the verifier V. Formally we require that for any λ,
R← R(1λ), (prim, aux ) ∈ R

Pr

[
V(R, crs, prim,P(R, crs, prim, aux ))

∣∣∣∣∣ R← R(1λ);

(crs, td)← KGen(R, 1λ)

]
= 1 .

Computational soundness which states that in case prim 6∈ L the verifier accepts
the proof for prim with negligible probability only. Formally we require that for
any R← R(1λ) and PPT adversary A

Pr

V(R, crs, prim, π)

∣∣∣∣∣∣∣∣∣∣
R← R(1λ);

(crs, td)← KGen(R, 1λ);

(prim, π)← A(R, crs);

prim 6∈ L

 ≤ negl(λ).

Zero knowledge assures that the verifier learns from a proof nothing except the ve-
racity of the proven statement. More precisely we require that there exist a PPT
algorithm Sim and negligible function η(λ) such that for every adversary A and
security parameter λ∣∣∣∣∣∣∣∣∣∣∣∣

Pr

A(R, crs, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

R← R(1λ);

(crs, td)← KGen(R, 1λ);

(prim, aux )← A(R, crs);

(prim, aux ) ∈ R;

π ← Sim(R, crs, td , prim)

−

Pr

A(R, crs, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

R← R(1λ);

(crs, td)← KGen(R, 1λ);

(prim, aux )← A(R, crs);

(prim, aux ) ∈ R;

π ← P(R, crs, prim, aux )



∣∣∣∣∣∣∣∣∣∣∣∣
≤ η(λ).

We say that NIZK is perfectly zero-knowledge if η = 0.525

We note that the existence of the simulator which by using the trapdoor is able to526

make a proof for a false statement (i.e. for prim 6∈ L) makes the whole zk-proof system527
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vulnerable to adversaries that also know the trapdoor. More precisely, an adversary528

who knows a trapdoor td can break the soundness property. This vulnerability comes529

with each CRS-based NIZK (for languages in NP). Thus in the real-life deployment of a530

CRS-based NIZK it has to be enforced that nobody learns the trapdoor.531

A zk-SNARK scheme, denoted ZkSnarkSch, is a special type of NIZK which is equipped532

with two more properties. First, zk-SNARKs are arguments of knowledge, as such they533

have to follow a stronger definition of soundness, called knowledge soundness.534

Knowledge soundness assures that if a prover provided a proof π for a statement
prim acceptable to a verifier, then she knows the corresponding auxiliary input aux .
More precisely, we require that for each R← R(1λ), and malicious PPT prover A
there exists a machine ExtA, called extractor, that given access to randomness r
used by A and its inputs, extracts the auxiliary input aux from A; that is:

Pr

¬(R(prim, aux ))∧
V(R, crs, prim, π)

∣∣∣∣∣∣∣∣∣∣
R← R(1λ);

(crs, td)← KGen(R, 1λ);

(prim, π)← A(R, crs; r);

aux ← ExtA(R, crs; r)

 ≤ negl(λ).

Second, zk-SNARKs are succinct, and so we require that proofs produced by ZkSnarkSch.P535

are short, i.e. sublinear to the size of the primary and auxiliary inputs. Importantly, in536

many modern zk-SNARKs, like [Gro16, MBKM19, Gab19, GWC19, CHM+20] the proof537

size is constant regardless the size of the input.538

1.3.2 Computation representation – arithmetization539

In Zeth the sender shows that the transaction is correct by arguing (in zero knowledge,540

i.e. hiding private inputs) about correctness of evaluation of some predefined predicate.541

This predicate ensures that the soundness of the blockchain system is not violated, i.e. the542

zk-proof is used to prove that a transaction follows the “rules of the system” without543

disclosing its attributes. The proof system that Zeth uses operates on an algebraic544

representation of the “predicate to prove”. Informally, representing the computation as545

a set of algebraic constraints is called arithmetization. One of such representations is546

Quadratic Arithmetic Programs (QAP) [GGPR13], which, following [Gro16], is used in547

Zeth. This representation is considered one of the most efficient for general arithmetic548

circuits.549

Remark 1.3.2. Preprocessing SNARKs such as [Gro16] rely on common reference550

strings with a specific structure. As such, we may use crs and srs (structured refer-551

ence string) interchangeably in the rest of this document.552

QAP (R1CS). Let C be an arithmetic circuit of fan-in 2 over Fp. The number of553

multiplication gates in C is denoted by constNo. Likewise, the number of all wires in C554

is denoted by inpNo.555
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Before we formally introduce the QAP relation RQAP we provide some intuitions556

behind it. First, we observe that the circuit C can be be represented by three matrices557

~A, ~B, ~C all in FconstNo×inpNo+1
p such that the i-th row in matrix ~A (and ~B) denotes left558

(and right) input to the i-th multiplication gate, which is also the k-th input to the559

circuit. That is for a circuit evaluation z ∈ FinpNo+1
p the left input for the i-th gate is560 ∑inpNo

j=0 Aijzj and the right input is
∑inpNo

j=0 Bijzj . Furthermore, entry ~Cik contains the561

output of i-th multiplication gate that is k-th input to the circuit.562

Second, for the sake of efficiency we represent each matrix as a sequence of poly-563

nomials. Each matrix’s column is represented by a polynomial in Fp[X] such that the564

column’s i-th input equals polynomial’s evaluation at ωi – the i-th primitive root of565

unity modulo p. More precisely, we define polynomials:566

• uj(X), for j ∈ {0, . . . , inpNo}, such that uj(ω
i) = ~Aij ;567

• vj(X), for j ∈ {0, . . . , inpNo}, such that vj(ω
i) = ~Bij ;568

• wj(X), for j ∈ {0, . . . , inpNo}, such that wj(ω
i) = ~Cij .569

We consider inputs from 1 to inpNoPrim public (primary input), for some inpNoPrim ≤
inpNo. The rest of the inputs is considered private (auxiliary input). The QAP relation
RQAP is defined as follows:

RQAP =


(prim, aux )

∣∣∣∣∣∣∣∣∣∣∣

a0 = 1; prim = (a1, . . . , ainpNoPrim) ∈ FinpNoPrim
p ;

aux = (ainpNoPrim+1, . . . , ainpNo) ∈ FinpNo−inpNoPrim
p ;

inpNo∑
j=0

ajuj(X) ·
inpNo∑
j=0

ajvj(X) =

inpNo∑
j=0

ajwj(X)


.

Note

Importantly, we note that efficient computation on standard hardware may not
necessarily lead to an efficient QAP representation. As such, a function can be
very efficient to evaluate on a standard computer, but very slow to evaluate in
QAP form.

570

1.4 Decentralized Anonymous Payment schemes (DAP)571

Zeth [RZ19] is a Decentralized Anonymous Payment scheme (DAP) [BSCG+14, Section572

3] defined on top of an Ethereum ledger L. A DAP is a tuple of polynomial-time algo-573

rithms DAP = (Setup, GenAddr, SendTx, VerifyTx, Receive) that manipulate (create,574

spend) data objects called Notes. These objects are bound to a given owner and have a575

value v attribute (see Section 2.1).576

System Setup The algorithm Setup takes the security parameter λ as input and gen-577

erates the public parameters pp. The algorithm Setup is executed by a trusted578
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party. The resulting public parameters pp are published and made available to all579

parties.580

Creating Zeth addresses The algorithm GenAddr takes as input the public parame-581

ters pp and generates a new DAP address object Addr = {pub : Addrpk , priv :582

Addr sk}. More precisely, Addrpk is an object referred to as the “payment ad-583

dress” (Table 1.4), and Addr sk is an object referred to as the “private address”584

(Table 1.5) [ZCa19].585

Transfer notes The algorithm SendTx is used to transfer some public input vin as586

well as the value of a set of input (“old”) Notes into a set of output (“new”)587

Notes as well as some public output value vout . The inputs Notes are marked as588

“consumed” (alternatively, we say that the input Notes are “spent”). SendTx takes589

as inputs the public parameters pp, the input value and the input (“old”) Notes590

to be transferred, as well as the Merkle root and the Merkle authentications paths591

of the commitments to the input Notes, the “spending keys” related to the input592

Notes, the output value to create and the “payment addresses” for the output593

(“new”) Notes. If the joinsplit equation is satisfied, the algorithm returns the new594

Notes and the corresponding Ethereum transaction tx , else it returns ⊥.595

Verifying transactions The algorithm VerifyTx checks the validity of a transaction.596

It takes as inputs the public parameters pp, a transaction and the current ledger597

L and outputs a bit equal 1 iff the transaction is valid, 0 otherwise.598

Receiving notes The algorithm Receive scans the ledger L and retrieves unspent Notes599

paid to a particular user address. It takes as input the recipient address key pair600

{pub : Addrpk , priv : Addr sk} and the current ledger L and outputs the set of601

(unspent) received Notes.602

Note

In the rest of this document, we will refer to a Zeth user UZ as a person, modeled
as an object, holding one Zeth address (object attribute), and thus holding a
private address, Addr sk . We denote by UZ .Addr the Zeth address of UZ derived
from Addr sk , and which allows UZ to be the recipient of payments via Zeth, and
to send funds via Zeth. Importantly, not all Ethereum users are Zeth users, and
vice-versa!

603

Field Description

apk The paying key

pkenc The transmission key

Table 1.4: “Payment address”, Addrpk , of a DAP address
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Field Description

ask The spending key

skenc The receiving key

Table 1.5: “Private address”, Addr sk , of a DAP address

Zeth leverages zk-SNARKs (Section 1.3) and the possibility to deploy smart-contracts604

to specify privacy-preserving state transitions altering the Ethereum state ς (Section 1.2).605

As such, Zeth defines a smart-contract, M̃ixer, that keeps track of the set of ZethNotes606

(Section 2.1) in a committed form, stored in a Merkle tree; and which verifies the va-607

lidity of the state transitions generated by the Zeth users. As such a Zeth DAP is608

entirely determined by M̃ixer, the instance of the mixer smart-contract deployed on the609

Ethereum ledger. State transitions are executed on-chain by calling the Mix function of610

M̃ixer, which implements the algorithm VerifyTx of DAP, and which modifies ς iff the611

transaction is deemed valid.612

Note

We denote by Mixin the inputs taken by the Mix function defined on M̃ixer. Let
zdata be the value of the data field of an Ethereum transaction such that:

zdata = FS(Mix)‖Mixin

Then, we define txMix as being the Ethereum transaction object returned by
SendTx such that:

txMix.to = M̃ixer.Addr ∧ txMix.data = zdata

Importantly, when it is clear from context, we will omit the function selector from
the definition of zdata, and only assume that zdata = Mixin .

613

1.5 Definitions614

1.5.1 Negligible function615

Definition 1.5.1 (Negligible function, [KL14, Definition 3.4]). A function f from N to616

R+ (positive real numbers) is negligible if for every positive polynomial p there exists N617

such that for all integers n > N it holds that f(n) < 1
p(n) .618
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1.5.2 Basic algebra notions619

Definition 1.5.2 (Group, see [Bou03, Section I.4]). A group is given by a tuple (G,⊗),620

where G is a set and ⊗ is a binary operation in G, i.e. ⊗ : G×G→ G, with the following621

properties:622

• (g⊗ h)⊗ k = g⊗ (h⊗ k) (associativity)623

• There exists an element ε ∈ G s.t. for each g ∈ G, g ⊗ ε = ε ⊗ g = g (identity624

element).625

• For each g ∈ G there exist h ∈ G s.t. g⊗ h = h⊗ g = ε (inverse element).626

For simplicity, we may also use the additive notation for groups: ⊗ is denoted as +,
the identity element as 0 and the inverse element of g as −g. Given g ∈ G and x ∈ Z,
we have that:

x · g =


0 if x = 0

g + . . .+ g, (x times) if x > 0

−g + . . .+ (−g), (x times) if x < 0

.

Definition 1.5.3 (Finite Cyclic Group, adapted from [KL14, Sections 7.1.3, 7.3.2]). A627

finite cyclic group is given by a tuple (q,G, g,⊗), called the group description, where G628

represents the set of group elements, g is a generator and q is the order. The generator629

g generates the group; namely, each h ∈ G can be expressed by the generator as h =630

g⊗. . .⊗g. Given a scalar x, we denote by JxK the encoding of x in G: i.e. JxK = g⊗. . .⊗g631

(x times). As consequence, J1K = g.632

For theoretical purposes, we introduce the SetupG algorithm that for a given security633

parameter λ outputs a cyclic group, formally:634

Definition 1.5.4 (Group Setup Algorithm, taken from [KL14, Sections 7.1.3, 7.3.2]).635

A group setup algorithm SetupG is a PPT algorithm which takes as input a security pa-636

rameter 1λ and outputs a group description (q,G, g,⊗), where the binary representation637

of q is given by λ bits and each group element can be represented by gLen(λ) bits. Note638

that gLen is poly(λ).4639

1.5.3 Security assumptions640

Definition 1.5.5 (Discrete Log Problem(DLog), cf. [BS07]). Let G denote a group
(Section 1.5.2) whose order p is prime and written over λ bits. We let logg(h) denote
the discrete logarithm of h in the basis g. We assume G, p are fixed and known to
all parties. We denote the advantage of a PPT adversary A in attacking the discrete
logarithm problem as

AdvdlogG,A = Pr
[
g←$G∗, x←$Fp, x′ ← A(J1K, JxK) : Jx′K = JxK

]
4For simplicity, we may denote gLen(λ) as gLen.
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We say that the DLog is hard in G if and only if AdvdlogG,A(λ) is negligible for any PPT641

adversary A.642

Definition 1.5.6 (One More Discrete Log Problem (om-DLog), cf. [PV05]). Let G
denote a group whose order p is prime and written over λ bits. We let logg(h) denote
the discrete logarithm of h in the basis g. A PPT adversary A solving the om-DLog is
given q + 1 random group elements as well as limited access to a discrete logarithm
oracle ODLogg(q). A is allowed to query this oracle at most q times, thus obtaining
the discrete logarithm of q group elements of his choice with respect to a fixed base g.
Eventually, A must output the q + 1 discrete logarithms. We denote the advantage of a
PPT adversary A in attacking the one more discrete logarithm problem as

Advom-dlog
G,A (λ) = Pr

 g←$G∗, {JriK}i∈[q+1] ←$Gq+1,

{r′i}i∈[q+1] ← A
ODLogg (q)(J1K, {JriK}i∈[q+1]) :

∀i ∈ [q + 1], r′i = logg(JriK)


We say that the om-DLog is hard in G if and only if Advom-dlog

G,A (λ) is negligible for any643

PPT adversary A.644

1.5.4 Symmetric encryption645

Definition 1.5.7 (Symmetric Encryption,[KL14, Definition 3.8]). A symmetric encryp-646

tion scheme Sym is given by a tuple of PPT algorithms (KGen,Enc,Dec) where:647

• KGen, the key generation algorithm, takes a security parameter 1λ and outputs a648

secret key ek ; we assume, without loss of generality, that kLen(λ) = length(ek) ≥ λ.649

Note that kLen(λ) is a polynomial function in λ.5650

• Enc, the encryption algorithm, takes a key ek , a plaintext m ∈ {0, 1}∗ and returns651

a ciphertext ct .652

• Dec, the decryption algorithm, takes a key ek and a ciphertext ct , and returns a653

message m. We assume, without loss of generality, that Dec is deterministic.654

For every security parameter λ, key ek output by KGen(1λ), and message m ∈ {0, 1}∗,655

it holds that Dec(ek ,Enc(ek ,m)) = m (correctness property).656

Let (KGen,Enc,Dec) be a symmetric encryption scheme. If there exists a polynomial657

l such that, for all λ > 0 and key ek output by KGen(1λ), Enc(ek , ·) is only defined for658

messages m ∈ {0, 1}l(λ), then we say that (KGen,Enc,Dec) is a fixed-length symmetric659

encryption scheme with length parameter l(λ). A security notion for Sym follows:660

Definition 1.5.8 (IND-CPA). Let Sym be a symmetric encryption scheme and let A
be an adversary. Consider the IND-CPA game described in Figure 1.2. We define the
IND-CPA advantage of A as follows:

Advind-cpaSym,A (λ) = |2 · Pr[IND-CPA(λ) = 1]− 1|.
5For simplicity, we may denote kLen(λ) as kLen.
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IND-CPA(λ)

ek ← KGen(1λ)

(m0,m1, state)← AOEncek
with length(m0) = length(m1)

b←$ {0, 1}
ct ← Enc(ek ,mb)

b̃← AOEncek
(ct , state)

return b̃ = b

Figure 1.2: IND-CPA game for Sym.

Sym is said to be IND-CPA secure if, for every PPT adversaryA, the advantage Advind-cpaSym,A (λ)661

is a negligible function.662

1.5.5 Asymmetric encryption663

Definition 1.5.9 (Asymmetric encryption, [KL14, Definition 10.1]). An asymmetric664

encryption scheme Asym is given by a tuple of PPT algorithms (KGen,Enc,Dec) where:665

• KGen, the key generation algorithm, takes a security parameter 1λ and returns a666

pair of keys (sk , pk). We refer to the first of these as the private key and the second667

as the public key. We assume for convenience that pk and sk each have length at668

least λ, and that λ can be determined from pk , sk ;669

• Enc, the encryption algorithm, takes a public key pk , a plaintext m, from some670

underlying plaintext space (that may depend on pk) and returns a ciphertext ct ;671

• Dec, the decryption algorithm, takes a private key sk and a ciphertext ct , and672

returns a message m or a special symbol ⊥ denoting decryption failure. We assume,673

without loss of generality, that Dec is deterministic.674

We require that for all (sk , pk) returned by KGen, and every message m in the appropriate675

underlying plaintext space, it holds that Dec(sk ,Enc(pk ,m)) = m (correctness property).676

Secure communication usually requires ciphertext indistinguishability (e.g. IND-CCA2677

[ABR99, Definition 8]). In Zeth, however, the key privacy property IK-CCA [BBDP01]678

is also required – it ensures indistinguishability of the key under which an encryption is679

performed.680

Definition 1.5.10 (IK-CCA). Let Asym = (KGen,Enc,Dec) be an asymmetric encryp-
tion scheme and let A be an adversary. Given the IK-CCA game described in Figure 1.3,
with the condition that A cannot query ODecsk0 or ODecsk1 on the challenge ciphertext
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IK-CCA(λ)

(sk0, pk0), (sk1, pk1)← KGen(1λ)

(m, state)← AO
Decsk0 ,O

Decsk1 (pk0, pk1)

b←$ {0, 1}
ct ← Enc(pk b,m)

b̃← AO
Decsk0 ,O

Decsk1 (ct , state)

return b̃ = b

Figure 1.3: IK-CCA game.

ct6, we define the IK-CCA advantage of A as follows:

Advik-ccaAsym,A(λ) = |2 · Pr[IK-CCA(λ) = 1]− 1|

We say that Asym is IK-CCA secure if for every PPT adversaryA the advantage Advik-ccaAsym,A(λ)681

is a negligible function.682

1.5.6 Block cipher-based compression functions683

Definition 1.5.11. Let kl, il > 1. A block cipher is a map E : {0, 1}kl×{0, 1}il → {0, 1}il684

where, for each key k ∈ {0, 1}kl, the function Ek (·) = E(k , ·) is a permutation on {0, 1}il.685

If E is a block cipher then E−1 is its inverse, that on input (k , y) returns m such that686

Ek (m) = y.687

Let BLK(kl, il) be the set of all block ciphers E : {0, 1}kl×{0, 1}il → {0, 1}il. In order688

to analyse the security properties of block cipher-based cryptographic constructions it689

is common to use a security model denoted the ideal cipher model (ICM). Informally690

speaking, in ICM attackers are allowed to query an oracle simulating a random block691

cipher, but have no information about the oracle’s internal structure. We formalize this692

notion in the following definition:693

Definition 1.5.12 (Ideal Cipher Model [HKT11]). The Ideal Cipher Model (ICM),694

is a security model where all parties are granted access to an ideal cipher E : {0, 1}kl ×695

{0, 1}il → {0, 1}il, a random primitive such that E(k , ·) for k ∈ {0, 1}kl are 2kl independent696

random permutations.697

For fixed kl and il, each party is given access to the oracles OE and OE−1
, simulating698

E and E−1, which can be queried for encryption and decryption a polynomial number699

of times. The encryption oracle takes as input a key, k ∈ {0, 1}kl, and a preimage,700

m ∈ {0, 1}il, and returns a tuple comprising the image, y ∈ {0, 1}il, along with the701

inputs, k and m. If (k ,m) is queried for the first time, the image y is taken uniformly702

6state is some state information that the adversary outputs after the choice of the message to encrypt.
It can be some preprocessed information that can be helpful to win the game
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OE(k ,m)

if (k ,m, ·) /∈ TableO

y←$ {0, 1}il

TableO .append(k ,m, y)

else y ← TableO(k ,m)

return (k ,m, y)

OE−1
(k , y)

if (k , ·, y) /∈ TableO

m ←$ {0, 1}il

TableO .append(k ,m, y)

else m ← TableO(k , y)

return (k ,m, y)

Figure 1.4: Oracles of an ideal block cipher, with TableO being a table of tuples (key,
preimage, image) of queries already answered by the oracle.

at random from {0, 1}il and added to the oracle’s table. Otherwise, the oracle returns703

y associated with query (k ,m) in its table. The decryption oracle is defined similarly704

with the image and key defined as inputs and the preimage chosen randomly, for details705

see Fig. 1.4.706

Definition 1.5.13 (Block cipher-based compression function [BRS02]). A block cipher-
based compression function is a map f such that

f : BLK(kl, il)× {0, 1}a × {0, 1}b → {0, 1}c

where kl, il, a, b, c > 1 and a + b > c. The function f, given m ∈ {0, 1}a × {0, 1}b,707

computes f(E,m) using an E-oracle.708

Remark 1.5.14. We use fE to denote a block cipher-based compression function f709

restricted to a given block cipher E, i.e. fE : {0, 1}a × {0, 1}b → {0, 1}c and fE = f(E, ·),710

for a, b, c as given in the definition above.711

Let f be a compression function based on a block cipher. Fix a constant h0 ∈ {0, 1}c
and an adversary A. We define the advantage in finding a collision in f as

Advcollf,A = Pr

[
E←$BLK(kl, il); ((k ,m), (k ′,m ′))← AOE,OE−1

(fE, h0) :

((k ,m) 6= (k ′,m ′) ∧ fE(k ,m) = fE(k ′,m ′)) ∨ fE(k ,m) = h0

]
.

The previous definition gives credit for finding an (k ,m) such that fE(k ,m) = h0 for712

a fixed h0 ∈ {0, 1}c.713

1.5.7 Hash functions714

Definition 1.5.15 (Hash function, [KL14, Definition 4.9]). A hash function H is a pair715

of algorithms (Setup,H) fulfilling the following properties:716

• Setup is a PPT algorithm which takes as input a security parameter 1λ and outputs717

a key hk . We assume that 1λ is included in hk .718
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• H is (deterministic) polynomial-time algorithm that takes as input a key hk and719

any string x ∈ {0, 1}∗, and outputs a string H(hk , x) = Hhk (x) ∈ {0, 1}hLen , where720

hLen is a polynomial in λ.7721

If for every λ and hk , Hhk is defined only over inputs of length hInpLen(λ) and hInpLen(λ) >722

hLen(λ), then we say that H is a fixed-length hash function with length parameter723

hInpLen. Note that hInpLen(λ) is a polynomial in λ.724

Informally, for a given function f we say that (x, y) is a collision if f(x) = f(y) and725

x 6= y. In the following, we formalize this notion for a hash function H.726

Definition 1.5.16 (Collision Resistance [KL14, Definitions 4.10]). A hash function
H = (Setup,H) is collision resistant if for all PPT adversaries A there exists a negligible
function negl(λ) such that:

AdvcrH,A(λ) = Pr
[
hk ← Setup(1λ), (x, y)← A(hk) : x 6= y ∧ Hhk (x) = Hhk (y)

]
≤ negl(λ) .

HDHI and HDHI2 assumptions727

The Hash Diffie-Helmann Independence (HDHI) assumption states that, given H in H728

and a group description (p,G, g,⊗), for JuK and JvK, with u, v sampled at random, it729

is hard for an attacker to distinguish H(JuK‖JuvK) from a random string of the same730

size.8 This is formalized in Definition 1.5.17, where an attacker can also access an oracle731

OHDHIv that on input x ∈ G returns H(x‖v · x) (queries on JuK are forbidden).9. In other732

words, the HDHI assumption measures the sense in which H is “independent” of the733

underlying Diffie-Hellman problem.734

Definition 1.5.17 (HDHI, [ABR99, Definition 7]). Let H be a hash function, SetupG be
a group generation algorithm and A be an adversary. Consider the HDHI game described
in Figure 1.5. We define the advantage of A in violating the HDHI assumption as:

AdvhdhiH,SetupG,A(λ) = |2 · Pr[HDHI(λ) = 1]− 1|.

Note that the above definition corresponds to [ABR99, Section 3.2.1, Definition 3].735

In the following, we introduce a similar notion denoted as HDHI2 (this is an adapta-736

tion of the ODH2 notion in [ABN10, Section 6]) which will be useful in the IK-CCA737

proof Section 3.5.4.738

Definition 1.5.18 (HDHI2). Let H be a hash function, SetupG a group generation
algorithm and let A be an adversary. Consider the HDHI2 game described in Figure 1.6.
We define the advantage of A in violating the HDHI2 assumption as:

Advhdhi2H,SetupG,A(λ) = |2 · Pr[HDHI2(λ) = 1]− 1|.

7For simplicity, we may denote hLen(λ) as hLen.
8Note that H takes as inputs bit strings, so technically we should make use of an encoding function

from G to {0, 1}gLen but we may omit this step through the document to improve readability.
9In [ABR99, Section 3.2.1] this notion is denoted as adaptive HDH independence assumption. Since

we only introduce the adaptive version we denote it as HDHI.
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HDHI(λ)

hk ← H.Setup(1λ)

(q,G, g,⊗)← SetupG(1λ)

u, v←$ [q]

w0 ← H.Hhk (JuK‖JuvK)
w1←$ {0, 1}hLen

b←$ {0, 1}

b̃← AOHDHIv
(JuK, JvK, wb)

return b̃ = b

Figure 1.5: HDHI game.

HDHI2(λ)

hk ← H.Setup(1λ)

(q,G, g,⊗)← SetupG(1λ)

u, v0, v1←$ [q]

w0,0 ← H.Hhk (JuK‖Juv0K), w0,1 ← H.Hhk (JuK‖Juv1K)
w1,0←$ {0, 1}hLen , w1,1←$ {0, 1}hLen

b←$ {0, 1}

b̃← AOHDHIv0 ,OHDHIv1 (JuK, Jv0K, Jv1K, wb,0, wb,1)

return b̃ = b

Figure 1.6: HDHI2 game.

Lemma 1.5.1. Let A be an adversary with advantage Advhdhi2H,SetupG,A in solving the HDHI2
problem. Then there exists an adversary B such that

Advhdhi2H,SetupG,A(λ) ≤ 2 · AdvhdhiH,SetupG,B(λ).

