{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "**作者**:Gaël Varoquaux\n", "\n", "**Donald Knuth**\n", "\n", "\"过早的优化是一切罪恶的根源\"\n", "\n", "---\n", "\n", "本章处理用策略让Python代码跑得更快。\n", "\n", "---\n", "\n", "**先决条件**\n", "\n", "- line_profiler\n", "- gprof2dot\n", "- 来自dot实用程序\n", "\n", "---\n", "\n", "---\n", "\n", "**章节内容**\n", "\n", "- 优化工作流\n", "- 剖析Python代码\n", " - Timeit\n", " - Profiler\n", " - Line-profiler\n", " - Running `cProfile`\n", " - Using `gprof2dot`\n", "- 让代码更快\n", " - 算法优化\n", " - SVD的例子\n", "- 写更快的数值代码\n", " - 其他的链接\n", "\n", "## 2.4.1 优化工作流\n", "\n", "1. 让它工作起来:用简单清晰的方式来写代码。\n", "2. 让它可靠的工作:写自动的测试案例,以便真正确保你的算法是正确的,并且如果你破坏它,测试会捕捉到。\n", "3. 通过剖析简单的使用案例找到瓶颈,并且加速这些瓶颈,寻找更好的算法或实现方式来优化代码。记住在剖析现实例子时简单和代码的执行速度需要进行一个权衡。要有效的运行,最好让剖析工作持续10s左右。\n", "\n", "## 2.4.2剖析Python代码\n", "\n", "**无测量无优化!**\n", "\n", "- **测量**: 剖析, 计时\n", "- 你可能会惊讶:最快的代码并不是通常你想的样子\n", "\n", "### 2.4.2.1 Timeit\n", "在IPython中,使用timeit(http://docs.python.org/library/timeit.html)来计时基本的操作:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The slowest run took 60.37 times longer than the fastest. This could mean that an intermediate result is being cached \n", "100000 loops, best of 3: 1.99 µs per loop\n" ] } ], "source": [ "import numpy as np\n", "\n", "a = np.arange(1000)\n", "\n", "%timeit a ** 2" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10000 loops, best of 3: 45.1 µs per loop\n" ] } ], "source": [ "%timeit a ** 2.1" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The slowest run took 12.79 times longer than the fastest. This could mean that an intermediate result is being cached \n", "100000 loops, best of 3: 1.86 µs per loop\n" ] } ], "source": [ "%timeit a * a" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "用这个信息来指导在不同策略间进行选择。\n", "\n", "---\n", "\n", "**笔记**:对于运行时间较长的单元,使用`%time`来代替`%timeit`; 它准确性较差但是更快。\n", "\n", "---\n", "\n", "### 2.4.2.2 Profiler\n", "\n", "当你有个大型程序要剖析时比较有用,例如[下面这个程序](http://scipy-lectures.github.io/_downloads/demo.py):" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# For this example to run, you also need the 'ica.py' file\n", "\n", "import numpy as np\n", "from scipy import linalg\n", "\n", "from ica import fastica\n", "\n", "\n", "def test():\n", " data = np.random.random((5000, 100))\n", " u, s, v = linalg.svd(data)\n", " pca = np.dot(u[:, :10].T, data)\n", " results = fastica(pca.T, whiten=False)\n", "\n", "if __name__ == '__main__':\n", " test()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "**笔记**:这种技术是两个非监督学习技术的组合,主成分分析(PCA)和独立成分分析([ICA](http://scipy-lectures.github.io/advanced/optimizing/index.html#id16))。PCA是一种降维技术,即一种用更少的维度解释数据中观察到的变异的算法。ICA是一种源信号分离技术,例如分离由多个传感器记录的多种信号。如果传感器比信号多,那么先进行PCA然后ICA会有帮助。更多的信息请见:[来自scikits-learn的FastICA例子](http://scikit-learn.org/stable/auto_examples/decomposition/plot_ica_blind_source_separation.html)。\n", "\n", "---\n", "\n", "要运行它,你也需要下载[ica模块](http://scipy-lectures.github.io/_downloads/ica.py)。