library(tidyverse)
library(broom)
set.seed(1234)
theme_set(theme_minimal())
There are several packages for R for accessing and searching Twitter. Twitter actually has two separate APIs:
Popular packages for the Twitter API in R include:
twitteR
is the most popular package for R, but it only allows you to access the REST API. It is also deprecated (not actively updated), in lieu of a new up-and-coming package (identified below)streamR
is more complicated, but allows you to query the Streaming API from R. It is ancient in computational terms (last updated in January 2014), but does what it needs to do.rtweet
is a relatively recent addition to the R package universe that allows you to access both the REST and streaming APIs.rtweet
Here, we are going to practice using the rtweet
package to search Twitter.
install.packages("rtweet")
library(rtweet)
OAuth is an open standard for authorization, commonly used as a way for Internet users to authorize websites or applications to access their information on other websites but without giving them the passwords. This still requires an API key, but is a bit more complicated to setup.
The first step is to create a Twitter application for yourself. In order to do this, you do need to have a registered Twitter account. Go to (https://apps.twitter.com/app/new) and log in. After filling in the basic info (make sure to set the “Callback URL” to “http://127.0.0.1:1410”), go to the Permissions tab and select “Read, Write and Access direct messages”. Make sure to click on the save button after doing this. In the Details tab, take note of your consumer key and consumer secret.
Store your API key and secret using the .Rprofile
method. Edit .Rprofile
and add
options(twitter_app_name = "Your app name")
options(twitter_api_key = "Your API key")
options(twitter_api_secret = "Your API secret")
Restart RStudio to get the keys loaded into your environment.
Run from the console:
twitter_token <- create_token(
app = getOption("twitter_app_name"),
consumer_key = getOption("twitter_api_key"),
consumer_secret = getOption("twitter_api_secret"))
This will open your browser and take you to a page to authorize your app to access your Twitter account. You need this in order to search any content on Twitter.
At this point you should get a message back in RStudio “Authentication complete.” You’re done setting up the authentication for rtweet
- you’d just need to set the token
argument equal to twitter_token
(the token object we just created).
Rather than creating a token every time you open R, remembering where you saved your token(s) or passwords, and specifying a token every time you use a function, users are encouraged to save tokens as an environment variable. Since twitter_token
is no longer a character string, we cannot use the .Rprofile
method from before. Instead, we can store the token as an environment variable, or an object stored on your computer separately from your project directory.
To save a personal access token as an environment variable, complete the following steps:
Use readr::write_rds()
to save twitter_token
to your home directory. The code below should locate and construct the path to your home directory for you. Assuming you’ve saved your token as twitter_token
, the final line in the code below will save your token for you as well.
# path of home directory
home_directory <- path.expand("~/")
# combine with name for token
file_name <- file.path(home_directory, "twitter_token.rds")
# save token to home directory
readr::write_rds(twitter_token, path = file_name)
Create a plain text file containing the path to your token object and save it to your home directory as .Renviron
.
To create a plain text file in R, modify the code below. Change TWITTER_PAT
location to match the path you used earlier (in the example below, you’d want to change “/Users/soltoffbc/twitter_token.rds”). You can also create a plain text document in any text editor like TextEdit or Notepad. If you’re using Rstudio, select File > New File > Text File.
Important: Like with .Rprofile
, make sure the last line of .Renviron
is blank. I achieved this in the code below by including fill = TRUE
in the cat()
function.
# On my mac, the .Renviron text looks like this:
# TWITTER_PAT=/Users/soltoffbc/twitter_token.rds
# Assuming you followed the procedures to create "file_name"
# from the previous code chunk, then the code below should
# create and save your environment variable.
cat(paste0("TWITTER_PAT=", file_name),
file = file.path(home_directory, ".Renviron"),
append = TRUE)
Restart R so it can process the environment variable.
If you completed the steps successfully, you should be able to use rtweet
functions without specifying [or even thinking about] tokens [ever again].