Proof. We reuse the proof described in [ABN10, Lemma 6.1] by applying minor mod-739

ifications. In fact, HDHI and HDHI2 are, respectively, slightly different from ODH and740

ODH2 notions: in the related security games, if b = 0 the challenges are constructed as741

H(JuK‖JuvK) and {H(JuK‖Juv0K),H(JuK‖Juv1K)} instead of H(JuvK) and {H(Juv0K),H(Juv1K)}.742

By accordingly changing the instances of H in the games G0,G1,G2 of [ABN10, Lemma743

6.1] our lemma follows.744

1.5.8 Pseudo Random Functions745

Informally, a pseudorandom function family PRF = {PRFk : D → C}k∈K is a collection746

of functions such that for a randomly chosen k ∈ K, the function PRFk is indistinguish-747

able from a random function that maps D to C .748

Definition 1.5.19 (PRF Family [KL14, Definition 3.23]). Let F : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ be an efficient, length-preserving, keyed function. We say F is a pseudo ran-
dom function if for all probabilistic polynomial-time distinguishers Dist, there exists a
negligible function negl such that:

AdvprfF ,Dist(λ) =
∣∣∣Pr
[
DistFk(·)(1λ) = 1

]
− Pr

[
Distfλ(·)(1λ) = 1

]∣∣∣ ≤ negl(λ) ,

where k←$K = {0, 1}λ is chosen uniformly at random and fλ is chosen uniformly at749

random from the set of functions mapping λ-bit strings to λ-bit strings.750

1.5.9 Commitment scheme751

Definition 1.5.20 (Non-interactive commitment scheme [BCC+15, Section 2.1]). A752

non-interactive commitment scheme ComSch is defined by the following algorithms:753
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• Setup, is a PPT algorithm that takes a security parameter 1λ and outputs public754

parameters pp.755

• Com, is a polynomial-time algorithm that takes a message m ∈ Bil, a random coin756

r ∈ Bnl and outputs a commitment cm ∈ Bol.757

We assume that pp is implicitly passed to Com.758

Definition 1.5.21 (Computational hiding). We say that a commitment scheme is com-
putationally hiding if for all PPT adversary A, the advantage:∣∣∣∣∣Pr

[
pp ← Setup(1λ), (m0,m1)← A(pp), b←$ {0, 1},

r←$Bnl, cm ← Com(mb; r), b̃← A(cm), b = b̃

]
− 1

2

∣∣∣∣∣
is at most negligible in λ.759

Definition 1.5.22 (Computational binding). We say that a commitment scheme is
computationally binding if for all PPT adversary A, the advantage:

Pr

[
pp← Setup(1λ), (m0, r0,m1, r1)← A(pp)

m0 6= m1 ∧ Com(m0; r0) = Com(m1; r1)

]

is at most negligible in λ.760

Note that the previous definitions can be made statistical if we consider unbounded761

attackers A.762

1.5.10 Digital Signature763

Definition 1.5.23 (Digital signature [KL14, Definition 12.1]). A digital signature scheme764

SigSch is defined by the tuple of functions SigSch = (KGen, Sig,Vf),765

• (sk , vk) ← KGen(1λ). Key Generation randomized algorithm takes as input the766

security parameter 1λ and returns a signing key sk and verifying key vk .767

• σ ← Sig(sk ,m). Given a signing key sk and a message m, the Sig algorithm768

computes and outputs a signature σ.769

• {0, 1} ← Vf(vk ,m, σ). Given a verification key vk , a message m and a signature770

σ, the Vf algorithm returns 1 if σ is a valid signature else 0.771

A signature scheme must satisfy the correctness property (i.e Vf(vk ,m, Sig(sk ,m)) =772

true, where (sk , vk) ← KGen(1λ)) and be unforgeable (i.e. it is intractable to produce a773

signature, without knowing the signing key sk , on a message that has not been signed774

yet). In addition to these properties, certain digital signature schemes have an additional775

property called one-timeness, also defined below.776
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UF-CMA(1λ, t , q)

1 : (sk , vk)← KGen(1λ)

2 : state ← AOSigsk
(vk , ·)

3 : // state = {(mi, σi)}i∈[q] where mi denotes

4 : // the ith query made to OSigsk and

5 : // σi denotes the ith oracle answers

6 : (m∗, σ∗)← A(state)

7 : return Vf(vk ,m∗, σ∗) = 1

8 : ∧m∗ 6∈ {mi}i∈[q]

Figure 1.7: UF-CMA game

SUF-CMA(1λ, t , q)

1 : (sk , vk)← KGen(1λ)

2 : state ← AOSigsk
(vk , ·)

3 : // state = {(mi, σi)}i∈[q] where mi denotes

4 : // the ith query made to OSigsk and

5 : // σi denotes the ith oracle answers

6 : (m∗, σ∗)← A(state)

7 : return Vf(vk ,m∗, σ∗) = 1

8 : ∧ (m∗, σ∗) 6∈ {(mi, σi)}i∈[q]

Figure 1.8: SUF-CMA game

Definition 1.5.24 (Unforgeability (UF-CMA) [KL14, Definition 12.2]). A digital signa-777

ture scheme SigSch is UF-CMA if for any PPT adversary A, the probability that A wins778

the UF-CMA game, depicted in Fig. 1.7, is negligible.779

Definition 1.5.25 (Strong Unforgeability (SUF-CMA)). A digital signature scheme780

SigSch is SUF-CMA if the probability that any PPT adversaryA wins the SUF-CMA game,781

depicted in Fig. 1.8, is negligible.782

Definition 1.5.26 (One-Time (OT) Signature [KL14, Definition 12.6]). A one-time783

signature scheme is a digital signature scheme that uses each key-pair at most once.784

Remark 1.5.27. It is worth noting that users may use one-time signing keys to sign785

multiple messages. In this case no security claims can be made.786

1.5.11 Message Authentication Code787

A message authentication code is a scheme that enables users to tag data for the purpose788

of authenticity and integrity. Formally:789

Definition 1.5.28 (Message Authentication Code,[KL14, Definition 4.1]). A message790

authentication code MAC is given by a tuple of PPT algorithms (KGen,Tag,Vf) where:791

• KGen, the key generation algorithm, takes a security parameter 1λ, and returns a792

key mk ∈ {0, 1}mLen(λ).10793

• Tag, the tag generation algorithm, takes a key mk and a message y ∈ {0, 1}∗ and794

returns a string τ ∈ {0, 1}∗, called tag.795

• Vf, the tag verification algorithm, takes a key mk , a message y ∈ {0, 1}∗ and a tag796

τ ∈ {0, 1}∗. It returns a value in {0, 1} where: 0 denotes that the message was797

rejected (i.e. deemed unauthentic) and 1 denotes that the message was accepted798

(i.e. deemed authentic).799

10For simplicity, we may denote mLen(λ) as mLen.
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SUF-CMA (λ)

mk ← KGen(1λ)

(y, τ)← AOTagmk ,OVfmk

return Vf(mk , y, τ) = 1

Figure 1.9: SUF-CMA game.

We require that for all mk ∈ {0, 1}λ and y ∈ {0, 1}∗ we have Vf(mk , y,Tag(mk , y)) = 1.800

If Tag(mk , ·) is defined only over messages of length l(λ) and Vf(mk , y, τ) outputs 0 for801

every y that is not of length l(λ), then we say that (KGen,Tag,Vf) is a fixed-length MAC802

with length parameter l(λ).803

A security notion for MAC follows:804

Definition 1.5.29 (SUF-CMA,[ABR99, Section 3.2.3]). Let MAC = (KGen,Tag,Vf) be805

a message authentication scheme and let A be an adversary. Consider the SUF-CMA806

game described in Figure 1.9, with the condition that Tag(mk , y) 6= τ . We say that an807

adversary A has forged a tag when it outputs a pair (y, τ) such that Vfk(y, τ) = 1, where808

(y, τ) was not previously obtained via a query to the tag oracle.809

We define the SUF-CMA advantage of A as follows:

Advsuf-cma
MAC,A (λ) = Pr[SUF-CMA(λ) = 1]

We say that MAC is SUF-CMA secure if for every PPT adversary A the advantage810

Advsuf-cma
MAC,A (λ) is a negligible function.811
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Chapter 2812

Zeth protocol813

In this section, we detail the Zeth protocol and provide a set of requirements that need814

to be respected to guarantee the security of the protocol.815

2.1 Zeth Data Types816

We begin by describing, and giving intuition about, the data types (see Section 1.1) used817

in Zeth. We follow some design rationale from ZeroCash [BSCG+14], and Zcash [ZCa19]818

in order to prevent the transaction malleability attack, and the Faerie Gold attack[ZCa19,819

Section 8.4]. We refer the reader to Appendix A for more details.820

In what follows Curve represents a curve with scalar field FrCUR , satisfying the re-821

quirements of Section 3.6. The specification is described in terms of this generic curve,822

with examples and notes relating to specific instances of interest (namely BN-254 and823

BLS12-377, see Chapter 3).824

ZethNoteDType Represents a note in Zeth. This data type consists of the note owner’s825

public address apk , identifier ρ, randomness r and value v .826

Field Description Data type

apk Note owner’s paying key BPRFADDROUTLEN

r Note randomness BRTRAPLEN

v Note value BZVALUELEN

ρ Note identifier BPRFRHOOUTLEN

Table 2.1: ZethNoteDType data type

JSInputDType Denotes a joinsplit input. It comprises the opening of a commitment827

cm which is in the set of leaves in the Merkle tree of M̃ixer (i.e. a ZethNote), its828

address mkaddr and authentication path mkpath on the contract’s Merkle tree as829

well as the spending key ask of the note holder and the note nullifier nf .830
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Field Description Data type

mkpath Merkle authentication path to the commit-
ment corresponding to the ZethNote to spend

(FrCUR)
MKDEPTH

mkaddr Commitment address in the Merkle tree BMKDEPTH

znote Zeth note object ZethNoteDType

cm Zeth note commitment FrCUR

ask Note owner’s spending key BASKLEN

nf Note nullifier BPRFNFOUTLEN

Table 2.2: JSInputDType data type

PrimInputDType Represents the primary inputs used to generate the zk-SNARK proof831

π. prim is a tuple defined as the current Merkle root mkroot of the Merkle tree832

maintained by M̃ixer, the input notes nullifiers nfs = (nf0, . . . ,nfJSIN−1), the833

output notes commitments cms = (cm0, . . . , cmJSOUT−1), the signature hash hsig ,834

the message authentication tags htags = (h0, . . . , hJSIN−1) and the residual bits835

field rsd , which aggregates the former’s fields bits which could not be contained in836

a field element.837

Field Description Data type

mkroot Merkle root of the Merkle tree FrCUR

nfs Indexed set of nullifiers of the “old” notes
to spend (see Section 3.3.1 for definition of
NFFLEN)

((FrCUR)
NFFLEN)

JSIN

cms Indexed set of commitments to the newly cre-
ated notes

(FrCUR)
JSOUT

hsig Signature hash (non-malleability, see Ap-
pendix A and Section 3.3.1 for definition of
HSIGFLEN))

(FrCUR)
HSIGFLEN

htags Indexed set of message authentication tags
(non-malleability, see Appendix A and Sec-
tion 3.3.1 for definition of HFLEN))

((FrCUR)
HFLEN)

JSIN

rsd Residual bits corresponding to unpacked bits
of former fields (see Section 3.3.1 for definition
of RSDFLEN)

(FrCUR)
RSDFLEN

Table 2.3: PrimInputDType data type
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AuxInputDType Represents the auxiliary inputs used to generate the zk-SNARK proof838

π. aux is a tuple defined as joinsplit inputs (i.e. “old outputs to be spent”), the new839

ZethNotes, the joinsplit’s randomness φ as well the public values vin and vout , the840

signature hash hsig and the message authentication tags htags = (h0, . . . , hJSIN−1).841

Field Description Data type

jsins Indexed set of JSIN joinsplit inputs JSInputDTypeJSIN

znotes Indexed set of JSOUT newly created notes ZethNoteDTypeJSOUT

φ The joinsplit randomness (non-malleability,
see Appendix A)

BPHILEN

vin Public input value to the joinsplit BZVALUELEN

vout Public output value to the joinsplit BZVALUELEN

hsig Signature hash (non-malleability, see Ap-
pendix A)

BCRHHSIGOUTLEN

htags Indexed set of message authentication tags
(non-malleability, see Appendix A)

(BPRFPKOUTLEN)
JSIN

Table 2.4: AuxInputDType data type

MixInputDType Represents the set of inputs to the Mix function of M̃ixer. The input of842

the Mix function is a tuple defined as the primary inputs prim, the zk-proof π, the843

ciphertexts of the newly created notes ciphers = (ct0, . . . , ctJSOUT−1), a one-time844

signature σ and the associated verification key vk .845

Field Description Data type

primIn Primary input object associated with the zk-
proof π

PrimInputDType

proof The zk-SNARK associated to the Zeth state-
ment (see Section 2.2)

ZKPDType (see Section 3.6)

otssig The one-time signature used to prevent trans-
action malleability (see Appendix A)

SigOtsDType (see Section 3.4.2)

otsvk The verification key associated with the sig-
nature otssig used to prevent transaction mal-
leability (see Appendix A)

VKOtsDType (see Section 3.4.2)

ciphers Indexed set of ciphertexts of the newly gener-
ated notes

(BENCZETHNOTELEN)
JSOUT

(see Section 3.5)

Table 2.5: MixInputDType data type
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MixEventDType Represents the data emitted as an Ethereum event (Section 1.2.3) dur-846

ing a successful execution of the Mix function of M̃ixer. Clients are required to847

read this data and use it to update their representation of M̃ixer’s state.848

Field Description Data type

mkroot New root of Merkle tree of commitments FrCUR

nfs Nullifiers for input notes consumed (BPRFNFOUTLEN)
JSIN

cms Commitments to the output notes (FrCUR)
JSOUT

ciphers Ciphertexts for the output notes (BENCZETHNOTELEN)
JSOUT

Table 2.6: MixEventDType data type

2.2 Zeth statement849

As explained in [RZ19], the Mix function of M̃ixer verifies the validity of π on the850

given primary inputs in order to determine whether the state transition is valid. As851

such, M̃ixer verifies whether for π, and primary input prim, there exists an auxiliary852

input aux , such that the tuple (prim, aux ) satisfies the NP-relation Rz, consisting of the853

following constraints:854

• For each i ∈ [JSIN]:855

1. aux .jsins[i].znote.apk = PRFaddr
aux .jsins[i].ask (0)856

2. aux .jsins[i].cm = ComSch.Com(aux .jsins[i].znote.apk , aux .jsins[i].znote.ρ, aux .jsins[i].znote.v ;857

aux .jsins[i].znote.r)858

3. aux .jsins[i].nf = PRFnf
aux .jsins[i].ask (aux .jsins[i].znote.ρ)859

4. aux .htags[i] = PRFpk
aux .jsins[i].ask (i, aux .hsig) (non-malleability, see Appendix A)860

5. (aux .jsins[i].znote.v) · (1− e) = 0 is satisfied for the boolean value e set such861

that if aux .jsins[i].znote.v > 0 then e = 1.862

6. The Merkle root mkroot ′ obtained after checking the Merkle authentica-863

tion path aux .jsins[i].mkpath of commitment aux .jsins[i].cm, with MKHASH,864

equals to prim.mkroot if e = 1.865

7. prim.nfs[i]866

=
{

PackFrCUR (aux .jsins[i].nf [k · FIELDCAP:(k + 1) · FIELDCAP])
}
k∈[bPRFNFOUTLEN/FIELDCAPc]867

(see Section 3.3.1 for definition of Pack)868

8. prim.htags[i]869

=
{

PackFrCUR (aux .htags[i][k · FIELDCAP:(k + 1) · FIELDCAP])
}
k∈[bPRFPKOUTLEN/FIELDCAPc]870

(see Section 3.3.1 for definition of Pack)871
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• For each j ∈ [JSOUT]:872

1. aux .znotes[j].ρ = PRFrho
aux .φ(j, aux .hsig) (non-malleability, see Appendix A)873

2. prim.cms[j] = ComSch.Com(aux .znotes[j].apk , aux .znotes[j].ρ, aux .znotes[j].v ;874

aux .znotes[j].r)875

• prim.hsig =
{

PackFrCUR (aux .hsig [k · FIELDCAP:(k + 1) · FIELDCAP])
}
k∈[bCRHHSIGOUTLEN/FIELDCAPc]876

(see Section 3.3.1 for definition of Pack)877

• prim.rsd = Packrsd ({aux .jsins[i].nf }i∈[JSIN] , aux .vin, aux .vout , aux .hsig , {aux .htags[i]}i∈[JSIN])878

(see Section 3.3.1 for definition of Packrsd )879

• Check that the “joinsplit is balanced”, i.e. check that the joinsplit equation holds:1

PackFrCUR (aux .vin) +
∑

i∈[JSIN]

PackFrCUR (aux .jsins[i].znote.v)

=
∑

j∈[JSOUT]

PackFrCUR (aux .znotes[j].v) + PackFrCUR (aux .vout)

2.3 Generating the inputs of the Mix function (Mixin)880

In the following section, we assume that the system is initialized. In other words, we881

assume that a ledger L is available (i.e. an Ethereum network is operated by a set of882

miners), the M̃ixer contract is deployed on L. Likewise, we assume that the public883

parameters ppZkSnarkSch ← ZkSnarkSch.KGen(1λ,Rz) are available to M̃ixer and to all884

parties willing to call the Mix function of M̃ixer. Furthermore, we assume that there885

exists a set of Ethereum and Zeth users, and that the payment address of each Zeth user886

is easily discoverable. In the rest of this section, the set of payment addresses discovered887

by a zeth user UZ is represented as a list attribute UZ .keystore indexed by usernames.888

In order for UZ to transact via Zeth, UZ needs to create an object Mixin of type889

MixInputDType to pass to the Mix function of M̃ixer:890

1. Create an object prim of type PrimInputDType to represent the primary input,891

and an object aux of type AuxInputDType to represent the auxiliary input, where:892

(a) prim.mkroot ∈ Roots, where Roots is the set of all Merkle roots corresponding893

to one of the state of the Merkle tree on M̃ixer containing all the commit-894

ments to the input notes, in aux .jsins, in its set of leaves.895

(b) aux .znotes[j].r ←$BRTRAPLEN, ∀j ∈ [JSOUT], and aux .φ←$BPHILEN
896

1where PackFrCUR (x) outputs the numerical value of x in FrCUR . We rely on the fact that ZVALUELEN <
FIELDCAP to perform this sum.
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(c) The public values (aux .vin, aux .vout) ∈ (BZVALUELEN)
2
, aux .znotes[j].v and897

aux .znotes[j].apk ∀j ∈ [JSOUT] are all set by the sender, UZ , as desired as898

long as they satisfy the joinsplit equation.899

(d) All attributes of the prim and aux objects should be derived as specified in
the statement (see Section 2.2), alongside a signature hash (aux .hsig) that
is generated as the hash of the nullifiers and a one-time signing verification
key (non-malleability, see Appendix A), using the desired signature scheme
SigSchOT-SIG (see Section 3.4):

(skOT-SIG, vkOT-SIG) = SigSchOT-SIG.KGen(1λ) (2.1)

aux .hsig = CRHhsig({aux .jsins[i].nf }i∈[JSIN] , vkOT-SIG) (2.2)

(e) Mixin .primIn ← prim900

Note

If one of the attributes of prim and aux is not correctly generated, then the
proof of computational integrity generated in the next step will be rejected

on M̃ixer, and the state of M̃ixer will not be modified.
901

2. Generate a zk-SNARK proof π to prove, in zero-knowledge, that the relation Rz
902

(Section 2.2) holds on the primary and auxiliary inputs, using the desired zk-903

SNARK scheme ZkSnarkSch (see Section 3.6):904

(a) π ← ZkSnarkSch.P(ppZkSnarkSch, prim, aux )905

(b) Mixin .proof ← π906

3. Encrypt all the aux .znotes using the recipient’s payment address, using the en-907

cryption scheme EncSch (see Section 3.5).908

(a) For all j ∈ [JSOUT], do:

ct j ← EncSch.Enc(aux .znotes[j],UZ .keystore[recipient j ].pub.pkenc)

(b) Mixin .ciphers ← {ct j}j∈[JSOUT]909

4. Generate a signature σOT-SIG on the inputs of the Mix function, in order to prevent910

any malleability attacks (c.f. Appendix A), using the desired signature scheme911

SigSchOT-SIG (see Section 3.4):912

(a) Using the one-time signature keypair generated in Eq. (2.1), do:

dataToBeSigned = SE .Addr‖Mixin .primIn‖Mixin .π‖Mixin .ciphers

σOT-SIG = SigSchOT-SIG.Sig(skOT-SIG,CRHots(dataToBeSigned))

(b) Mixin .otssig ← σOT-SIG913
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(c) Mixin .otsvk ← vkOT-SIG914

Here, SE .Addr represents the address of the Ethereum user SE who must sign the915

transaction (see Section 2.4). In general, this is likely to be owned by the holder916

UZ of the Zeth notes to be spent, but this is not a requirement.917

Remark 2.3.1. Remark 2.5.1 describes a situation in which the proof data Mixin .π
is not available (having been verified by some external mechanism). In such cases,
dataToBeSigned in Item 4a MAY be replaced with:

dataToBeSigned = SE .Addr‖Mixin .primIn‖Mixin .ciphers

This modification, mentioned here for completeness, MUST NOT be used except as de-918

scribed in Remark 2.5.1.919

2.4 Creating an Ethereum transaction txMix to call M̃ixer920

After generating a Mixin object, UZ can generate an object tx raw of type TxRawDType,
such that:

tx raw .to = M̃ixer.Addr ∧ tx raw .data = zdata

Then, an Ethereum user SE can ECDSA sign tx raw , under SE .sk in order to transform921

this object of type TxRawDType into an finalized transaction, i.e. an object txMix of type922

TxDType.923

Finally, the transaction txMix is broadcasted on the Ethereum network and eventually924

gets mined.925

Note

Here, the Ethereum user SE who sends the final transaction, and the Zeth user UZ
may represent the same person or entity, but this is not necessarily the case. It is
perfectly feasible (and in some cases may be desirable) for a Zeth user UZ to create
a Zeth transaction which is later signed by a distinct party SE . In particular, the
only identifying information that appears in plaintext on the ledger will be that
of SE .

926

2.5 Processing txMix927

When a txMix is mined (hence assuming that EthVerifyTx(txMix) returns true), the state928

transition specified by the Mix function of M̃ixer is executed.929

To preserve the soundness of Zeth, and make sure that no UZ is able to create930

value by double spending ZethNotes, various checks need to be satisfied. The function931

ZethVerifyTx is defined as the function that returns true if all the checks are satisfied,932

and false otherwise.933
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If ZethVerifyTx(txMix) returns true, then Mix modifies the “World state” ς to account934

for the spent ZethNotes and the newly generated ones. However, if ZethVerifyTx(txMix)935

returns false, then the state transition ends.936

Note

Even if ZethVerifyTx(txMix) returns false, ς is modified since the Ethereum balances
of the transaction originator is decremented by the sum of DGAS and the gas
consumed by the ZethVerifyTx function, and the balance of the Ethereum account
of the miner gets incremented by the same amount.

937

Thus, Mix proceeds as follows:938

1. Check that all the values of the primary inputs’ (Mixin .primIn) entries are elements
of the scalar field over which the zk-proof is generated:

Mixin .primIn ∈ F∗rCUR

2. Unpack the nullifiers, signature hash and public values (see Section 3.3.1 for the
definitions of the Unpack functions):

nf i = Unpacknf (Mixin .primIn.nfs[i],Mixin .primIn.rsd) ∀i ∈ [JSIN]

vin = decodeN(Unpackvin((),Mixin .primIn.rsd))

vout = decodeN(Unpackvout((),Mixin .primIn.rsd))

hsig = Unpackhsig(Mixin .primIn.hsig ,Mixin .primIn.rsd)

3. Check the validity of the txMix object (ZethVerifyTx):939

(a) Check that Mixin .primIn.hsig is correctly computed, i.e. check that the fol-
lowing equation holds (to prevent transaction malleability, see Appendix A):

hsig = CRHhsig(Mixin .primIn.nfs,Mixin .otsvk)

(b) Check that π is a valid zk-SNARK proof for Mixin .primIn, i.e. check that:

ZkSnarkSch.V(ppZkSnarkSch, π,Mixin .primIn) = true

(c) Check that none of the nullifiers in Mixin .primIn.nfs have already been used,
i.e. check that:

nf i 6∈ Nulls,∀i ∈ [JSIN]

where Nulls is the set of all nullifiers that are “declared” on M̃ixer.940

(d) Check that Mixin .otssig is a valid signature of the Ethereum sender’s address
Addr (see Section 2.4) and the attributes of Mixin , to prevent transaction
malleability (see Appendix A), i.e. check that:

SigSchOT-SIG.Vf(Mixin .otsvk ,m,Mixin .otssig) = true
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where dataToBeSigned = Addr‖Mixin .primIn‖Mixin .π‖Mixin .ciphers,

and m = CRHots(dataToBeSigned)

(e) Check that Mixin .primIn.mkroot corresponds to a valid state of the Merkle

tree held on M̃ixer, i.e. check that:

Mixin .primIn.mkroot ∈ Roots ′

where Roots ′ is the set of all Merkle roots corresponding to one of the states941

of the Merkle tree.942

(f) Check that vin corresponds to the value val of the transaction object, i.e. check
that:

vin = txMix.val

4. If all checks above pass, i.e. if ZethVerifyTx(txMix) returns true, then the following943

additional modifications are made in ς:944

(a) Add the commitments Mixin .primIn.cms to the Merkle tree held on M̃ixer.945

(b) Roots ′ ← Roots ′ ∪
{

mkroot ′
}

, where mkroot ′ is the Merkle root of the Merkle946

tree after insertion of the commitments Mixin .primIn.cms in the Merkle tree.947

(c) Nulls ← Nulls ∪ {nf i}i∈[JSIN], i.e. the nullifiers nfs become “declared”.948

(d) Modify the Ethereum balances according to the public values:949

• ς[SE .Addr ].bal = ς[SE .Addr ].bal − vin950

• ς[SE .Addr ].bal = ς[SE .Addr ].bal + vout951

• M̃ixer.bal = M̃ixer.bal + vin952

• M̃ixer.bal = M̃ixer.bal − vout953

(e) Emit an event (Section 1.2.3) evMixOut of type MixEventDType, contain-954

ing the new root mkroot ′ of the Merkle tree of commitments, the nullifiers955

{nf i}i∈[JSIN], commitments to the newly created ZethNotes Mixin .primIn.cms,956

and the corresponding ciphertexts Mixin .primIn.ciphers.957

Remark 2.5.1. In some deployments, verification of the zk-SNARK proof π may be958

delegated to an external mechanism (in such a way that integrity of the system can959

still be guaranteed), and π may not appear as public data on-chain. For example, where960

multiple Zeth transactions are aggregated by a system such as that described in [Ron20],961

the original zk-SNARK proofs become auxiliary inputs to a “wrapping” SNARK, which962

checks their validity via a single proof verification. A modified version of the Mix function963

receives Mix parameters from a specific contract (known to behave correctly with respect964

to the delegation protocol) without Mixin .π.965

In this case, the value of dataToBeSigned in Item 3d may be replaced by:

dataToBeSigned = Addr‖Mixin .primIn‖Mixin .ciphers,
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and the equivalent change must be made when generating the Mix parameters, as de-966

scribed in Remark 2.3.1. The transaction, as presented to an aggregator, is malleable967

since the Groth16 proofs can be modified in a way that preserves the validity. How-968

ever, once aggregated, the transaction proof data for the transaction does not appear on969

chain (it is an auxiliary input to some externally generated “wrapping” poof). Hence,970

the transaction can only be identified by the remaining public data, which is protected971

by the one-time signature σOT-SIG, and hence non-malleable.972

The external scheme used to verify the zk-SNARK proof must specify the exact re-973

quirements of the contact and how it should be modified, including any further checks974

that must be carried out. Thus, this modification is not part of the core Zeth pro-975

tocol described in this document, but an augmentation forming part of an external976

protocol. However, for completeness, we briefly describe a dispatch entry point in the977

proof-of-concept M̃ixer implementation which supports delegation of proof verification,978

as described above. The dispatch entry point performs the following checks:979

• Check that the M̃ixer has been deployed with the (immutable) address of a trusted980

contract, permitted to call this entry point. Otherwise, abort.981

• Check that the caller msg.sender matches the permitted caller set at deployment982

time, otherwise abort.983

• Perform all checks related to the Mix parameters, except Item 3b, with the modi-984

fication to Item 3d described in this remark.985

After these checks, the state-transition continues as normal.986

The Zeth client implementation is also augmented to include a flag to enable the987

corresponding change described in Remark 2.3.1 (to generate a signature on the modified988

dataToBeSigned). Naturally, the dispatch entry point can only be used with parameters989

generated using this flag (otherwise the signature check will fail).990

Such modifications MUST NOT be implemented except as described by the secure ex-991

ternal scheme for delegating proof verification.992

2.6 Receiving ZethNotes993

In order to confirm the reception of ZethNotes, RZ must listen to the events (Sec-994

tion 1.2.3) of type MixEventDType emitted by the processing of txMix, and try to decrypt995

the ciphertexts using RZ .priv .skenc to see if he is the recipient of a Zeth payment. If996

the decryption is successful (RZ is the recipient of a payment), RZ must verify that the997

ZethNote recovered is the opening of a commitment in the Merkle tree of M̃ixer. If not,998

RZ rejects the (invalid) payment.999

We describe below the steps that RZ needs to carry out for all events evMixOut ∈1000

MixEventDType emitted by M̃ixer, in order to receive payments:1001
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1. Compute the new root mkroot ′ of the Merkle tree of commitments, after adding the1002

new values evMixOut .cms. If this value does not match the new root evMixOut .mkroot1003

emitted by M̃ixer, abort.1004

2. Try to decrypt the ciphertexts:

znj = EncSch.Dec(RZ .priv .skenc, evMixOut .ciphers[j])

3. For each successful decryption, let j be the index of the decrypted ciphertext:1005

(a) Check whether the recovered plaintext znj is a well-formed ZethNote. Abort1006

if it is not well-formed.1007

(b) Check that the recovered ZethNote znj is the opening of the corresponding
commitment evMixOut .cms[j]:

evMixOut .cms[j] = ComSch.Com(znj .apk , znj .ρ, znj .v ; znj .r)

Abort if the note is not a valid opening.1008

(c) Additionally, if sender SZ , and recipient RZ had a contractual agreement,1009

then RZ needs to check that the terms of this agreement are fulfilled by all1010

the recovered ZethNotes, abort otherwise.1011

Note that Steps 1 and 3b are required to ensure that data decrypted by RZ ex-1012

actly matches the data committed to in M̃ixer. In particular, Step 1 requires RZ1013

to maintain or have access to some representation of the Merkle tree of commitments.1014

See Section 4.1.2 for further details.1015

2.7 Security requirements for the primitives1016

We list below the security requirements to instantiate the primitives of the Zeth protocol.1017

• CRHhsig and CRHots MUST be collision resistant functions (see Definition 1.5.16).1018

• PRFaddr,PRFnf ,PRFrho and PRFpk MUST be PRF when keyed by ask and φ, and be1019

collision resistant (see Definition 1.5.16, and Section 1.5.8).1020

• SigSchOT-SIG MUST be UF-CMA (see Definition 1.5.24 and Appendix A.2.3).1021

• ComSch MUST be computationally hiding and binding (see Section 1.5.9).1022

• MKHASH MUST be collision resistant with h0 = 0FrCUR (see Section 1.5.6). 2
1023

• EncSch MUST be IND-CCA2 and IK-CCA (see, respectively, [ABR99, Definition 8]1024

and Definition 1.5.10).1025

• Unpack(Pack(X)) = X and Unpack(Packrsd (X)) = X MUST hold.1026

• decode(encode(X)) = X MUST hold.1027

2This security requirement is equivalent to the one in [ZCa19, Section 5.4.1.3] where finding a preimage
of 0SHA256DLEN must be hard.
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2.7.1 Additional notes1028

Defining hsig1029

The signature hash hsig is a variable used to bind the signature keys to the primary
inputs. We use the same definition of hsig as Zcash to prevent the Faerie Gold attack
and thus

hsig = CRHhsig(nfs, vk) .