在IPython我们计时这个脚本:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "IPython CPU timings (estimated):\n", " User : 6.62 s.\n", " System : 0.17 s.\n", "Wall time: 3.72 s.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/cloga/Documents/scipy-lecture-notes_cn/ica.py:65: RuntimeWarning: invalid value encountered in sqrt\n", " W = (u * np.diag(1.0/np.sqrt(s)) * u.T) * W # W = (W * W.T) ^{-1/2} * W\n", "/Users/cloga/Documents/scipy-lecture-notes_cn/ica.py:90: RuntimeWarning: invalid value encountered in absolute\n", " lim = max(abs(abs(np.diag(np.dot(W1, W.T))) - 1))\n" ] } ], "source": [ "%run -t demo.py" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "并且剖析它:\n", "\n", "```\n", "%run -p demo.py\n", "\n", " 301 function calls in 3.746 seconds\n", "\n", " Ordered by: internal time\n", "\n", " ncalls tottime percall cumtime percall filename:lineno(function)\n", " 1 3.714 3.714 3.715 3.715 decomp_svd.py:15(svd)\n", " 1 0.019 0.019 3.745 3.745 demo.py:3()\n", " 1 0.007 0.007 0.007 0.007 {method 'random_sample' of 'mtrand.RandomState' objects}\n", " 14 0.003 0.000 0.003 0.000 {numpy.core._dotblas.dot}\n", " 1 0.001 0.001 0.001 0.001 function_base.py:550(asarray_chkfinite)\n", " 2 0.000 0.000 0.000 0.000 linalg.py:1116(eigh)\n", " 1 0.000 0.000 3.745 3.745 {execfile}\n", " 2 0.000 0.000 0.001 0.000 ica.py:58(_sym_decorrelation)\n", " 2 0.000 0.000 0.000 0.000 {method 'reduce' of 'numpy.ufunc' objects}\n", " 1 0.000 0.000 0.000 0.000 ica.py:195(gprime)\n", " 1 0.000 0.000 0.001 0.001 ica.py:69(_ica_par)\n", " 1 0.000 0.000 3.726 3.726 demo.py:9(test)\n", " 1 0.000 0.000 0.001 0.001 ica.py:97(fastica)\n", " 1 0.000 0.000 0.000 0.000 ica.py:192(g)\n", " 23 0.000 0.000 0.000 0.000 defmatrix.py:290(__array_finalize__)\n", " 4 0.000 0.000 0.000 0.000 twodim_base.py:242(diag)\n", " 1 0.000 0.000 3.746 3.746 interactiveshell.py:2616(safe_execfile)\n", " 10 0.000 0.000 0.000 0.000 {numpy.core.multiarray.array}\n", " 1 0.000 0.000 3.745 3.745 py3compat.py:279(execfile)\n", " 1 0.000 0.000 0.000 0.000 {method 'normal' of 'mtrand.RandomState' objects}\n", " 50 0.000 0.000 0.000 0.000 {isinstance}\n", " 10 0.000 0.000 0.000 0.000 defmatrix.py:66(asmatrix)\n", " 10 0.000 0.000 0.000 0.000 defmatrix.py:244(__new__)\n", " 9 0.000 0.000 0.000 0.000 numeric.py:394(asarray)\n", " 1 0.000 0.000 0.000 0.000 _methods.py:53(_mean)\n", " 1 0.000 0.000 0.000 0.000 {posix.getcwdu}\n", " 4 0.000 0.000 0.000 0.000 {method 'astype' of 'numpy.ndarray' objects}\n", " 6 0.000 0.000 0.000 0.000 defmatrix.py:338(__mul__)\n", " 2 0.000 0.000 0.000 0.000 linalg.py:139(_commonType)\n", " 4 0.000 0.000 0.000 0.000 {method 'view' of 'numpy.ndarray' objects}\n", " 1 0.000 0.000 0.000 0.000 posixpath.py:329(normpath)\n", " 5 0.000 0.000 0.000 0.000 {abs}\n", " 1 0.000 0.000 0.000 0.000 {open}\n", " 1 0.000 0.000 0.000 0.000 blas.py:172(find_best_blas_type)\n", " 1 0.000 0.000 0.000 0.000 blas.py:216(_get_funcs)\n", " 1 0.000 0.000 0.000 0.000 syspathcontext.py:64(__exit__)\n", " 