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ABSTRACT

Leaf Area Index (LAI) holds significant importance in
comprehending ecosystem health and vegetation dynamics.
This paper introduces an innovative approach for pixel-wise
LAI prediction, capitalizing on the synergies between Sen-
tinel 1 radar data and Sentinel 2 multi-spectral data across
various timestamps. Our approach uses a deep neural net-
work based on multiple U-nets tailored specifically to this
task. To handle the complexity of the different input modal-
ities, it is made of several modules that are pre-trained sep-
arately to represent all input data in a common latent space.
Then, we fine-tune them end-to-end with a common decoder
which also incorporates the date, which we find to play an
important role. Our method achieved 0.06 RMSE and 0.93
R² score on publicly available data. We make our contribu-
tions available1 for future works to further improve on our
current progress.

Index Terms— Leaf area index, De-clouding, Deep
learning, U-net, Pixel-wise regression, Remote Sensing

1. INTRODUCTION

Leaf Area Index (LAI) is a fundamental vegetation param-
eter that quantifies the total area of leaves per unit ground
area. It serves as a key indicator of plant productivity, energy
exchange processes, and overall health of the ecosystem [1].
Accurate estimation of LAI is essential for various applica-
tions, including ecological modeling, crop yield prediction,
carbon cycle assessment, and climate change studies.

Traditionally, LAI has been estimated using labor-
intensive and time-consuming methods, such as destruc-
tive sampling or indirect measurements based on allometric
equations [2] [3]. While these approaches provide valu-
able insights, they are limited in their spatial coverage and
accuracy.

As a result, remote sensing data from satellite platforms
have gained significant attention as a valuable source for LAI
predictions. Satellite-based observations offer the advantage
of providing repetitive coverage over large areas, enabling
the assessment of LAI dynamics at regional to global scales.
However, despite their many advantages, satellite data face
significant challenges, notably the interference caused by
clouds in accurate LAI estimation. Cloud cover poses a

1https://github.com/valentingol/LeafNothingBehind

substantial obstacle to LAI assessment, as it obstructs di-
rect measurements and reduces the quality and availability
of cloud-free observations. Overcoming this challenge is
critical to leveraging the full potential of satellite data for
comprehensive and reliable LAI prediction.

Our approach focuses on pixel-wise LAI prediction us-
ing deep learning. To the best of our knowledge, this study
represents a pioneering investigation into the prediction of
LAI by harnessing the combined information from Sentinel
1 and Sentinel 2 data at multiple timestamps with a deep
neural network.

Fig. 1. The architecture presented involves two parallel en-
coders and a single decoder. The initial two U-net encoders
function as feature extractors, transmitting their output to the
decoder for the prediction of LAI.

2. RELATED WORKS

Satellite data has gained popularity due to its convenience
in LAI prediction, offering significant advantages over di-
rect methods or allometric approaches [2] [3]. Moreover, as
demonstrated by [4] and [5], satellite data exhibit compara-
ble performance to traditional alternatives. In certain cases,
it can even outperform them in explainability, particularly

https://github.com/valentingol/LeafNothingBehind


when supplemented with additional metadata such as terrain
variables.

Most studies on LAI prediction from satellite data have
focused on specific settings, often limited to a single type of
crop and the optical data from Sentinel 2 or Lansat 8. These
studies commonly employ various methods, including multi-
regression [5] [6] [7] [8], Fully connected neural networks
[8] [9], Bayesian networks [10], as well as classical ma-
chine learning techniques [11] [12] such as gradient boost-
ing, Gaussian process, support vector machines (SVM), and
random forest. [13] adopts Gaussian processes on Sentinel 2
and Sentinel 1 data at multiple timestamps, resembling our
approach. A frequent limitation in prior work is that each
pixel is treated independently, overlooking the valuable con-
textual information from neighboring pixels. This disregard
for the global context surrounding each pixel is a missed
opportunity that warrants further exploration and consider-
ation.

In parallel, cloud removal has received significant atten-
tion within the deep learning research community. Numer-
ous studies have explored the development of robust meth-
ods for cloud removal on satellite data using deep learning
techniques. In particular, more powerful convolutional ar-
chitectures have been investigated, capitalizing on the con-
volutional inductive bias that takes advantage of neighboring
pixel information. Prominent architectures such as U-Net
[14] and ResNet [15] have been widely employed in address-
ing the challenge of cloud removal. These architectures offer
effective mechanisms for capturing spatial dependencies and
contextual information. Most studies rely on both radar and
optical data at one single timestamp or several timestamps
[16].