As a private transaction is uniquely determined by its nullifiers nfs = (nf0, . . . ,nfJSIN−1),1030

and because of the collision resistance of CRHhsig, a transaction is uniquely determined1031

by hsig (with overwhelming probability). We did not use the randomSeed defined in1032

Zcash however, since this is only necessary to achieve uniqueness of hsig for transactions1033

in transit (i.e. not mined yet) [Hop16]. The uniqueness of hsig is a requirement to1034

prevent the Fairy Gold attack.1035

Security Requirement.1036

• The variable hsig MUST be derived from the nullifiers {nf i}i∈[JSIN] and the signing1037

key vk using a collision resistant function. Doing so, makes sure that hsig is unique1038

for each txMix with overwhelming probability.1039

Defining ρ1040

We define ρ like in Zcash in order to prevent the Faerie Gold attack. A malicious sender
could reuse the same ρ for a given recipient, hence correctly generating a ZethNote
which could become unspendable by the recipient. Making ρ the output of a collision
resistant PRF with random variable φ as key and with txMix’s hsig as input ensures, with
overwhelming probability, the uniqueness of ρ and prevents this attack. Thus,

ρj = PRFrho
φ (j, hsig) .

Message authentication tags hi1041

The message authentication tags are used to bind the signature hash to the input notes
spending keys, to show ownership of the spent notes. Each tag derived from a note
owner’s spending key and the signature hash MUST be unique for each note with over-
whelming probability. We define

hi = PRFpk
ask i

(i, hsig) .
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Chapter 31042

Instantiation of the cryptographic1043

primitives1044

In this chapter, we start by instantiating the cryptographic building blocks used in1045

previous sections to describe the Zeth DAP design. Finally, we proceed by providing1046

security proofs justifying that our instantiation complies with the security requirements1047

listed in previous sections.1048

Note that, in several cases, it is necessary to specify details in terms of concrete1049

properties of the curve Curve and associated scalar field FrCUR . In these cases, we focus1050

on two curves of interest: BN-254 and BLS12-377. We note, however, that other suitable1051

curves could be used.1052

BN-254 [Rk19] has several properties that make it implementation-friendly. Ele-1053

ments of both the base field and scalar field can be represented in ETHWORDLEN bits (the1054

native word size of the EVM), allowing efficient encoding and manipulation of such ele-1055

ments. Moreover, a subset of operations on BN-254 are supported by the EVM through1056

precompiled contracts. These precompiled contracts enable verification of signatures1057

(Section 3.4) and zero-knowledge proofs (Section 3.6), required by this protocol, with1058

minimal gas overhead.1059

BLS12-377 [BCG+20], like BN-254, has the advantage that scalar field elements can1060

be represented within ETHWORDLEN-bit words (although the same is not true of base1061

field elements). However, the EVM provides no native support for BLS12-377, which1062

increases the complexity of the M̃ixer implementation (see Section 2.5 for details of the1063

operations to be performed). An advantage that BLS12-377 does provide, is that is it1064

the “inner” curve of a one-layer chain (as described in [BCG+20, HG20]). Therefore1065

zero-knowledge proofs using BLS12-377 can be efficiently verified by statements in other1066

zero-knowledge proofs using an approporiate “outer” pairing. Support for BLS12-3771067

in Zeth therefore admits several applications (no explicitly covered by this document),1068

such as aggregation of proofs over multiple Zeth transactions (e.g. [Ron20]).1069

Further details related to implementation and optimization are given in Chapter 4.1070
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3.1 Instantiating the PRFs, ComSch and CRHs1071

The functions CRHhsig and CRHots are instantiated with SHA256 [oST15] which we as-1072

sume to be collision resistant. Furthermore, ComSch, PRFpk(x), PRFrho(x), PRFaddr(x),1073

and PRFnf(x) are all instantiated with Blake2’s hash function optimized for 32-bit plat-1074

forms, Blake2s, which we prove in the Weakly Ideal Cipher Model [LMN16] to be from1075

a family of PRF and collision resistant functions. The Weakly Ideal Cipher model as-1076

sumes that Blake2’s underlying block cipher is ideal and has no structural weaknesses1077

(see Appendix D.2). In addition to that, and to ensure that the functions PRFpk(x),1078

PRFrho(x), PRFaddr(x), and PRFnf(x) compute images lying in different domains, we use1079

different message prefixes (or “domain separators”) for the PRFs inputs. This approach1080

ensures that the apk i’s, nf i’s, ρi’s, and hi’s have independent distributions from a PPT1081

adversary point of view.1082

Note

It is important to note that, for this approach to be secure, the hash function
used needs to be secure against chosen-prefix collision attacks [Ste15].

1083

Furthermore, we take:1084

• RTRAPLEN, ASKLEN, PHILEN = BLAKE2sCLEN1085

3.1.1 Blake2 primitive1086

Blake [AHMP08] is a hash family that was presented as a candidate at the SHA3 com-1087

petition. Blake2 is the next iteration of the family which has been further optimized1088

to achieve higher throughput thanks to some optimizations and by being less conserva-1089

tive on its security1. Blake and Blake2 are based on the ChaCha stream cipher [Ber08a]1090

composed with the HAIFA framework [BD07]. ChaCha defined over 20 rounds, as used1091

in Blake2, is deemed secure and a PRF based on today’s cryptanalysis [Pro14, CM16].1092

Blake2 is specified in RFC-7693 [MJS15] and licensed under CC0. Blake2s is an instan-1093

tiation of Blake2 optimized for 32-bit platforms. As such, to reason about the security1094

of Blake2s we prove the security of Blake2.1095

Blake security Blake security has been heavily scrutinized through the SHA3 compe-1096

tition [VNP10, MQZ10, AMP10, AAM12, AMPŠ12, ALM12, HMRS12]. Blake2 has also1097

been thoroughly cryptanalyzed independently [GKN+14, Hao14, EFK15, NA19]. For n-1098

bit long digests/outputs, the hash and compression functions present n/2-bit of collision1099

resistance and n-bit of preimage resistance, immunity to length extension, and indifferen-1100

tiability from a random oracle [ANWOW13]. They have furthermore been demonstrated1101

secure in the Weakly Ideal Cipher Model [LMN16] (WICM, see Appendix D.1.1). More1102

1The authors increased the number of rounds of Blake for the SHA3 competition to be more conserva-
tive on security. They however showed afterwards that this change was not “meaningfully more secure”
and thus reverted it for Blake2 (see [ANWOW13, Section 2.1]).
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particularly, Luykx et al. show that Blake2 is indifferentiable from a random oracle in1103

this model and is a PRF. We use this result in Appendix D.2 to show the collision1104

resistance of Blake2. We also prove that, given that Blake2 is collision resistant and a1105

PRF, Blake2(r‖x) is a computationally binding and computationally hiding commitment1106

scheme for input x and randomness r.1107

Note

We assume that the encryption scheme used in the Blake2 underlying compres-
sion function – which is derived from ChaCha20 – has no exploitable structural
behaviour. More precisely, that this encryption scheme behaves like a weak ideal
cipher. We provide proofs in this model.

1108

3.1.2 Commitment scheme1109

We define our commitment scheme as follows,

ComSch.Setup :
{

1λ s.t λ ∈ N
}
→ B∗

ComSch.Com :
(
BPRFADDROUTLEN × BPRFRHOOUTLEN × BZVALUELEN

)
× BRTRAPLEN → FrCUR

We instantiate the commitment scheme with Blake2s as follows,

pp = ComSch.Setup(1λ) (corresponds to Blake2s’s constant PB and rCUR)

cm = ComSch.Com(m = (apk , ρ, v); r)

= decodeN(Blake2s(r‖apk‖ρ‖v)) (mod rCUR)

Remark 3.1.1. We set the commitment digest length in the parameter block PB [MJS15].1110

Security proof1111

The commitment scheme defined above is computationally hiding and binding in the1112

WICM, see Appendix D.2.4. However, because of the modulo rCUR operation, the scheme1113

is only (FIELDLEN/2)-bit binding.1114

3.1.3 PRFs1115

We show in this section how we instantiate the PRFs with Blake primitives. As a
reminder the PRFs are defined as follows,

PRFaddr : BASKLEN × {0} → BPRFADDROUTLEN

PRFpk :
(
BASKLEN × [JSIN]

)
× BCRHHSIGOUTLEN → BPRFPKOUTLEN

PRFnf : BASKLEN × BPRFRHOOUTLEN → BPRFNFOUTLEN

PRFrho :
(
BPHILEN × [JSOUT]

)
× BCRHHSIGOUTLEN → BPRFRHOOUTLEN
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As we instantiate the PRFs with Blake2s we have,

PRFADDROUTLEN, PRFNFOUTLEN, PRFPKOUTLEN, PRFRHOOUTLEN = BLAKE2sCLEN

To ensure that the PRFs have independent distributions, we first introduce tagging
functions tagx which truncate and prepend with a distinct tag the PRFs key. We have,

tagaddr : BASKLEN → BBLAKE2sCLEN

tagpk : BASKLEN × [JSIN]→ BBLAKE2sCLEN

tagnf : BASKLEN → BBLAKE2sCLEN

tagrho : BPHILEN × [JSOUT]→ BBLAKE2sCLEN

The tagging functions are instantiated as follows,

tagaddr(aux .jsins[i].ask) = tagaddr
ask

= (1)‖(1)d
JSMAX

2 e‖(0, 0)‖truncBLAKE2sCLEN−3−d JSMAX2 e(aux .jsins[i].ask)

tagnf(aux .jsins[i].ask) = tagnf
ask

= (1)‖(1)d
JSMAX

2 e‖(1, 0)‖truncBLAKE2sCLEN−3−d JSMAX2 e(aux .jsins[i].ask)

tagpk(aux .jsins[i].ask , i) = tagpk
ask ,i

= (0)‖padd JSMAX2 e(encodeN(i))‖(0, 0)‖truncBLAKE2sCLEN−3−d JSMAX2 e(aux .jsins[i].ask)

tagrho(aux .φ, j) = tagρask ,j

= (0)‖padd JSMAX2 e(encodeN(j))‖(1, 0)‖truncBLAKE2sCLEN−3−d JSMAX2 e(aux .φ)

where padd JSMAX2 e(encodeN(i)) is the function that pads the binary representation of i by1116

adding 0’s before the most significant bit (e.g. assuming big endian encoding, pad2(encodeN(1)) =1117

01).1118

We now present how the PRFs are instantiated,

PRFaddr
aux .jsins[i].ask (0) = aux .jsins[i].znote.apk

= Blake2s(tagaddr(aux .jsins[i].ask)‖padBLAKE2sCLEN(0))

PRFnf
aux .jsins[i].ask (aux .jsins[i].ρ) = prim.nfs[i]

= Blake2s(tagnf(aux .jsins[i].ask)‖aux .jsins[i].znote.ρ)

PRFpk
aux .jsins[i].ask (i, prim.hsig) = prim.htags[i]

= Blake2s(tagpk(aux .jsins[i].ask , i)‖prim.hsig)

PRFrho
aux .φ(j, prim.hsig) = aux .znotes[j].ρ

= Blake2s(tagrho(aux .φ, j)‖prim.hsig)

Remark 3.1.2. We set the PRFs’ output length in the Blake2s’s parameter block PB.1119

52



Security proof1120

The functions defined above are collision resistant and PRFs in the WICM, see Ap-1121

pendix D.2. Because of the tagging functions, the security parameter of the PRFs be-1122

comes λ = BLAKE2sCLEN/2− JSMAX/4− 3/2.1123

3.1.4 Collision resistant hashes1124

We instantiate in this section the collision resistant hash functions CRHhsig and CRHots

with SHA256. As a consequence, we have,

CRHHSIGOUTLEN = CRHOTSOUTLEN = SHA256DLEN

SHA256 Security SHA-256 (Secure Hash Algorithm 256) is a hash function designed1125

by the National Security Agency (NSA) in 2001. It is based on the Merkle–Damg̊ard1126

structure, the Davies–Meyer compression function construct [BRS02, Function f5 in1127

Figure 3] and the classified SHACAL-2 block cipher.1128

Collision attacks have been thoroughly studied by the research community [SS08,1129

MNS11]. The best attacks at this day, are second-order differential attack by Lamberger1130

et al. [LM11] on the SHA-256 compression function reduced to 46 out of 64 rounds.1131

Many researchers [IS09, AGM+09] have also studied preimage attacks on SHA-2561132

with reduced rounds. Guo et al. [GLRW10] in particular were among the first to use1133

the meet in the middle strategy [AS09] and achieved more efficient ones on 42-step1134

SHA-256. Khovratovich et al. in 2012 [KRS12] have so far presented the best preimage1135

attacks, on 45-round and 52-round SHA-256 as well as a 52-round attack on the SHA-2561136

compression function.1137

Li et al. have published in 2012 [LIS12] a noteworthy paper on converting meet in1138

the middle preimage attack into pseudo collision attack. Using preimage attacks by1139

bicliques, they found pseudo collisions attacks on 52 steps of SHA-256.1140

Claim 1. SHA256 is 128-bit collision resistant.1141

3.2 Instantiating MKHASH1142

In this section we describe the instantiation of MKHASH with a compression function1143

based on MIMC [AGR+16]. We firstly show how the compression function is constructed,1144

and prove that this instantiation complies with the security requirements mentioned1145

in Section 2.71146

3.2.1 MIMC Encryption1147

MIMC is a block cipher with a simple design, consisting of a number of rounds (denoted1148

rounds). During the i-th round, the message m is mixed with the encryption key k and a1149

randomly chosen constant c[i], and a permutation function is applied to generate a new1150

value of m. The permutation function consists of exponentiation with a carefully chosen1151
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exponent e (see Section 3.2.1). Note that rounds depends on the desired security level1152

λ. We denote the encryption function by MIMC-Encrypt and illustrate it in Fig. 3.1.1153

MIMC-Encrypt(k ,m, c, e, rounds)

1 : foreach i ∈ [rounds] :

2 : m ← (k OP c[i] OP m)
e

3 : return (m OP k)

Figure 3.1: MIMC Encryption function.

MIMC-Encrypt can be defined on both binary and prime fields, and as such the OP1154

operation corresponds to either ⊕ or + (mod p) [AGR+16, GRR+16]. For general prime1155

p (resp. positive integer n), we denote by MIMCp (resp. MIMC2n) the MIMC-Encrypt1156

function defined over Fp (resp. F2n).1157

Security parameters and analysis1158

In this document, we only consider MIMC defined over prime fields (in particular, the1159

field FrCUR over which ZkSnarkSch operates).1160

Since block ciphers are usually defined over the product space of keys and messages,
we consider the variables c, rounds and e as fixed. We thereby consider an instantiation
of MIMC with signature

MIMCrCUR : FrCUR × FrCUR → FrCUR

In the sections below, and as in [AGR+16], we will consider exponents of the form
e = 2t−1 and e = 2t+ 1 where gcd(e, rCUR−1) = 1. We note that the term cancellation
happening with exponents of the form e = 2t + 1 does not immediatelly translate to
the context where MIMC is carried out over prime fields of large odd characteristic. In
fact, in the case of FrCUR , where rCUR >

(
e
be/2c

)
, polynomials (x+ y)e are not sparse. This

comes from the Binomial Theorem

(x+ y)e =
e∑
i=0

(
e

i

)
xiye−i

and the observation that if
(

e
i

)
< rCUR then

(
e
i

)
mod rCUR =

(
e
i

)
, hence ensuring that all1161

the polynomial coefficients are greater than 0, and that the polynomial is dense.1162

To achieve a security of λ, we require that rounds ≥ λ loge(2). Importantly, since we1163

use MIMC over prime fields FrCUR which are large (where rCUR is the prime characteristic1164

of the scalar field of an elliptic curve group, such that dlog2(rCUR)e > λ2), then, picking1165

rounds =
⌈
log2 rCUR
log2 e

⌉
> λ loge(2) provides a margin of safety on the number of rounds1166

selected to instantiate MIMC with desired security level λ.1167

2Longer elements are needed in Elliptic Curve Cryptography (ECC) to resist algebraic attacks such
as Number Field Sieve (NFS)-based attacks on discrete logs [Gor93] for instance
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We refer to the MIMC paper [AGR+16, Section 4.2 and 5.1] and to Appendix F for1168

more details on the security analysis and attacks on the scheme in the different settings.1169

Note that MIMCrCUR does not suffer from inversion subfield attacks as there are no proper1170

subfields of FrCUR .1171

3.2.2 MIMC-based compression function1172

There exist two main techniques to construct a hash function from a block-cipher (or1173

permutation): sponge functions [BDPVA07] and iterated compression functions [BRS02].1174

A Merkle tree is a binary tree of values of fixed size, where the values in each “layer”1175

are generated by hashing pairs of values from the previous “layer”. That is, we require a1176

compression function MKHASH, which we construct via the Miyaguchi-Preneel scheme.1177

(Miyaguchi-Preneel is more secure [BRS02, f5 function] than the more flexible Davies-1178

Meyer construct [GFBR06, Section 3], but this flexibility is not required in our case).1179

Miyaguchi-Preneel compression construct1180

Miyaguchi-Preneel (MP) [BRS02, f3 function] is a general scheme for constructing com-1181

pression functions from block ciphers (see Section 1.5.6). Given a block cipher E, the1182

corresponding compression function by fMP
E is given in Fig. 3.2. The original construc-1183

tion is defined over binary fields, however Zeth operates over prime fields. Hence, in the1184

general discussion here we replace the bitwise addition operator ⊕ by modular addition1185

in FrCUR (see [Har19]).1186

We denote by MIMC-MP the compression function defined by the application of1187

the Miyaguchi-Preneel construct over MIMC. Similarly, for general prime p we denote1188

by MIMC-MPp (see Fig. 3.3) the compression function defined by application of the1189

Miyaguchi-Preneel construct over MIMCp.1190

fMP
E (k ,m)

1 : res← Ek (m)

2 : return (res+ m + k) (mod rCUR)

Figure 3.2: MP construct in FrCUR .

MIMC-MPrCUR(k ,m)

1 : res← MIMCrCUR(k ,m)

2 : return (res+ k + m) (mod rCUR)

Figure 3.3: MIMC-MPrCUR construction.

3.2.3 An efficient instantiation of MIMC primitives1191

To select appropriate instances of MIMCrCUR and MIMC-MPrCUR , we consider the cost1192

(in terms of gas consumption and prover efficiency). For given e and rounds, the final1193

definition of MIMC-MPrCUR is given in Fig. 3.4 and Fig. 3.5.1194

Remark 3.2.1. Note that Keccak256 is the 256-bit digest instance of the Keccak family1195

that won the NIST SHA-3 competition [GJMG11]. It is supported by the EVMvia an1196

opcode (see [W+, Appendix G]), making it convenient for use in smart contracts.1197
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MIMCrCUR(k ,m)

1 : c← InitRoundConstants()

2 : foreach i ∈ [rounds] :

3 : m ← (k + c[i] + m)
e

(mod rCUR)

4 : return (m + k) (mod rCUR)

InitRoundConstants()

iv ← Keccak256(“clearmatics mt seed”)

c[0]← 0

c[1]← Keccak256(iv)

foreach i ∈ {2, . . . , rounds} :

c[i]← Keccak256(c[i− 1])

return c = (c[0], . . . , c[rounds − 1])

Figure 3.4: MIMCrCUR full construction

MIMC-MPrCUR(k ,m)

return MIMCrCUR(k ,m) + m + k (mod rCUR)

Figure 3.5: MIMC-MPrCUR full construction

Remark 3.2.2. To increase the security of the MKHASH, different round constants for1198

each level of the Merkle tree could be used.1199

We define MKHASH to be MIMC-MP over FrCUR . Thereby, for input values m0 and
m1, MKHASH : FrCUR × FrCUR → FrCUR is defined by

MKHASH(m0,m1) = MIMC-MPrCUR(m0,m1) (3.1)

For specific values of rCUR (such as rBN for BN-254 or rBLS for BLS12-377), it remains1200

to select concrete values of e and rounds, where rounds = d log2 rCURlog2 e e). These values1201

influence the number of constraints in the arithmetic circuit (see Section 2.2 for details of1202

the statement) and the gas cost of Merkle tree operations on the contract (see Section 2.51203

for details of the specific operations).1204

In the arithmetic circuit, an invocation of MIMC-MP requires rounds · mults con-1205

straints, where mults is the number of multiplications required for exponentiation. For1206

exponents of the form e = 2t−1, we have mults = 2 ·t−2, (using the square-and-multiply1207

algorithm [MVOV96]), and for e = 2t + 1 we have mults = t+ 1. Thus we expect that1208

exponents of the latter form are more optimal. The implementation in the contract1209

performs a very similar set of arithmetic operations (exponentiation in the field through1210

a series of multiplications and modulo reductions), and so the cost is dominated by the1211

same number rounds ·mults as for the circuit. Hence, values of e and rounds that are1212

optimal for the circuit will also result in gas-efficient implementations in the contract.1213

For several concrete values of e, the number of rounds required to attain the desired1214

security level, along with the number of constraints, are shown in Table 3.1.1215

For the case of BN-254 we set e = 17 with rounds = 65, to achieve a 254-bit security1216

level. For BLS12-377 we set e = 17 with rounds = 62, to achieve 253-bit security. These1217

values are chosen such that they satisfy the requirement that gcd(e, rCUR − 1) = 1, and1218

give a balance between the number of constraints in the arithmetic circuit and the gas1219

cost of hashing on the contract.1220
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e
BN-254 BLS12-377

rounds constraints rounds constraints

5 110 331
7 91 365

17 65 316 62 311
31 52 417 51 409

127 37 445 37 445
257 32 289 32 289
511 29 465

2047 24 481 23 461
8191 20 481 20 481

32676 17 477
65537 16 273 16 273

131071 15 481 15 481
524287 14 505 14 505

1048577 13 274 13 274
2097151 13 521

Table 3.1: Arithmetic constraints required to represent MIMC-MP as an R1CS
program, for different exponents e and curves. Grey (resp. white) lines represent

exponents of shape 2t + 1 (resp. 2t − 1). Missing entries where gcd(e, rCUR − 1) 6= 1
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3.2.4 Security requirements satisfaction1221

After presenting the state of the art of MiMC cryptanalysis, we present the security1222

proof of MIMC-MP collision resistance.1223

Cryptanalysis of MIMC block cipher and primitives1224

MIMC’s security is increasingly being analysed since the primitive has gained traction1225

in zero-knowledge and cryptocurrency communities for its succinct algebraic constraint1226

representation. As of today, we do not know of any attacks breaking MIMC on prime1227

fields on full rounds.1228

The first attack on MIMC was an interpolation attack [LP19] which targets a reduced-1229

round version for a scenario in which the attacker has only limited memory. An attack1230

on Feistel-based MIMC [Bon19] was discovered shortly after, by using generic properties1231

of the used Feistel construction (instead of exploiting properties of the primitive itself).1232

Additionally, [ACG+19] proposes an attack based on Gröbner basis. The authors state1233

that by introducing a new intermediate variable in each round, the resulting multivariate1234

system of equations is a Gröbner basis. As such, the first step of a Gröbner basis attack1235

can be obtained for free. However, the following steps of the attack are so computation-1236

ally demanding that the attack becomes infeasible in practice. A recent work [EGL+20]1237

targets MIMC on binary fields, and achieves a full-round break of the scheme. While,1238

the attack presented does not apply to prime fields, the authors note that it “can be1239

generalized to include ciphers over Fp”, and that only the lack of efficient distinguishers1240

over prime fields precludes this. Another attack from Beyne et al [BCD+20] uses a low1241

complexity distinguisher against full MIMC permutation leading to a practical collision1242

attack on reduced round sponge-based MIMC hash defined with security of 128 bits.1243

Security proof of MIMC-MP collision resistance1244

We now prove that this compression scheme satisfies all the security requirements listed1245

in Section 2.7. To do so, we first assume that the round constants are pseudo-random,1246

i.e. that Keccak256 is a PRF.1247

Lemma 3.2.1. Keccak256 is a PRF with λ = 128.1248

The security of MIMC-MP derives from a more general result, i.e. from modelling1249

MIMC as an ideal cipher (see Definition 1.5.12). More specifically, we show a security1250

result for the MP construction on FrCUR by proving that, in the Ideal Cipher Model,1251

the collision resistance advantage of any adversary is bounded by q(q+1)
rCUR

, where q is the1252

number of different queries that the attacker makes to the oracle. This means that,1253

assuming a maximum q number of possible encryption/decryption queries, parameter1254

rCUR can be chosen to make the advantage small as needed and fMP
E considered collision1255

resistant. Similar result applies to the 2n case.1256

The instance of MIMC we use is modelled as an ideal cipher defined on field elements,1257

for this reason we consider a variant of the ICM model where the keys, inputs and outputs1258
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are field elements in FrCUR and the block cipher scheme, with key k , correspond to a family1259

of rCUR independent random permutations fk : FrCUR × FrCUR → FrCUR .1260

In the proof, without loss of generality, we assume the following conventions for an1261

adversary A:1262

• the adversary asks distinct queries: i.e. if A asks a query OE(k ,m) and this returns1263

y, then A does not ask a subsequent query of OE(k ,m) or OE−1
(k , y), and inversely;1264

• the adversary necessarily obtained the candidate collision from the oracle. This1265

property follows suite from modelling MIMC as an ideal cipher.1266

Lemma 3.2.2. Let fMP
E be the MP compression function built on an ideal block-cipher1267

E on FrCUR, the probability for an adversary A to find a collision is not greater than1268

q(q + 1)/rCUR where q is a (positive) number of distinct oracle queries.1269

The following proof has been adapted from [BRS02, Lemma 3.3]3.1270

Proof. Fix h0 ∈ FrCUR . Let A be an adversary attacking the compression function fMP
E .1271

Assume that A asks the oracles OE and OE−1
a total of distinct q queries. Let us1272

denote the result of the q queries and output of the attacker (candidate collision) as1273

((k1,m1, y1), . . . , (kq,mq, yq), out). If A is successful it means that it outputs (k ,m),1274

(k ′,m ′) such that either (k ,m) 6= (k ′,m ′) and fMP
E (k ,m) = fMP

E (k ′,m ′) or fMP
E (k ,m) =1275

h0. By the definition of fMP
E , we have that Ek (m) + m + k = Ek ′(m

′) + m ′ + k ′ for1276

the first case, or Ek (m) + m + k = h0 for the second. So either there are distinct1277

r, s ∈ [1, . . . , q] such that (kr,mr, yr) = (k ,m,Ek (m)) and (ks,ms, ys) = (k ′,m ′,Ek ′(m
′))1278

and Ekr(mr)+mr+kr = Eks(ms)+ms+ks or else there is an r ∈ [1, . . . , q] s.t. (kr,mr, yr) =1279

(k ,m, h0) and Ekr(mr) + mr + kr = h0. We show that this event is unlikely.1280

In fact, for each i ∈ [1, . . . , q], let Ci be the event that either yi + mi + ki = h0 or1281

does exist j ∈ [1, . . . , i − 1] s.t. yi + mi + ki = yj + mj + kj . When carrying out the1282

simulation yi or mi was randomly selected from a set of at least rCUR − (i− 1) elements,1283

so Pr[Ci] ≤ i/(rCUR − i). This means that for the collision advantage of A, Advcoll
fMP
E ,A it1284

holds that Advcoll
fMP
E ,A ≤ Pr[C1 ∨ · · · ∨ Cq] ≤

∑q
i=1 Pr[Ci]. For q ≤ rCUR

2 this probability is1285

bounded by l · q(q+1)
rCUR

. However, we allow only a polynomial number of queries, thus for1286

q = poly(λ) this probability becomes poly(λ)
rCUR

, where rCUR ≈ 2λ.1287

3It states the collision resistance of a set of compression functions f1, , . . . , , f12, denoted as group-
1 compression functions and showed in [BRS02, Figure 3]. As mentioned above, Miyaguchi-Preneel
corresponds to f3 of that group. Since the proof of [BRS02, Lemma 3.3] shows collision resistance of f1,
we slightly modified it to work for f3.
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Note

Lemma 3.2.2 is applicable to our case by the strong assumption of MIMCrCUR
being an ideal cipher. In other words, the proof does not take into account any
structural weakness or knowledge that an attacker is aware of. Any such additional
information could make Lemma 3.2.2 invalid, and consequently could be used to
break the collision resistance.

