
CLOUD NATIVE GLOSSARY

The CNCF Cloud Native Glossary Project is intended to be
used as a reference for common terms used when talking
about cloud native applications.

v1

WORKING WITH DEFINITIONS
To make it easier to work on individual terms, we’ve moved them into
individual files in the definitions folder. Each term falls under one of
three categories: 1) technology, 2) property, or 3) concept.

To learn how to navigate this GitHub page and submit issues and/
or PRs, please refer to the how-to guide. Before submitting a PR,
please ensure you follow the style guide.

ACKNOWLEDGEMENTS
The Cloud Native Glossary was initiated by the CNCF Marketing
Committee (Business Value Subcommittee), including
contributions from Catherine Paganini, Chris Aniszczyk,
Daniel Jones, Jason Morgan, Katelin Ramer and Mike Foster.

LICENSE
All code contributions are under the Apache 2.0 license, any
documentation distributed under CC BY 4.0.

glossary.cncf.io

http://glossary.cncf.io
https://github.com/cncf/glossary/tree/main/definitions
https://github.com/cncf/glossary/blob/main/how-to.md
https://github.com/cncf/glossary/blob/main/style-guide.md
https://www.linkedin.com/in/catherinepaganini/en/
https://www.linkedin.com/in/caniszczyk/
https://www.linkedin.com/in/danieljoneseb/?originalSubdomain=uk
https://www.linkedin.com/in/jasonmorgan2/
https://www.linkedin.com/in/katelinramer/
https://www.linkedin.com/in/mfosterche/?originalSubdomain=ca
http://glossary.cncf.io

v1 CNCF GLOSSARY

2

GLOSSARY TERM CATEGORY PAGE #

API gateway TECHNOLOGY 3

API TECHNOLOGY 3

Autoscaling PROPERTY 3

Blue green deployment CONCEPT 4

Canary deployment CONCEPT 4

Cloud computing CONCEPT 4

Cloud native application CONCEPT 5

Container TECHNOLOGY 5

Continuous delivery CONCEPT 5

Continuous integration CONCEPT 6

DevOps CONCEPT 6

DevSecOps CONCEPT 7

Distributed systems CONCEPT 7

Immutable infrastructure PROPERTY 7

Infrastructure as code CONCEPT 8

Kubernetes TECHNOLOGY 8

Microservices CONCEPT 9

Observability PROPERTY 9

Reliability PROPERTY 9

Scalability PROPERTY 9

Self-healing PROPERTY 10

Service discovery CONCEPT 10

Service mesh TECHNOLOGY 10

Service proxy TECHNOLOGY 10

Virtualization TECHNOLOGY 11

TABLE OF CONTENTS

API Gateway

WHAT IT IS
An API gateway is a tool that aggregates unique application APIs, making them all available in one place. It allows organizations
to move key functions, such as authentication and authorization or limiting the number of requests between applications, to a
centrally managed location. An API gateway functions as a common interface to (often external) API consumers.

PROBLEM IT ADDRESSES
If you’re making APIs available to external consumers, you’ll want one entry point to manage and control all access. Additionally, if
you need to apply functionality on those interactions, an API gateway allows you to uniformly apply it to all traffic without requiring
any app code changes.

HOW IT HELPS
Providing one single access point for various APIs in an application, API gateways make it easier for organizations to apply cross-
cutting business or security logic in a central location. They also allow application consumers to go to a single address for all their
needs. An API gateway can simplify operational concerns like security and observability by providing a single access point for
requests to all web services in a system. As all requests flow through the API gateway, it presents a single place to add functionality
like metrics-gathering, rate-limiting, and authorization.

TECHNOLOGY

Application Programming Interface (API)

WHAT IT IS
An API is a way for computer programs to interact with each other. Just as humans interact with a website via a web page, an API
allows computer programs to interact with each other. Unlike human interactions, APIs have limitations on what can and cannot be
asked of them. The limitation on interaction helps to create stable and functional communication between programs.

