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1 Introduction and contributions

Despite the remarkable success of deep learning models across different data types, their perfor-
mance often falters when confronted with time series data. One plausible explanation for this
limitation lies in the representation of the data itself, typically presented as a sequence of floating-
point numbers.

The concept behind Adaptive Brownian Bridge-based Symbolic Aggregation (ABBA) revolves
around a more concise representation of time series data, aiming to capture the broader trends
rather than focusing on values at specific timestamps. This methodology transforms the signal
into a shorter sequence of symbols from a learned dictionary. This condensed representation mit-
igates computational costs, both during the training phase of neural networks and at inference.
ABBA symbolic representation is employed for time series forecasting purposes in the rest of the
report.

For this project, we reimplemented two papers, namely [1] and [2]. The first paper describes the
functionality of ABBA in detail, while the second paper leverages ABBA’s symbolic representation
for training LSTM neural networks [5].

Our motivation came from identifying inconsistencies within both the papers and the code pro-
vided by the original authors.

1. ABBA includes learning the symbolic representation initially. However, the original paper
determines these symbols before partitioning the time series into a train set and a test set.
Therefore, the symbolic representation depends on the test set, which biases the evaluation.

2. In the original implementation, we were taken aback to discover that the test set is incorpo-
rated into the train set of the network.

3. We observed an inherent unfairness in the comparison of both methods. k symbols were
used to train the LSTM network with ABBA, and k timestamps were employed to train the
LSTM network on the raw time series. However, it’s crucial to note that a symbol represents
more than one timestamp which is unfair for evaluation.

Clement Wang’s involvement centered on reimplementing both papers to rectify these discrep-
ancies. He assessed the revised implementation using the identical sinusoidal signal featured in
the original paper. Guillaume Levy built upon Clement Wang’s reimplementation to analyze the
ABBA LSTM forecasting algorithm applied to noisy and complex real-world data. He studied
the dataset and the hypothesis that it holds and see how well the algorithm can be applied to it.
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The dataset used is the Monthly Sunspots dataset [4] created by the SIDC (Solar Influences Data
Analysis Center) which can be found here.

2 Method

ABBA comprises three primary functional components:

• Quantization/Symbolization: This phase processes a time series input to establish the sym-
bols forming the alphabet to be utilized.

• Inference: Here, given a time series input, it condenses it into a shorter sequence of symbols.

• Inverse transformation: This step works with a sequence of symbols as input, approximating
the original time series from this symbolic representation.

Initially, the quantization and inference processes occurred simultaneously. However, we restruc-
tured this to ensure that the evaluation remains distinctly separate from the training phase.

Quantization. We initially approximate the time series T using a piecewise linear continuous time
series. The goal of the method is to find iteratively the biggest intervals where the time series can
be approximated by a piecewise linear function with an error smaller than a given threshold. To
achieve this, at each loop, the algorithm starts at the timestamp ik and finds the largest timestamp
ik+1 such that:

∀j ∈ [|ik, ik+1|]
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From the obtained piecewise linear continuous time series, we generate a sequence of tuples:
(inc_x1, inc_y1), (inc_x2, inc_y2), . . . , (inc_xn, inc_yn). Subsequently, we employ a K-means clus-
tering algorithm on this set of couples to derive our alphabet. Before the clustering, the values are
divided by their standard deviation. The resulting centroids of these clusters serve as the alpha-
bet.
Inference. The inference phase follows a similar procedure: using the same method to obtain a
piecewise linear continuous approximation and categorizing these segments into clusters.

Inverse transform. The inverse process is relatively simple: reconstructing a piecewise linear
function from a sequence of symbols.

We used LSTM networks to assess forecasting performance both with and without the integration
of ABBA symbolic representation (See figure 4).

The LSTM networks utilize either k previous timestamp points to predict the next one or k′ sym-
bols to predict the subsequent symbol. In contrast to the original paper’s approach of using k = k′,
we deliberately select k and k′ to align with a comparable number of timestamps, ensuring a fair
evaluation of the forecasting performance.

3 Data

The previously mentioned method is tested on two separate datasets: a toy dataset that represents
a sinusoidal time series and a dataset formed on real data: the Sunspots dataset.
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3.1 Sinusoidal dataset

The dataset is composed of a sinusoidal function of frequency 0.01Hz sampled with the frequency
Fs = 1Hz. The number of total samples in the dataset is 1000 which is sufficient to contain 10
periods of the sinusoidal function. Since the function is simple and periodic, no preprocessing
was done before giving it to the algorithm.

3.2 Sunspots dataset

For the second experiment, we had to verify the capacity of the method to work with real data
that contains noise and is not perfectly regular. For this, we used the Monthly Sunspots dataset [4]
created by the SIDC (Solar Influences Data Analysis Center). It consists of the number of recorded
sunspots each month between 1749 to 1983. The time series can be found in figure 1a below:

(a) The number of sunspots as
the number of months

(b) The periodogram of the sinu-
soidal function

(c) The plot of autocorrelation
of the sinusoidal function

Figure 1: Analysis of the sinusoidal function

Since the sun follows the solar cycle, its magnetic field, responsible for the sunspots, is reset every
11 years to almost its original value. So we expect the time series to be periodic. To verify this
assumption, the autocorrelation and the periodogram of the signal are plotted on figure 1b and on
figure 1c.

From these plots, we see that the signal is indeed almost periodic with a period of 132 Months and
a frequency of around 0.008Hz, which corresponds to the 11 years of the solar cycle mentioned
before. Since the dataset is periodic, we expect the model to be efficient when quantifying the time
series and precise when forecasting the next values.

4 Results

We evaluate the method through two experiment setups:

• Autoregressive method: Utilizing the last k timestamps from the training set, we autoregres-
sively compute predictions for the n test set points. Subsequently, we measure the Dynamic
Time Warping (DTW) [3] distance between these k′ autoregressively predicted timestamps
and the n ground truth test time series.

• Non-autoregressive method: For each of the n test points, we utilize the ground truth of the
preceding k timestamps as input for the network.
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Our evaluation primarily focuses on assessing the performance in terms of Dynamic Time Warp-
ing (DTW).

4.1 Sinusoidal dataset

The first experiment done was on the toy dataset: the sinusoidal dataset. To see the performance of
the method, we first look at the quality of the reconstruction of the signal after the linear piecewise
approximation and the quantization. The results can be found on the figure 2a below. The result-
ing symbols obtained for this time series are: "facbdacbdacbdacbdacbdacbdacbdacbdacbdacbe"

(a) The reconstruction of the
sinusoidal function after com-
pression and digitization

(b) Forecasting the sinusoidal
function using ABBA-LSTM

(c) Forecasting the sinusoidal
function using LSTM trained
on raw data

Figure 2: Results on the sinusoidal dataset

As expected, for the simple case, we obtain a very good reconstruction. The DTW distance for the
reconstruction after compression is 0.016 and the reconstruction after digitization is 0.017 which is
very small and close to each other. Since there is no noise in this dataset and since the sinusoidal
function is a periodic function that can be well approximated by only a few linear functions.

We then compare the efficacy of the forecasting compared to the forecasting using regular LSTM
and raw data. The two results are available on the figures 2b and 2c.

As expected, the raw LSTM is achieving a much better result with a DTW distance of 0.008 and
0.0009 for the autoregressive and non-autoregressive parts. Since the function is simple, the model
has no problem forecasting the rest. This is not the case for the ABBA-LSTM which suffers from
the accumulating errors of its prediction. The autoregressive ABBA-LSTM is still able to achieve
decent results. However since the raw LSTM achieves better performance than the reconstruction
after compression or digitization, ABBA-LSTM is thus not able to do as well.

4.2 Sunspots dataset

Now that we have tested the toy dataset, we then try to see if the method can be adapted to
real data. Just as before we first look at the reconstruction of the signal after compression and
digitization.

4



(a) Reconstruction of the time
series after compression and
digitization (b) Forecasting with ABBA-LSTM

(c) Forecasting with a raw
LSTM

Figure 3: Results on the Sunspots dataset

Even for real data, the compression and digitization achieves good performance but at the cost of
losing the efficiency of the digitization. To obtain decent results we must use a lot more symbols
and that represents a small number of timestamps(around 3 per symbol).

The great number of symbols makes it difficult for the LSTM to give an accurate forecast of the
next symbol. We can see in figure 3a that the ABBA-LSTM model is not able to give a decent
prediction of the time series. The underlying problem of the method is that it is fundamentally
auto-regressive and though accumulates errors over time. When compared to LSTM trained on
raw data, the model performs very poorly as we can see on figures 3b and 3c. Though the raw
LSTM is not perfect, with a DTW distance of 0.194 and 0.068 for the autoregressive and non-
autoregressive part when compared to the part of the time series used for testing.

4.3 Conclusion

So we study in this report the ABBA-LSTM method which quantifies a time series to forecast
symbols instead of the raw values. We have seen that it is working efficiently for simple time series
like a sinusoidal function but lacks robustness when working on real-world data. Even when
comparing periodic time series that inherently enables the use of a small diversity of symbols, the
method is less accurate when compared to an LSTM trained on the raw values. The time gained
by digitizing the time series, by around 3, is not worth the high decrease in performance.
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A LSTM architecture

(a) LSTM on raw time series (b) LSTM on symbols input

Figure 4: LSTM networks architectures for forecasting

B Performance

Sinusoidal dataset Sunspots dataset
Reconstruction after compression 0.016 0.020
Reconstruction after digitization 0.017 0.100

ABBA-lstm autoregressive 0.034 0.319
ABBA-lstm non-autoregressive 0.134 0.357

Raw-lstm autoregressive 0.015 0.022
Raw-lstm non-autoregressive 0.001 0.068

Table 1: DTW distance between the different reconstruction and the original time series
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