1288

Remark 3.2.3. Note that from Lemma 3.2.2 follows that the collision resistance security1289

of the Zeth Merkle tree is log2(rCUR/2) (around 127 bits for rCUR = rBN or rBLS).1290

Note

MIMC has not received as much cryptanalytic scrutiny as other “older” and more
established hash functions. This is important to note since, for these type of
primitives which are not provably secure, the amount of attacks received by a
scheme is a great indicator of its security and robustness. A natural alternative
to MIMC here consists in using Pedersen hash which is provably collision resistant
under the discrete-logarithm assumption.

1291

3.3 Zeth statement after primitive instantiation1292

After instantiating the various primitives and providing security proofs to justify that1293

they comply with the security requirements listed in previous sections, Rz now becomes:1294

• For each i ∈ [JSIN]:1295

1. aux .jsins[i].znote.apk = Blake2s(tagaddr
ask ‖padBLAKE2sCLEN(0))1296

with tagaddr
ask defined in Section 3.1.31297

2. aux .jsins[i].nf = Blake2s(tagnf
ask‖aux .jsins[i].znote.ρ)1298

with tagnf
ask defined in Section 3.1.31299

3. aux .jsins[i].cm = Blake2s(aux .jsins[i].znote.r‖m)1300

with m = aux .jsins[i].znote.apk‖aux .jsins[i].znote.ρ‖aux .jsins[i].znote.v1301

4. aux .htags[i] = Blake2s(tagpk
ask ,i‖prim.hsig) (malleability fix, see Appendix A)1302

with tagpk
ask ,i defined in Section 3.1.31303

5. (aux .jsins[i].znote.v) · (1− e) = 0 is satisfied for the boolean value e set such1304

that if aux .jsins[i].znote.v > 0 then e = 1.1305

6. The Merkle root mkroot ′ used to check the Merkle authentication path aux .jsins[i].mkpath1306

of commitment aux .jsins[i].cm, with MIMC-MPrCUR , equals prim.mkroot if1307

e = 1.1308

7. prim.nfs[i]1309

=
{

PackFrCUR (aux .jsins[i].nf [k · FIELDCAP:(k + 1) · FIELDCAP])
}
k∈[bPRFNFOUTLEN/FIELDCAPc]1310
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8. prim.htags[i]1311

=
{

PackFrCUR (aux .htags[i][k · FIELDCAP:(k + 1) · FIELDCAP])
}
k∈[bPRFPKOUTLEN/FIELDCAPc]1312

• For each j ∈ [JSOUT]:1313

1. aux .znotes[j].ρ = Blake2s(tagρask ,j ‖prim.hsig) (malleability fix, see Appendix A)1314

with tagρask ,j defined in Section 3.1.31315

2. prim.cms[j] = Blake2s(aux .znotes[j].r‖m)1316

with m = aux .znotes[j].apk‖aux .znotes[j].ρ‖aux .znotes[j].v1317

• prim.hsig =
{

PackFrCUR (aux .hsig [k · FIELDCAP:(k + 1) · FIELDCAP])
}
k∈[bCRHHSIGOUTLEN/FIELDCAPc]1318

• prim.rsd = Packrsd ({aux .jsins[i].nf }i∈[JSIN] , aux .vin, aux .vout , aux .hsig , {aux .htags[i]}i∈[JSIN])1319

• Check that the “joinsplit is balanced”, i.e. check that the joinsplit equation holds:

PackFrCUR (aux .vin) +
∑

i∈[JSIN]

PackFrCUR (aux .jsins[i].znote.v)

=
∑

j∈[JSOUT]

PackFrCUR (aux .znotes[j].v) + PackFrCUR (aux .vout)

Remark 3.3.1. For higher security, we could use Blake2b with 32-byte output instead1320

of SHA256. In fact, since a precompiled contract computing the Blake2 compression1321

function [MJS15] has been added to the Istanbul release of Ethereum (EIP 152 [THH15]),1322

it could be possible to write a small wrapper on the smart contracts, in order to hash1323

with Blake2b with any parameter.1324

3.3.1 Instantiating the packing functions1325

As we consider SNARKs based on arithmetic circuits defined over a prime field, all1326

variables in the constraint system are interpreted as field elements. Nevertheless, as1327

illustrated in Section 2.2, part of the statement consists of functions whose co-domains1328

are sets of binary strings (which may be longer than the bit representation of elements of1329

the finite field). While a bit (i.e. {0, 1}) is an element of Fp (p prime), it is important to1330

minimize the number of gates in the arithmetic circuit (for proof generation efficiency),1331

and to minimize the number of input wires (to improve verification time). This can be1332

done by representing fragments of binary strings as the base 2 decomposition of field1333

elements, thereby “packing” binary strings into multiple elements. Converting binary1334

strings into field elements requires the addition of some arithmetic gates (extending1335

the statement to be proven), but reduces the number of primary inputs (reducing the1336

complexity of the SNARK verification carried out on-chain). The cost of Groth16 zk-1337

SNARK [Gro16] proof verification is linear in the number of primary inputs, since each1338

input acts as a scalar in a costly scalar multiplication of a curve point in G1. Hence,1339

while packing slightly increases the prover cost – by adding constraints to the circuit –1340

it simplifies the verifier’s work.1341
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In this section, we detail the method by which we encode (resp. decode) a set of1342

binary strings to (resp. from) sets of field elements. In the rest of this section, the notion1343

of packing policy refers to the set of packing and unpacking functions.1344

The set of primary inputs is composed of the input nullifiers, the output commit-
ments, the public values (see [RZ19, Section 3.4.3]) along with the signature hash and
the authentication tags for security (malleability fix, see Appendix A). The complete
description of the public inputs is represented in Eq. (3.2).

({prim.nf i}i∈[JSIN] , {prim.cms[j]}j∈[JSOUT] , vin, vout , hsig , {prim.htags[i]}i∈[JSIN]) (3.2)

The primary inputs that consist of binary strings are: the nullifiers nfs, the public1345

values vin and vout , the signature hash hsig and the authentication tags htags.1346

For a binary string x, let αx = dlength(x)/FIELDCAPe be the number of field elements1347

required to completely encode x and let βx = blength(x)/FIELDCAPc be the number of1348

field elements whose capacity is fully used. Let γx = length(x) (mod FIELDCAP) be the1349

number of “residual” bits remaining after fully using βx field elements.1350

Example 3.3.2. Consider binary strings A ∈ {0, 1}7 of length 7, to be encoded over the1351

field F41. This field has a capacity of 5 bits, and therefore αA = 2, βA = 1, and γA = 2.1352

That is, A can be represented as 2 field elements, or as 1 field element with 2 “residual”1353

bits.1354

Consider A = (1111011). Fig. 3.6 illustrates how A can be packed as field elements.1355

Note that the 2 residual bits are taken from the “beginning” of the bit string, that is,1356

the highest order bits.1357

Figure 3.6: Packing of string A (see Example 3.3.2)

We now consider strategies to pack all primary inputs that are binary strings. A naive1358

approach is to encode each binary string x as αx field elements. In general, this results1359

in significant waste (and consequently more field elements than necessary), especially1360

when the number of residual bits is small compared to FIELDCAP (see Fig. 3.7). An1361

alternative strategy could be to concatenate all binary strings into a single string y and1362

pack this string into αy field elements. While this approach minimizes the set of unused1363

bits, each unpack operation would require different shift and mask operations over 2 or1364

3 field elements. This significantly increases the complexity of the unpacking operation1365

that must be performed on-chain, resulting in a higher gas cost (due to extra logic) or1366

more contract code (if each unpack operation is hard-coded).1367
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The Zeth protocol requires that each binary string variable x is packed into βx field
elements, and the residual bits from all binary strings, along with the public values
vin and vout , are aggregated into a variable rsd . Let RSDBLEN be the total number of
residual bits, and RSDFLEN be the number of field elements required to represent rsd .
We assume that ZVALUELEN < FIELDCAP, and define the notation γv = ZVALUELEN for
the bit lengths of public values vin and vout . Thus RSDBLEN is given by

RSDBLEN = γhsig + 2 · γv + JSIN · (γnf + γh)

and the lengths, in field elements, of each of the correponding public inputs are

NFFLEN = βnf

HSIGFLEN = βhsig

HFLEN = βh

RSDFLEN = dRSDBLEN/FIELDCAPe

Figure 3.7: Packing of multiple strings. Observe that, by carefully arranging the bits of
the input strings, it is possible to output fewer field elements

The residual bits rsd are formatted as follows:

h̃sig‖ñfs‖h̃tags‖vin‖vout

where h̃sig , ñfs, h̃tags are, respectively, the γhsig , γnf , γh bits.1368

Note that the public values are packed into the “last”, or lowest order, 2 · γv bits of1369

the resulting field element(s). In this way, their unpack functions are independent of the1370

values JSIN and JSOUT and of the number of residual bits required for each bit string1371

(and consequently, independent of the finite field used).1372

To format the unpacked primary inputs into field elements, we define the follow-
ing functions. Given a bit string of length less than FIELDCAP, the algorithm Pack
(see Fig. 3.8) returns a field element. Given the nullifiers, public values and authentica-
tion tags, the algorithm Packrsd (see Fig. 3.9) outputs the residual bits. Given a set of
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PackFrCUR (x)

out← 0FrCUR
;

for i ∈ [length(x)] do :

if x[i] = 1 do :

out← out+FrCUR
2length(x)−1−i

return out;

Figure 3.8: Algorithm to pack bits
into a field element.

Packrsd (nfs, vin, vout , hsig , htags)

out← []; r ← ε;

r ← vout ;

r ← vin‖r;
for i ∈ [JSIN] do :

r ← htags[i][βhtags[i] · FIELDCAP:]‖r;
for i ∈ [JSIN] do :

r ← nfs[i][βnfs[i] · FIELDCAP:]‖r;
r ← hsig [βhsig · FIELDCAP:]‖r;
for i ∈ [dlength(r)/FIELDCAPe] do :

out[i]← PackFrBN
(r[i · FIELDCAP:(i+ 1) · FIELDCAP]);

return out;

Figure 3.9: Algorithm to pack residual bits.

packed field elements and the residual bits, the algorithm Unpack returns the variables
reassembled as binary strings. In particular, we have that Unpacknf (prim.nfs, rsd) =
{aux .jsins[i].nf }i∈[JSIN].

Pack : B≤FIELDCAP → FrCUR

Packrsd : (BPRFNFOUTLEN)
JSIN × (BZVALUELEN)

2 × BCRHHSIGOUTLEN × (BPRFPKOUTLEN)
JSIN → (FrCUR)

RSDFLEN

Unpack : F∗rCUR × (FrCUR)
RSDFLEN → B∗

The Unpack functions for nullifiers, public values and signature hash are represented
as follows.

Unpackhsig : (FrCUR)
HSIGFLEN × (FrCUR)

RSDFLEN → BCRHHSIGOUTLEN

Unpacknf : (FrCUR)
NFFLEN × (FrCUR)

RSDFLEN → BPRFNFOUTLEN

Unpackvin : F0
rCUR × (FrCUR)

RSDFLEN → BZVALUELEN

Unpackvout : F0
rCUR × (FrCUR)

RSDFLEN → BZVALUELEN

Packing Policy Security1373

Proposition 3.3.1 (Packing security). For a binary string x, it holds that Unpack(Pack(x)) =1374

x and Unpack(Packrsd (x)) = x.1375

Packing Policy Example1376

In the case where JSIN = JSOUT = 2, the BN-254 is being used (in which field elements
hold FIELDCAPBN bits) and all PRFs and CRHhsig output bit-strings of length 256, the
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unpacked primary inputs are 2167-bit long. The packing parameters are therefore:

RSDBLEN = 5× 3 + 64 + 64 = 143

NFFLEN = HSIGFLEN = HFLEN = RSDFLEN = 1

The packed primary inputs are 2277 bits long, corresponding to a small space overhead
of ≈ 5% unused bits. Moreover, the 143-bit residual bits can be packed into a single
field element. As such, the primary inputs are encoded as 9 field elements. Finally, the
residual bits are formatted as follows,

padding︸ ︷︷ ︸
113 bits

‖ hsig︸︷︷︸
3 bits

‖ nf1︸︷︷︸
3 bits

‖ nf0︸︷︷︸
3 bits

‖ h1︸︷︷︸
3 bits

‖ h0︸︷︷︸
3 bits

‖ vin︸︷︷︸
64 bits

‖ vout︸︷︷︸
64 bits

For the analogous case using BLS12-377 (in which field elements hold FIELDCAPBLS
bits), the packing parameters are:

RSDBLEN = 5× 4 + 64 + 64 = 148

NFFLEN = HSIGFLEN = HFLEN = RSDFLEN = 1

The residual bits can be packed into a single field element of the form

padding︸ ︷︷ ︸
108 bits

‖ hsig︸︷︷︸
4 bits

‖ nf0︸︷︷︸
4 bits

‖ nf1︸︷︷︸
4 bits

‖ h0︸︷︷︸
4 bits

‖ h1︸︷︷︸
4 bits

‖ vin︸︷︷︸
64 bits

‖ vout︸︷︷︸
64 bits

and the primary inputs are again encoded as 9 field elements.1377

3.4 Instantiate SigSchOT-SIG1378

Zeth uses the one-time Schnorr-based signature scheme introduced by Bellare and Shoup [BS07]1379

for its long proven security, simplicity, speed and size. Its security relies on the one-more1380

discrete log problem (see Definition 1.5.6) and the collision resistance of the underlying1381

hash function CRH (see Definition 1.5.16) that we instantiate with SHA256.1382

Note that no signature operations or data are used in the arithmetic circuit describing1383

the Zeth statement. Hence the curve used for the signature scheme can be chosen1384

independently of Curve (the scalar field of which is used for the arithmetic circuit, and1385

consequently for commitments and bit string encodings described in Section 3.1 and1386

Section 3.2). BN-254 is used since it is supported by the EVM, in the form of precompiled1387

contracts. This allows a gas-efficient implementation in the M̃ixer contract.1388

This one-time signature scheme (see Definition 1.5.26) is defined by the two-tier1389

signature scheme over a cyclic group (p,G, 〈g〉,⊗). In the two-tier signature scheme, the1390

hash function CRH only needs to be collision resistant (the random oracle model is not1391

used). Similarly, the variable hk represents the key of the hash function (a particular1392

instance).1393

To turn this two-tier signature scheme into a one-time signature scheme, one simply1394

has to define the one-time signature key generation KGen as the combination of both1395
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primary and secondary key generations of the two-tier (see [BS07, Section 6]). The1396

one-time signing key (respectively verification key) of the one time signature scheme is1397

defined as both the primary and secondary signing key (respectively verification key) of1398

the two-tier scheme, Fig. 3.101399

KGen(1λ) :

hk ←$Bkl

g←$G∗

x←$Fp
ppk = (hk , g, JxK)
psk = (hk , g, x)

y←$Fp
spk = JyK
ssk = (y, JyK)
pk = (ppk , spk)

sk = (psk , ssk)

Sig(sk ,m) :

hk , g, x = sk .psk

y, JyK = sk .ssk

c = CRH(hk , JyK‖m)

σ = y mod p

σ += c · x mod p

return σ

Vf(pk ,m, σ) :

hk , g, JxK = pk .ppk

JyK = pk .spk

c = CRH(hk , JyK‖m)

if σ = JyK⊗ c · JxK then

return 1

else

return 0

endif

Figure 3.10: One-time signature scheme from two tier Schnorr based signature scheme
by Bellare and Shoup [BS07]

3.4.1 Security requirements satisfaction1400

We now prove that this signature scheme satisfies all the security requirements listed1401

in Section 2.7.1402

Theorem 3.4.1. The One-Time Schnorr signature is strongly unforgeable under chosen-1403

message attacks (SUF-CMA) assuming that the om-DLog problem is hard in G and that1404

the hash function CRH is collision resistant.1405

Proof. See [BS07, Theorems 5.1, 5.2 and 6.1].1406

3.4.2 Data types1407

We now describe the data types and operations associated with this signature scheme.1408

VKOtsDType Denotes the verification key associated with the one-time signature scheme.1409
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Field Description Data type

ppk Encoding of the scalar x in the group GBN

spk Encoding of the scalar y in the group GBN

Table 3.2: VKOtsDType data type

SKOtsDType Denotes the signing key associated with the one-time signature scheme.1410

Field Description Data type

psk Scalar element x FrBN

ssk Scalar element y and its encoding in the group FrBN ×GBN

Table 3.3: SKOtsDType data type

SigOtsDType Denotes the signature data type associated with the one-time signature1411

scheme. SigOtsDType is an alias for FrBN .1412

3.5 Instantiate EncSch1413

In this section we describe the instantiation of EncSch primitive introduced in Section 2.3.1414

First, we present a general asymmetric encryption scheme called DHAES (Diffie-Hellman1415

Asymmetric Encryption Scheme [ABR99]), which satisfies all the required security prop-1416

erties for the in-band encryption scheme EncSch (see Section 1.5.3). Then, we give details1417

of the concrete algorithms used for the implementation.1418

3.5.1 DHAES encryption scheme1419

Given a symmetric encryption scheme Sym, a group defined by SetupG, a family of hash1420

function H4 and a message authentication scheme MAC as defined in Section 1.5, we1421

define a DHAES scheme as the following public-key encryption scheme:1422

• Setup, setup algorithm, takes as input a security parameter 1λ. It runs H.Setup,1423

SetupG and returns public parameters pp = (hk , (q,G, g,+)).1424

• KGen, key generation algorithm, takes as input public parameters pp. It samples1425

at random v←$ [q] and returns a keypair (sk , pk) = (v, JvK).1426

• Enc, encryption algorithm, takes as input public parameters pp, a message m and1427

a public key pk . It runs KGen that returns an ephemeral keypair (esk , epk) =1428

(u, JuK). Then, it computes a shared secret ss = Hhk (epk‖esk · pk) = Hhk (epk‖sk ·1429

4Here, we only consider fixed-length hash functions with hInpLen(λ) = 2gLen and hLen(λ) =
kLen(λ) + mLen(λ) (see Section 1.5).
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epk), parsed as ek‖mk5. It computes ctSym = Sym.Enc(ek ,m) and τ = MAC.Tag(mk , ctSym)1430

and finally outputs the ciphertext epk‖ctSym‖τ .1431

• Dec, decryption algorithm, takes as input public parameters pp, a private key sk1432

a ciphertext epk‖ctSym‖τ . It computes ss = Hhk (epk‖sk · epk) and parses it, as1433

above, as ek‖mk . If MAC verification passes, i.e. MAC.Vf(mk , τ) = 1, the algorithm1434

returns Sym.Dec(ek , ctSym) and ⊥ otherwise.1435

The DHAES definition given above is an asymptotic adaptation of [ABR99, Section1436

1.3].1437

Inclusion of ephemeral key in hash input1438

Given an ephemeral keypair (u0, Ju0K), If the group 〈g〉, generated by SetupG, has com-1439

posite order, then Ju0K is required to be part of the hash input because Ju0vK and JvK1440

together may not uniquely determine Ju0K. Equivalently, there may exist two values1441

u0 and u1 such that u0 6= u1 and Ju0vK = Ju1vK. As a result, both u0 and u1 can be1442

used to produce two different valid ciphertexts of the same plaintext m, under different1443

ephemeral keys (Ju0K, Ju1K). It is easy to show this, for example, in the multiplicative1444

group Zp \ {0}, where p is a prime (see [ABR99, Section 3.1]). A scheme having such1445

malleability property clearly cannot be proven IND-CCA2 secure: an attacker could eas-1446

ily win the related security game by altering the challenged ciphertext and query the1447

decryption oracle that would not recognize that as a not allowed query. If the group1448

has prime order this problem does not arise so only Ju0vK is required as input of the H1449

function [ABR01, Section 3].1450

3.5.2 A DHAES instance1451

Curve255191452

For a cyclic group we propose the use of a subgroup of Curve25519 described in [Ber06]1453

and in [LHT16]. Curve25519 is a Montgomery elliptic curve [Mon87] defined by the1454

equation y2 = x3 + 486662x2 + x and coordinates on Fp, where p is the prime number1455

2255 − 19. It has a prime order subgroup of order 2252 + 277423177773723535358519371456

790883648493 and cofactor 8. Curve25519 comes with an efficient scalar multiplication1457

denoted as X255196. In a Diffie-Hellman-based scheme it allows to have 32-byte long1458

public and private keys (given a point P = (x, y) only the x coordinate is actually used)1459

and the 32-byte sequence representing 9 is specified as base point.1460

Efficiency and security of Curve255191461

High-speed and timing-attack resistant implementations of X25519 are available and1462

its security level is conjectured to be 128 bits [Ber06, Section 1]. However, combined1463

5Note that ek and mk must have the same length.
6X25519 is actually introduced in [LHT16] in order to avoid notation issues due to the use Curve25519

to indicate both curve and scalar multiplication as done in [Ber06]
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attacks can lead to 124 bits of security (see [BL, Section “Twist Security”]). By design,1464

Curve25519 is resistant to state-of-the-art attacks and satisfies all security criteria and1465

principles listed in Safecurves [BL]7.1466

Interestingly, Curve25519 does not require public key validation8, while we know that,1467

on other curves, active attacks – consisting of sending malformed public keys – could be1468

carried out by adversaries, to violate the confidentiality of private keys, e.g. [ABM+03].1469

However, Curve25519 specification mandates the clamping of private keys: that is, after1470

the random sampling of 32 bytes, the user clears bits 0, 1 and 2 of the first byte, clears1471

bit 7 and sets bit 6 of the last byte. The resulting 32 bytes are then used as private key.1472

This particular structure for private keys prevents various types of attacks (see [Ber06,1473

Section 3] for more details).1474

Note

Note that the clamping procedure is vital to ensure the security guarantees of
the Curve25519 specification, and implementations MUST perform this exactly as
described.

1475

Chacha201476

ChaCha20 is an ARX-based9 stream cipher introduced in [Ber08a]. It is an improved1477

version of Salsa20 [Ber08b] that won the eSTREAM challenge [est]. Compared with1478

Salsa20, it has been designed to improve diffusion per round, conjecturally increasing1479

resistance to cryptanalysis, while preserving time efficiency per round. It is considerably1480

faster than AES in software-only implementations and can be easily implemented to be1481

timing-attacks resistant. Several versions of the cipher can be used. The original paper1482

presents ChaCha20 with a 128-bit key and 64-bit nonce/block count. However, the length1483

of the key, nonce and block count – which indicates how many chunks can be processed1484

by using the same key and nonce – can be modified depending on the application.1485

In [LN18][Section 2.3], for instance, the key is a 256-bit string, the nonce is a string of1486

96 bits and the block count is encoded on a 32-bit word. This configuration allows to1487

process around 232 blocks, corresponding to roughly 256 GB of data. We propose to use1488

the same parameters in Zeth.1489

ChaCha20 : B256 × B32 × B96 × B∗ → B∗

7In this work, the authors take into account both Elliptic Curve Discrete Logarithm Problem
(ECDLP) and Elliptic Curve Cryptosystems (ECC) security, that allows to have an overall evaluation
of the security guarantees.

8Informally, it is a set of security checks that a user performs before using a not trusted public key
(e.g. see [BCK+18])

9Addition-Rotation-XOR
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Security of Chacha1490

Recent cryptanalysis results for ChaCha are available in [AFK+08, Ish12, SZFW12,1491

Mai16, CM16, CM17]: all of them make use of advanced cryptanalysis techniques able1492

to perform key-recovery attacks only on reduced versions (6 and 7 rounds) of ChaCha.1493

Note

Importantly, the security properties of ChaCha rely on the fact that, for a given
key, all blocks are processed with distinct values in the state words 12 to 15
(storing the counter and the nonce) [LN18, Section 2.3].

1494

Poly13051495

Poly1305 [Ber05] is a high-speed message authentication code, easy to implement and1496

make side-channel attack resistant. It takes a 32-byte one-time key mk and a message m1497

and produces a 16-byte tag τ that authenticates the message. mk must be unpredictable1498

and it is represented as a couple (r, s), where both components are given as a sequence1499

of 16 bytes each. It can be generated by using pseudorandom algorithms: in [Ber05,1500

Section 2], for example, AES and a nonce are used to generate s. The second part of1501

the key, r, is expected to have a given form [Ber05, Section 2], and must be “clamped”1502

as follows: top four bits of r[3], r[7], r[11], r[15] and bottom two bits of r[4], r[8], r[12]1503

are cleared (see also Section 3.5.3).1504

Note

Similarly to Curve25519, the clamping procedure here is essential to the security
of the Poly1305 scheme. Implementations MUST ensure that this is performed
correctly in order for all security guarantees to hold.

1505

We refer to [LN18, Section 2.5, Section 3] for Tag and Vf implementations of Poly1305.1506

Poly1305.Tag : B32
Y × B∗Y → B16

Y

Poly1305.Vf : B32
Y × B16

Y × B∗Y → B

Security of Poly13051507

Citing Poly1305 [LN18, Section 4],“the Poly1305 authenticator is designed to ensure that1508

forged messages are rejected with a probability of 1− (n/(2102)) for a 16n-byte message,1509

even after sending 264 legitimate messages, so it is SUF-CMA (strong unforgeability1510

against chosen-message attacks)”.1511
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Blake2b-5121512

Since we need a total of 64 bytes for the key material (32 for ChaCha20 and 32 for1513

Poly1305) Blake2b512 can be used. ZCash protocol [ZCa19, Section 5.4.3], instead, makes1514

use of Blake2b256 since a DHAES variant, denoted as ChaCha20-Poly1305, is adopted1515

(see [LN18, Section 2.8]).1516

Blake2b512 : B∗ → B32
Y

3.5.3 EncSch instantiation1517

In the following we instantiate EncSch as a DHAES scheme, detailing the KGen, Enc and
Dec components. First, we introduce some required constant values:

ESKBYTELEN = 32

EPKBYTELEN = 32

NOTEBYTELEN = (PRFADDROUTLEN + RTRAPLEN + ZVALUELEN + PRFRHOOUTLEN)/BYTELEN

SYMKEYBYTELEN = 32

MACKEYBYTELEN = 32

KDFDIGESTBYTELEN = SYMKEYBYTELEN + MACKEYBYTELEN

CTBYTELEN = EPKBYTELEN + NOTEBYTELEN + TAGBYTELEN

TAGBYTELEN = 16

CHACHANONCEVALUE = 032

CHACHABLOCKCOUNTERVALUE = 096

EncSch.KGen1518

The keypair (sk , pk) generation is defined as:1519

• Randomly sample a sequence of ESKBYTELEN bytes and assign to sk .1520

• Clamp sk as follows:

sk [0]← sk [0] & 0xF8

sk [31]← sk [31] & 0x7F

sk [31]← sk [31] | 0x40

where | and & denotes, respectively, OR and AND binary operators between bit1521

strings of same the length.101522

• Compute pk = X25519(sk , 0x09).1523

• Return (sk , pk) ∈ BESKBYTELEN
Y × BEPKBYTELEN

Y1524

10E.g Given two bytes 0x15 and 0x03 then 0x15|0x03 = 0x17 and 0x15&0x03 = 0x01.
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EncSch.Enc1525

The encryption, on inputs (pk ,m) ∈ BEPKBYTELEN
Y × BNOTEBYTELEN

Y , is defined as follows:1526

1. Generate an ephemeral Curve25519 keypair (esk , epk) ∈ BESKBYTELEN
Y × BEPKBYTELEN

Y1527

(as above).1528

2. Compute the shared secret11 ss ∈ BEPKBYTELEN
Y :

ss = X25519(esk , pk) ∈ BEPKBYTELEN
Y

3. Generate a session key:

Blake2b512(encTag‖epk‖ss) ∈ BKDFDIGESTBYTELEN
Y

where encTag = 0x5A‖0x65‖0x74‖0x68‖0x45‖0x6E‖0x63, that is the UTF-8 en-
coding of “ZethEnc” string (used for domain separation purposes). The result,
then, is parsed as follows:

ek = Blake2b512(encTag‖epk‖ss)[: SYMKEYBYTELEN− 1]

mk = Blake2b512(encTag‖epk‖ss)[SYMKEYBYTELEN : SYMKEYBYTELEN + MACKEYBYTELEN− 1].