3. METHOD

3.1. Dataset

In this study, we use publicly available Sentinel 1 and 2 data.
LAI data is computed from Sentinel 2 data2 in different Eu-
ropean countries. We pair this data with Sentinel 1 radar data
captured no more than a day from the passage of Sentinel 2.
Specifically, we used data from the VH and VV polarizations
of Sentinel 1. Each sample corresponds to 3 consecutive
Sentinel 2 LAI maps ST

2 , pixel-aligned with corresponding
Sentinel 1 radar data images ST

1 , with T ∈ {t− 2, t− 1, t}.
Those three timestamps are separated by no more than a
week. This data is processed into images of 256×256 pixels.
We also have access to semantic masks S2

T
mask describing

the nature of the element observed by Sentinel 2 (e.g. cloud,
water, land, etc.). Masks are also computed from Sentinel
2 data using the Sen2Cor processor developed by ESA. Fi-
nally, the date of each observation is also available and plays
a significant role in our method (see figure 2).

2https://github.com/sentinel-hub/custom-scripts/tree/master/sentinel-
2/lai

For testing purposes, we utilize 256 × 256 image sec-
tions randomly extracted from the previously mentioned lo-
cations. We create a first set from locations with consis-
tently clear past observations and a second set from locations
with consistently cloudy past observations. We validate our
model on nearby squares during development. To further
guard against validation overfitting, we incorporate an addi-
tional dataset from distinct locations, specifically from the
Czech Republic and Italy. These datasets are subsequently
referred to as ”non-cloudy,” ”cloudy,” and ”unique areas,”
respectively.3 The training dataset comprises 7,635 satellite
images, including 250 clouded data, 254 non-clouded data,
and 2,005 unique areas.

Fig. 2. Sample from our dataset combining Sentinel 1 and 2
data for timestamps t, t− 1 and t− 2.

3.2. Architecture

3.2.1. Description

Our proposed architecture consists of three distinct compo-
nents: two parallel encoders and one decoder (Figure 1).

The first encoder processes the input Sentinel 1 radar
data, mask data, and seasonality information. The masks,
which are pixel-wise one-hot-encoded maps, are fed to a
point-wise convolution to reduce their dimensionality. The
seasonality information, represented by sine and cosine val-
ues encoding the number of days elapsed since the beginning
of the year, is fed through a multi-perceptron module before
being broadcast into a feature map. This feature map is then
concatenated with the other inputs and collectively passed
through the U-net encoder. The second encoder is responsi-
ble for processing the input of LAI values at timestamps t−2
and t− 1, as well as mask data and seasonality information.
Similar to the first encoder, it follows an identical architec-
ture, leveraging the same set of operations and modules.

The decoder component of our architecture receives the
concatenated output of the two encoders as input. It is de-
signed as a straightforward U-net structure, which facilitates
the integration of the analyzed features from both the Sen-
tinel 1 and Sentinel 2 data. By merging the analyzed features

3we are grateful to World from Space for their help in acquiring, filtering
and processing the data

https://github.com/sentinel-hub/custom-scripts/tree/master/sentinel-2/lai
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Table 1. Ablation studies metrics
Input Architecture Non cloudy Cloudy Unique areas
data RMSE R² RMSE R² RMSE R²

S1 Encoder 1 0.163 0.434 0.279 0.152 0.260 0.125
S1 + S2masks Encoder 1 0.117 0.709 0.245 0.345 0.208 0.440
S1 + S2masks + seas. Encoder 1 0.111 0.735 0.233 0.409 0.198 0.491
S2 + S2masks Encoder 2 0.090 0.827 0.253 0.301 0.103 0.863
S2 + S2masks + seas. Encoder 2 0.067 0.903 0.344 -0.294 0.111 0.839
All Final 0.058 0.930 0.238 0.383 0.101 0.867

from both sources, our model leverages the complementary
information provided by Sentinel 1 and 2 data.

3.2.2. Architecture design

The U-net modules employed in our architecture have been
widely recognized for their effectiveness in pixel-wise pre-
dictions, such as semantic segmentation tasks [14]. These
modules offer several advantages, including a relatively
small number of parameters, the incorporation of skip con-
nections for enhanced convergence, and the ability to capture
both local and global information.

The overall design of our global architecture works as an
inductive bias, directing the flow of information through the
network. In line with this design, our approach prioritizes
the shrinkage of multi-temporal data in the initial stages.
This decision is motivated by the understanding that retain-
ing multi-temporal data can lead to an unnecessary increase
in the number of feature maps and potential redundancy
when cloud cover is absent.