3 0.000 0.000 0.000 0.000 {max}\n", " 6 0.000 0.000 0.000 0.000 {method 'transpose' of 'numpy.ndarray' objects}\n", " 1 0.000 0.000 0.000 0.000 posixpath.py:120(dirname)\n", " 2 0.000 0.000 0.000 0.000 linalg.py:101(get_linalg_error_extobj)\n", " 2 0.000 0.000 0.000 0.000 linalg.py:106(_makearray)\n", " 3 0.000 0.000 0.000 0.000 {numpy.core.multiarray.zeros}\n", " 6 0.000 0.000 0.000 0.000 defmatrix.py:928(getT)\n", " 1 0.000 0.000 0.000 0.000 syspathcontext.py:57(__enter__)\n", " 2 0.000 0.000 0.000 0.000 linalg.py:209(_assertNdSquareness)\n", " 7 0.000 0.000 0.000 0.000 {issubclass}\n", " 4 0.000 0.000 0.000 0.000 {getattr}\n", " 1 0.000 0.000 0.000 0.000 posixpath.py:358(abspath)\n", " 5 0.000 0.000 0.000 0.000 {method 'startswith' of 'unicode' objects}\n", " 2 0.000 0.000 0.000 0.000 linalg.py:198(_assertRankAtLeast2)\n", " 2 0.000 0.000 0.000 0.000 {method 'encode' of 'unicode' objects}\n", " 10 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects}\n", " 1 0.000 0.000 0.000 0.000 _methods.py:43(_count_reduce_items)\n", " 1 0.000 0.000 0.000 0.000 {method 'all' of 'numpy.ndarray' objects}\n", " 4 0.000 0.000 0.000 0.000 linalg.py:124(_realType)\n", " 1 0.000 0.000 0.000 0.000 syspathcontext.py:54(__init__)\n", " 1 0.000 0.000 0.000 0.000 posixpath.py:61(join)\n", " 1 0.000 0.000 3.746 3.746 :1()\n", " 1 0.000 0.000 0.000 0.000 _methods.py:40(_all)\n", " 4 0.000 0.000 0.000 0.000 linalg.py:111(isComplexType)\n", " 2 0.000 0.000 0.000 0.000 {method '__array_prepare__' of 'numpy.ndarray' objects}\n", " 4 0.000 0.000 0.000 0.000 {min}\n", " 1 0.000 0.000 0.000 0.000 py3compat.py:19(encode)\n", " 1 0.000 0.000 0.000 0.000 defmatrix.py:872(getA)\n", " 2 0.000 0.000 0.000 0.000 numerictypes.py:949(_can_coerce_all)\n", " 6 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}\n", " 1 0.000 0.000 0.000 0.000 numerictypes.py:970(find_common_type)\n", " 1 0.000 0.000 0.000 0.000 {method 'mean' of 'numpy.ndarray' objects}\n", " 11 0.000 0.000 0.000 0.000 {len}\n", " 1 0.000 0.000 0.000 0.000 numeric.py:464(asanyarray)\n", " 1 0.000 0.000 0.000 0.000 {method '__array__' of 'numpy.ndarray' objects}\n", " 1 0.000 0.000 0.000 0.000 {method 'rfind' of 'unicode' objects}\n", " 2 0.000 0.000 0.000 0.000 {method 'upper' of 'str' objects}\n", " 1 0.000 0.000 0.000 0.000 posixpath.py:251(expanduser)\n", " 3 0.000 0.000 0.000 0.000 {method 'setdefault' of 'dict' objects}\n", " 1 0.000 0.000 0.000 0.000 {method 'diagonal' of 'numpy.ndarray' objects}\n", " 1 0.000 0.000 0.000 0.000 lapack.py:239(get_lapack_funcs)\n", " 1 0.000 0.000 0.000 0.000 {method 'rstrip' of 'unicode' objects}\n", " 1 0.000 0.000 0.000 0.000 py3compat.py:29(cast_bytes)\n", " 1 0.000 0.000 0.000 0.000 posixpath.py:52(isabs)\n", " 1 0.000 0.000 0.000 0.000 {method 'split' of 'unicode' objects}\n", " 1 0.000 0.000 0.000 0.000 {method 'endswith' of 'unicode' objects}\n", " 1 0.000 0.000 0.000 0.000 {sys.getdefaultencoding}\n", " 1 0.000 0.000 0.000 