4. Encrypt the confidential data:

ctSym = ChaCha20(ek , CHACHABLOCKCOUNTERVALUE, CHACHANONCEVALUE,m) ∈ BNOTEBYTELEN∗BYTELEN

Remark 3.5.1. Formally speaking we should have written ctSym ∈ Bn, where1529

n is the length of binary representation of the encrypted message m. In Zeth1530

however, the only data encrypted are the notes. As such, the size of the plaintexts1531

is NOTEBYTELEN ∗ BYTELEN bits.1532

Remark 3.5.2. In the following, we omit the explicit conversion from Bn to1533

Bdn/BYTELENeY when passing the output of ChaCha20 to the Poly1305 algorithms.1534

5. Randomly generate (r, s) ∈ BMACKEYBYTELEN/2
Y × BMACKEYBYTELEN/2

Y and clamp it:

r[3]← r[3] & 0x0F

r[7]← r[7] & 0x0F

r[11]← r[11] & 0x0F

r[15]← r[15] & 0x0F

r[4]← r[4] & 0xFC

r[8]← r[8] & 0xFC

r[12]← r[12] & 0xFC

11We assume here that esk has been clamped as discussed in Section 3.5.2
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6. Generate the related tag:

τ = Poly1305.Tag(mk , ctSym) ∈ BTAGBYTELEN
Y .

7. Create the asymmetric ciphertext as:

ct = epk‖ctSym‖τ ∈ BCTBYTELEN
Y .

8. Return ct . As consequence ENCZETHNOTELEN = CTBYTELEN ∗ BYTELEN bits.1535

EncSch.Dec1536

The decryption, on inputs (sk , ct) ∈ BESKBYTELEN
Y × BCTBYTELEN

Y , is defined as follows:1537

1. Parse the ciphertext ct as:

epk ← ct [: EPKBYTELEN− 1]

ctSym ← ct [EPKBYTELEN : EPKBYTELEN + NOTEBYTELEN− 1]

τ ← ct [EPKBYTELEN + NOTEBYTELEN : EPKBYTELEN + NOTEBYTELEN + TAGBYTELEN− 1]

2. Recover the shared secret

ss = X25519(sk , epk).

3. Compute the ek‖mk

ek = Blake2b512(encTag‖epk‖ss)[: SYMKEYBYTELEN− 1]

mk = Blake2b512(encTag‖epk‖ss)[SYMKEYBYTELEN : SYMKEYBYTELEN + MACKEYBYTELEN− 1].

4. Verify that the ciphertext has not been forged:

Poly1305.Vf(mk , τ, ctSym)

5. (If the MAC verifies) decrypt:

m = ChaCha20.Dec(ek , CHACHABLOCKCOUNTERVALUE, CHACHANONCEVALUE, ctSym)

6. Return m.1538
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3.5.4 Security requirements satisfaction1539

DHAES has already been proved to be IND-CCA2 secure (see [ABR99, Section 3.5, The-1540

orem 6])12 and to the best of our knowledge there is no paper showing IK-CCA security.1541

The only proof we have found is related to DHIES scheme [ABN10], that is a prime order1542

group version of DHAES. In the following, we provide a proof for IK-CCA security of1543

DHAES by adapting that proof to our case.1544

Theorem 3.5.1 (IK-CCA of DHAES). Let DHAES be the asymmetric encryption scheme
as defined above. Let A be an adversary for the IK-CCA game, then there exists a HDHI
adversary B of (H,SetupG) and a SUF-CMA adversary C of MAC such that

Advik-ccaDHAES,A(λ) ≤ 2 · AdvhdhiH,SetupG,B(λ) + Advsuf-cma
MAC,C (λ).

The adversaries B and C have the same running time as A13.1545

Informal proof. As already mentioned, DHAES is similar to DHIES scheme, except for1546

the underlying group and the way the symmetric keys are constructed. As consequence,1547

IK-CCA property for DHAES can be shown similarly to the approach in [ABN10, Theorem1548

6.2]. More precisely, they show that one can construct from an attacker A for the IK-CCA1549

game two attackers B and C for the ODH and SUF-CMA games. Actually, they make1550

use of a B attacker for the ODH2 game [ABN10, Figure 20] and then apply [ABN10,1551

Lemma 6.1] to obtain an attacker B14 in the ODH game. We adopt a similar strategy,1552

working with HDHI, HDHI2 and Lemma 1.5.1.1553

Let A be an attacker for the IK-CCA game, and let B be an attacker for the HDHI2
game described in Fig. 3.11. We show that,

Advhdhi2H,SetupG,B(λ) = |Pr
[
IK-CCAA(λ) = 1

]
+ Pr

[
G0
A(λ) = 1

]
− 1|

where G0 is the security game described in Fig. 3.12.1554

Given an HDHI2 challenge (JuK, Jv0K, Jv1K, wb2,0, wb2,1), an adversary B samples b←$ {0, 1}1555

and runs A on Jv0K, Jv1K (note that b2 is the random bit chosen by the B challenger in the1556

HDHI2 game). B constructs oracles ODecski where the queries (r‖ctSym‖τ) are processed1557

as follows: if r 6= JuK, then B queries related HDHI2 oracle to obtain ek‖mk ← OHDHIvi (r)1558

(see Fig. 3.11). If r = JuK, wb2,i is parsed as ek‖mk . In both cases, it checks that1559

MAC.Vf(mk , ctSym, τ) = 1 and, if so, returns m ← Sym.Dec(ek , ctSym). We note that1560

A cannot query the challenged ciphertext. B returns 0 if and only if b = b̃. It easy to1561

see that if b2 is equal to 0, then all symmetric encryption and MAC keys used for the1562

challenge ciphertext (r∗‖ct∗Sym‖τ∗) and decryption responses are exactly as in a DHAES1563

game.1564

12Specifically, if Sym is IND-CPA secure, it holds that H is HDHI secure and MAC is SUF-CMA secure.
13In order to give an asymptotic version of the theorem, the number of queries q has been substituted

by the fact of considering PPT adversaries.
14Note that in [ABN10] the IK-CCA game is a particular case of the AI-CCA game that requires two

input messages in the LR query. In order to reason only about the key-privacy, the two messages m0

and m1 are constrained to be equal.
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Adversary B(JuK, Jv0K, Jv1K, wb2,0, wb2,1)

b←$ {0, 1}

(m, state)← AO
Decsk0 ,O

Decsk1 (Jv0K, Jv1K)
ek‖mk ← wb2,b

r∗ ← u

ct∗Sym ← Sym.Enc(ek ,m)

τ∗ ← MAC.Tag(mk , ct∗Sym)

b̃← AO
Decsk0 ,O

Decsk1 (r∗‖ct∗Sym‖τ∗, state)

return b̃ = b

B simulation of ODecski (r‖ctSym‖τ)

if r 6= JuK

ek‖mk ← OHDHIvi (r)

else

ek‖mk ← wb2,i

fi

if MAC.Vf(mk , ctSym, τ) = 1

return Sym.Dec(ek , ctSym)

else

return ⊥
fi

Figure 3.11: Description of the adversary B for HDHI2, simulating DHAES game for A.

If b2 = 1, then w1,0 and w1,1 are random strings and the challenge ciphertext and
decryption responses are given as in the G0 game described in Fig. 3.12. So we get,

Pr
[
HDHI2B(λ) = 1

]
=

1

2
· Pr
[
IK-CCAA(λ) = 1

]
+

1

2
· Pr
[
G0
A(λ) = 1

]
.

And from the definition of HDHI2 advantage we have1565

Advhdhi2H,SetupG,B(λ) = |Pr
[
IK-CCAA(λ) = 1

]
+ Pr

[
G0
A(λ) = 1

]
− 1| .

At this point, we can conclude as in [ABN10, Theorem 6.2], with the only difference1566

of applying Lemma 1.5.1 instead of [ABN10, Lemma 6.1] and by defining a game G11567

that is identical until bad15 G0 defined in Fig. 3.12.1568

3.5.5 Final notes and observations1569

In this section we list some notes regarding the approach taken in Zcash (see [ZCa19,1570

Section 8.7]), and other observations:1571

• Key derivation parameters: in DHAES construction, the only required input vari-1572

ables are the shared secret ss and epk . In the Sprout release of Zcash, additional1573

parameters were added (i.e. hsig, pkenc and a counter i) (see [ZCa19, 5.4.4.2]):1574

they state that hsig was used in order to get a different randomness extractor for1575

each joinsplit transfer in order to limit the degradation of the security and weaken1576

assumption on the hash. The authors believed, about the use of long-standing1577

public key pkenc, that it might be necessary for IND-CCA2 security and for post-1578

quantum privacy (in the case where the quantum attacker does not have the public1579

15Games Gi and Gj are said to be identical until bad if they differ only in statements that follow the
setting of the bad variable to True. bad is initialized with False
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G0(λ)

(q,G, g,+)← SetupG(1λ)

(sk0, pk0), (sk1, pk1)←$ KGen(1λ)

r∗←$G
ek∗←$ {0, 1}kLen

mk∗←$ {0, 1}mLen

(m, state)← AO
Decsk0 ,O

Decsk1 (pk0, pk1)

b←$ {0, 1}
ct∗Sym ← Sym.Enc(ek∗,m)

τ∗ ← MAC.Tag(mk∗, ct∗Sym)

b̃← AO
Decsk0 ,O

Decsk1 (r∗‖ct∗Sym‖τ∗, state)

return b̃ = b

Oracle ODecski (r‖ctSym‖τ)

if r = r∗

m ← ⊥
if MAC.Vf(mk∗, ctSym, τ) = 1

bad← true

m ← Sym.Dec(ek∗, ctSym)

fi

else

m ← Dec(sk i, r‖ctSym‖τ)

fi

return m

Figure 3.12: G0 game and related decryption oracles for Theorem 3.5.1.

key) [zcaa]. None of these additional components are used any longer starting from1580

the Sapling release (see [ZCa19, 5.4.4.4]). To the best of our knowledge there is1581

no formal reason to use the note counter i as an input to the KDF: an explana-1582

tion could be to avoid the same session key being reused for multiple notes, but1583

this should not be a problem since a different nonce or block counter is used for1584

the symmetric cipher (actually this is already mandated in the case where epk is1585

reused, as described below).1586

• Reuse of ephemeral keys epk : Zcash reuses the same ephemeral keys epk (and1587

different nonces) for two ciphertexts in a joinsplit description, claiming that this1588

does not affect the security of the scheme as soon as the HDHI assumption of the1589

DHAES security proof is adapted. Note that the proof they refer to is related to1590

the IND-CCA2 notion.1591

• Note that in Zcash Sprout and Sapling, being able to break the Elliptic Curve1592

Diffie-Hellman Problem on Curve25519 or Jubjub would not help to decrypt the1593

transmitted notes ciphertext unless the receiver pkenc is known or guessed. On the1594

other hand, having pkenc into the hash (as used in Sprout) may violate in principle1595

the key-privacy of the encryption scheme. For these reasons, we underline that1596

the protocol should enforce a mechanism that does not reveal users public keys to1597

increase the security.1598

• In [ABN10], the concept of robustness for an asymmetric encryption scheme is1599

introduced: it formalizes the infeasibility of producing a ciphertext valid under two1600

different public encryption keys. We note that this is particularly useful for Zeth1601

since only the intended receiver will be able to decrypt the encrypted note. In fact,1602

the definition is more general since it also covers the case in which a decryption1603
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is successful but returns an incorrect plaintext. This prevents situations where1604

a user, scanning the M̃ixer logs for incoming transactions, gets a false positive1605

decryption and stores garbage notes.1606

Note

We note however, that the “false-positive” situation above can be prevented
by relying on a weaker notion of robustness called collision-freeness [Moh10].
In fact, as described in Section 2.6, the procedure to receive a ZethNote

requires to decrypt the ciphertext emitted by the M̃ixer, and then to verify
that the recovered plaintext is the opening of a commitment in the Merkle
tree. As such, since the collision-freeness of the encryption ensures that
plaintexts recovered under different keys are different (i.e. “do not produce
a collision”), then we know that plaintexts recovered by parties who are
not the intended recipient will fail the “commitment opening verification”,
leading the payment to be rejected, and solving the aforementioned false-
positive issue.

1607

In [ABN10, Section 6], the authors prove that DHIES can be made strongly robust.1608

The proof can be easily adapted to work with DHAES.1609

• No public key validation for X25519: cryptographers have been discussing the ab-1610

sence of any mandated public key validation or checks on the result of X25519.1611

For example, in [LHT16, Section 6.1], an optional zero check is introduced in order1612

to assure that the result of X25519 is not 0: this avoids a situation in which one1613

of the two parties can force the result of the key-exchange by using a small order1614

point as public key. This property is generally defined as contributory behaviour,1615

that is, none of the parties is able to force the output of a key exchange. However,1616

protocols do not have all the same security requirements and adding default checks1617

in the Curve25519 specifications would be superfluous in most cases and would add1618

complexities that Bernstein has deliberately chosen to avoid (simple implementa-1619

tion principle). More importantly, Diffie-Hellman does not require contributory1620

behaviour property [Per17]: modern view is that the only requirements are key1621

indistinguishability and, in case of an active attacker, that the output of the key1622

exchange should not produce a low-entropy function of the honest party’s private1623

key (e.g. small-subgroup and invalid-curve attacks). Since these two properties are1624

considered satisfied by Curve25519, there is no need to add extra checks to the1625

Curve25519 specification. We conclude by observing that in the Sprout release, the1626

Zcash protocol does not specify any point validation and makes use only of the1627

private key clamping to keep Diffie-Hellman key exchange secure.1628
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3.6 ZkSnarkSch instantiation1629

Groth’s proof system Groth16 [Gro16] is the most efficient known zk-SNARK (in terms1630

of the proof size and proof and verification cost) for QAPs, and thus one of the most1631

efficient NIZK for proving statements on arithmetic circuits (consisting of addition and1632

multiplication gates over a finite field F). Below we present Groth16’s key generation,1633

prover, verifier, and simulator algorithms, adjusted as described in [BGM17] to further1634

reduce the size of srs and proofs, and to make the KGen algorithm more amenable to1635

implementation as a multi-party computation.1636

In what follows, let the number constNo of constraints in the relation R be fixed.1637

Without loss of generality we consider constNo to be an upper bound on the number of1638

constraints in the R parameter, and assume that there exists some constNo-th root of1639

unity ω ∈ FrCUR . Define `i(X) to be the i-th Lagrange polynomial of degree (constNo−1)1640

over the set
{
ωi
}
i∈[constNo]

, and let `(X) be the unique non-zero polynomial of degree1641

constNo that satisfies `(ωi) = 0 for all i ∈ [constNo].1642

We note that the requirement that there exists a constNo-th root of unity ω imposes1643

a restriction on the maximum number of constraints in R that the scheme can support.1644

In the particular case of ω ∈ FrBN , the restriction becomes constNo ≤ 228. For FrBLS this1645

becomes constNo ≤ 247.1646

Furthermore, we denote by inp ∈ FinpNo+1 the tuple of variables (i.e. “circuit wires”)1647

in the algebraic representation of the relation R, such that:1648

• inp0 = 1F (the multiplicative identity in F),1649

• (inp1, . . . , inpinpNoPrim) represent variables in the statement,1650

• (inpinpNoPrim+1, . . . , inpinpNo) represent variables in the witness (so-called “auxil-1651

iary input”).1652

KGen(R, 1λ):1653

i. Pick trapdoor td = (τ, α, β, δ)←$ (Z∗p \
{
ωi−1

}constNo

i=1
)× (Z∗p)3;1654

ii. For j ∈ {0, . . . , inpNo}, let

uj(τ) =

constNo∑
i=1

Uij`i(τ),

vj(τ) =
constNo∑
i=1

Vij`i(τ),

wj(τ) =
constNo∑
i=1

Wij`i(τ);
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iii. Set

srsP ←


JαK1 , JβK, JδK,

{
Juj(τ)K1

}inpNo

j=0
, {Jvj(τ)K}inpNo

j=0 ,{
J(uj(τ)β + vj(τ)α+ wj(τ))/δK1

}inpNo

j=inpNoPrim+1
,{q

τ i`(τ)/δ
y
1

}constNo−2
i=0


srsV ←

(
JαK1 , JβK2 , JδK2 ,

{
Jβuj(τ) + αvj(τ) + wjK1

}inpNoPrim

j=0

)
srs ←(srsP, srsV)

return srs, td1655

P(R, srsP, prim = (inpj)
inpNoPrim
j=1 , aux = (inpj)

inpNo
j=inpNoPrim+1):1656

i. Define

a†(X) =

inpNo∑
j=0

inpjuj(X), b†(X) =

inpNo∑
j=0

inpjvj(X), c†(X) =

inpNo∑
j=0

inpjwj(X);

ii. Define the polynomial h(X) = (a†(X)b†(X) − c†(X))/`(X) and compute the1657

coefficients {hi}constNo−2
i=0 of h, such that h(X) =

∑constNo−2
i=0 hiX

i.1658

iii. ra←$Zp;1659

iv. rb←$Zp;1660

v. Compute proof elements:

a←
inpNo∑
j=0

inpj Juj(τ)K1 + JαK1 + ra JδK1

b←
inpNo∑
j=0

inpj Jvj(τ)K2 + JβK2 + rb JδK2

c←
inpNo∑

j=inpNoPrim+1

inpj

s
uj(τ)β + vj(τ)α+ wj(τ)

δ

{

1

+
constNo−2∑

i=0

hi
q
τ i`(τ)/δ

y
1

+

rba + ra

inpNo∑
j=0

inpj Jvj(τ)K1 + JβK1 + rb JδK1

− rarb JδK1

return π ← (a, b, c);1661

V(R, srsV, prim = (inpj)
inpNoPrim
j=1 , π):1662

i. Check that:

a • b =c • JδK2

+

inpNoPrim∑
j=0

inpj Juj(τ)β + vj(τ)α+ wj(τ)K1

 • J1K2

+ JαK1 • JβK2
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Note that JαK1 and JβK2 are stored individually and used by the prover to re-1663

compute JαβKT seemingly redundantly. This is required in order to leverage the1664

pairing check functionality built in to Ethereum, which accepts a sequence of tuples1665

in G1 × G2 and returns true if and only if the product of the resulting pairings1666

equals J1KT .1667

Sim(R, srs, td , prim):1668

i. Sample a←$Zp; b←$Zp;1669

ii. Compute proof elements:

a← JaK1
b← JbK2

c← 1

δ
·

ab− αβ − inpNoPrim∑
j=0

inpj(uj(τ)β + vj(τ)α+ wj(τ))

 J1K1

return π ← (a, b, c);1670
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Chapter 41671

Implementation considerations1672

and optimizations1673

4.1 Client security considerations1674

In this section we consider some details of client wallet software that manages user’s1675

private and public keys, Zeth notes, and interacts with the M̃ixer contract.1676

Due to the processing and storage requirements involved, we consider it impractical1677

for all Zeth client implementations to assume that a dedicated Ethereum node (miner1678

node or archive node) is run on the same host as the wallet. Therefore, in order to1679

interact with the Ethereum network, wallet software must communicate with external1680

Ethereum P2P nodes via their RPC channel, and must assume that these nodes are1681

completely outside the wallet’s control. From a security standpoint, connected Ethereum1682

nodes should therefore be considered untrusted, and in particular the details of all RPC1683

calls and responses should be considered publicly visible. Note that even if the connected1684

Ethereum node itself is not malicious, 3rd parties able to see network traffic may also be1685

able to gain an insight into the RPC communication of a specific Zeth client.1686

Note

Note that there are several possible models besides the fully untrusted Ethereum

node. Organizations or individuals could host one or more “trusted” Ethereum

nodes, which clients can securely connect to (if they trust the host). This cen-
tralization would represent a security trade-off. From the point of view of clients
it would create a single point of trust, and for potential malicious observers or
attackers it would represent a valuable target.

1687

In what follows we focus on preventing data leaks through network traffic. We do1688

not consider adversaries with physical access to the machine running the wallet (see Ap-1689

pendix C).1690
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Note

Importantly, we focus here on information leakages intrinsic to network commu-
nication patterns of the Zeth protocol. However, in order to protect against
sophisticated adversaries, it is necessary to use network-level anonymity solutions
to protect the source of messages emitted on the network. While this is outside
of the scope of the Zeth protocol, we highly encourage implementers to estab-
lish threat models and consider using technologies like mixnets to protect against
network analysis (see e.g. [PHE+17, DG09]).

1691

4.1.1 Syncing and waiting1692

Zeth clients must periodically synchronize with the latest state of the blockchain. This1693

is necessary to keep track of the data held by the M̃ixer contract, and to detect notes1694

received by the user of the wallet, storing them for future transactions.1695

Clients should synchronize with Ethereum nodes in such as way that information is1696

not leaked. As such:1697

1. Clients MUST use consensus evidence and block headers to verify all data they1698

receive from Ethereum nodes.1699

2. Clients MUST locally store all parts of the M̃ixer state they require in order to1700

function.1701

3. Clients MUST obtain all such information by “synchronizing” with the Ethereum1702

blockchain and parsing relevant events emitted by M̃ixer. Clients MUST NOT query1703

the M̃ixer state via RPC.1704

4. Clients SHOULD take steps to avoid being identified while synchronizing (see Ap-1705

pendix C.2. For example, clients SHOULD vary the set of Ethereum nodes that they1706

connect to, and SHOULD NOT always sync from the block following the last one that1707

they processed.1708

5. Clients SHOULD NOT re-request blocks or transaction receipts that are of particular1709

interest to them. They SHOULD process all events, emitted by M̃ixer, in the same1710

way.1711

6. Clients SHOULD NOT make any RPC calls or change their externally visible behaviour1712

in response to blocks or transaction receipts that are of interest to them.1713

Use of contract queries1714

We suggest that clients SHOULD NOT directly query the contract state, for the reasons1715

discussed in Appendix C.2 and Appendix C.3 (and consequently, Section 4.2 suggests1716

that the M̃ixer contract should, as far as possible, not expose public methods). The1717
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Zeth protocol prohibits direct queries of the state of M̃ixer (via public smart-contract1718

functions) because they introduce a risk that client implementations will leak information1719

by using them.1720

If implementers choose to add public methods to the M̃ixer contract (for application-1721

specific reasons), they should consider carefully the security issues raised in Appendix C.1722

This specification assumes that Mix is the only public method of the M̃ixer contract.1723

4.1.2 Note management1724

Mix calls on the M̃ixer contract emit log events containing new commitment values,1725

nullifiers, the new Merkle root and the secret data for new notes (encrypted using a key1726

derived from the recipients public key). As clients synchronize with the latest state of1727

the blockchain, they MUST read these events and correctly process the data they contain.1728

1. Clients MUST process the MixEventDType event for every Mix transaction, in the1729

order in which they appear in the blockchain.1730

2. Clients implementing spending functionality MUST use the commitment values in1731

events to track the state of the Merkle tree. The Merkle tree state will be used1732

to generate Merkle paths for future transactions, and MUST be made available to1733

the client without the need to query the contract. (Note that not all commitments1734

must necessarily be persisted – see Section 4.3).1735

3. Clients that can receive notes MUST attempt to decrypt the ciphertexts for every1736

transaction (see Item 2 in Section 2.6).1737

4. Clients MUST NOT perform any network-related action, including closing the RPC1738

connection, dependent on successful/unsuccessful decryption of ciphertexts (see1739

Appendix C.3).1740

5. Clients that can receive notes MUST attempt to parse any successfully decrypted1741

plaintext (that is, ensure it is well-formed as in Item 3a in Section 2.6).1742

6. Clients MUST NOT perform any network-related action, including closing the con-1743

nection, dependent on successful / unsuccessful parsing (see Appendix C.4).1744

7. Clients that can receive notes MUST verify that successfully parsed plaintext data1745

is the opening of the corresponding commitment in the transaction (see Item 3b1746

in Section 2.6).1747

8. Clients MUST NOT perform any network-related action, including closing the con-1748

nection, dependent on whether the parsed note data is the opening of the corre-1749

sponding commitment (see Appendix C.4).1750

9. Clients MUST confirm that, after adding the new commitments, the local repre-1751

sentation of the Merkle tree of commitments has a root consistent with the event1752

data.1753

83



10. Clients SHOULD keep a local record of the data related to valid decrypted notes.1754

This will be required in order to spend the notes in a future transaction.1755

11. Clients implementing spending functionality SHOULD process all nullifiers in Mix1756

transaction events, checking for any corresponding notes previously recorded. Any1757

such note should be marked as spent in the client’s local record.1758

4.1.3 Prepare arguments for Mix transaction1759

Clients MUST NOT query Ethereum nodes while generating any arguments to a Mix call.1760

In particular, Merkle paths MUST be calculated using the client’s local representation of1761

the Merkle tree of commitments that was constructed by parsing events.1762

Where the zero-knowledge proof is generated by some external process, clients MUST1763

put in place sufficient security schemes to ensure that:1764

• they are communicating with an authentic proof generation process (not a man-1765

in-the-middle), and1766

• data sent to and from the proving process cannot be observed in transit and tam-1767

pered with by a third party, and1768

• the proof has been generated for the correct instance–witness pair11769

Without these safe-guards, the operation of the system and the secret data required1770

to spend the input notes may be compromised. See Appendix C.6.1771

4.1.4 Wallet backup and recovery1772

Given the restrictions placed on clients and their interaction with the M̃ixer contract,1773

it follows that clients must store all data required to spend notes owned by their users’1774

addresses, and to verify the validity of incoming notes. If this local data is lost, it must1775

be reconstructed before client operations can resume.1776

Zeth private keys (see Table 1.5) can be used to fully restore client state. In this1777

case, clients MUST retrieve all events from the beginning of the M̃ixer contract’s his-1778

tory, decrypting notes and tracking nullifiers, as described in the previous sections, to1779

reconstruct the set of unspent notes that they own.1780

Without a backup of the private keys it is not possible to restore wallet state. As1781

such, private keys are the minimal set of data that must be securely stored and backed1782

up, and clients SHOULD provide support for this mode of recovery. However, to avoid the1783

need to scan all events emitted by M̃ixer (a very expensive operation) implementations1784

SHOULD also support back ups of further state data (such as the representation of the1785

Merkle tree of note commitments, the set of unspent notes, etc) to allow more efficient1786

modes of recovery.1787

1Although given an acceptable zk-proof π for an instance prim it is infeasible to check which witness
has been used – which comes directly from the zero-knowledge property – we need to assure security
measures that prevents any third party from mauling and tampering with the proof generation process.
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4.2 Contract security considerations1788

Section 4.1 mentions several considerations for client implementations, concerning how1789

they interact with the contract. These must be taken into account when authoring the1790

contract code, to ensure that clients can securely retrieve the information they need to1791

operate without encouraging them to perform insecure operations.1792

1. M̃ixer MUST validate inputs, the contract needs to ensure that the primary inputs1793

are elements of the scalar field FrCUR (that is, they are in the range {0, . . . , rCUR − 1}).1794

2. M̃ixer MUST output events for valid Mix calls, including:1795

(a) commitment for each new note;1796

(b) nullifier for each spent note;1797

(c) value of new Merkle root of commitments;1798

(d) ciphertexts for each new note;1799

(e) implementation-specific data (such as the one-time sender public key specified1800

in Section 3.5, required to decrypt the ciphertexts).1801

3. The Mix function MUST be payable2, to support non-zero vin.1802

4. M̃ixer MUST NOT expose any public methods except for Mix.1803

4.3 Efficiency and scalability1804

4.3.1 Importance of performance1805

Poor performance and scalability has several impacts on the viability of the system.1806

Efficiency and performance are arguably most important for the M̃ixer contract,1807

where gas usage directly affects the monetary cost of using Zeth to transfer value. That1808

is, high gas costs could make transactions very expensive, and therefore not practical for1809

many use-cases, undermining the utility and viability.1810

High storage or compute requirements on the client would severely restrict the set1811

of devices on which Zeth client software can run, and long delays when sending or1812

receiving transactions can adversely affect the user-experience, discouraging some users1813

and undermining the privacy promises of the system.1814

Although the proof-of-concept implementation of Zeth is not intended to be used in a1815

production environment, one of its aims is to demonstrate the practicality of the protocol1816

in terms of transaction costs. Therefore, some of the techniques described here have been1817

included in the proof-of-concept implementation, while in some cases implementers of1818

production software may wish to make different trade-offs.1819

2see https://solidity.readthedocs.io/en/v0.6.2/types.html?highlight=payable#

function-types
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4.3.2 Cost centers1820

One important factor, primarily affecting client performance, is the cost of zero-knowledge1821

proof generation. This is directly related to the number of constraints used to repre-1822

sent the statement in Section 2.2, which in turn depends on the specific cryptographic1823

primitives used (see Chapter 3).1824

Note that cryptographic primitives which are “snark-friendly” (i.e. can be imple-1825

mented using fewer gates in an arithmetic circuit) may not necessarily run efficiently on1826

the EVM or on standard hardware. As such, trade-offs must be made between proof1827

generation cost and the gas costs of state transitions. An example of this is the hash1828

function used in the Merkle tree of commitments. This is not only used in the statement1829

of Section 2.2 (to verify Merkle proofs, see Section 2.2), but also on the client (to create1830

Merkle proofs, see Section 2.3) and in the M̃ixer contract (to compute the Merkle root,1831

see Section 2.5).1832

Aside from the specific hash function used, implementers have some freedom in the1833

data structures and algorithms used to maintain the Merkle tree and generate proofs.1834

Because of this freedom, and the importance of the chosen algorithms on performance1835

across all components of the system, the majority of this section focuses on the details1836

of the Merkle tree.1837

As described in Chapter 2, Zeth notes are maintained and secured by the Merkle tree,1838

whose depth MKDEPTH must be fixed when the contract is deployed. Therefore, MKDEPTH1839

determines the maximum number of notes (2MKDEPTH) that may be created over the lifetime1840

of the deployment. To ensure the utility of Zeth, MKDEPTH must be sufficiently large,1841

and therefore the following includes a discussion of scalability with respect to MKDEPTH.1842

Also, due to the fact that MKDEPTH is fixed, we assume that Merkle proofs are com-1843

puted as MKDEPTH-tuples, no matter how many leaves have been populated. Unpopulated1844

leaves are assumed to take some default value (usually a string of zero bits).1845

4.3.3 Client performance1846

Commitment Merkle tree1847

The simplest possible implementation, which stores only the data items at the leaves1848

of the tree, requires 2MKDEPTH − 1 hash invocations to compute the Merkle root or to1849

generate a Merkle proof. The cost of this is too high to be practical for non-trivial1850

values of MKDEPTH.1851

An immediate improvement in compute costs can be achieved by simply storing1852

all nodes (or all nodes whose value is not the default value) and updating only those1853

necessary as new commitments are added. When adding JSOUT consecutive leaves to1854

the tree, after O(log2(JSOUT)) layers (requiring O(JSOUT) hashes) we reach the common1855

ancestor of all new leaves and can update the Merkle tree by proceeding along a single1856

branch (of approximately MKDEPTH − log2(JSOUT) layers). Thus, the cost of updating1857

the Merkle tree for a single transaction has a fixed bound which is linear in JSOUT and1858
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MKDEPTH. However, this doubles the storage cost of the tree since non-leaf nodes must1859

also be persisted.1860

In the case of the client, the Merkle tree will only be used to generate proofs for notes1861

owned by the user of the client. Thereby Zeth clients need only store nodes of the Merkle1862

tree that are required for this purpose, and may discard all others. In particular, any1863

full sub-tree need only contain nodes that are part of Merkle paths associated with the1864

user’s notes. Implementations that discard unnecessary nodes can achieve vast savings1865

in storage space.1866

Zero-knowledge proof generation1867

As well as keeping the number of constraints as low as possible, it is important to ensure1868

that the prover implementation is optimal and thereby that proving times are as short as1869

possible. Proof generation should also exploit any available parallelism, to help reduce1870

the time taken. This may require specific programming languages or frameworks to be1871

used, necessitating that proof generation be performed by some external process (as is1872

the case in the proof-of-concept implementation).1873

The proof generation process can also be very memory intensive (in part due to the1874

FFT calculations required), and so ensuring that enough RAM is present in the system1875

is important to avoid long proof times.1876

See Appendix C.6 for a discussion of related security concerns.1877

4.3.4 Zero-knowledge proof verification (on-chain)1878

Verification of the joinsplit statement via a zero-knowledge proof represents a significant1879

computation, which must be carried out on-chain (by the M̃ixer contract) for each valid1880

Zeth transaction. As described in Section 3.6, this verification cost increases linearly1881

with the number of primary inputs to the statement – a scalar multiplication of a group1882

element and a group addition operation must be performed for each primary input. A1883

technique presented in [GGPR13, Section 4.5.1] can be applied to reduce this linear cost.1884

Given a relation R, the corresponding language L, and a collision resistant hash
function H : L→ FrCUR , let

R′ =
{

(prim ′, aux ′) | prim ′ = H(prim), aux ′ = (prim, aux ), for (prim, aux ) ∈ R
}

be a new relation, with corresponding language L′ ⊂ FrCUR . To (probabilistically) verify1885

that prim ∈ L, a verifier can compute H(prim) and check that H(prim) ∈ L′. (By1886

construction, if H(prim) ∈ L′, there exists (prim0, aux ) ∈ R, i.e. prim0 ∈ L with1887

H(prim0) = H(prim). By the collision-resistance of H we have prim0 = prim with1888

overwhelming probability.)1889

Informally, the original circuit is transformed as follows:1890

• all primary inputs prim become auxiliary inputs,1891

• a single primary input h is added, and1892
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• the statement is extended such that h is the digest of the original primary inputs.1893

This slightly increases the complexity of the statement to be proven, adding to the1894

cost of generating proofs π′ for the augmented statement, but minimizes the linear1895

component of the verification cost (since the verifier must now only process a single1896

primary input). Note that this technique does not require any change to the initial1897

statement itself (in this case the joinsplit statement described in Section 2.2), or the1898

data upon which it operates. The M̃ixer contract must perform this hash step before1899

the zk-SNARK verification, although we note that the parameters are also unchanged.1900

In the proof-of-concept implementation of Zeth, this technique is employed using a1901

snark-friendly hash function constructed as follows.1902

The Merkle-Damg̊ard construction (see [MVOV96, Chapter 9]) can be applied to a1903

collision-resistant compression function to yield a collision-resistant hash function, ac-1904

cepting an arbitrary length input. We apply this to the compression function described1905

in Section 3.2, which is chosen to be collision resistant over domain FrCUR , and efficiently1906

implementable as arithmetic constraints. Thereby, the resulting hash function, in com-1907

mon with the underlying compression function, can also be efficiently implemented to1908

hash lists of elements in FrCUR (and this is exactly the form of the original primary inputs).1909

4.3.5 Merkle tree updates (on-chain)1910

For most components of the contract, the set of operations to be performed is strictly1911

defined and the set of possible algorithmic optimizations that can be made is limited.1912

In these cases, it is important to ensure that code is benchmarked and optimized to1913

a reasonable degree, to minimize gas costs. We note that apart from the number and1914

type of compute instructions executed, store and lookup operations have a significant1915

impact on the gas used. In particular, storing new values is more expensive than over-1916

writing existing values, and a gas rebate is made when contracts release stored values.1917

See [Woo19, Appendix H.1] for further details.1918

The primary component in which algorithmic optimizations can be made is the1919

Merkle tree of note commitments. The M̃ixer contract must compute (and store) the1920

new Merkle root after adding the JSOUT new commitments as leaves.1921

As in Section 4.3.3, the simplest possible implementation which stores only the data1922

items at the leaves of the tree, requires the full root to be recomputed, involving 2MKDEPTH−1923

1 hash invocations. This quickly becomes impractical for non-trivial values of MKDEPTH.1924

The first-pass optimization (also described in Section 4.3.3) can be used to ensure1925

that the cost of updating the Merkle tree (number of hash computations, stores and1926

loads) is bounded by a constant that is linear in the Merkle tree depth. This is the1927

strategy used in the proof-of-concept implementation of M̃ixer.1928

It may be possible to gain further improvements in gas costs by discarding nodes1929

from the Merkle tree that are not required. Unlike clients, M̃ixer is only required to1930

compute the new Merkle root, and does not need to create or validate Merkle proofs1931

(as these are checked as part of the zero-knowledge proof). Consequently, all nodes in a1932

88



sub-tree can be discarded when the sub-tree is full, and the optimization is much simpler1933

to implement than on the client.1934

Another possible strategy for decreasing the gas costs associated with Merkle trees1935

is Merkle Shrubs, described in [Lab19, Section 2.2]. Under this scheme, the contract1936

maintains a “frontier” of roots of sub-trees and Merkle proofs provided by clients (as1937

auxiliary inputs to the Rz circuit) contain a path from the leaf to one of the nodes in the1938

frontier. The gas savings in this scheme are due to the fact that, for new commitments,1939

the contract need only recompute the value of nodes from the leaf to the “frontier” (not1940

all the way to the root of the tree). However this comes at the cost of complexity in the1941

arithmetic circuit, which must verify a Merkle path to one of several frontier nodes.1942

When choosing cryptographic primitives to be used on the EVM (and considering1943

the trade-off with other platforms, described in Section 4.3.1) it may be valuable to note1944

that the EVM supports so-called “pre-compiled contracts”. These behave like built-1945

in functions providing very gas-efficient access to certain algorithms, such as Keccak.1946

However, pre-compiled contracts exist only for a limited set of algorithms. Others must1947

be implemented using EVM instructions.1948

4.3.6 Optimizing Blake2’s circuit.1949

After presenting Blake2s circuit and its components working on little endian variables,1950

we show a few optimizations.1951

Helper circuits1952

We first define the following helper circuits needed in the Blake2s routine, operating on1953

w-bit long words.1954

XOR circuits The following XOR circuits on w-bit long variables have been imple-1955

mented, we assume the inputs are boolean (this is not checked in these circuits),1956

• “Classic” XOR circuit, which xors 2 variables,1957

a⊕ b = c;1958

• XOR with constant, which xors two variables and a constant,1959

a⊕ b⊕ c = d, with c constant;1960

• XOR with rotation, which xors two variables and rotates the result.1961

a ⊕ b ≫ r = c, with r constant, and ≫ the rightward rotation [MJS15, Section1962

2.3]; i.e. for and constant r < w we have ai ⊕ bi = ci+r (mod w), for i = 0, . . . , w,1963

Each of these circuits presents w constraints. Assuming that the inputs are boolean,1964

the output is automatically boolean. To ascertain that both inputs are boolean (a and1965

b), we would need 2 · w more gates per circuit.31966

3Making sure that no gates are duplicated in the circuit is very important to keep the proving time
as small as possible. One challenge of writing R1CS programs is to make sure that the statement is
correctly represented, without redundancy, in order to keep the constraint system as small as possible.
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Modular addition We present here two circuits to verify modular arithmetic.1967

Double modular addition: a + b = c (mod 2w). This circuit checks that the1968

sum of two w-bit long variables in little endian format modulo 2w is equal to a w-bit1969

long variable. More precisely, it checks the equality of the modular addition of a + b1970

(mod 2w) and c and the booleaness of the later. We assume the inputs are boolean (this1971

is not checked in this circuit).1972

As the addition of two w-bit long integers results in at most an (w + 1)-bit integer,1973

we consider c to be (w + 1)-bit long. We do not care about the last bit value, cw, but1974

have to ensure its booleaness.1975

The circuit presents the following w + 2 constraints, for a and b of size w, where1976

w = 32 in practice, and variable c of size w + 1, that:1977

w−1∑
i=0

(ai + bi) · 2i =
w∑
j=0

cj · 2j (4.1)

∀j ∈ {0, . . . , w}, (cj − 0) · (cj − 1) = 0 (4.2)

Triple modular addition: a + b + c = d (mod 2w). This circuit checks the1978

equality of a w-bit long variable d with the sum of three w-bit long variables in little1979

endian format modulo 2w. More precisely, it checks the equality of the modular addition1980

of a+ b+ c (mod 2w) and d and the booleaness of the latter. We assume the inputs are1981

boolean (this is not checked in this circuit).1982

As the addition of three w-bit long integers results in at most an (w+ 2)-bit integer,1983

we consider d to be (w + 2)-bit long. We do not care about the values of the last two1984

bits (dw and dw+1), but have to ensure their booleaness.1985

The circuit presents the following w + 3 constraints, for a, b and c of size w, where
w = 32 in practice, and variable d of size w + 2, that:

w−1∑
i=0

(ai + bi + ci) · 2i =
w+1∑
j=0

dj · 2j (4.3)

∀j ∈ {0, . . . , w + 1}, (dj − 0) · (dj − 1) = 0 (4.4)

Blake2s routine circuit1986

We define in this section the circuit of the Blake2 routine (see [MJS15, Section 3.1]1987

and Fig. 4.1) known as “G function” [ANWOW13, Section 2.4]. G is based on ChaCha1988

encryption [Ber08a]. It works on w-bit long words, and presents 8 · w + 10 constraints.1989

The function mixes a state (a, b, c and d) with the inputs (x and y) and returns the1990

updated state.1991

This circuit does not check the booleaness of the inputs or state. However, given that1992

the state is boolean, the output is automatically boolean due to the use of the modular1993

addition circuits.1994
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G(a, b, c, d;x, y) 7→ (a2, b2, c2, d2)

1 : a1 ← a+ b+ x (mod 2w)

2 : d1 ← d⊕ a1 ≫ r1

3 : c1 ← c+ d1 (mod 2w)

4 : b1 ← b⊕ c1 ≫ r2

5 : a2 ← a1 + b1 + y (mod 2w)

6 : d2 ← d1 ⊕ a2 ≫ r3

7 : c2 ← c1 + d2 (mod 2w)

8 : b2 ← b1 ⊕ c2 ≫ r4

9 : return a2, b2, c2, d2

Figure 4.1: G primitive [MJS15,
Section 3.1]

getSigma()

1 : Σ ∈ (N16)10

2 : Σ[0]← (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

3 : Σ[1]← (14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3)

4 : Σ[2]← (11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4)

5 : Σ[3]← (7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8)

6 : Σ[4]← (9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13)

7 : Σ[5]← (2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9)

8 : Σ[6]← (12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11)

9 : Σ[7]← (13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10)

10 : Σ[8]← (6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5)

11 : Σ[9]← (10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0)

12 : return Σ

Figure 4.2: Blake2 permutation table [MJS15,
Section 2.7]

For Blake2s, we have w = 32, r1 = 16, r2 = 12, r3 = 3 and r4 = 7.1995

Blake2s compression function circuit1996

The compression function is defined as follows, for more details see Fig. 4.3,

Blake2sC : Bn × B2n × Bn/4 × Bn/4 → Bn .

Blake2C takes as input a state h ∈ Bn which is used as chaining value when hashing,1997

a message to compress x ∈ B2n, a message length written in binary t ∈ Bn/4 which is1998

incremented when hashing and a binary flag f ∈ Bn/4 to tell whether the current block1999

is the last to be compressed to prevent length extension attacks.2000

Blake2C uses the G function iteratively over rounds number of rounds on a state2001

and message. The constant initialization vector IV and the permutation table Σ are2002

hard-coded. Blake2sC works in little endian (see [MJS15, Section 2.4]) on n-bit long2003

variables (n = 256), w-bit long words (w = 32), and the rotation constants specified2004

in Section 4.3.6 (see [MJS15, Section 2.1]). We have the following constants (see speci-2005

fications [ANWOW13] and [MJS15, Section 2.2]),2006

• IV is the (8·w)-bit long initialization vector; it corresponds to the first w bits of the2007

fractional parts of the square roots of the first eight prime numbers (2, 3, 5, 7, . . .)2008

(see [MJS15, Section 2.6]);2009

• Σ are the 10 ·16 permutation constants of Blake2 (see Fig. 4.2 and [MJS15, Section2010

2.7]);2011

• rounds, the number of rounds: 10 for Blake2sC, 12 for Blake2bC.2012
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We have the following variables (see specifications [ANWOW13] and [MJS15, Section2013

2.2]),2014

• H is the (8 · w)-bit long initial state while v is the (16 · w)-bit long final state;2015

• T[i] are two w-bit long counters encoding the block length;2016

• F[i] are two w-bit long finalization flags. We set the first one F[0] to 2w−1 to state2017

when the input block is the last one to be hashed. The second, F[1] = 0 is only set2018

for tree hashing mode (which is not our case) and is therefore unused.2019

We introduce the following functions to write Blake2C (see specifications [ANWOW13]2020

and [MJS15, Section 2.6]):2021

• The function prime takes a positive integer i as input and outputs the i-th prime2022

number;2023

• The function dec takes a real number x as input outputs its positive decimal part.2024

This circuit presents ((64 ·rounds+8) ·w+8 ·rounds+10) constraints. For Blake2sC,2025

as w = 32 and rounds = 10, we have 21536 constraints.2026

We do not check the input block booleaness in this circuit. Given that the initial2027

state is boolean, the output is automatically boolean. This can be proved iteratively by2028

the booleaness of G primitive’s output.2029

Security requirement. The inputs to Blake2sC MUST be boolean.2030

Blake2s hash function2031

The hash function is defined as follows, for more details see Fig. 4.3,

Blake2s : B≤2n × B∗ → Bn

Blake2 takes as input a hash key k ∈ Bn and the message to hash x ∈ B2n. Blake22032

uses the Blake2C function iteratively over each 2n-bit long chunk of the padded message.2033

If the key is non null, it is used as the first block to be hashed. The constant initialization2034

vector IV and part of the parameter block PB are hard-coded. We have the following2035

constants (see specifications [ANWOW13] and [MJS15, Section 2.2]),2036

• IV is the (8·w)-bit long Initialization Vector; it corresponds to the first w bits of the2037

fractional parts of the square roots of the first eight prime numbers (2, 3, 5, 7, . . .)2038

(see [MJS15, Section 2.6]).2039

We have the following variables (see specifications [ANWOW13] and [MJS15, Section2040

2.2]),2041
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Blake2C(h,m, t, f)

1 : T, F, H, IV, v ∈ (Bw)2 × (Bw)2 × (Bw)8 × (Bw)8 × (Bw)16

2 : {IV[i]}i∈[8] ←
{⌊

2w · dec(
√

prime(i+ 1)
⌋}

i∈[8]

3 : Σ← getSigma()

4 : {H[i]}i∈[8] ← {h[i · w:(i+ 1) · w]}i∈[8]
5 : {m[i]}i∈[8] ← {x[i · w:(i+ 1) · w]}i∈[8]
6 : T[0], T[1]← t[w:2w], t[0:w]

7 : F[0], F[1]← f [w:2w], f [0:w]

8 : {v [i]}i∈[8] ← {H[i]}i∈[8]
9 : {v [i+ 8]}i∈[8] ← {IV[i]}i∈[8]

10 : v [12], v [13]← v [12]⊕ T[0], v [13]⊕ T[1]

11 : v [14], v [15]← v [14]⊕ F[0], v [15]⊕ F[1]

12 : foreach r ∈ [rounds] do

13 : τ ← Σ[r (mod 15)]

14 : v [0], v [4], v [8], v [12]← G(v [0], v [4], v [8], v [12], m[τ [0]], m[τ [1]])

15 : v [1], v [5], v [9], v [13]← G(v [1], v [5], v [9], v [13], m[τ [2]], m[τ [3]])

16 : v [2], v [6], v [10], v [14]← G(v [2], v [6], v [10], v [14], m[τ [4]], m[τ [5]])

17 : v [3], v [7], v [11], v [15]← G(v [3], v [7], v [11], v [15], m[τ [6]], m[τ [7]])

18 : v [0], v [5], v [10], v [15]← G(v [0], v [5], v [10], v [15], m[τ [8]], m[τ [9]])

19 : v [1], v [6], v [11], v [12]← G(v [1], v [6], v [11], v [12],m[τ [10]],m[τ [11]])

20 : v [2], v [7], v [8], v [13]← G(v [2], v [7], v [8], v [13],m[τ [12]],m[τ [13]])

21 : v [3], v [4], v [9], v [14]← G(v [3], v [4], v [9], v [14],m[τ [14]],m[τ [15]])

22 : return ‖8i=0H[i]⊕ v [i]⊕ v [i+ 8]

Figure 4.3: Blake2 compression function [MJS15, Section 3.2]. Set n, w and G’s
constants to obtain Blake2sC.

• PB is the (16 ·w)-bit long parameter block used to initialize the state (see [MJS15,2042

Section 2.5]). In big endian encoding, the first byte corresponds to the digest2043

length (fixed to 32 bytes), the second byte to the key length, the third and fourth2044

bytes correspond to the use of the serial mode;2045

• H ∈ BBLAKE2sCLEN, the chaining value.2046

We do not check the input block booleaness in this circuit. Given that the initial2047

state is boolean, the output is automatically boolean. This can be proved iteratively by2048

the booleaness of Blake2C primitive’s output.2049

Security requirement To ensure the correct use of Blake2s, Blake2s’s inputs MUST be2050

boolean.2051
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Blake2(k, x)

1 : H, IV, PB ∈ B8w × B8w × B8w

2 : PB← pad8·w(encodeN(0x0101)‖padw(encodeN(dlength(k)/BYTELENe))‖encodeN(0x20))

3 : IV← ‖8i=0

⌊
2w · dec(

√
prime(i+ 1)

⌋
4 : H← PB⊕ IV

5 : y ← x

6 : if length(k) 6= 0 do

7 : y ← pad2n(k)‖y
8 : z ← pad2n·dlength(y)/2ne(y)

9 : for i ∈ [dlength(z)/2ne] do

10 : if i = dlength(z)/2ne − 1 do

11 : H← Blake2C(H, z[i · 2n:(i+ 1) · 2n], pad2w(encodeN(dlength(y)/BYTELENe)), pad2w(encodeN(2w − 1)))

12 : else

13 : H← Blake2C(H, z[i · 2n:(i+ 1) · 2n], pad2w(encodeN((i+ 1) · 2n/BYTELEN)), pad2w(0))

14 : return H

Figure 4.4: Blake2 hash function [MJS15, Section 3.3]. Set n = 16w and G’s constants
accordingly to obtain Blake2s.

Optimizing the circuits2052

The above helper circuits form the building blocks of the Blake2s compression function.2053

We show here two exclusive methods to optimize these circuits.2054

Optimizing the Modular additions2055

Double modular addition: a + b = c (mod 2w). We present here an opti-
mization on the circuit to save one constraint by merging the modular constraint with
a boolean constraint. The optimized circuit presents the following constraints:(

w−1∑
i=0

(ai + bi − ci) · 2i
)
·

(
w−1∑
i=0

(ai + bi − ci) · 2i − 2w

)
= 0 (4.5)

∀j ∈ {0, . . . , w − 1}, (cj − 0) · (cj − 1) = 0 (4.6)

with
∑w−1

i=0 xi · 2i a binary encoding of x (xi is the ith bit of x).2056

These equations describe w + 1 constraints to prove the bit equality a+ b = c (note2057

that an additional 2 · w constraints would be required to prove the booleaness of input2058

variables a and b). We now explain how we obtained them.2059

Proof. The most straightforward way to prove that a+b = c (mod 2w) and c booleaness2060

is with the set of constraints illustrated in Eq. (4.1) and in Eq. (4.2).2061
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As we perform arithmetic modulo 2w, we do not care about the value of cw but would
like to ensure its booleaness. As one may notice, the summing constraint Eq. (4.1) is
an equality of two linear combinations with no multiplication by a variable. Hence, we
can combine it with the boolean constraint of cw to remove any reference to cw and still
have a bilinear gate. To do so, we first rewrite Eq. (4.1) as an equality check over cw ·2w
and multiply Eq. (4.2) for j = n by 22·w.

w−1∑
i=0

(ai + bi − ci) · 2i = cw · 2w (4.7)

2w · (cw − 0) · 2w · (cw − 1) = 0 (4.8)

We finally replace cw · 2w in Eq. (4.8) by the value from Eq. (4.7).

0 = 2w · (cw − 0) · 2w · (cw − 1) = 2w · cw · (2w · cw − 2w)

=

(
w−1∑
i=0

(ai + bi − ci) · 2i
)
·

((
w−1∑
i=0

(ai + bi − ci) · 2i
)
− 2w

)

This results in Eq. (4.5) and Eq. (4.6). All references to cw have disappeared and, with2062

a single multiplication by a variable, we still have bilinear gates.2063

Triple modular addition: a + b + c = d (mod 2w). To optimize, we use the2064

above circuit twice. We define a temporary variable d′ such that a + b = d′ (mod 2w).2065

As such, we have c+ d′ = d (mod 2w). As d′ is the addition of two w-bit long variables,2066

it is (w+1)-bit long. However as we evaluate the sum modulo 2w, we discard the last bit2067

of d′. We proceed similarly for d. To ensure that d is boolean, we check the booleaness2068

of the w + 1 bits of d as well as the booleaness of the last bit of d′ (to account for d’s2069

w + 2th bit in the original expression (a+ b+ c = d (mod 2w))).2070

We thus obtain the following circuit with w + 2 constraints,(
w−1∑
i=0

(ai + bi − d′i) · 2i
)
·

(
w−1∑
i=0

(ai + bi − d′i) · 2i − 2w

)
= 0(

w−1∑
i=0

(ci + d′i − di) · 2i
)
·

(
w−1∑
i=0

(ci + d′i − di) · 2i − 2w

)
= 0

∀j ∈ {0, . . . , w − 1}, (dj − 0) · (dj − 1) = 0

These optimizations lead to a gain of 320 constraints (= 4 · 8 · rounds).2071

Optimizing Blake2s routine’s circuit As seen in Fig. 4.1, our routine presents 22072

double and 2 triple modular additions. Each of these circuits comprises at least one2073

modular constraint which pack several w-bit long variables. The circuit is however2074

processed in FrCUR , that is to say most integers can be written over FIELDCAP bits. We2075
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can thus batch the modular constraints. As the G primitive performs 2 double modular2076

and 2 triple modular, we have in total 6 modular checks per iteration. We can batch up2077

to FIELDCAP/w constraints together. For w = 32 and FIELDCAP ≥ 224 (which holds for2078

BN-254 and BLS12-377), we can encode up to 7 words per field element, that is to say2079

we can include all the modular constraints into a single one.2080

This optimization leads to a gain of 274 constraints (= 4 · 8 · 10−
⌈
4·8·10

7

⌉
).2081

Optimization conclusion Using the more efficient optimization on the modular ad-2082

ditions, the Blake2s compression function comprises 21216 constraints.2083

Increasing the PRF security with Blake2084

As Blake2 comprises a personalization tag in its parameter block PB, one could ensure the2085

independence of the PRFs by writing different tags for each of them (we would be able to2086

consider up to 230 inputs and outputs). We did not choose to write this enhancement in2087

the instantiation to keep a general tagging method in case of a change of hash function.2088

4.4 Encryption of the notes2089

In this section we give some remarks concerning the implementation of the Zeth en-2090

cryption scheme, described in Section 3.5. As noted, there are several details in the2091

specification of the underlying primitives which can impact security if not carefully im-2092

plemented. The following list is by no means exhaustive but includes several details2093

noted during development of the proof-of-concept system.2094

• Private keys for Curve25519 MUST be randomly generated as 32 bytes where the2095

first byte is a multiple of 8, and the last byte takes a value between 64 and 1272096

(inclusive). Further details are given in [Ber06], including an example algorithm2097

for generation. Implementations MUST take care to ensure that their code, or any2098

external libraries they rely upon, correctly perform this step.2099

• A similar observation holds for Poly1305 in which the r component of the MAC2100

key (r, s) MUST be clamped in a specific way (see Section 3.5.3). This step is also2101

essential and MUST be performed.2102

• In the implementation of the ChaCha stream cipher, correct use of the key, counter2103

and nonce MUST be ensured in order to adhere to the standard and guarantee the2104

appropriate security properties.2105

During the proof-of-concept implementation it was not obvious that the cryptogra-2106

phy library4 adhered to the specifications with respect to the above points. In particular,2107

it was not clear whether key clamping was performed at generation time and/or when2108

4https://cryptography.io/en/latest/
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performing operations. Moreover, the interface to the ChaCha cipher accepted a differ-2109

ent set of input parameters (namely key and nonce with no counter). This left some2110

ambiguity about the responsibility for clamping, and whether the ChaCha block data2111

would be updated as described in the specification. Details of how this was resolved are2112

given in the proof-of-concept encryption code, which may prove a useful reference for2113

implementers5.2114

5see https://github.com/clearmatics/zeth/blob/v0.4/client/zeth/encryption.py
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Appendix A2117

Transaction non malleability2118

The transaction malleability problem for a DAP (Section 1.4) is characterized by a game2119

TR-NM involving a polynomial-time adversary A as described below.2120

Definition A.0.1. Let DAP be a (candidate) Decentralized Anonymous Payment scheme.

DAP = (Setup, GenAddr, SendTx, VerifyTx, Receive)

We say that DAP is TR-NM secure if, for every poly(λ)-time adversary A

Advtr-nmDAP,A(λ) < negl(λ),

where Advtr-nmDAP,A(λ) = Pr[TR-NM(DAP,A, λ) = 1] is A’s advantage in the TR-NM exper-2121

iment.2122

Below, we adapt [BSCG+14, Appendix C.2] to our specific DAP—Zeth.2123

We start by describing the TR-NM experiment. Given a (candidate) Zeth DAP,2124

adversary A, and security parameter λ, the (probabilistic) game TR-NM(DAP,A, λ)2125

consists of an interaction between A and a challenger C, terminating with a binary2126

output by C.2127

At the beginning of the game, C samples pp ← Setup(λ) and sends pp to A. Next, C2128

initializes a DAP oracle ODAP with pp and allows A to issue queries to it [RZ19, Appendix2129

B].2130

At the end of the experiment, A sends to C a M̃ixer contract call transaction tx ∗Mix,2131

and C outputs 1 iff the following conditions hold. Letting T be the set of transactions2132

generated by ODAP in response to SendTx queries, there exists txMix ∈ T such that:2133

1. txMix was not inserted in L by A;2134

2. tx ∗Mix.data 6= txMix.data;2135

3. VerifyTx(pp, tx ∗Mix,L
′) = 1 where L′ is the portion of the ledger L preceding txMix;2136

4. a serial number revealed in tx ∗Mix is also revealed in txMix.2137
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A.1 Transaction malleability attack on Zeth2138

In this section we present the threat related to the transaction malleability attack on2139

Zeth and expose the solutions by ZeroCash [BSCG+14] and Zcash [ZCa19] that we2140

adapted.2141

First, we start by assuming that none of the checks related to transaction malleability2142

attack have been added in the protocol Chapter 2. As such, we assume that hsig and2143

htags are not attributes of PrimInputDType, φ is not an attribute of AuxInputDType,2144

and otssig and otsvk are not attributes of the MixInputDType data type anymore. As2145

a consequence, all checks related to these attributes are removed from the protocol.2146

Moreover, if zn is an object of type ZethNoteDType, then zn.ρ is chosen at random.2147

Finally, the NP-relation used in Zeth, now denoted Rmal, becomes the following:2148

• For each i ∈ [JSIN]:2149

1. aux .jsins[i].znote.apk = Blake2s(tagaddr
ask ‖padBLAKE2sCLEN(0))2150

with tagaddr
ask defined in Section 3.1.32151

2. aux .jsins[i].nf = Blake2s(tagnf
ask‖aux .jsins[i].znote.ρ)2152

with tagnf
ask defined in Section 3.1.32153

3. aux .jsins[i].cm = Blake2s(aux .jsins[i].znote.r‖m)2154

with m = aux .jsins[i].znote.apk‖aux .jsins[i].znote.ρ‖aux .jsins[i].znote.v2155

4. (aux .jsins[i].znote.v) · (1− e) = 0 is satisfied for the boolean value e set such2156

that if aux .jsins[i].znote.v > 0 then e = 1.2157

5. The Merkle root mkroot ′ obtained after checking the Merkle authentication2158

path aux .jsins[i].mkpath of commitment aux .jsins[i].cm, with MKHASH, is2159

equal to prim.mkroot if e = 1.2160

6. prim.nfs[i]2161

=
{

PackFrCUR (aux .jsins[i].nf [k · FIELDCAP:(k + 1) · FIELDCAP])
}
k∈[bPRFNFOUTLEN/FIELDCAPc]2162

• For each j ∈ [JSOUT]:2163

1. prim.cms[j] = Blake2s(aux .znotes[j].r‖m)2164

with m = aux .znotes[j].apk‖aux .znotes[j].ρ‖aux .znotes[j].v2165

• prim.rsd = Packrsd ({aux .jsins[i].nf }i∈[JSIN] , aux .vin, aux .vout)2166

• Check that the “joinsplit is balanced”, i.e. check that the joinsplit equation holds:

PackFrCUR (aux .vin) +
∑

i∈[JSIN]

PackFrCUR (aux .jsins[i].znote.v)

=
∑

j∈[JSOUT]

PackFrCUR (aux .znotes[j].v) + PackFrCUR (aux .vout)
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A.1.1 The attack2167

In order to win the game TR-NM on the weak Zeth DAP above, an adversary A inter-2168

cepts a target transaction txMix by passively listening to the network (remember that2169

transactions are broadcasted to the Ethereum network in order to be mined, see Sec-2170

tion 1.2.2), extracts the zk-proof and primary inputs from txMix.data and uses these2171

extracted pieces of information in order to create a malicious transaction txMix
′, where2172

the ciphertexts are replaced by arbitrary data. The adversary can then broadcast txMix
′

2173

to the network in order for it to be mined. If the malicious transaction gets mined before2174

the legitimate one, the input notes become spent and the ciphertexts are undecryptable2175

making the new notes unredeemable (by any Zeth user!), since all attempts to decrypt2176

the ciphertexts will fail (see Section 2.6).2177

TxMalGen(sk ′ECDSA,nce in , txMix)

1 : p← txMix.gasP + 1

2 : l← txMix.gasL + 1

3 : zdata ′ ← txMix.data

4 : zdata ′.ciphers ←$B∗

5 : tx raw ← {nce : ncein , gasP : p, gasL : l, to : txMix.to, val : txMix.val , data : zdata ′};
6 : σECDSA ← SigSchECDSA.Sig(sk ′ECDSA,Keccak256(tx raw ));

7 : tx final ← {tx raw , v : σECDSA.v
′, r : σECDSA.r

′, s : σECDSA.s
′};

8 : return tx final ;

Figure A.1: Transaction malleability attack function TxMalGen

As shown on Fig. A.1, during the attack, the adversary extracts the proof and pri-2178

mary inputs from the honest transaction, and replaces the ciphertexts by some arbitrary2179

information. The attacker then formats this data into a transaction that calls the Mix2180

function of M̃ixer, and submits it to the network. While the data fields (txMix.data2181

and txMix
′.data) are different, the nullifiers revealed by both transactions are the same2182

(i.e. txMix.data.proof = txMix
′.data.proof , and txMix.data.prim = txMix

′.data.prim).2183

As a consequence, if the adversary makes sure that txMix
′ satisfies all the checks of2184

EthVerifyTx (Section 1.2.2), he can ensure that ZethVerifyTx(txMix
′) will return the same2185

value as ZethVerifyTx(txMix). Furthermore, if txMix
′.gasP > txMix.gasP , then the adver-2186

sary maximizes his chances of having his transaction mined first (Section 1.2.2), and so2187

maximizes the chances for the malleability attack to be successful; leading to lost funds2188

on M̃ixer.2189

Remark A.1.1. Note that, although not directly contained within the data field of a2190

M̃ixer call transaction, the Ethereum address SE .Addr of the transaction sender is also2191

used by the M̃ixer call (this is either the calling contract’s address, or the transaction2192

signer’s address recovered as described in Remark 1.2.1). In particular, the balance2193

of this Ethereum address is incremented by the value vout by successful Mix calls. If2194
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we again assume the absence of the malleability checks, an attacker could re-sign any2195

M̃ixer call transaction with a key under his control, rebroadcast it as described above,2196

and (with some reasonable probability) become the recipient of any public output value2197

vout .2198

Remark A.1.2. We note that the attack described above cannot be prevented by2199

merely substituting a malleable Groth16 zk-SNARK by a simulation-extractable one2200

like e.g. [GM17]. This comes since the attack does not utilise malleability of the proof2201

system, but malleability of data that are broadcasted along with the zk-proof.2202

A.2 Solutions to address the transaction malleability at-2203

tack2204

A.2.1 ZeroCash solution2205

The idea of the solution presented in [BSCG+14] is to use a one-time SUF-CMA digital2206

signature and bind its verification key with the zk-proof primary inputs to prevent an2207

adversary from corrupting part of a transaction’s data.2208

Specifically, to transact via Zeth, the user first samples a key pair (sk , vk) for a one-2209

time signature scheme. He then computes the hash hsig = CRH(vk), where CRH is a2210

collision resistant hash function, see [BSCG+14], and derives a value hi = PRFpk
ask i

(hsig),2211

for each input note (i.e. i ∈ [JSIN]), which acts as a MAC binding hsig to the address2212

spending key of a note (ask i).2213

The user then generates the zk-proof with the additional statement that the values2214

{hi}i∈[JSIN] are computed correctly. He finally uses sk to sign every value associated with2215

the operation, thus obtaining a signature, which is included, along with the signature2216

verification key vk , in the transaction. To verify a transaction on the DAP, it is necessary2217

to verify that2218

• the primary inputs are correctly formatted,2219

• the Merkle root corresponds to one of the previous states of the Merkle tree,2220

• the nullifiers have not been declared in a previous transaction,2221

• the hsig is correctly computed from vk , and2222

• both the zk-proof and the one-time signature verifications pass successfully.2223

Now, an adversary trying to carry out the aforementioned attack has to either change2224

the ciphertexts or the encryption key. Nevertheless, doing so should lead to the one-time2225

signature verification to fail or should yield an attack that breaks the UF-CMA property2226

of the one-time signature (as this corresponds to creating a forgery on a different message,2227

not changing the signature). Thereby, the adversary also has to modify the signature,2228

however he does not know the one-time signing key used by the creator of the targeted2229

transaction. As such, the adversary needs to use another signing key pair, however2230
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this leads to the check verifying that hsig is correctly computed to fail. If the adversary2231

attempts to change hsig , the zk-proof verification fails as the NP-statement has changed.2232

Hence, any attempt to carry out a malleability attack results in the violation of at least2233

one check in the verification of the transaction on the DAP. The solution presented2234

effectively solves the transaction-malleability attack initially described.2235

Remark A.2.1. The one-timeness property of the signature scheme was required in2236

ZeroCash to retain anonymity. It also makes analysing non-adaptive adversary sufficient.2237

As Ethereum transaction senders need to pay the gas cost associated with their trans-2238

actions, the senders are not anonymous. This said, making sure that Zeth is designed2239

with anonymity in mind is worth the effort in order to minimize information leakages2240

and be ready if/when Ethereum incorporates protocol changes that enable anonymous2241

transactions.2242

A.2.2 Zcash’s solution2243

In addition to the changes aforementioned, Zcash’s solution [ZCa19] also consists of:2244

• Redefining the variable hsig as,

hsig = CRH(randomSeed , {nf i}i∈[JSIN] , vk)

for some random seed randomSeed .2245

• Defining a new random variable φ and using it with hsig , as key and input of a2246

PRF respectively, to compute the identifier of each output notes ρj (j ∈ [JSOUT])2247

and ensure their uniqueness (with overwhelming probability).2248

These changes were made to prevent the Faerie Gold attack [ZCa19, Section 8.4], as well2249

as to prevent linkability: if hsig were repeated in two transactions, the circuit would2250

leak, via {hi}i∈[JSIN], the fact that the input notes in both transactions were spent with2251

the same ask i (if that were the case).2252

More particularly, using the input notes’ nullifiers to derive hsig ensures that hsig is2253

unique with overwhelming probability for all accepted transaction. Furthermore, us-2254

ing randomSeed ensures the uniqueness of hsig for transactions in transit (as before2255

validation there may be several in transit transactions with the same set of nullifiers).2256

A.2.3 Solution on Ethereum2257

As described in the Ethereum yellow paper [Woo19, Appendix F], Ethereum transactions2258

are ECDSA signed. Further, as described in Section 2.3, the one-time signature used to2259

sign the Mix data also signs the Ethereum address used to sign the transaction. As such,2260

any modification to the transaction object will result in a new transaction hash, and2261

any attempt to sign the transaction with a different ECDSA key will be rejected by the2262

M̃ixer contract (see Section 2.5). We thereby conclude that the one-time signature used2263
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to sign the transaction data does not need to be SUF-CMA, but only needs to achieve2264

UF-CMA.2265

Specifically, carrying out any change on the one-time signature will change the2266

Ethereum transaction data and result in a failure to verify the ECDSA signature of2267

the Ethereum transaction. To obtain a new valid signature on this transaction, the2268

adversary needs to break the UF-CMA property of the ECDSA signature scheme or use2269

another ECDSA keypair to sign the transaction. In the last case, the one-time signature2270

will no longer be valid.2271

Note that including the Ethereum transaction sender in the data to be signed by the2272

one-time signature scheme also addresses the possible attack described in Remark A.1.1.2273

An attacker trying to resign the same Ethereum transaction with a different key will2274

cause M̃ixer to reject the transaction when the one-time signature is checked.2275

Remark A.2.2. We note that the transaction malleability issue can also be addressed
in another way. In fact, one could use the ECDSA signatures on Ethereum transactions
to fix all inputs and ciphertexts, and then tie the sender of the Ethereum transaction to
the zk-snark by putting the sender address SE .Addr in hsig . In other words, it is also
possible to define hsig as:

hsig = CRH({nf i}i∈[JSIN] ,SE .Addr)

As such, if an attacker extracts the ciphertexts of a txMix transaction in order to craft2276

another malicious transaction txMix’, the key-pair used to sign txMix’ differs from the one2277

used to sign txMix, which changes the transaction sender address recovered on M̃ixer. As2278

a consequence, the check on hsig would fail on the M̃ixer, invalidating the transaction,2279

and preventing the attack.2280

While such a solution would avoid the need to generate one-time signing keys and2281

could avoid a signature check in the M̃ixer, it would also require every Zeth user to2282

have an Ethereum account. Doing so, would be a major hindrance toward the design of2283

mechanisms aiming to provide anonymity to Zeth transactions initiators. In fact, the2284

addressing scheme used in Zeth along with the solution to the malleability introduced in2285

Zcash makes it possible to generate raw Zeth transactions without having an Ethereum2286

account. These raw transactions could then be broadcasted – to a set of Ethereum user2287

nodes – on an anonymous p2p network, before being finalized and submitted to the2288

Ethereum network by Ethereum users who would be rewarded according to an incentive2289

structure. While such a protocol is outside of the scope of this document, it shows that2290

defining hsig using the senders address alters the flexibility of Zeth; hence this solution2291

has not been favoured.2292
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Appendix B2293

Double spend attack on2294

equivalent class2295

The primary inputs of our zk-SNARK are elements of FrCUR and they can be written over2296

FIELDLEN bits. Note that the projection of BFIELDLEN onto FrCUR formed by interpreting2297

elements in BFIELDLEN as FIELDLEN-bit numbers and reducing modulo rCUR, is surjective.2298

When we pass the primary inputs to the M̃ixer contract, they are interpreted as2299

elements of BETHWORDLEN, and BFIELDLEN ⊂ BETHWORDLEN. As previously noted, this means2300

that there exist pairs of elements in BETHWORDLEN with the same projection in FrCUR . An2301

adversary could make use of this to perform a double spend attack.2302

Indeed, to check that a note is not double spent, the contract stores the nullifiers of2303

spent notes (as elements of BETHWORDLEN) and verifies that the nullifier of the note to be2304

spent is not stored. The adversary could thus modify the nullifier to a different value2305

with the same projection. As the SNARK verification operates in FrCUR , the proof would2306

still be valid. However, the value stored for this nullifier would be different from the2307

adversarial one. Hence, the nullifier would be validated, the transaction would succeed2308

and the note would be double spent. In practice, the adversary can perform the attack2309

by simply adding rCUR to one of the elements representing the nullifier.2310

To prevent this attack, the contract checks that all primary inputs are elements of2311

FrCUR , that is to say that they are smaller than rCUR. As one may see, the attack described2312

above is not due to the packing of hash digests into field elements but to the contract2313

storage of field elements as Ethereum words.2314
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Appendix C2315

Side-channel attacks and2316

information leaks2317

The following subsections describe several side-channel attacks and possible weaknesses2318

that implementers should be aware of and attempt to mitigate.2319

We consider cases in which the attacker is able to observe the RPC communications2320

between Zeth client software, and Ethereum P2P nodes. This situation may occur if an2321

observer is able to monitor the network traffic between the Ethereum node and the Zeth2322

client software, or if the Ethereum node itself is compromised.2323

Note

In this discussion, we do not consider adversaries with physical access to the
machine running the client software. Such adversaries could make precise mea-
surements of timing, power-consumption or other physical quantities that could
reveal fine-grained details of the operations being carried out by the software, or
the data it is operating on. Protecting against attacks of this kind often involves
implementation techniques such as: avoiding branches based on private data,
being careful with memory access patterns, and making all operations constant
time, to only name a few. We leave consideration of these attacks and prevention
methods for a future discussion.

2324

C.1 Counterfeit data2325

Malicious Ethereum nodes or attackers able to compromise the network have the oppor-2326

tunity to send invalid data to RPC clients. This could be used to inject invalid data2327

into the client’s record of state, which could prevent it from generating valid Mix calls2328

or allow it to be identified in the future. In general, data from any remote host should2329

be treated as malicious, unless accompanied by evidence that convinces the client of its2330

authenticity.2331
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In the case of Ethereum event logs (the main source of data used to track the on-2332

chain state – see Section 4.1.1 for details), clients MUST leverage the consensus evidence2333

and block headers to verify that log data is genuine and has been committed to the2334

blockchain. See Section 1.2.3 for further information about how such data is secured.2335

C.2 Data leaked during synchronization2336

In order to receive private payments and keep their local data up-to-date, Zeth client2337

software MUST scan the blockchain and process all the event data emitted by M̃ixer2338

during Mix calls (as described in Section 4.1.1). There are several issues to consider2339

when determining exactly how and when this “synchronization” takes place.2340

Client implementations that only connect to the RPC endpoint in response to user2341

input, or in preparation for performing a Mix call, may leak information. Observers may2342

deduce that such client are likely to be the recipient of a recent or upcoming transaction,2343

or that they may be about to perform a Mix call.2344

Similarly, payment provider software that only listens for events when awaiting a2345

transaction, and remains disconnected otherwise, may reveal that it is the recipient of2346

an upcoming transaction, and possibly which transaction or block it was paid by (based2347

on when it stops listening).2348

Further, consider wallet software that performs RPC operations to explicitly wait2349

for the Ethereum transaction corresponding to a specific Mix call. This would most2350

likely be for transactions emitted by the Zeth client, in order to inform the user and2351

update the wallet state once the payment is complete (but could possibly happen on2352

the receiver side, if he somehow knows the ID of the transaction of interest – e.g. via2353

off-chain communication with the sender). If such a wait procedure is implemented by2354

querying the status of a specific transaction by its ID, or by listening for blocks until2355

the transaction of interest is received, the connected Ethereum node may infer that this2356

client is interested in the transaction, and likely to be the sender or recipient.2357

Consider a client which periodically connects to some Ethereum node and requests2358

all relevant data from the last block it saw, up to the latest block available. Each client2359

will have information up to some block n (where n varies per client), and n is known to2360

the Ethereum node that served the client. The client could then potentially be identified2361

by n (even if it hides its IP for each connection) since a client that connects and queries2362

Zeth transactions from block n+ 1 reveals that it is one of the clients who synced up to2363

block n when it last connected.2364

Note that, if the client always broadcasts the Mix transaction via this same Ethereum2365

node, then the Ethereum node may already deduce that the client is the sender. However,2366

implementations may wish to use techniques (such as sending transactions from other2367

nodes or hiding their IP address in other way) to obfuscate any relationship between2368

transactions and the clients that originated them.2369
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C.3 Queries on successful decryption2370

The event data emitted by M̃ixer contains the note data for new commitments, en-2371

crypted using a key derived from the recipients’ public key. As described in Section 2.6,2372

clients scan the blockchain for these events and attempt to decrypt the ciphertext using2373

their secret decryption keys. If they are successful, they are the recipient of the note2374

and can try to parse the plaintext to extract the secret note data.2375

When decryption is successful and the note data has been extracted from the plain-2376

text (we discuss parsing failure in Appendix C.4), clients MUST check that this note data2377

does indeed open the commitment for the note.2378

A naive implementation of this check could query the state of M̃ixer via RPC to2379

check the relevant entry in the set of commitments. However, this would reveal to2380

an observer that the client had successfully decrypted and parsed the corresponding2381

ciphertext, and was therefore the recipient of that note.2382

For this reason, the protocol specifies that M̃ixer MUST emit events informing clients2383

of new commitment values and locations in the Merkle tree. Clients MUST consume2384

all such data to maintain their view of contract state (as described in Appendix C.2).2385

Further, clients MUST attempt to decrypt all ciphertexts and, for successful decryptions,2386

MUST verify that the plaintext opens the note’s commitment. This avoids the need for2387

any extra RPC queries that would reveal which ciphertexts were successfully decrypted.2388

Note

Emitting events containing all data necessary to carry out the local checks imple-
mented in the wallet is a way to enforce that all wallets behave exactly the same
to the eyes of network (passive) adversaries (regardless whether the user is the
recipient of a note or not).

2389

C.4 Invalid ciphertext2390

The attack described in [TBP20, Section 4.2.1] illustrates the importance of correctly2391

handling invalid data in client software. A so-called “REJECT Attack” is described2392

whereby an attacker creates a Mix call with specially crafted ciphertext. The cipher-2393

text can be successfully decrypted by the correct recipient – that is, the plaintext note2394

is encrypted with an encryption key derived from the recipients public key – but the2395

corresponding plaintext is invalid and cannot be parsed correctly by the recipient.2396

Note

Note that the above is possible because the plaintext is neither verified by the
circuit encoding Rz, nor by the contract (which is unable to decrypt it). Hence,
Zeth allows such transactions with malicious ciphertexts to be accepted by the

M̃ixer contract, and clients must handle this case with care.
2397

108



In the case described in [TBP20], there is no distinction between “client” or “wallet”2398

software, and the underlying P2P nodes. Before a fix was applied (see [zcab]), nodes2399

explicitly rejected transactions of the above form, proving to their peers that they were2400

able to decrypt the ciphertext and were therefore the intended recipient.2401

In Zeth, P2P nodes and wallet software are separated, so there will be no explicit2402

rejection of the transaction. However, careless error handling (such as exceptions which2403

causes the RPC connection to be closed) could potentially be detected by the connected2404

Ethereum node. As in the “REJECT Attack”, this reveals that the connected RPC2405

client is the intended recipient of a transaction, and the owner of the corresponding2406

encryption key.2407

C.5 Using (and retrieving) nullifiers2408

Any non-trivial wallet implementation will need to track which of the user’s Zeth notes2409

have been spent, and which are still available. Naturally, the wallet software could mark2410

the notes as it broadcasts transactions that spend them. However, this approach is2411

subject to several problems.2412

Firstly, for each note spent, the client software must record the ID of the spending2413

transaction, in order to track it and confirm that it is accepted into a block. Once each2414

spending transaction is accepted the client can finally mark the appropriate Zeth notes2415

as “spent”. This requires significant complexity in order to asynchronously mark the2416

notes, and to deal with the issues described in Appendix C.2.2417

Secondly, this approach does not support multiple wallets using the same key, or2418

wallets being restored from Zeth addresses. A user that wishes to rebuild his wallet2419

(see the discussion in Section 4.1.4), or check for any spending activity by other wallets,2420

would not be able to do so by simply scanning the blockchain.2421

By using the nullifiers passed to Mix calls, clients can determine the availability of2422

notes in a more robust way. That is, to determine whether a note is spent or available,2423

the client can compute the nullifier and check whether that nullifier has been seen by2424

the M̃ixer contract.2425

In a similar way to Appendix C.3, queries to M̃ixer for specific nullifiers reveals2426

to observers that the client was the sender of any previous or future transaction that2427

generates such a nullifier. To mitigate this, M̃ixer MUST include nullifier values in the2428

event data it emits, and clients SHOULD use this to track which of their notes are spent.2429

This MUST happen as part of the regular sync operation, so that no extra RPC traffic is2430

generated and observers cannot distinguish between clients that do and do not recognize2431

any given nullifier. Note that this approach also supports tracking spent notes from2432

multiple wallets, and rebuilding wallets by re-syncing the blockchain.2433
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C.6 Proof generation2434

Generation of the zero-knowledge proofs, required for valid Mix calls, is a very computa-2435

tionally intensive process. The proof generation itself does not require any communica-2436

tion with external parties, and so may not directly leak information about the client, but2437

implementers should consider some indirect ways in which information may be leaked.2438

Implementers may also wish to consider the possible indirect impact of proof genera-2439

tion on the RPC channel. For example, a client that “waits” for proof generation without2440

servicing the RPC connection may fail to respond to (or take significantly longer to re-2441

spond to) new log events. The connected Ethereum node might then deduce that its peer2442

is generating a proof and therefore likely to be the sender of an upcoming transaction.2443

Note

As stated in the introduction to this chapter, this discussion does not consider
general timing attacks. We mention this extreme case of a client that completely
stalls during proof generation only to illustrate how a poor implementation may
leak information to its RPC peer.

2444

In the case where proof generation is carried out on some external host, or by an2445

external process on the same host, there may be a risk of network traffic or other IPC2446

traffic being observed. If an observer can detect that a given client is communicating2447

with a prover process, it can reliably deduce that the client will be the sender of an2448

upcoming transaction.2449

An observer able to see the content of the communication between the wallet and2450

prover process will also gain knowledge of the auxiliary inputs to the proof (including2451

the data required to spend the input notes and secret attributes of the output notes).2452

It is therefore important to secure any such connection, protect any prover process from2453

being maliciously modified or observed, and to ensure that wallets only communicate2454

with trusted processes.2455

C.7 Simple mixer calls2456

The public parameters to a Mix call can reveal information about the nature of a trans-2457

action, even though they do not reveal recipient details or note amounts. For example,2458

a Mix call in which Mixin .primIn.vout = 0 and Mixin .primIn.vin 6= 0 may indicate2459

a simple “deposit” of funds into the mixer. Similarly, if both Mixin .primIn.vout and2460

Mixin .primIn.vin are zero, the transaction must be spending only notes already within2461

M̃ixer, into new notes. Finally, if Mixin .primIn.vin = 0 and Mixin .primIn.vout 6= 0, the2462

sender may be performing a simple “withdrawal” of funds from some existing notes.2463

A Mix call can combine all of the above logical operations in a single transaction.2464

That is, it can deposit value into the mixer, spend existing notes, create new notes, and2465

withdraw value from M̃ixer at the same time. Combining logical operations in this way2466
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makes it much more difficult for an observer to attribute a specific purpose to the Mix2467

call.2468

Clients can also perform Mix calls in which vin = vout = 0 and 0-valued notes are2469

created from other 0-valued notes. Such “dummy” self-payments can further obfuscate2470

the activity of a wallet, by adding “noise” to the system. Note, however, that the gas2471

cost for such transactions must still be paid.2472

Wallet implementations SHOULD encourage the use of these complex calls where pos-2473

sible, either via the user interface or by automatically adding complexity to transactions,2474

and SHOULD support features such as adding “noise”1 if the user wishes to pay for extra2475

protection of this kind.2476

C.7.1 Small anonymity sets2477

Until there is a large number of commitments and users of the mixer, it may be easy2478

for an observer to infer some of the private data that is intended to be hidden by mixer2479

calls.2480

In the simple case, if there are very few commitments in the M̃ixer’s Merkle tree, an2481

attacker has a small list of candidate commitments that are being spent by subsequent2482

Mix calls. Similarly, if the number of distinct Ethereum addresses that have been used2483

to call M̃ixer is very small, observers can trace the original source of funds subsequently2484

withdrawn to a small set of original depositors.2485

Client software may wish to track metrics about the M̃ixer state, and either prevent2486

certain actions or design the user interface to discourage users2 from creating trans-2487

actions whose features can be identified with high probability. We provide below a2488

non-exhaustive list of metrics of interest:2489

• Number of commitments. If there is a low absolute number of commitments,2490

clearly any non-zero output must spend one of these (although we note that only2491

vout can be publicly known to be non-zero).2492

• Number of unspent commitments. If #Comms−#Nulls is small and a new2493

commitment is created and then spent, observers can deduce that there is a high2494

chance that the spend operation targeted the new commitment.2495

• Number of Ethereum addresses. While very few distinct addresses (or groups2496

of addresses that are not associated) have used the contract, observers can de-2497

duce that subsequent Mix calls are likely to spend commitments created by clients2498

associated with one of this small set of addresses.2499

The set of Ethereum addresses that have interacted with the contract can leak data2500

in other ways. An Ethereum address that withdraws value from the contract, but has not2501

previously been used to make a Mix call (or a Mix call that deposits value into M̃ixer),2502

1By randomly scheduling dummy payments, for instance
2By, for example, displaying warning messages and/or asking the user for confirmation
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must have been the recipient of zeth notes created by a previous depositor. The details2503

may not be directly available to an observer, but this is another example of information2504

which could be combined with other leaked data to infer connections between entities2505

and transactions.2506
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Appendix D2507

Security proofs of Blake22508

This appendix proves the collision resistance, PRF-ness, binding and hiding properties2509

of the Blake2 hash function in the Weakly Ideal Cipher model (WICM, see [LMN16]).2510

The proofs use definitions and results of Luykx et al. [LMN16], regarding the indifferen-2511

tiability of Blake2 and a random oracle in the Weakly Ideal Cipher Model (WICM). In2512

the following, we assume that the optimization of Blake2 for 8- to 32-bit platforms is as2513

secure as Blake2 as described in [LMN16].2514

D.1 Security model of Blake22515

The security analysis treats Blake2 as hash function built on top of a block-cipher-based2516

compression function in the WICM (which derives from the Ideal Cipher Model). In2517

this section, we present the WICM and prove that Blake2 is a collision resistant PRF,2518

and thus a commitment scheme.2519

D.1.1 Weakly Ideal Cipher Model2520

The research community believes that Blake’s underlying block cipher has no known2521

weaknesses and could reasonably be modeled as an ideal cipher [LMN16, Section 2.1].2522

However, Blake2 admits weak keys with a specific structure [LMN16, Section 2.1]. Blake22523

is therefore more appropriately analysed in the WICM, which is an extension of the Ideal2524

Cipher Model that represents a block cipher as a set of independent random permuta-2525

tions [HKT11]. The WICM may also be viewed as a specialization for Blake2 of the Weak2526

Cipher Model [MP15], which aims to be realistic by modeling particular characteristics,2527

invariants or properties a block cipher may have.2528

A number of definitions in what follows are quoted directly from Luykx et al. [LMN16].2529

The Weakly Ideal Cipher Model. Let W and S be the following partition of B2·ol

into weak and strong sets, where w is the word length (16 · w = 2 · ol):

W =
{
aaaabbbbccccdddd ∈ B2·ol | a, b, c, d ∈ Bw

}
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S = B2·ol \W

Let BLK(2 ·ol, 2 ·ol) denote the set of all block ciphers E : B2·ol×B2·ol → B2·ol. Define
BLK∗(2 · ol, 2 · ol) as the set of all block ciphers E ∈ BLK(2 · ol, 2 · ol) with the additional
restriction that E(kw, ·) isW- and S-subspace invariant for all keys kw ∈ Kweak. That is,
inputs in W map to W, and likewise for S. Here, Kweak is the set of weak keys, defined
as

Kweak =
{

k = kkkkkkkkkkkkkkkk ∈ B2·ol | k ∈ Bw
}
.