3.2.3. Intermediate supervision and pre-trained weights

Given the complexity of our architecture, we adopted a two-
step training approach. First, we trained each encoder sep-
arately by introducing a pixel-wise convolution layer and
optimizing the mean squared error (MSE) loss for each en-
coder, with the ground truth label being the LAI. This initial
training allowed us to obtain pre-trained weights for each en-
coder.

Subsequently, we incorporated these pre-trained weights
into the architecture, utilizing intermediate supervision to
optimize the overall model. Intermediate supervision in-
volves optimizing the loss at intermediate stages, ensur-
ing that the model maximizes the utilization of each input
modality. This approach not only enables the model to make
the most of the pre-trained weights’ feature representation
but also helps preserve and enhance the learned features dur-
ing the early stages of training. The loss between the ground
truth LAIgtt and pred = {LAIdect , LAIenc1t , LAIenc2t } is
expressed as:

Loss(LAIgtt , pred) = MSE(LAIgtt , LAIdect )

+ α.MSE(LAIgtt , LAIenc1t )

+ β.MSE(LAIgtt , LAIenc2t )

α and β are hyper-parameters to weigh down the impor-
tance of intermediate stages compared to the last stage. In

practice, the loss is computed on pixels which are not cov-
ered by clouds, which we extract from St

2mask.

4. EXPERIMENTS

4.1. Implementation details

The implementation was made in Pytorch. We trained with
Adam for 100 epochs with an initial learning rate of 0.001.
To enhance training stability and performance, we incorpo-
rated learning rate decay, applying two equally spaced de-
cays with a decay factor of 0.2. For the loss parameters in the
intermediate supervision, we used α = 0.1 and β = 0.15.
Setting α < β seemed to work better as previous LAI values
provided more relevant information. The batch size was set
to 32 and the training was carried out on a NVIDIA GeForce
RTX 3090 GPU.

4.2. Results

To directly compare whole-image input with pixel-wise pre-
diction, we trained Multi Linear Regression (MLR) and Ran-
dom Forest (RF) models using the same features but with
only single-pixel data as a sample. The performance was no-
tably poor: MLR achieved R2 = −0.0445, RF had R2 =
−0.0166 on non-clouded data, while our method achieved
R2 = 0.930. This discrepancy with other LAI prediction
research can be attributed to differences in evaluation set-
tings; previous studies often used narrow, idealized regions,
whereas our dataset represents real-world conditions.

To evaluate the effectiveness of our proposed method and
gain deeper insights into the relationship between the input
data and various components of the architecture, we con-
ducted a series of ablation studies. These studies involved
selectively training specific parts of the architecture and fo-
cusing on specific subsets of the input data. When training
only on S1 (resp. S2), we drop the second (resp. first) en-
coder and the decoder, and we take the output of the inter-
mediate stage for evaluation. See Table 1.

The high correlation observed between non-cloudy and
unique area metrics provides reassurance regarding the per-
formance of our model, both during training and at inference
time on unseen locations. However, it is worth noting that
the error rates are two times higher in unique areas, indicat-
ing that the models excel primarily in trained areas. This
means that the models learn biases specific to the training



locations. Incorporating additional meta-information about
the location, such as terrain variables or meteorological data,
could enhance the model’s performance further. The posi-
tive impact of seasonality on the metrics further supports this
idea. The comparison between ground truth and predictions
for a few samples on the final architecture is illustrated in 3.

Fig. 3. Multiple sets of ground truth (left) and predictions
(right) of LAI at time t.

The evaluation of our models on cloudy data revealed
more mixed results. Specifically, we observed that S1 pro-
vided more relevant information than S2. Surprisingly, even
our final model incorporating S1 data exhibited poorer per-
formance on cloudy data. We attribute this discrepancy to the
dataset’s inherent imbalance concerning cloudy data. The
scarcity of cloudy data in the training set may have hin-
dered the models’ ability to optimize their reliance on S1

data when faced with cloudy conditions. To address this
challenge, an interesting approach would involve assigning
a higher weight to the loss function for cloudy inputs during
training.

5. CONCLUSION

Our study has demonstrated the effectiveness of deep learn-
ing techniques in predicting LAI by integrating global and
local information from radar and multispectral data sources
at several timestamps. Moving forward, there is potential for
further improvement by specifically training the model on
cloudy data, emphasizing the importance of handling data
with varying cloud cover.

We also express our gratitude to World from Space for
providing the data for this project and their support.
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