0.000 {method 'insert' of 'list' objects}\n", " 1 0.000 0.000 0.000 0.000 {method 'remove' of 'list' objects}\n", " 1 0.000 0.000 0.000 0.000 {method 'join' of 'unicode' objects}\n", " 1 0.000 0.000 0.000 0.000 {method 'index' of 'list' objects}\n", " 1 0.000 0.000 0.000 0.000 misc.py:126(_datacopied)\n", " 1 0.000 0.000 0.000 0.000 {sys.getfilesystemencoding}\n", " 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}\n", "```\n", "\n", "很明显`svd`(**decomp.py**中)占用了最多的时间,换句话说,是瓶颈。我们要找到方法让这个步骤跑的更快,或者避免这个步骤(算法优化)。在其他部分花费时间是没用的。\n", "\n", "### 2.4.2.3 Line-profiler\n", "\n", "profiler很棒:它告诉我们哪个函数花费了最多的时间,但是,不是它在哪里被调用。\n", "\n", "关于这一点,我们使用[line_profiler](http://packages.python.org/line_profiler/):在源文件中,我们用@profile(不需要导入它)修饰了一些想要用检查的函数:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "@profile\n", "def test():\n", " data = np.random.random((5000, 100))\n", " u, s, v = linalg.svd(data)\n", " pca = np.dot(u[: , :10], data)\n", " results = fastica(pca.T, whiten=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "接着我们用[kernprof.py](http://packages.python.org/line_profiler/kernprof.py)来运行这个脚本,开启`-l, --line-by-line`和`-v, --view`来使用逐行profiler,并且查看结果并保存他们:\n", "\n", "```\n", "kernprof.py -l -v demo.py\n", "\n", "Wrote profile results to demo.py.lprof\n", "Timer unit: 1e-06 s\n", "\n", "File: demo.py\n", "Function: test at line 5\n", "Total time: 14.2793 s\n", "\n", "Line # Hits Time Per Hit % Time Line Contents\n", "==============================================================\n", " 5 @profile\n", " 6 def test():\n", " 7 1 19015 19015.0 0.1 data = np.random.random((5000, 100))\n", " 8 1 14242163 14242163.0 99.7 u, s, v = linalg.svd(data)\n", " 9 1 10282 10282.0 0.1 pca = np.dot(u[:10, :], data)\n", " 10 1 7799 7799.0 0.1 results = fastica(pca.T, whiten=False)\n", "\n", "```\n", "\n", "SVD占用了几乎所有时间,我们需要优化这一行。\n", "\n", "### 2.4.2.4 运行`cProfile`\n", "\n", "在上面的IPython例子中,Ipython只是调用了内置的[Python剖析器](http://docs.python.org/2/library/profile.html)`cProfile`和`profile`。如果你想要用一个可视化工具来处理剖析器的结果,这会有帮助。\n", "\n", "```\n", "python -m cProfile -o demo.prof demo.py\n", "```\n", "\n", "使用`-o`开关将输入剖析器结果到文件`demo.prof`。\n", "\n", "### 2.4.2.5 使用`gprof2dot`\n", "\n", "如果你想要更加视觉化的剖析器输入结果,你可以使用[gprof2dot](http://code.google.com/p/jrfonseca/wiki/Gprof2Dot)工具:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "gprof2dot -f pstats demo.prof | dot -Tpng -o demo-prof.png" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "这会生成下面的图片:\n", "\n", "![](http://scipy-lectures.github.io/_images/demo-prof.png)\n", "\n", "这种方法打印了一个类似前一种方法的图片。\n", "\n", "## 2.4.3 让代码更快\n", "\n", "一旦我们识别出瓶颈,我们需要让相关的代码跑得更快。\n", "\n", "### 2.4.3.1 算法优化\n", "\n", "第一件要看的事情是算法优化:有没有计算量更小的方法或者更好的方法?\n", "\n", "从更高的视角来看这个问题,对算法背后的数学有一个很好的理解会有帮助。但是,寻找到像**将计算或内存分配移到循环外**这样的简单改变,来带来巨大的收益,通常很困难。\n", "\n", "#### 2.4.3.1.1 SVD的例子\n", "\n", "在上面的两个例子中,SVD - [奇异值分解](http://en.wikipedia.org/wiki/Singular_value_decomposition) - 花费了最多的时间。确实,这个算法的计算成本大概是输入矩阵大小的$n^3$。