PROBLEM IT ADDRESSES
As applications become more complex, small code changes can have drastic effects on other functionality. Applications need to
take a modular approach to their functionality if they can grow and maintain stability simultaneously. Without APIs, there is a lack of a
framework for the interaction between applications. Without a shared framework, it is challenging for applications to scale and integrate.

HOW IT HELPS
APIs allow computer programs or applications to interact and share information in a defined and understandable manner. They are
the building blocks for modern applications and they provide developers with a way to integrate applications together. Whenever you hear
about microservices working together, you can infer that they interact via an API.

Autoscaling

Autoscaling is the ability of a system to scale automatically, typically, in terms of computing resources. With an autoscaling
system, resources are automatically added when needed and can scale to meet fluctuating user demands. The autoscaling process
varies and is configurable to scale based on different metrics, such as memory or process time. Managed cloud services are
typically associated with autoscaling functionality as there are more options and implementations available than most on-premise
deployments.

Previously, infrastructure and applications were architected to consider peak system usage. This architecture meant that more
resources were underutilized and inelastic to changing consumer demand. The inelasticity meant higher costs to the business and
lost business from outages due to overdemand.

By leveraging the cloud, virtualizing, and containerizing applications and their dependencies, organizations can build applications
that scale according to user demands. They can monitor application demand and automatically scale them, providing an optimal
user experience. Take the increase in viewership Netflix experiences every Friday evening. Autoscaling out means dynamically
adding more resources: for example, increasing the number of servers allowing for more video streaming and scaling back once
consumption has normalized.

PROPERTY

CNCF GLOSSARY

3

TECHNOLOGY

v1

Blue green deployment

WHAT IT IS
Blue-green deployment is a strategy for updating running computer systems with minimal downtime. The operator maintains two
environments, dubbed “blue” and “green”. One serves production traffic (the version all users are currently using), whilst the other
is updated. Once testing has concluded on the non-active (green) environment, production traffic is switched over (often via the
use of a load balancer). Note that blue-green deployment usually means switching the entire environments, comprising many
services, all at once. Confusingly, sometimes the term is used with regard to individual services within a system. To avoid this
ambiguity, the term “zero-downtime deployment” is preferred when referring to individual components.

PROBLEM IT ADDRESSES
Blue-green deployments allow minimal downtime when updating software that must be changed in “lockstep” owing to a lack of
backwards compatibility. For example, blue-green deployment would be appropriate for an online store consisting of a website and
a database that needs to be updated, but the new version of the database doesn’t work with the old version of the website, and
vice versa. In this instance, both need to be changed at the same time. If this was done on the production system, customers would
notice downtime.

HOW IT HELPS
Blue-green deployment is an appropriate strategy for non-cloud native software that needs to be updated with minimal downtime.
However, its use is normally a “smell” that legacy software needs to be re-engineered so that components can be updated individually.

v1

Canary deployment

WHAT IT IS
Canary deployments is a deployment strategy that starts with two environments: one with live traffic and the other containing
the updated code without live traffic. The traffic is gradually moved from the original version of the application to the updated
version. It can start by moving 1% of live traffic, then 10%, 25%, and so on, until all traffic is running through the updated version.
Organizations can test the new version of the software in production, get feedback, diagnose errors, and quickly rollback to the
stable version if necessary.

The term “canary” refers to the “canary in a coal mine” practice where canary birds were taken into coal mines to keep miners safe.
If odorless harmful gases were present, the bird would die, and the miners knew they had to evacuate quickly. Similarly, if something
goes wrong with the updated code, live traffic is “evacuated” back to the original version.

PROBLEM IT ADDRESSES
No matter how thorough the testing strategy, there are always some bugs discovered in production. Shifting 100% of traffic from
one version of an app to another can lead to more impactful failures.

HOW IT HELPS
Canary deployments allow organizations to see how new software behaves in real-world scenarios before moving significant traffic
to the new version. This strategy enables organizations to minimize downtime and quickly rollback in case of issues with the new
deployment. It also allows more in-depth production application testing without a significant impact on the overall user experience.