A random E←$BLK∗(2 · ol, 2 · ol) can now be modeled as follows:2530

• on input of (k , x) ∈ Kweak ×W, E generates its response y randomly from W up2531

to repetition;2532

• on input of (k , x) ∈ Kweak × S, E generates its response y randomly from S up to2533

repetition.2534

For key values k ∈ B2·ol \ Kweak, E behaves like an ideal cipher: it either outputs a2535

new random value or if the key-message-image tuple has already been queried the tuple’s2536

image. The case of inverse queries is analogous.2537

Blake2C is defined over the following domains and codomain:

Blake2C : BLK∗(2 · ol, 2 · ol)× Bol × B2·ol × Bol/4 × Bol/4 → Bol

We write Blake2CE(h,m, t, f) for the output of the Blake2 compression function, defined2538

over encryption scheme E on inputs h, m, t and f . The compression function, in par-2539

ticular, computes the state x = (h‖padol/2(0)‖t‖f)⊕ (padol(0)‖IV) for some IV. It then2540

encrypts x under m (where m is treated as a key for the encryption) and splits E(m, x)2541

in two same size variables, the left part lE and right part rE. It finally outputs lE⊕rE⊕h.2542

2543

Zeth uses the Blake2 compression function with a fixed encryption scheme E∗ based on2544

ChaCha stream cipher [Ber08a]. Thus, we write Blake2C(h,m, t, f) = Blake2CE∗(h,m, t, f).2545

Indifferentiability. One way to measure the extent to which a certain cryptographic2546

function behaves like a random function is via the indistinguishability framework where2547

a distinguisher is given oracle access to either the cryptographic function or the random2548

function with the goal of determining which one it has access to.2549

Definition D.1.1. Let C be a construction with oracle access to an ideal primitive P.
Let R be an ideal primitive with the same domain and codomain as C. Let Sim be a
simulator with the same domain and codomain as P with oracle access to R, and let
Dist be a PPT distinguisher. The indifferentiability advantage of Dist is defined as:

IndiffCP ,Sim(Dist) =
∣∣∣Pr
[
DistC

P ,P = 1
]
− Pr

[
DistR,Sim

R
= 1
]∣∣∣
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The distinguisher Dist can query both its left oracle (either C or R) and its right2550

oracle (either P or Sim). We refer to CP , P as the real world, and to R, SimR as the2551

simulated world; the distinguisher Dist converses with either of these worlds and its goal2552

is to tell both worlds apart.2553

Theorem D.1.1 (Indifferentiability of Blake2 [LMN16]). Let an encryption scheme
E←$BLK∗(2 · ol, 2 · ol) be a weakly ideal cipher, and consider the hash function Blake2E
that internally uses E. There exists a simulator Sim such that for any distinguisher Dist
with total complexity q, we have:

IndiffBlake2E,Sim(Dist) ≤
(
q
2

)
22ol

+
2
(
q
2

)
2ol

+
q

2ol/2

where Sim makes at most O(q3) queries to a random function R.2554

Proof. See [LMN16, Corollary 1].2555

For asymptotic security, we assume the distinguisher to be PPT and that the number2556

of queries made is polynomial q ≤ poly(ol).2557

Additional remarks. Luykx et al. [LMN16] remark that, by resorting to the WICM,2558

they do not make stronger assumptions than those used in previous results (ICM), and,2559

despite the fact that they give distinguishers more power (by weakening the cipher),2560

they are able to get similar results.2561

D.2 Security proofs2562

D.2.1 Blake2 is a PRF2563

Luykx et al. already prove the PRFness of Blake2 keyed hash function in the multi-key2564

setting.2565

Definition D.2.1 (PRF in multi-key setting [ML15]). Let µ ≥ 1 and k←$Kµ. Let C
be a keyed construction with key space K and with oracle access to an ideal primitive P.
Let R1, . . . ,Rµ be random functions with the same domains and ranges as Ck1 , . . . , Ckµ .
Let D be a distinguisher. The PRF distinguishing advantage of D is defined as,

PRFCP (D) =
∣∣∣Pr
[
Dist

CPk1 ,...,C
P
kµ
,P

= 1
]
− Pr

[
DistR1,...,Rµ,P = 1

]∣∣∣
Blake2 supports keyed hashing by simply prepending the key to the message:

Blake2E,k (m) = Blake2E(k‖02ol−kl‖m)

where kl ≤ 2ol denotes the key size. In other words, the key gets processed as other data2566

and the HAIFA counter and flags are designated to the key in a similar fashion as if they2567

were for normal data blocks.2568
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Theorem D.2.1 (PRF-security of Blake2 keyed mode [LMN16]). Let µ ≥ 1 and let
k ←$

(
Bkl
)µ

. Let an encryption scheme E←$BLK∗(2 · ol, 2 · ol) be a weakly ideal ci-
pher, and consider the keyed hash function Blake2E,k that internally uses Blake2CE that
internally uses E. For any distinguisher Dist with total complexity q:

PRFBlake2E,k (Dist) ≤
(
q
2

)
22ol

+
2
(
q
2

)
2ol

+
q

2ol/2
+
µq

2kl
+

(
µ
2

)
2kl

Proof. See [LMN16, Corollary 3].2569

Remark D.2.2. We can note that in the case of keyed hashing, the key is padded only2570

to be processed in a single block to differentiate the key from the message. The security2571

proof of Theorem D.2.1 does not rely on this padding and as such also works with no2572

padding.2573

Theorem D.2.2 (PRF-security of Blake2 with a single key [LMN16]). Let k ←$Bkl.
Let an encryption scheme E←$BLK∗(2 · ol, 2 · ol) be a weakly ideal cipher, and consider
the keyed hash function Blake2E(k , ·) = Blake2E(k‖·) that internally uses Blake2CE that
internally uses E. For any distinguisher Dist with total complexity q:

PRFBlake2E(Dist) ≤
(
q
2

)
22ol

+
2
(
q
2

)
2ol

+
q

2ol/2
+

q

2kl

Proof. See Remark D.2.2 and Theorem D.2.1 with µ = 1.2574

Remark D.2.3. Since we analyse the security of Blake2 asymptotically, we assume that2575

for a security parameter λ holds ol = O(λ), kl = O(λ), and q = poly(λ).2576

D.2.2 Proof of Blake2 collision resistance2577

We want to prove here the collision resistance of Blake2. To do so, we are going to2578

prove by contradiction that if Blake2 is not collision resistant, it is not indifferentiable2579

according to Definition D.1.1.2580

Theorem D.2.3. Blake2 is collision resistant.2581

Informal proof. Let us assume that there exists a PPT adversary B which breaks the2582

collision resistance of Blake2. We build an adversary A that uses this adversary to2583

differentiate between the real and simulated worlds. More particularly, A gets left and2584

right oracles (see [LMN16, Figure 3]), which are either an oracle for a hash function and2585

for a weakly ideal block cipher or a random oracle and an encryption simulator with2586

oracle access to the random oracle.2587

On each B’s query mi, i ∈ {1, . . . , q}, A passes them to his left oracle and returns2588

the answer hi to B. Eventually, if B finds a collision, that is a pair (mi,mj) such that2589

mi 6= mj and hi = hj , A guesses that his oracles were real; else A returns a random2590
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guess. Otherwise A guesses his oracles were simulated – if the left oracle was a random2591

oracle, the probability of finding a collision would be negligible for q ≤ poly(λ)1.2592

On the other hand, B finds a collision with non-negligible probability if the oracles2593

were real. Hence, A wins the indifferentiability game with non-negligible advantage,2594

which is a contradiction.2595

D.2.3 Blake2 as a commitment scheme2596

We prove here that Blake2 is a commitment scheme, i.e. is binding and hiding. To do so2597

we rely on the previous results that Blake2 is collision resistant and a PRF.2598

Theorem D.2.4. Let E←$BLK(2ol, 2ol) and for a message x ∈ B∗ and randomness2599

r ∈ Brl commitment to x using r be ComSch.Com(x; r) = Blake2E(r‖x). Then ComSch2600

is hiding and binding.2601

Informal proof. Hiding. A commitment scheme ComSch is computationally hiding if,2602

knowing two potential openings, a PPT adversary cannot distinguish which was com-2603

mitted. Let us assume that there exists a PPT adversary B which breaks the hiding2604

property of Blake2 with a non-negligible advantage η. We build an adversary A that2605

uses B to break the PRF property of Blake2 with advantage η/2.2606

First, the PRF game is initiated, that is, the challenger chooses a random encryption2607

scheme E and key k ∈ Brl and instantiates two oracles OBlake2k = Blake2E(k , ·) and OR
2608

a random function. The challenger picks an oracle randomly and gives A access to it.2609

B sends q oracle queries m1, . . . ,mq to A (adaptively) who extends them with random2610

r1, . . . , rq and sends ri‖mi to his left oracle. Given the answer from the oracle, A returns2611

them to B. Eventually, B then outputs two challenge messages (m̃0, m̃1) and sends them2612

toA who randomly selects message m̃b, extends it with r and sends r‖m̃b to his left oracle.2613

The oracle answers with yb which is also sent to B. Finally, B returns the decision bit b̃2614

to A. If b = b̃, A answers to the challenger that the oracle was instantiating the PRF.2615

Otherwise, A answers with a random guess. The advantage of A equals advantage of B2616

if it interacts with a real hash function. The advantage of A equals half the advantage2617

of B when interacting with a random oracle and simulator.2618

Binding. A commitment scheme ComSch is said to be computationally binding if2619

it is infeasible to find x, x′ and r, r′ such that x 6= x′ and Com(x; r) = Com(x′; r′).2620

This is implied by collision resistance of Blake2. Thus if B is an algorithm that breaks2621

the biding property with advantage η, there is another algorithm A that breaks Blake22622

collision resistance with the same advantage.2623

1The probability would be q2

2ol
which is negligible for a polynomial number of queries q . This is the

sum of the probabilities of finding a collision when doing the ith query. Indeed, let us suppose the
adversary has done i − 1, i > 2, queries without finding a collision, i.e. he knows i − 1 distinct tuples
of input-output. When receiving the ith value, the adversary has thus i − 1 chance to find a collision.
The probability for the new output to be equal to any of the previous outputs is thus (i− 1) · 1

2ol
(as we

are in the random oracle model). Summing this probability over all queries, we find the probability of
finding a collision after doing q queries.
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Assuming that Blake2s is as secure as Blake2, a commitment scheme based on a2624

Blake2s, i.e. Com(x; r) = Blake2sE(r‖x) is hiding and binding.2625

D.2.4 Proof of commitment scheme security2626

To prove the binding and hiding property of ComSch (see Section 3.1.2), we introduce
the following commitment scheme ComSch∗,

ComSch∗.Setup :
{

1λ s.t. λ ∈ N
}
→ B∗

ComSch∗.Com : BLK∗(2 · BLAKE2sCLEN, 2 · BLAKE2sCLEN)× B2·BLAKE2sCLEN

×
(
BPRFADDROUTLEN × BPRFRHOOUTLEN × BZVALUELEN

)
× BRTRAPLEN → BBLAKE2sCLEN

The commitment scheme is defined as follows,

ComSch∗.Setup(1λ) = pp∗ = ε

ComSch∗.Com(m = (apk , ρ, v); r) = cm

= Blake2E∗(r‖apk‖ρ‖v)

Given a commitment scheme ComSch∗, the bijective function decodeN(·) and pλ ∈
N, a prime which can be represented using λ bits, we define the commitment scheme
ComSch′ as follows:

ComSch′.Setup(1λ) = (ComSch∗.Setup(1λ), pλ)

ComSch′.Com(m; r) = decodeN(ComSch∗.Com(m; r)) (mod pλ) for m = (apk‖ρ‖v)

Note that ComSch (see Section 3.1.2) is a particular instantiation of ComSch′ where E∗2627

is set as ChaCha encryption scheme [Ber08a], k∗ is a random key, and pλ is rCUR.2628

Theorem D.2.5 (Hiding). If ComSch∗ is hiding then ComSch′ is hiding.2629

Proof. We prove the theorem by contradiction i.e. we assume that there exists an adver-2630

sary B that breaks ComSch′’s hiding property and construct an adversary A that uses2631

B to break ComSch∗’s hiding property with non-negligible probability.2632

Let C be a challenger that sets up the hiding game for ComSch∗ and A. The adversary2633

A, given public parameters pp∗ of ComSch∗ and access to an oracle that runs the Com2634

algorithm of ComSch∗ scheme, simulates a hiding game for ComSch′ for B. The adversary2635

A starts by setting public parameters pp′ for ComSch′ using public parameters pp∗2636

given by C. Parameters pp′ are passed to B who outputs a pair of messages m0,m1.2637

The adversary A forwards them to the challenger who samples a bit b at random and2638

generates cm∗ = ComSch∗.Com(mb; r) for some randomness r. The result is returned2639

to A (see Definition 1.5.21). Then A passes cm = decodeN(cm∗) (mod pλ) to B who2640

returns his guess b′. The adversary A returns the same b′ to the challenger.2641

By construction, it is clear that A wins the hiding game with the same probability2642

that B wins the simulated hiding game. Since B’s advantage is non-negligible, this means2643

that A wins the ComSch∗ hiding game with non-negligible probability as well.2644
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Theorem D.2.6 (Binding). Let ComSch∗ be a computationally binding commitment2645

scheme and ComSch∗.Com indifferentiable from a random oracle. Then ComSch′ is also2646

computationally binding if l =
⌈
2λ/pλ

⌉
is at most poly(λ).2647

Proof. Assume that A asks the ComSch′ commit and open oracles a total of qλ distinct2648

queries. Let us denote the result of the qλ queries and output of the attacker (the2649

candidate collision) as ((m1, r1, y1), . . . , (mqλ , rqλ , yqλ), out). If A is successful it means2650

that it outputs (m, r), (m ′, r ′) such that (m, r) 6= (m ′, r ′) and ComSch′.Com(m; r) =2651

ComSch′.Com(m ′; r ′).2652

By the definition of ComSch′, we have that,

ComSch′.Com(m; r) = decodeN(ComSch∗.Com(m; r)) (mod pλ)

Hence, we have a collision in ComSch′ if there exists k ∈ [l], l being the ratio of the
codomains of ComSch∗.Com and ComSch′.Com, such that,∣∣decodeN(ComSch∗.Com(m; r))− decodeN(ComSch∗.Com(m ′; r ′))

∣∣ = k · pλ.

We show that this event is unlikely.2653

In fact, for each i ∈ [qλ], let Ci be the event that the adversary wins at the i-th2654

query. That is, the last commitment yi is a ComSch′ collision with one of the previous2655

yj . More precisely there exists j ≤ i and k < l such that yi = yj + k · pλ.2656

Since ComSch∗ is a random oracle, yi is randomly selected from a set of at least pλ2657

elements. As such, we have Pr[Ci] ≤ i · l/pλ.2658

Thus the probability of finding a collision after qλ queries is Pr[C1 ∨ . . . ∨ Cqλ ] ≤∑qλ
i=1 Pr[Ci] = l/pλ ·

∑qλ
i=1 i. This probability is bounded by l · qλ(qλ+1)

pλ
. However,

we allow only polynomial number of queries. Thus for qλ = poly(λ) this probability
becomes,

2λ · poly(λ)

p2λ
,

what is negligible for 2λ/pλ ≤ poly(λ).2659

Remark D.2.4. Note that in Zeth’s commitment scheme, we set pλ = rCUR and 2λ =2660

2BLAKE2sCLEN. Thus, for BN-254 and BLS12-377 have l = 6 and l = 14, respectively.2661

Therefore, the probability of an attacker breaking the binding property due to reduction2662

modulo rCUR increases approximately by these factors. This is still negligible.2663

Corollary. Assume that Blake2 is indifferentiable from a random oracle and a PRF,2664

then ComSch∗ is computationally binding and computationally hiding. Furthermore, the2665

reduction is tight. That is, the advantage of any PPT adversary against the binding2666

(resp. hiding) property is the same as the advantage of an adversary against collision2667

resistance and binding (resp. hiding).2668
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Appendix E2669

Fuzzy message detection2670

As explained in 2.6 and 4.1.1, in order to receive ZethNotes, a Zeth user must listen2671

on a broadcast channel, and try to decrypt all encrypted events emitted by the M̃ixer2672

contract. While providing the best potential for indistinguishability (all users scan the2673

chain data and expose the same behavior), such routine is particularly expensive to2674

carry out, especially for computationally restricted users (i.e. users with computationally2675

limited devices).2676

As a way to trade-off the users’ anonymity and the cost of the message detection2677

routine in privacy-preserving protocols, Beck et al. [BLMG21] introduced the notion2678

of fuzzy message detection schemes. These protocols allow the delegation of message2679

detection to untrustworthy servers, without revealing precisely which messages belong to2680

the receiver, by allowing receivers to enforce false-positive detection rates. Such schemes2681

provide a promising avenue for reconciliating recipient anonymity (via key ambiguity and2682

message detection ambiguity) and the performance of the ZethNotes receiving algorithm2683

that currently needs to run on a machine belonging to (or trusted by) the recipient.2684

Nevertheless, the selection of the fuzzy detection parameters for Zeth is a chal-2685

lenge, especially the selection of the false-positive rate. Under the scheme presented2686

in [BLMG21], not only is this parameter public (an additional “leakage” of informa-2687

tion1, including to potentially adversarial nodes), but this parameter is likely to be set2688

to different values by different users, based on the number of payments they receive2689

through Zeth. This, coupled with the existing gas-related leakages, will increase the set2690

of information leakages in the protocol, the consequences of which are hard to properly2691

estimate. Furthermore, letting such parameters be set by users raises other challenges2692

for wallet developers, user experience (UX) engineers and documentation engineers. In2693

fact, any degree of liberty given to the user increases the potential for “deviation” from2694

the “expected/indistinguishable” behavior. Hence, UX/documentation/wallet engineers2695

must be able to suggest sensible default values for such parameters, must extensively2696

document the purpose of these parameters and must extensively educate the end-users2697

to maximize the chances of adequate parameter selections. While feasible, such tasks2698

1limited to one server (in the best case), or to the whole network (in the worst case — if the adversary
broadcasts all its known information)
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largely rely on modeling efforts2, which simplify real-world systems and can only be used2699

to simulate a limited set of situations. Moreover, not being able to easily (i.e. without2700

distributing new keys) update the false-positive rate over time is problematic in the2701

context of Zeth as it does not allow users to have adaptable false-positive probabilities2702

to account for potential spikes in the number of payments they receive (e.g. a merchant2703

during sales).2704

On the other hand, and as mentioned above, being able to use fuzzy message detection2705

schemes in Zeth would also widen the user base of the protocol, which, as a consequence,2706

would widen the anonymity set.2707

2See e.g. https://git.openprivacy.ca/openprivacy/fuzzytags-sim
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Appendix F2708

Extended discussion on the2709

security of MIMC in different2710

settings2711

In the original design proposed in the MIMC paper [AGR+16], the round function is2712

represented as a “shifted” permutation via a cubic map (i.e. the round input message is2713

added to the key and round constant - the “shift” -, and a map xe permutes the element2714

in the underlying field F2n , n ∈ N, where gcd(e, 2n − 1) = 1). This function (which is2715

a permutation and therefore invertible) acts as a substitution box (S-box) and brings2716

non-linearity to the scheme, as usually required for security.2717

In other sections of the paper, however, the MIMC authors proposed generalizations2718

to the initial design. These allow MIMC to be used:2719

• over prime fields of odd characteristic (i.e. Fp, p odd prime),2720

• with different permutation polynomials (i.e. using different exponents in the round2721

function)2722

Understanding the relationships between these various settings is required in order to2723

use MIMC to operate over prime fields of odd characteristic with a non-cubic permutation2724

monomial.2725

Overall, for MIMC to be considered secure, it is important that no attack in the2726

literature (that may provide a significant speedup compared to “exhaustive key search”)2727

can succesfully be mounted by a PPT adversary. Two main families of attacks exist:2728

statistical attacks and algebraic attacks.2729
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Statistical attacks. In the “Security Analysis” section [AGR+16, Section 4.2], the au-2730

thors explain that since the cubic function is an Almost Perfect Nonlinear map (APN)1,2731

linear attacks pose no threat to MIMC.2732

We observe that this claim aligns with [HRS99, Theorem 2]. In fact if MIMC is2733

operated over F2n , it is easy to see that the degree of the cubic map can be expressed as2734

3 = 2t + 1, where t = 1, and where n and 1 are trivially coprime. This case is covered2735

by [HRS99, Theorem 2] which confirms that the cubic function S(x) = x3 over F2n is an2736

APN/2-uniform mapping, as desired for differential and linear cryptanalysis resistance.2737

Likewise, in [AGR+16, Section 5.1] the authors claim that, provided that the cubic2738

map is a permutation over the prime field of interest, MIMC can be used to operate over2739

prime fields of odd characteristic. In this case too, S(x) = x3 is an APN, provided p 6= 32740

(as reported by [HRS99, Theorem 3, item 3]).2741

In [AGR+16, Section 5.3] the choice of the map degree is relaxed to be of the general2742

form 2t±1. Unfortunately, the authors showed that the case e = 2t+1 is not as good as2743

it initially seems in F2n , due to term cancellation in fields of characteristic 2 that renders2744

the resulting polynomial sparse2. More precisely the degree of the polynomial will be2745

bounded by 3r, r being the number of rounds, which does not constitute an improvement2746

on the case of e = 3. For this very reason, exponents of the form 2t + 1, t > 1, may not2747

be of interest (sparse polynomial and more expensive arithmetic in the round function).2748

Likewise, if the map degree e is chosen to be of the form 2t+1, with gcd(e, 2n−1) = 12749

in the context of MIMC over F2n , it is necessary to bear in mind that, without the extra2750

requirement that t needs to be coprime with n, then this case is not covered by [HRS99,2751

Theorem 2], and S(x) = xe does not have differential 2-uniformity anymore - violating2752

the claim made in [AGR+16, Section 4.2] paragraph “Linear Attacks” about optimal2753

resistance against linear and differential cryptanalysis. (In fact, depending on the value2754

of g = gcd(n, t), the map S(x) = x2
t+1 would be differentially 2g-uniform [Nyb93] -2755

contrasting with the setting considered in paragraph “Linear attacks” where e = 3).2756

The case e = 2t − 1 does not yield an APN over F2n either (except in the case t = 22757

which reduces to the case 2t
′

+ 1 for t′ = 1). Similar observations show that picking2758

round function degrees of the form 2t ± 1 in the context where MIMC is defined over2759

prime fields Fp, p odd prime, does not yield APNs.2760

Overall, when studying the resistance of MIMC against statistical attacks, we are
interested in the probability that an input difference (d) is mapped into an output
difference (D). That is, we are studying the probability of the following event:

F (x+ d)− F (x) = D

where F is a function that may either represent a single round, a set of rounds, or the2761

full cipher.2762

1A function f(x) = xe over Fpn is said to be differentially k-uniform if k is the maximum number of
solutions x ∈ Fpn of f(x+ d)− f(x) = D where d,D ∈ Fpn and d 6= 0. If f is a 2-uniform mapping, we
say that f is almost perfect nonlinear. See e.g. [HRS99] for more information.

2Since the round function is a polynomial, the whole scheme can be seen as a polynomial with overall
degree and “sparsity” that depends on the underlying field characteristic, degree of the round function
and number of rounds.
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Over a single round of MIMC (i.e. F (x) = S(x)), this probability is bounded by (e −2763

1)/p provided that the exponent e is “small” (i.e. small compared to the size of the field).2764

By assuming that the different rounds of the scheme are independent, the probability2765

that an input difference gets mapped to an output difference, when F represents the full2766

cipher, becomes bounded as Pr[F (x+ d)− F (x) = D] ≤ ((e − 1)/p)rounds .2767

For security, we want ((e−1)/p)rounds to be bounded by 2−λ, where λ is the security
level (e.g. 128). Hence, we need (

e − 1

p

)rounds

≤ 2−λ

that is, we want

rounds ≥ λ

log2(
p

e−1)

As such, if the exponent is much smaller than the size of the field, few rounds are2768

sufficient to prevent the differential attacks.2769

Algebraic attacks. While permutation monomials of degree e = 2t ± 1 may not2770

constitute APNs in the various MIMC settings, it is important to note (as highlighted by2771

Grassi in [GR21]) that when working over finite fields Fp of large prime characteristic p2772

or extension fields F2n of large extension degrees n, the algebraic attacks (exploiting the2773

low-degree of the cipher) are much more efficient than the statistical attacks (i.e. they2774

can break a much higher number of rounds).2775

In fact, when considering security against algebraic attacks, we want (roughly speak-2776

ing) the polynomial that defines the cipher to be of maximum degree and full (or at2777

least, dense). That is we want the degree of the polynomial to be higher than 2λ. Since2778

in MIMC the S-box is defined as S(x) = xe , then after rounds rounds the degree of the2779

polynomial describing the cipher is erounds . Hence, we need2780

erounds ≥ 2λ

that is, we want
rounds ≥ λ loge(2)

Remark F.0.1. More rounds may be required as advised in [EGL+20] to prevent some2781

algebraic attacks that can be mounted when MIMC is used over binary fields F2n .2782

It is important to note that the security analysis related to algebraic attacks relies2783

on the fact that the polynomial describing the cipher is dense/full. If this assumption2784

is violated, a more granular security analysis needs to be carried out for the setting of2785

interest.2786
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Note

For small exponents and large prime fields (e.g. for λ = 128, p = 2128 and e = 3),
we see that the lower bound on the number of rounds is (much) smaller in the
context of statistical attacks than in the context of algebraic attacks. As such, we
see that in such settings algebraic attacks are much more powerful than statistical
attacks. Hence, when instantiating MIMC with a small exponent of the form
2t±1, it is crucial to make sure that, even if the resulting map is not an APN, the
polynomial describing the cipher remains full/dense. Importantly, if the setting
is changed (e.g. to use exponents that are “big” w.r.t. the field size) the security
analysis proposed in [AGR+16] must be changed.

2787

2788
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Glossary2789

joinsplit Set of JSIN input ZethNotes, and JSOUT output ZethNotes as well as the public2790

values vin and vout used in a txMix transaction. 37, 39, 41, 61, 100, 125, 1262791

joinsplit equation Equation that checks that the sum of the values of the SendTx2792

algorithm of DAP is equal to the sum of the values of its outputs. This equations2793

checks that the joinsplit is “balanced” and thus, that no value is created while2794

creating new ZethNotes. 25, 41, 42, 61, 100, 1252795
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Acronyms2796

APN Almost Perfect Nonlinear (function). 123, 1252797

DOS Denial of Service (Attack). 16, 1252798

ECC Elliptic Curve Cryptography. 54, 1252799

EOA Externally Owned Account. 16, 17, 19, 1252800

EVM Ethereum Virtual Machine. 15, 16, 20, 49, 55, 65, 86, 89, 1252801

FFT Fast Fourier Transform. 87, 1252802

MAC Message Authentication Code. 102, 1252803

NFS Number Field Sieve. 54, 1252804

PoC Proof of Concept. 1252805

RAM Random-access Memory. 87, 1252806

RLP Recursive Length Prefix. 19, 20, 1252807
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