\n", "\n", "但是,在这些例子中,我们并不是使用SVD的所有输出,而只是它第一个返回参数的前几行。如果我们使用scipy的`svd`实现,我们可以请求一个这个SVD的不完整版本。注意scipy中的线性代数实现比在numpy中更丰富,应该被优选选用。" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1 loops, best of 3: 4.12 s per loop\n" ] } ], "source": [ "%timeit np.linalg.svd(data)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1 loops, best of 3: 3.65 s per loop\n" ] } ], "source": [ "from scipy import linalg\n", "%timeit linalg.svd(data)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10 loops, best of 3: 70.5 ms per loop\n" ] } ], "source": [ "%timeit linalg.svd(data, full_matrices=False)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10 loops, best of 3: 70.3 ms per loop\n" ] } ], "source": [ "%timeit np.linalg.svd(data, full_matrices=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "接下来我们可以用这个发现来[优化前面的代码](http://scipy-lectures.github.io/_downloads/demo_opt.py):" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import demo" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1 loops, best of 3: 3.65 s per loop\n" ] } ], "source": [ "%timeit demo.test()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import demo_opt" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10 loops, best of 3: 81.9 ms per loop\n" ] } ], "source": [ "%timeit demo_opt.test()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "真实的非完整版SVD,即只计算前十个特征向量,可以用arpack来计算,可以在`scipy.sparse.linalg.eigsh`找到。\n", "\n", "---\n", "**计算线性代数**\n", "\n", "对于特定的算法,许多瓶颈会是线性代数计算。在这种情况下,使用正确的方法来解决正确的问题是关键。例如一个对称矩阵中的特征向量问题比通用矩阵中更好解决。同样,更普遍的是,你可以避免矩阵逆转,使用一些成本更低(在数字上更可靠)的操作。\n", "\n", "了解你的计算线性代数。当有疑问时,查找`scipy.linalg`,并且用`%timeit`来试一下替代方案。\n", "\n", "## 2.4.4 写更快的数值代码\n", "\n", "关于numpy的高级使用的讨论可以在[高级numpy](http://scipy-lectures.github.io/advanced/advanced_numpy/index.html#advanced-numpy)那章,或者由van der Walt等所写的文章[NumPy数组: 一种高效数值计算结构](http://hal.inria.fr/inria-00564007/en)。这里只是一些经常会遇到的让代码更快的小技巧。\n", "\n", "- 循环向量化\n", "\n", " 找到一些技巧来用numpy数组避免循环。对于这一点,掩蔽和索引通常很有用。\n", "\n", "- 广播\n", "\n", " 在数组合并前,在尽可能小的数组上使用广播。\n", "\n", "- 原地操作" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10 loops, best of 3: 33.5 ms per loop\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/ipykernel/__main__.py:1: DeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", " if __name__ == '__main__':\n" ] } ], "source": [ "a = np.zeros(1e7)\n", "\n", "%timeit global a ; a = 0*a" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "100 loops, best of 3: 8.98 ms per loop\n" ] } ], "source": [ "%timeit global a ; a *= 0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**注意**: 我们需要在timeit中`global a`,以便正常工作,因为,向a赋值,会被认为是一个本地变量。\n", "\n", "- 对内存好一点:使用视图而不是副本\n", "\n", "复制一个大数组和在上面进行简单的数值运算一样代价昂贵:" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/ipykernel/__main__.py:1: DeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", " if __name__ == '__main__':\n" ] } ], "source": [ "a = np.zeros(1e7)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10 loops, best of 3: 28.2 ms per loop\n" ] } ], "source": [ "%timeit a.copy()" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10 loops, best of 3: 33.4 ms per loop\n" ] } ], "source": [ "%timeit a + 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- 注意缓存作用\n", "\n", " 分组后内存访问代价很低:用连续的方式访问一个大数组比随机访问快很多。