Cloud computing

WHAT IT IS
Cloud computing is a model that offers compute resources like CPU, network, and disk capabilities on-demand over the internet. Cloud
computing gives users the ability to access and use computing power in a remote physical location. Cloud providers like AWS, GCP, Azure,
DigitalOcean, and others all offer third parties the ability to rent access to compute resources in multiple geographic locations.

PROBLEM IT ADDRESSES
Organizations traditionally faced two main problems when attempting to expand their use of computing power. They either acquire,
support, design, and pay for facilities to host their physical servers and network or expand and maintain those facilities. Cloud
computing allows organizations to outsource some portion of their computing needs to another organization.

CNCF GLOSSARY

4

CONCEPT

CONCEPT

CONCEPT

HOW IT HELPS
Cloud providers offer organizations the ability to rent compute resources on-demand and pay for usage. This allows for two major
innovations: organizations can try things without wasting time planning and spending CAPEX on new physical infrastructure and they can
scale as needed and on-demand. Cloud computing allows organizations to adopt as much or as little infrastructure as they need.

v1

Cloud native application

WHAT IT IS
Cloud native applications are specifically designed to take advantage of innovations in cloud computing. These applications
integrate easily with their respective cloud architectures, taking advantage of the cloud’s resources and scaling capabilities. It also
refers to applications that take advantage of innovations in infrastructure driven by cloud computing. Cloud native applications
today include apps that run in a cloud provider’s datacenter and on cloud native platforms on-premise.

PROBLEM IT ADDRESSES
Traditionally, on-premise environments provided compute resources in a fairly bespoke way. Each datacenter had services that
tightly coupled applications to specific environments, often relying heavily on manual provisioning for infrastructure, like virtual
machines and services. This, in turn, constrained developers and their applications to that specific datacenter. Applications that
weren’t designed for the cloud couldn’t take advantage of a cloud environment’s resiliency and scaling capabilities. For example,
apps that require manual intervention to start correctly cannot scale automatically, nor can they be automatically restarted in the
event of a failure.

HOW IT HELPS
While there is no “one size fits all” path to cloud native applications, they do have some commonalities. Cloud native apps are
resilient, manageable, and aided by the suite of cloud services that accompany them. The various cloud services enable a high
degree of observability, enabling users to detect and address issues before they escalate. Combined with robust automation, they
allow engineers to make high-impact changes frequently and predictably with minimal toil.

Container

WHAT IT IS
A container is a running process with resource and capability constraints managed by a computer’s operating system. The files
available to the container process are packaged as a container image. Containers run adjacent to each other on the same machine,
but typically the operating system prevents the separate container processes from interacting with each other.

PROBLEM IT ADDRESSES
Before containers were available, separate machines were necessary to run applications. Each machine would require its own
operating system, which takes CPU, memory, and disk space, all for an individual application to function. Additionally, the
maintenance, upgrade, and startup of an operating system is another significant source of toil.

HOW IT HELPS
Containers share the same operating system and its machine resources, spreading the operating system’s resource overhead and
creating efficient use of the physical machine. This capability is only possible because containers are typically limited from being
able to interact with each other. This allows many more applications to be run on the same physical machine.

There are limitations, however. Since containers share the same operating system, processes can be considered less secure than
alternatives. Containers also require limits on the shared resources. To guarantee resources, administrators must constrain and limit
memory and CPU usage so that other applications do not perform poorly.

CNCF GLOSSARY

5

Continuous delivery

WHAT IT IS
Continuous delivery, often abbreviated as CD, is a set of practices in which code changes are automatically deployed into an
acceptance environment (or, in the case of continuous deployment, into production). CD crucially includes procedures to ensure

TECHNOLOGY

CONCEPT

CONCEPT

that software is adequately tested before deployment and provides a way to rollback changes if deemed necessary. Continuous
integration (CI) is the first step towards continuous delivery (i.e., changes have to merge cleanly before being tested and deployed).

PROBLEM IT ADDRESSES
Deploying reliable updates becomes a problem at scale. Ideally, we’d deploy more frequently to deliver better value to end-users.
However, doing it manually translates into high transaction costs for every change. Historically, to avoid these costs, organizations
have released less frequently, deploying more changes at once and increasing the risk that something goes wrong.

HOW IT HELPS
CD strategies create a fully automated path to production that tests and deploys the software using various deployment strategies
such as canary or blue-green releases. This allows developers to deploy code frequently, giving them peace of mind that the new revision
has been tested. Typically, trunk-based development is used in CD strategies as opposed to feature branching or pull requests.

v1

Continuous integration (CI)

WHAT IT IS
Continuous integration, often abbreviated as CI, is the practice of integrating code changes as regularly as possible. CI is a
prerequisite for continuous delivery (CD). Traditionally, the CI process begins when code changes are committed to a source
control system (Git, Mercurial, or Subversion) and ends with a tested artifact ready to be consumed by a CD system.

PROBLEM IT ADDRESSES
Software systems are often large and complex, with numerous developers maintaining and updating them. Working in parallel
on different parts of the system, these developers may make conflicting changes and inadvertently break each other’s work.
Additionally, with multiple developers working on the same project, any everyday tasks such as testing and calculating code quality
would need to be repeated by each developer, wasting time.

HOW IT HELPS
CI software automatically checks that code changes merge cleanly whenever a developer commits a change. It’s a near-
ubiquitous practice to use the CI server to run code quality checks, tests, and even deployments. As such, it becomes a concrete
implementation of quality control within teams. CI allows software teams to turn every code commit into either a concrete failure or
a viable release candidate.

DevOps

WHAT IT IS
DevOps is a methodology in which teams own the entire process from application development to production operations, hence
DevOps. It goes beyond implementing a set of technologies and requires a complete shift in culture and processes. DevOps calls for
groups of engineers that work on small components (versus an entire feature), decreasing handoffs – a common source of errors.

PROBLEM IT ADDRESSES
Traditionally, in complex organizations with tightly-coupled monolithic apps, work was generally fragmented between multiple
groups. This led to numerous handoffs and long lead times. Each time a component or update was ready, it was placed in a queue
for the next team. Because individuals only worked on one small piece of the project, this approach led to a lack of ownership. Their
goal was to get the work to the next group, not deliver the right functionality to the customer — a clear misalignment of priorities.

By the time code finally got into production, it went through so many developers, waiting in so many queues that it was difficult to
trace the origin of the problem if the code didn’t work. DevOps turns this approach upside down.

HOW IT HELPS
Having one team own the entire lifecycle of an application results in minimized handoffs, reduce risk when deploying into
production, better code quality as teams are also responsible for how code performs in production and increased employee
satisfaction due to more autonomy and ownership.

CNCF GLOSSARY

6

CONCEPT

CONCEPT

DevSecOps

WHAT IT IS
The term DevSecOps refers to a cultural merger of the development, operational, and security responsibilities. It extends the
DevOps approach to include security priorities with minimal to no disruption in the developer and operational workflow. Like
DevOps, DevSecOps is a cultural shift, pushed by the technologies adopted, with unique adoption methods.

PROBLEM IT ADDRESSES
DevOps practices include continuous integration and continuous deployment and accelerate application development and release
cycles. Unfortunately, automated release processes that fail to represent all organizational stakeholders adequately can exacerbate
existing issues. A process that rapidly releases new software without considering security needs can degrade an organizations’
security posture.

HOW IT HELPS
DevSecOps focuses on breaking down team silos and promotes the creation of secure, automated workflows. When selecting security
applications, organizations must take advantage of automated CI/CD workflows and policy enforcement that empower the developer. The
goal is not to be a blocker but to enforce security policies while giving users accurate information on how to move their project forward.
When properly implemented, an organization will gain better team communication and reduce security mishaps and associated costs.

v1

Distributed systems

WHAT IT IS
Canary deployments is a deployment strategy that starts with two environments: one with live traffic and the other containing
A distributed system is a collection of autonomous computing elements connected over a network that appears to users as a single
coherent system. Generally referred to as nodes, these components can be hardware devices (e.g. computers, mobile phones) or software
processes. Nodes are programmed to achieve a common goal and, to collaborate, they exchange messages over the network.

PROBLEM IT ADDRESSES
Numerous modern applications today are so big they’d need supercomputers to operate. Think Gmail or Netflix. No single computer
is powerful enough to host the entire application. By connecting multiple computers, compute power becomes nearly limitless.
Without distributed computing, many applications we rely on today wouldn’t be possible.

Traditionally, systems would scale vertically. That’s when you add more CPU or memory to an individual machine. Vertical scaling is
time-consuming, requires downtime, and reaches its limit quickly.

HOW IT HELPS
Distributed systems allow for horizontal scaling (e.g. adding more nodes to the system whenever needed). This can be automated
allowing a system to handle a sudden increase in workload or resource consumption.

A non-distributed system exposes itself to risks of failure because if one machine fails, the entire system fails. A distributed system
can be designed in such a way that, even if some machines go down, the overall system can still keep working to produce the same result.

Immutable infrastructure

Immutable Infrastructure refers to computer infrastructure (virtual machines, containers, network appliances) that cannot be
changed once deployed. This can be enforced by an automated process that overwrites unauthorized changes or through a system
that won’t allow changes in the first place. Containers are a good example of immutable infrastructure because persistent changes
to containers can only be made by creating a new version of the container or recreating the existing container from its image.

By preventing or identifying unauthorized changes, immutable infrastructures make it easier to identify and mitigate security
risks. Operating such a system becomes a lot more straightforward because administrators can make assumptions about it. After
all, they know no one made mistakes or changes they forgot to communicate. Immutable infrastructure goes hand-in-hand with
infrastructure as code where all automation needed to create infrastructure is stored in version control (e.g. Git). This combination
of immutability and version control means that there is a durable audit log of every authorized change to a system.

CNCF GLOSSARY

7

PROPERTY

CONCEPT

CONCEPT

v1

Infrastructure as code

WHAT IT IS
Infrastructure as code is the practice of storing the definition of infrastructure as one or more files. This replaces the traditional
model where infrastructure as a service is provisioned manually, usually through shell scripts or other configuration tools.

PROBLEM IT ADDRESSES
Building applications in a cloud native way requires infrastructure to be disposable and reproducible. It also needs to scale on-
demand in an automated and repeatable way, potentially without human intervention. Manual provisioning cannot meet the
responsiveness and scale requirements of cloud native applications. Manual infrastructure changes are not reproducible, quickly
run into scale limits, and introduces misconfiguration errors.

HOW IT HELPS
By representing the data center resources such as servers, load balancers, and subnets as code, it allows infrastructure teams
to have a single source of truth for all configurations and also allows them to manage their data center in a CI/CD pipeline,
implementing version control and deployment strategies.

Kubernetes

WHAT IT IS
Kubernetes, often abbreviated as K8s, is a popular open-source tool for modern infrastructure automation. It’s like a data center
operating system that manages applications running across a distributed system (just like the OS on your laptop that manages your apps).

Kubernetes schedules containers across nodes in a cluster. It bundles several infrastructure constructs, sometimes referred to as
“primitives,” like an instance of an app, load balancers, persistent storage, and others together in a way that they can be composed
into applications.

Kubernetes enables automation and extensibility, allowing users to deploy applications declaratively in a reproducible way.
Software products and projects in the Kubernetes ecosystem take advantage of that automation and extensibility to extend the
Kubernetes API. This enables them to leverage Kubernetes’ automation and make their tools more accessible to experienced
Kubernetes practitioners.

PROBLEM IT ADDRESSES
Infrastructure automation and declarative configuration management have been important concepts for a long time and have only
become more pressing as cloud computing has gained popularity. As demand for compute resources increases and organizations
feel pressured to provide more operational capabilities with fewer engineers, new technologies and working methods are required
to meet that demand. Additionally, the rise of cloud computing was paired with containerization and organizations that were busy
automating more traditional infrastructure needed a mechanism to automate the configuration and deployment of their containers.

HOW IT HELPS
Kubernetes helps with automation in a manner similar to traditional infrastructure as code tools but has the advantage of working
with containers that are more resistant to configuration drift than virtual or physical machines. Kubernetes works declaratively,
which means that instead of operators providing the instructions about how to do something they instead describe, usually as a
YAML document, what they want to be done; Kubernetes will take care of the “how” on its own. This results in Kubernetes being
extremely compatible with infrastructure as code.

CNCF GLOSSARY

8

TECHNOLOGY

CONCEPT

Microservices

WHAT IT IS
Microservices are a modern approach to application development that takes advantage of cloud native technologies. While modern
applications, like Netflix, appear to be a single app, they are actually a collection of smaller services – all closely working together.
For instance, a single page that allows you to access, search, and preview videos is likely powered by smaller services that each
handle one aspect of it (e.g. search, authentication, and running previews in your browser). In short, microservices refer to an
application architecture pattern usually contrasted with monolithic applications.

PROBLEM IT ADDRESSES
Microservices are a response to challenges posed by monolithic applications. Generally, different parts of an application will
need to be scaled separately. An online store, for example, is going to have more product views than checkouts. That means you’ll
need more copies of the product view functionality running than the checkout. In a monolithic application, those bits of logic
can’t be deployed separately. If you can’t scale the product functionality individually, you’ll have to duplicate the entire app with all other
components you don’t need – an inefficient use of resources. Monolithic applications also make it easy for developers to succumb to
design pitfalls. Because all the code is in one place, it is easier to make that code tightly-coupled and harder to enforce the principle of
separation of concerns. Monoliths often require developers to understand the entire codebase before they can be productive.

HOW IT HELPS
Separating functionality into different microservices makes them easier to deploy, update, and scale independently. By allowing different
teams to focus on their own small part of a bigger application you also make it easier for them to work on their apps without negatively
impacting the rest of the organization. While microservices solve many problems, they also create operational overhead—the things you
need to deploy and keep track of increase by order of magnitude or more. Many cloud-native technologies aim to make microservices
easier to deploy and manage.

v1

Observability

Observability is a characteristic of an application that refers to how well a system’s state or status can be understood from its
external outputs. Computer systems are measured by observing CPU time, memory, disk space, latency, errors, etc. The more
observable a system is, the easier it is to understand how it’s doing by looking at it.

The observability of a system has a significant impact on its operating cost. Observable systems yield meaningful, actionable
data to their operators, allowing them to achieve favorable outcomes and less downtime. Note that more information does not
necessarily translate into a more observable system. In fact, sometimes the amount of information generated by a system can make
it harder to identify valuable health signals from the noise generated by the application. Observability requires the right data to
make the right decisions.

Reliability

From a cloud native perspective, reliability refers to how well a system responds to failures. If we have a distributed system that
keeps working as infrastructure changes and individual components fail, it is reliable. On the other hand, if it fails easily and
operators need to intervene manually to keep it running, it is unreliable. The goal of cloud native applications is to build inherently
reliable systems.

PROPERTY

CNCF GLOSSARY

9

Scalability

Scalability refers to how well a system can grow. That is increasing the ability to do whatever the system is supposed to do. For
example, a Kubernetes cluster scales by increasing or reducing the number of containerized apps, but that scalability depends on
several factors. How many nodes does it have, how many containers can each node handle, and how many records and operations
can the control plane support?

A scalable system makes it easy to add more capacity. We differentiate between two scaling approaches. On the one hand, there is
horizontal scaling which adds more nodes to handle increased load. In contrast, in vertical scaling individual nodes are made more
powerful to perform more transactions (e.g. by adding more memory or CPU to an individual machine). A scalable system is able to
change easily and meet user needs.

PROPERTY

PROPERTY

CONCEPT

https://github.com/cncf/glossary/blob/main/definitions/monolithic_apps.md

Self-Healing

A self-healing system is capable of recovering from certain types of failure without any human intervention. It has a “convergence”
or “control” loop that actively looks at the system’s actual state and compares it to the state that the operators initially desired. If there is a
difference (e.g., fewer application instances are running than desired), it will take corrective action (e.g., start new instances).

v1

Service discovery

WHAT IT IS
Service discovery is the process of finding individual instances that make up a service. A service discovery tool keeps track of the
various nodes or endpoints that make up a service.

THE PROBLEM IT ADDRESSES
Cloud native architectures are dynamic and fluid, meaning they are constantly changing. A containerized app will likely end up
starting and stopping multiple times in its lifetime. Each time that happens, it will have a new address and any app that wants to
find it needs a tool to provide the new location information.

HOW IT HELPS
Service discovery keeps track of apps within the network so they can find one another when needed. It provides a common place
to find and potentially identify individual services. Service discovery engines are database-like tools that store info about what
services exist and how to locate them.

Service mesh

WHAT IT IS
In a microservices world, apps are broken down into multiple smaller services (app components) that communicate over a network.
Just like your wifi network, computer networks are intrinsically unreliable, hackable, and often slow. Service meshes address this
new set of challenges by managing traffic (i.e., communication) between services and adding reliability, observability, and security
features uniformly across all services.

THE PROBLEM IT ADDRESSES
Having moved to a microservices architecture, engineers are now dealing with hundreds, possibly even thousands of individual
services, all in need to communicate. That means a lot of traffic is going back and forth over the network. On top of that, individual
applications may need to encrypt communications to support regulatory requirements, provide common metrics to operations
teams, or provide detailed insight into traffic to help diagnose issues. If built into the individual applications, each one of these
features will cause friction between teams and slow down development of new features.

HOW IT HELPS
Service meshes add reliability, observability, and security features uniformly across all services across a cluster without requiring
code changes. Before service meshes, that functionality had to be encoded into every single service, becoming a potential source
of bugs and technical debt.

CNCF GLOSSARY

Service proxy

WHAT IT IS
A service proxy intercepts traffic to or from a given service, applies some logic to it, then forwards that traffic to another service.
It essentially acts as a “go-between” that collects information about network traffic and/or applies rules to it.

THE PROBLEM IT ADDRESSES
To keep track of service to service communication (aka network traffic) and potentially transform or redirect it, we need to collect
data. Traditionally, the code enabling data collection and network traffic management was embedded within each application.

10

PROPERTY

TECHNOLOGY

TECHNOLOGY

CONCEPT

HOW IT HELPS
A service proxy allows us to “externalize” this functionality. No longer does it need to live within the apps. Instead, it’s now
embedded into the platform layer (where your apps run).

Acting as gatekeepers between services, proxies provide insight into what type of communication is happening. Based on their
insight, they determine where to send a particular request or even deny it entirely.

Proxies gather critical data, manage routing (spreading traffic evenly among services or rerouting if some services break down),
encrypt connections, and cache content (reducing resource consumption).infrastructure, and changes that occur to systems
outside IaC tools persist in the environment. That may lead to unexpected behaviors, security vulnerabilities, and potentially break
the automation.

v1

Virtualization

WHAT IT IS
Virtualization, in the context of cloud native computing, refers to the process of taking a physical computer, sometimes called a
server, and allowing it to run multiple isolated operating systems. Those isolated operating systems and their dedicated compute
resources (CPU, memory, and network) are referred to as virtual machines or VMs. When we talk about a virtual machine, we’re
talking about a software-defined computer. Something that looks and acts like a real computer but is sharing hardware with other
virtual machines. As an example, you can lease a “computer” from AWS – that computer is actually a VM.

PROBLEM IT ADDRESSES
Virtualization addresses a number of problems, including the improvement of physical hardware usage by allowing more apps to run
on the same physical machine whilst still being isolated from each other for security.

HOW IT HELPS
Apps running on virtual machines have no awareness that they are sharing a physical computer. Virtualization also allows the users
of the datacenter to spin up a new “computer” (aka a VM) in minutes without worrying about the physical constraints of adding a
new computer to a datacenter. VMs also enable users to speed up the time to get a new virtual computer.

PROPERTY

CNCF GLOSSARY

11

TECHNOLOGY