To find 3000 recent tweets using the “rstats” hashtag:
rt <- search_tweets(
q = "#rstats",
n = 3000,
include_rts = FALSE
)
## Searching for tweets...
## Finished collecting tweets!
rt
## # A tibble: 2,656 x 42
## status_id created_at user_id screen_name text source
## <chr> <dttm> <chr> <chr> <chr> <chr>
## 1 973234778… 2018-03-12 16:30:27 2957630… calves06 Today’s the… Twitt…
## 2 973234218… 2018-03-12 16:28:14 9354611… RLadiesLau… We are cont… Twitt…
## 3 973233874… 2018-03-12 16:26:52 8441528… rweekly_li… Steel-ing a… R Wee…
## 4 973233697… 2018-03-12 16:26:10 4686586… bass_analy… "A tidy mod… Twitt…
## 5 973232678… 2018-03-12 16:22:07 1989657… monkmanmh "TIL that I… Twitt…
## 6 973231360… 2018-03-12 16:16:52 16736320 kai_arzhei… @kuziemsky … Twitt…
## 7 973230437… 2018-03-12 16:13:12 89191817 BigDataIns… "Big | Data… Paper…
## 8 973229907… 2018-03-12 16:11:06 5232165… martinjhnh… "I've a #GI… Twitt…
## 9 973228130… 2018-03-12 16:04:02 3580439… maximaform… #Statistics… Buffer
## 10 973227858… 2018-03-12 16:02:57 1120991… fongchunch… Anyone know… Tweet…
## # ... with 2,646 more rows, and 36 more variables:
## # reply_to_status_id <chr>, reply_to_user_id <chr>,
## # reply_to_screen_name <chr>, is_quote <lgl>, is_retweet <lgl>,
## # favorite_count <int>, retweet_count <int>, hashtags <list>,
## # symbols <list>, urls_url <list>, urls_t.co <list>,
## # urls_expanded_url <list>, media_url <list>, media_t.co <list>,
## # media_expanded_url <list>, media_type <list>, ext_media_url <list>,
## # ext_media_t.co <list>, ext_media_expanded_url <list>,
## # ext_media_type <lgl>, mentions_user_id <list>,
## # mentions_screen_name <list>, lang <chr>, quoted_status_id <chr>,
## # quoted_text <chr>, retweet_status_id <chr>, retweet_text <chr>,
## # place_url <chr>, place_name <chr>, place_full_name <chr>,
## # place_type <chr>, country <chr>, country_code <chr>,
## # geo_coords <list>, coords_coords <list>, bbox_coords <list>
q
- the search queryn
- maximum number of tweets to be returnedinclude_rts = FALSE
- exclude retweets generated by Twitter’s built-in “retweet” function. We only want original tweets.The resulting object is a tibble
data frame with one row for each tweet. The data frame contains the full text of the tweet (text
), the username of the poster (screen_name
), as well as a wealth of metadata.
Note that the Twitter REST API limits all searches to the past 6-9 days. You will not retrieve any earlier results.
Use get_timeline()
or get_timelines()
to retrieve tweets from one or more specified Twitter users. This only works for users with public profiles or those that have authorized your app.
countvoncount <- get_timeline(user = "countvoncount", n = 1000)
countvoncount
## # A tibble: 1,200 x 42
## status_id created_at user_id screen_name text source
## * <chr> <dttm> <chr> <chr> <chr> <chr>
## 1 9731839178… 2018-03-12 13:08:21 5551297… CountVonCo… One thou… CountVo…
## 2 9728970194… 2018-03-11 18:08:19 5551297… CountVonCo… One thou… CountVo…
## 3 9725799215… 2018-03-10 21:08:17 5551297… CountVonCo… One thou… CountVo…
## 4 9723081230… 2018-03-10 03:08:15 5551297… CountVonCo… One thou… CountVo…
## 5 9721420240… 2018-03-09 16:08:14 5551297… CountVonCo… One thou… CountVo…
## 6 9718551253… 2018-03-08 21:08:12 5551297… CountVonCo… One thou… CountVo…
## 7 9717343260… 2018-03-08 13:08:11 5551297… CountVonCo… One thou… CountVo…
## 8 9714776275… 2018-03-07 20:08:10 5551297… CountVonCo… One thou… CountVo…
## 9 9713870278… 2018-03-07 14:08:09 5551297… CountVonCo… One thou… CountVo…
## 10 9711303288… 2018-03-06 21:08:07 5551297… CountVonCo… One thou… CountVo…
## # ... with 1,190 more rows, and 36 more variables:
## # reply_to_status_id <lgl>, reply_to_user_id <lgl>,
## # reply_to_screen_name <lgl>, is_quote <lgl>, is_retweet <lgl>,
## # favorite_count <int>, retweet_count <int>, hashtags <list>,
## # symbols <list>, urls_url <list>, urls_t.co <list>,
## # urls_expanded_url <list>, media_url <list>, media_t.co <list>,
## # media_expanded_url <list>, media_type <list>, ext_media_url <list>,
## # ext_media_t.co <list>, ext_media_expanded_url <list>,
## # ext_media_type <lgl>, mentions_user_id <list>,
## # mentions_screen_name <list>, lang <chr>, quoted_status_id <chr>,
## # quoted_text <chr>, retweet_status_id <chr>, retweet_text <chr>,
## # place_url <chr>, place_name <chr>, place_full_name <chr>,
## # place_type <chr>, country <chr>, country_code <chr>,
## # geo_coords <list>, coords_coords <list>, bbox_coords <list>
With get_timelines()
, you are not limited to only the most recent 6-9 days of tweets.
Because the resulting objects are data frames, you can perform standard data transformation, summarization, and visualization on the underlying data.
rtweet
includes the ts_plot()
function which automates some common time series visualization methods. For example, we can quickly visualize the frequency of #rstats
tweets:
ts_plot(rt, by = "3 hours")
The by
argument allows us to aggregate over different lengths of time.
ts_plot(rt, by = "1 hours")
And because ts_plot()
uses ggplot2
, we can modify the graphs using familiar ggplot2
functions:
ts_plot(rt, by = "3 hours") +
theme(plot.title = element_text(face = "bold")) +
labs(
x = NULL, y = NULL,
title = "Frequency of #rstats Twitter statuses from past 9 days",
subtitle = "Twitter status (tweet) counts aggregated using three-hour intervals",
caption = "\nSource: Data collected from Twitter's REST API via rtweet"
)
rtweet
rtweet
package in R
popstars <- get_timelines(
user = c("katyperry", "KimKardashian", "ArianaGrande"),
n = 1000
)
popstars %>%
group_by(screen_name) %>%
ts_plot(by = "week")
devtools::session_info()
## Session info -------------------------------------------------------------
## setting value
## version R version 3.4.3 (2017-11-30)
## system x86_64, darwin15.6.0
## ui X11
## language (EN)
## collate en_US.UTF-8
## tz America/Chicago
## date 2018-03-12
## Packages -----------------------------------------------------------------
## package * version date source
## assertthat 0.2.0 2017-04-11 CRAN (R 3.4.0)
## backports 1.1.2 2017-12-13 CRAN (R 3.4.3)
## base * 3.4.3 2017-12-07 local
## bindr 0.1 2016-11-13 CRAN (R 3.4.0)
## bindrcpp 0.2 2017-06-17 CRAN (R 3.4.0)
## broom * 0.4.3 2017-11-20 CRAN (R 3.4.1)
## cellranger 1.1.0 2016-07-27 CRAN (R 3.4.0)
## cli 1.0.0 2017-11-05 CRAN (R 3.4.2)
## colorspace 1.3-2 2016-12-14 CRAN (R 3.4.0)
## compiler 3.4.3 2017-12-07 local
## crayon 1.3.4 2017-10-03 Github (gaborcsardi/crayon@b5221ab)
## datasets * 3.4.3 2017-12-07 local
## devtools 1.13.5 2018-02-18 CRAN (R 3.4.3)
## digest 0.6.15 2018-01-28 CRAN (R 3.4.3)
## dplyr * 0.7.4.9000 2017-10-03 Github (tidyverse/dplyr@1a0730a)
## evaluate 0.10.1 2017-06-24 CRAN (R 3.4.1)
## forcats * 0.3.0 2018-02-19 CRAN (R 3.4.3)
## foreign 0.8-69 2017-06-22 CRAN (R 3.4.3)
## ggplot2 * 2.2.1 2016-12-30 CRAN (R 3.4.0)
## glue 1.2.0 2017-10-29 CRAN (R 3.4.2)
## graphics * 3.4.3 2017-12-07 local
## grDevices * 3.4.3 2017-12-07 local
## grid 3.4.3 2017-12-07 local
## gtable 0.2.0 2016-02-26 CRAN (R 3.4.0)
## haven 1.1.1 2018-01-18 CRAN (R 3.4.3)
## hms 0.4.1 2018-01-24 CRAN (R 3.4.3)
## htmltools 0.3.6 2017-04-28 CRAN (R 3.4.0)
## httr 1.3.1 2017-08-20 CRAN (R 3.4.1)
## jsonlite 1.5 2017-06-01 CRAN (R 3.4.0)
## knitr 1.20 2018-02-20 CRAN (R 3.4.3)
## lattice 0.20-35 2017-03-25 CRAN (R 3.4.3)
## lazyeval 0.2.1 2017-10-29 CRAN (R 3.4.2)
## lubridate 1.7.2 2018-02-06 CRAN (R 3.4.3)
## magrittr 1.5 2014-11-22 CRAN (R 3.4.0)
## memoise 1.1.0 2017-04-21 CRAN (R 3.4.0)
## methods * 3.4.3 2017-12-07 local
## mnormt 1.5-5 2016-10-15 CRAN (R 3.4.0)
## modelr 0.1.1 2017-08-10 local
## munsell 0.4.3 2016-02-13 CRAN (R 3.4.0)
## nlme 3.1-131.1 2018-02-16 CRAN (R 3.4.3)
## parallel 3.4.3 2017-12-07 local
## pillar 1.1.0 2018-01-14 CRAN (R 3.4.3)
## pkgconfig 2.0.1 2017-03-21 CRAN (R 3.4.0)
## plyr 1.8.4 2016-06-08 CRAN (R 3.4.0)
## psych 1.7.8 2017-09-09 CRAN (R 3.4.1)
## purrr * 0.2.4 2017-10-18 CRAN (R 3.4.2)
## R6 2.2.2 2017-06-17 CRAN (R 3.4.0)
## Rcpp 0.12.15 2018-01-20 CRAN (R 3.4.3)
## readr * 1.1.1 2017-05-16 CRAN (R 3.4.0)
## readxl 1.0.0 2017-04-18 CRAN (R 3.4.0)
## reshape2 1.4.3 2017-12-11 CRAN (R 3.4.3)
## rlang 0.2.0 2018-02-20 cran (@0.2.0)
## rmarkdown 1.8 2017-11-17 CRAN (R 3.4.2)
## rprojroot 1.3-2 2018-01-03 CRAN (R 3.4.3)
## rstudioapi 0.7 2017-09-07 CRAN (R 3.4.1)
## rvest 0.3.2 2016-06-17 CRAN (R 3.4.0)
## scales 0.5.0 2017-08-24 cran (@0.5.0)
## stats * 3.4.3 2017-12-07 local
## stringi 1.1.6 2017-11-17 CRAN (R 3.4.2)
## stringr * 1.3.0 2018-02-19 CRAN (R 3.4.3)
## tibble * 1.4.2 2018-01-22 CRAN (R 3.4.3)
## tidyr * 0.8.0 2018-01-29 CRAN (R 3.4.3)
## tidyverse * 1.2.1 2017-11-14 CRAN (R 3.4.2)
## tools 3.4.3 2017-12-07 local
## utils * 3.4.3 2017-12-07 local
## withr 2.1.1 2017-12-19 CRAN (R 3.4.3)
## xml2 1.2.0 2018-01-24 CRAN (R 3.4.3)
## yaml 2.1.16 2017-12-12 CRAN (R 3.4.3)
This work is licensed under the CC BY-NC 4.0 Creative Commons License.