这意味着在其他方式中小步幅会更快(见[CPU缓存作用](http://scipy-lectures.github.io/advanced/advanced_numpy/index.html#cache-effects)):" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/ipykernel/__main__.py:1: DeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", " if __name__ == '__main__':\n" ] } ], "source": [ "c = np.zeros((1e4, 1e4), order='C')" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The slowest run took 5.66 times longer than the fastest. This could mean that an intermediate result is being cached \n", "1 loops, best of 3: 80.9 ms per loop\n" ] } ], "source": [ "%timeit c.sum(axis=0)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10 loops, best of 3: 79.7 ms per loop\n" ] } ], "source": [ "%timeit c.sum(axis=1)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(80000, 8)" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c.strides" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "这就是为什么Fortran顺序或者C顺序会在操作上有很大的不同:" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": true }, "outputs": [], "source": [ "a = np.random.rand(20, 2**18)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": true }, "outputs": [], "source": [ "b = np.random.rand(20, 2**18)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10 loops, best of 3: 23.8 ms per loop\n" ] } ], "source": [ "%timeit np.dot(b, a.T)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": true }, "outputs": [], "source": [ "c = np.ascontiguousarray(a.T)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10 loops, best of 3: 22.2 ms per loop\n" ] } ], "source": [ "%timeit np.dot(b, c)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "注意,通过复制数据来绕过这个效果是不值得的:" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10 loops, best of 3: 42.2 ms per loop\n" ] } ], "source": [ "%timeit c = np.ascontiguousarray(a.T)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "使用[numexpr](http://code.google.com/p/numexpr/)可以帮助自动优化代码的这种效果。\n", "\n", "- 使用编译的代码\n", "\n", " 一旦你确定所有的高级优化都试过了,那么最后一招就是转移热点,即将最花费时间的几行或函数编译代码。要编译代码,优先选项是用使用[Cython](http://www.cython.org/):它可以简单的将Python代码转化为编译代码,并且很好的使用numpy支持来以numpy数据产出高效代码,例如通过展开循环。\n", "\n", "---\n", "**警告**:对于以上的技巧,剖析并计时你的选择。不要基于理论思考来优化。\n", "\n", "---\n", "\n", "### 2.4.4.1 其他的链接\n", "\n", "- 如果你需要剖析内存使用,你要应该试试[memory_profiler](http://pypi.python.org/pypi/memory_profiler)\n", "- 如果你需要剖析C扩展程序,你应该用[yep](http://pypi.python.org/pypi/yep)从Python中试着使用一下[gperftools](http://code.google.com/p/gperftools/?redir=1)。\n", "- 如果你想要持续跟踪代码的效率,比如随着你不断向代码库提交,你应该试一下:[vbench](https://github.com/pydata/vbench)\n", "- 如果你需要一些交互的可视化为什么不试一下[RunSnakeRun](http://www.vrplumber.com/programming/runsnakerun/)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }