Combinatory Logic and Combinators in Array
Languages

Conor Hoekstra
conorhoekstra@gmail.com
Toronto Metropolitan University
Toronto, ON, Canada

Abstract

The array language paradigm began in the 1960s when Ken
Iverson created APL. After spending over 30 years working
on APL, he moved on to his second array language], a suc-
cessor to APL which embeds a significant subset of combina-
tory logic in it. This paper will look at the existence of com-
binators in the modern array languages Dyalog APL, J and
BON and how the support for them differs between these
languages. The paper will also discuss how combinators can
be a powerful language feature as they exist in modern ar-
ray languages.

CCS Concepts: « Software and its engineering — Func-
tional languages.

Keywords: combinatory logic, combinators, array lan-
guages, apl, j, bqn

ACM Reference Format:

Conor Hoekstra. 2022. Combinatory Logic and Combinators in Ar-
ray Languages. In Proceedings of the 8th ACM SIGPLAN Interna-
tional Workshop on Libraries, Languages and Compilers for Array
Programming (ARRAY °22), June 13, 2022, San Diego, CA, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3520306.
3534504

1 Introduction

The goal of this paper is to provide a brief history of both
array languages and combinatory logic and then to more
importantly show how a significant subset of combinatory
logic exists in modern array languages in the form of combi-
nators and why this is an extremely useful language feature.

Section 2 will briefly introduce array languages and how
they differ from other programming languages. Section 3
will cover a brief history of array languages. Section 4 will

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ARRAY °22, June 13, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9269-3/22/06...$15.00
https://doi.org/10.1145/3520306.3534504

cover a brief history of combinatory logic focusing on the
papers and literature that first introduced individual com-
binators. Section 5 will enumerate the hierarchy of com-
binators and how certain combinators are specializations
of other combinators. Section 6 will discuss the evolution
of combinators in array languages and specifically how
“trains” differ in modern array languages. Section 7 will enu-
merate each of the combinators from combinatory logic as
they exist in each of Dyalog APL, J and BQN. Section 8 will
discuss what makes combinators in modern array languages
so powerful and expressive. Section 9 will list several addi-
tional examples. Finally, in Section 10 a summary of what
has been discussed and shown in this paper will be provided.

2 A Brief Introduction to Array Languages

The three main array languages that will be discussed in
this paper are: Dyalog APL (1983), J (1990) and BQN (2020).
These languages are notably different from other program-
ming languages because APL and BQN use Unicode symbols
for primitives and J uses ASCII symbols, digraphs, and tri-
graphs. Many have asserted that this makes the languages
unreadable but that is the equivalent of saying Chinese is
unreadable just because it doesn’t use the Latin alphabet.
As long as you have the requisite knowledge to read the
symbols, not only is it extremely readable but it can also be
extremely expressive and powerful. For example, the follow-
ing snippet of APL code can be used to generate the first 10
odd numbers:

A numbers from 1 to 10
110

1234567 89 10
A multiply by 2
2x110

2 4 68 10 12 14 16 18 20
A add negative 1
T1+2x110

13579 1113 15 17 19

Other examples that demonstrate the expressivity and
power of APL are examples using outer product. The fol-
lowing snippet of APL code can be used to create a multipli-
cation table:

https://doi.org/10.1145/3520306.3534504
https://doi.org/10.1145/3520306.3534504
https://doi.org/10.1145/3520306.3534504

ARRAY ’22, June 13, 2022, San Diego, CA, USA

A multiply outer product

o,x=110
2 3 4+ 5 6 7 8 9 10
L 6 8 10 12 14 16 18 20
6 9 12 15 18 21 24 27 30
8 12 16 20 24 28 32 36 40
10 15 20 25 30 35 40 45 50
18 24 30 36 42 48 54 60
14 21 28 35 42 49 56 63 70
16 24 32 40 48 56 64 72 80
18 27 36 45 54 63 72 81 90
20 30 40 50 60 70 80 90 100

O VOO NONOLF WN —
-
N

[N

And finally, one of my personal favorite examples is a so-
lution to the “maximum consecutive ones” problem.

vec « 1101110001
A split (partition) on zeroes
c~vec

| | |
|1 1]1 1 1]1]
|] (|

A size of each sublist

£ 'c=vec

2 31
A max reduction
[/# c~vec

3

The final maximum consecutive ones APL solution can be
translated for those who don’t read APL:

reduce(max, map(length, W(partition, vec)))

As demonstrated by these three short examples, array lan-
guages provide the user with a combination of expressivity
and terseness not found in many other programming lan-
guages. Language features common across array languages
that enable this are:

e A rich set of fundamental builtin primitives in the
form of:
— functions
— operators (higher order functions)
— combinators

o The fact that spelling primitives with one glyph or two
ASCII characters enables a flexibility not found in any
other paradigm

e Rank polymorphism (primitives work on different
rank arrays)

3 Brief History of Array Languages

Kenneth Iverson started working on Iverson Notation in
1957 while at Harvard. He later published his book A Pro-
gramming Language in 1962[22]. This booked used Iverson
Notation as a notation for expressing algorithms. It wasn’t
until 1966 when Iverson Notation would be “upgraded” to a

Conor Hoekstra

programming language and rebranded as APL (which is the
acronym for A Programming Language).

There would be many variants of APL, starting with
APL\360 which was used to design the IBM/360. Other vari-
ants developed over the years would include APL PLUS, IBM
APL2, Sharp APL, Dyalog APL and GNU APL to name a few.
For a comprehensive list of APL variants/dialects see the
APL Wiki[4][6].

After evolving for over 30 years, APL would have two
main child languages: J and K. Kenneth Iverson worked on
J along with Roger Hui, one of Iverson’s protégés. Iverson’s
other protégé, Arthur Whitney would go on to work on K.
K4 (one of the dialects of K) would be sold to First Deriva-
tives for $100 million and be “wordified” (words would be
added to go along with the ASCII symbols). The “wordified”
version was called Q. It is also worth noting that before
Whitney went off to create K, he was involved in the cre-
ation of J when he wrote the J Incunabulum[20]. For a full
list of K dialects, visit the APL wiki[3].

Two of the most recent array languages that have been de-
veloped are I and BQN created by Marshall Lochbaum. Note
that Iis not actively developed and was an experimental lan-
guage that Lochbaum does not recommend for use. BQN on
the other hand is very actively developed and is a more func-
tional array language with the richest set of combinators of
any of APL, J or K. See Table 1 for a list of significant array
languages and when they were introduced.

Table 1. Array languages timeline.

Language Year
APL 1966
Dyalog APL 1.0 1983
J 1990

K 1994

Q 2003

I 2012

BON 2020

Dyalog APL 18.0 2020

Array languages influencing other array languages is
very common. See Figure 1 for a dependency graph of how
array languages influenced each other.

For a more detailed array language influence graph, visit
the APL Wiki[2].

4 Brief History of Combinatory Logic
4.1 Moses Schonfinkel, 1924

The first paper to introduce combinators was by Moses
Schonfinkel in his 1924 “Uber die Bausteine der mathema-
tischen Logik”[29]. The German title translates to “On the
building blocks of mathematical logic’[30]. In this paper,
Schonfinkel introduces the I, C, S, T and Z combinators.

Combinatory Logic and Combinators in Array Languages

Dyalog APL

Figure 1. Array language influences.

The C, Z and T combinators would later be respectively
renamed to K, B and C by Haskell Curry[12]. For an in
depth background on the origins of Schonfinkel, see “Where
Did Combinators Come From? Hunting the Story of Moses
Schonfinkel”[36].

4.2 Haskell Curry, 1929

Haskell Curry would independently discover combinators
in the late 1920s. He came across Schonfinkel’s paper before
publishing his first paper on the topic in 1929, “An Analy-
sis of Logical Substitution”[12]. In this paper, Curry reintro-
duces S, K, I, B and C and goes on to also introduce W. Note
that although the word “combinatory” shows up twice in
this paper, the terms combinator and combinatory logic do
not.

4.3 Haskell Curry, 1930

In Curry’s dissertation “Grundlagen der Kombinatorischen
Logik”[13] (The Foundations of Combinatory Logic), he
would introduce the B, combinator (and therefore implic-
itly the B; combinator). It was also in Curry’s dissertation
that the terms combinator and combinatory logic would be
introduced.

4.4 Haskell Curry, 1931

After publishing his dissertation[13] in 1930, Curry would
quickly publish “The Universal Quantifier in Combinatory
Logic”[14] in 1931 in which he would introduce the ® com-
binator and more generally the ®, combinator as well as the
¥ combinator. In this paper he would refer to the ® combi-
nator as the formalizing combinator.

ARRAY ’22, June 13, 2022, San Diego, CA, USA

4.5 Haskell Curry, 1931-1948

Following 1931, Haskell Curry would go on to publish many
papers on the topic of combinatory logic, sometimes re-
ferred to as the theory of combinators, including: “Some Ad-
ditions to the Theory of Combinators”[15] in 1932, “A Revi-
sion of the Fundamental Rules of Combinatory Logic”[16]
in 1941, and “The Combinatory Foundations of Mathemat-
ical Logic”[17] in 1942. John Rosser would remark in his
review[28] of Curry’s “The Combinatory Foundations of
Mathematical Logic”[17] that “it does present an accurate
and lucid account of the major accomplishments of combi-
natory logic to date, together with an estimate of what may
be expected of the subject in the future.” That “future” would
come several years later when Curry published “A Simplifi-
cation of the Theory of Combinators”[18] in 1948 which was
a summary and simplification of his work on combinatory
logic up until that point.

4.6 Haskell Curry, 1958

Haskell Curry’s research would culminate in his 1958 sem-
inal text Combinatory Logic: Volume I[19]. In this text he
would go on to name the five combinators I, C, W, B and K
the elementary combinators and give each of them spe-
cial names (see Table 2).

Table 2. The elementary combinators.

Combinator Elementary Name
I Elementary Identificator
C Elementary Permutator
W Elementary Duplicator
B Elementary Compositor
K Elementary Cancellator

4.7 David Turner, 1979

David Turner worked on three different programming lan-
guages (SASL[32], KRC[34] and Miranda[35]) that were
built on top of combinators and used combinator graph re-
duction compilation techniques. In his research on combina-
tors and graph reduction, he would reintroduce the ® com-
binator under a different name: the S’ combinator[33].

4.8 Raymond Smullyan, 1985

Raymond Smullyan would extend the list of existing combi-
nators in his logic puzzle book[31]. Among the combinators
introduced were the D (Dove), D, (Dovekie), E (Eagle) and
E (Bald Eagle) combinators.

5 Combinator Specializations

The list of combinators that will be covered in section 7 and
the corresponding lambda expressions are listed in Table 3.

ARRAY ’22, June 13, 2022, San Diego, CA, USA

Table 3. Combinators and lambda expressions.

Combinator Lambda Expression

I Aa.a

K Aab.a
w Aab.abb

C Aabc.acb

B Aabc.a(bc)

S Aabc.ac(bc)

D Aabcd.ab(cd)

B Aabcd.a(bed)

¥ Aabced.a(be)(bd)
i) Aabced.a(bd)(cd)
D, Aabcde.a(bd)(ce)
E Aabcde.ab(cde)
D, Aabcde.a(bde)(cde)
E Aabcdefg.a(bde)(cfg)

Many combinators can just be thought of as specializa-
tions of other combinators. The most obvious specializa-
tions are:

o ® is a specialization of D, withd = e

e D is a specialization of D, with b =1

e ¥ is a specialization of D, with b = ¢

e Sis a specialization of ® with b =1

e S is a specialization of D with b = d

e W is a specialization of S with b = I

e W is a specialization of ¥ with b =T and ¢ = d

A visualization of the specializations/dependencies of the
above combinators is shown in Figure 2.

Figure 2. D, combinator hierarchy.

The E-family of combinators also are specializations of
each other:

Conor Hoekstra

e E is a specialization of E with b = K
e @ is a specialization of E withd = fand e = ¢

6 Evolution of Combinatory Logic in
Array Languages
6.1 Phrasal Forms, 1989

In 1989, Kenneth Iverson and Eugene McDonnell wrote a pa-
per entitled Phrasal Forms[26]. It was in this paper where
they showed how the ® and S combinators could be spelled
in APL. They would be introduced into J as core parts of
language. Unfortunately, save for this 1989 paper, there are
no other documented references to combinatory logic and
combinators in array language literature. Kenneth Iverson
renamed combinators to trains, renamed the S combinator
in J to the hook and renamed the ® combinator in J to the
fork. These are also referred to more generally as 2-trains
and 3-trains. They are also sometimes referred to as “invis-
ible modifiers”[27] because they are formed through juxta-
position of functions as opposed to other combinators that
are spelled with glyphs.

In Phrasal Forms, there is a reference to John Backus’ 1978
Turing Award paper[8] where it mentions that the construc-
tion form is equivalent to a fork in APL or J where the bi-
nary operation is catenate (,). For instance: [+,-]inFPis
functionally the same as (+,-) in APL or J. It is also inter-
esting to note the similarity between the title of the paper
Phrasal Forms and the name John Backus used for his com-
bining forms as it seems like Iverson took inspiration from
Backus here. Note that Phrasal Forms was not just the name
of the paper, but the initial name for what would end up
being called trains. The fork from APL and J as well as infix
notation[9] from FP are both the ® and the ®; combinator.

6.2 Hook Conjunction?, 2006

It is definitely worth noting the difference in choice of two-
trains in APL, BON and J.

Table 4. 2 and 3-trains in APL, BQN and J.

Year Language 2-Train 3-Train
1990 J SandD @ and &,
2014 Dyalog APL BandB; ®and ®
2020 BON BandB; @ and &,

When] was created in 1990, that was the first time an
array language added combinators in the form of trains. It
would be 24 years before Dyalog APL added trains in 2014
when Dyalog APL 14.0 was released. The reason Dyalog
APL chose to replace the monadic and dyadic 2-trains with
B and B is because the implementer of J, Roger Hui, consid-
ered it a mistake as he points out in his 2006 essay “Hook
Conjunction?”[21]. The main reason was that using S as the
2-train resulted in special parsing rules. BQN would also go
on to choose B and B; for the monadic and dyadic 2-trains.

Combinatory Logic and Combinators in Array Languages

6.3 Dyalog APL and BQN

Dyalog APL added combinators in the following years[5]
and versions seen in Table 5.

Table 5. History of combinators in Dyalog APL.

Year Version Combinator Spelling

1983 1.0 B,D,C o=
2003 10.0 \W% =
2013 13.0 K +
2014 14.0 B, By, @, 9, trains
2020 18.0 B,B;,¥,K °0=

BON is still pre-1.0 but has added the richest set of com-
binators of any array language and arguably any program-
ming language. For a comprehensive list of combinators and
their bird names, see Marshall Lochbaum’s BON Birds[25].

7 Combinators in APL, BQON & J

In this section, APL specifically refers to Dyalog APL ver-
sion 18.0. Furthermore, see Table 6 for definitions of the
terms used for arity (number of function arguments) in this
section.

Table 6. Arity terms.

Arity Greek Term Latin Term
1 Monadic Unary
2 Dyadic Binary

It is more common to use the terms monadic and dyadic
when referring to functions when working with array lan-
guages. However, in this paper unary and binary are used
when referring to functions in general and monadic and
dyadic are used when referring to specific APL, BQN or J
functions or trains.

Lastly, in the Python code in this section, f, g, h refer
to functions and x, y, z refer to arguments.

71 1

The I combinator is known as identity in most languages. It
is id in Haskell. It is a unary function that returns the argu-
ment that is passed in. It was first introduced in Schonfinkel
1924[29]. It was introduced in Curry and Feys[19] as the El-
ementary Identificator.
A potential implementation in Python:
def i(x):
return x

72 K

The K combinator is known under many names in different
languages. It is const in Haskell. It is a binary function that

ARRAY ’22, June 13, 2022, San Diego, CA, USA

Table 7. I combinator.

Language Name Symbol
APL Same -
APL Constant =
BON Identity +
BON Constant)

) Same]

returns the first argument that is passed in. It was first intro-
duced in Schonfinkel 1924[29]. Note that Schonfinkel origi-
nally called this combinator C but it was later renamed to K
by Curry[12]. It was introduced in Curry and Feys[19] as the
Elementary Cancellator. Smullyan nicknamed it Kestrel
in his logic puzzle book To Mock a Mockingbird[31].

Table 8. K combinator.

Language Name Symbol

APL Right =
BON Right -
J Right]

A potential implementation in Python:

def k(x, y):
return x
7.3 S

The S combinator is known under a couple of different
names. It is known as ap or <*> in Haskell, as the hook in
both J and I[23] and as monadic after in BQN. It is the 2-train
in J. It is the composition of a binary and unary function
such that the binary function takes two arguments: the right
one after having the unary function applied to it and the
left one as the original argument. It was first introduced in
Schonfinkel 1924[29]. Smullyan nicknamed it Starling[31].

Table 9. S combinator.

Language Name Symbol
APL - -
BON (Monadic) After o

J (Monadic) Hook 2-train

Although APL does not have the S combinator, the same
effect can be achieved by combining the D and W combina-
tors: fog~.

Potential implementations in Python:

Includes application
def s(f, g, x):
return f(x, g(x))

ARRAY ’22, June 13, 2022, San Diego, CA, USA

Excludes application
def s(f, g):
return lambda x: f(x, g(x))

74 B

The B combinator is what most people think of when they
hear “composition.” It is called compose in Racket, comp in
Clojure, inJulia, (.) in Haskell and exists in many other lan-
guages. It is the monadic 2-train in both APL and BQN. It is
the composition of two unary functions, applying one func-
tion after the other. It was first introduced in Schénfinkel
1924[29]. Note that Schonfinkel originally called this com-
binator Z but Curry would later rename it to B[12]. It was
introduced in Curry and Feys[19] as the Elementary Com-
positor. Smullyan nicknamed it the Bluebird[31]. It has so
many forms in each of the array languages because many of
the dyadic operators define the monadic version to be the B
combinator.

Table 10. B combinator.

Language Name Symbol
APL (Monadic) Beside °
APL (Monadic) Atop s
APL (Monadic) Over o
APL (Monadic) Atop 2-train
BON (Monadic) Atop °
BON (Monadic) Over o
BON (Monadic) Atop 2-train

J (Monadic) At @:
J (Monadic) Appose &:

Potential implementations in Python:

Includes application
def b(f, g, x):
return f(g(x))

Excludes application
def b(f, g):
return lambda x: f(g(x))

7.5 B

The B; combinator does not exist in most languages. It can
be found as (.:) in Haskell in the Data.Composition li-
brary. It is the dyadic 2-train in both APL and BQN. It is the
composition of one binary function and one unary function,
where the binary function is first applied to two arguments
and then the unary function is applied to its result. It was
first introduced in Curry 1948[18]. Smullyan nicknamed it
the Blackbird[31].

Conor Hoekstra

Table 11. B; combinator.

Language Name Symbol
APL (Dyadic) Atop °
APL (Dyadic) Atop 2-train
BON (Dyadic) Atop °
BON (Dyadic) Atop 2-train

J (Dyadic) At @:

Potential implementations in Python:

Includes application
def b(f, g, x, y):
return f(g(x, y))

Excludes application
def b(f, g):
return lambda x, y: f(g(x, y))

7.6 C

The C combinator is known as f1ip in Haskell and is similar
to SWAP in FORTH. It is a unary function that takes a binary
function as its argument and “flips” the order the two ar-
guments are passed. Note that for commutative functions,
the C combinator effectively has no effect (such as with ad-
dition or multiplication). It was first introduced in Schon-
finkel 1924[29]. Note that Schonfinkel originally called this
combinator T but Curry would later rename it to C[12]. It
was introduced in Curry and Feys[19] as the Elementary
Permutator. Smullyan nicknamed it the Cardinal[31].

Table 12. C combinator.

Language Name Symbol
APL Commute =
BON Swap -

J Passive ~

Potential implementations in Python:

Includes application
def c(f, x, y):
return f(y, x)

Excludes application
def c(f):
return lambda x, y: f(y, x)

77 W

The W combinator is known as join in Haskell and is sim-
ilar to DUP in FORTH. It takes a binary function and turns
it into a unary function by duplicating/using the single ar-
gument as both arguments for the original binary func-
tion. It was first introduced in Curry 1929[12]. It was intro-
duced in Curry and Feys[19] as the Elementary Duplica-
tor. Smullyan nicknamed it the Warbler[31].

Combinatory Logic and Combinators in Array Languages

Table 13. W combinator.

Language Name Symbol
APL Commute =~
BON Self -

] Reflex ~

Potential implementations in Python:
Includes application
def w(f, x):
return f(x, x)

Excludes application
def w(f):
return lambda x: f(x, Xx)

78 ¥

The ¥ combinator can be found as on in Haskell in the
Data.Function library. It is the composition of a binary
function and a unary function where the two arguments
each have the unary function applied to them, and each re-
sult is then passed to the binary function as the first and
second argument. It was first introduced in Curry 1958[19].

Table 14. ¥ combinator.

Language Name Symbol

APL Over o
BON Over o
J Appose &:

Potential implementations in Python:

Includes application
def psi(f, g, x, y):
return f(g(x), g(y))

Excludes application
def psi(f, g):
return lambda x, y: f(g(x), g(y))

7.9 @ (S)

The ® combinator is known as “infix notation” in FP[9] and
FL[7] when called monadically and 1iftA2 in Haskell. It is
the monadic 3-train in both APL, BQN and J. It is the compo-
sition of two unary functions and one binary function. It is
similar to the ¥ combinator but instead of applying the same
unary function to two different arguments, you apply two
different unary functions to the same argument. It was first
introduced in Curry 1931[14] as the ® combinator. It was
later reintroduced with a different name, the S’ combinator
in Turner 1979[33]. Smullyan nicknamed it the Phoenix[31].

ARRAY ’22, June 13, 2022, San Diego, CA, USA

Table 15. ® (S’) combinator.

Language Name Symbol
APL (Monadic) Fork 3-train
BON (Monadic) Fork 3-train

J (Monadic) Fork 3-train

Potential implementations in Python:

Includes application
def phi(f, g, h, x):
return g(f(x), h(x))

Excludes application
def phi(f, g, h):
return lambda x: g(f(x), h(x))

7.10 @

The ®; combinator is known as “infix notation” in FP[9] and
FL[7] when called dydically. It is the dyadic 3-train in APL,
BON and J. It is the composition of three binary functions.
It can be thought of as the ® combinator but with the two
unary functions replaced with binary functions. It was first
introduced in Curry 1931[14]. In fact, both the ® and ®; com-
binators are specializations of the ®,, combinator. Smullyan
did not name the ®; combinator, so this paper is introduc-
ing the bird name “Pheasant” due to it also starting with “ph”
(similar to B and B; having the names Bluebird and Black-
bird).

Table 16. ®; combinator.

Language Name Symbol
APL (Dyadic) Fork ~ 3-train
BON (Dyadic) Fork 3-train

J (Dyadic) Fork 3-train

Potential implementations in Python:
Includes application
def e_(f, g, h, x, y):
return g(f(x, y), h(x, y))

Excludes application
def e_(f, g, h):
return lambda x, y:
g(f(x, y), h(x, y)

711 D

The D combinator is unique to array languages. It is the
composition of one binary function and one unary function
where the unary function is applied to the right argument
and then passed along with the other argument to the bi-
nary function. It was first introduced in Smullyan 1985[31].
Smullyan nicknamed it the Dove[31].

ARRAY ’22, June 13, 2022, San Diego, CA, USA

Table 17. D combinator.

Language Name Symbol
APL (Dyadic) Beside °
BON (Dyadic) After o

Potential implementations in Python:

Includes application
def d(f, g, x, y):
return f(x, g(y))

Excludes application
def d(f, g):
return lambda x, y: f(x, g(y))

712 D,

The D, combinator doesn’t explicitly exist in any of the ar-
ray languages in the form of a train or glyph. However, it
can be spelled in BQN due to the fact that both the hook
from J (called after in BQN) and the backHook from I[23]
(called before in BQN) both exist. Furthermore, the D, combi-
nator can also be spelled in Extended Dyalog APL[10] which
implements reverse compose (the equivalent of I's backHook
and BQN’s before).

Table 18. D, combinator.

Language D,
BON a-bo-c
Extended Dyalog APL acbec

In the above spellings, a and c are unary functions and b is
a binary function. Smullyan nicknamed the D, combinator
the Dovekie[31].
Potential implementations in Python:
Includes application
def d2(f, g, h, x, y):
return g(f(x), h(y))

Excludes application
def d2(f, g, h):
return lambda x, y: g(f(x), h(y))

8 The Power of Combinators in Array
Languages

Combinators in array languages are powerful for several
reasons:

1. They have higher precedence than function applica-
tion

2. They are spelled with one glyph or through juxtapo-
sition

3. Some of them (trains) are “invisible”

4. They are uniformly designed

Conor Hoekstra

5. There are a rich set of them
6. They are builtin
To understand this better, a contrast between another
(non-array) “combinator” language will be drawn.

8.1 Combinator Support: Haskell vs Array
Languages

Arguably, one of the best combinator languages outside of
array languages is Haskell. A list of combinators in Haskell
is shown in Table 19.

Table 19. Combinators in Haskell.

Name Library

I id Prelude

K const Prelude
W join Control.Monad
C flip Prelude

B () Prelude

S (<*>)/ap Control.Applicative
B, .) Data.Composition
¥ on Data.Function

D liftA2 Control.Applicative
A % Prelude

However, combinators in Haskell fail on reasons (1), (2),
(3), (4) and (6) when compared with the six reasons why
modern array language combinators are so powerful. Below
is an examination of each reason, in reverse order.

8.1.1 Builtin Combinators. It matters less in Haskell
that the combinators are not builtin, but the fact that they
are scattered in various forms across four different libraries
(five if Prelude is included) makes them a hassle to import.
That being said, a single library providing all combinators
could easily be provided.

8.1.2 Rich Set of Combinators. Arguably, Haskell has
a “rich” set of combinators. Compared to array languages
however, Haskell has a relatively “less rich” set of combina-
tors. Missing from the list of combinators in Haskell are D,
D, and ®;. That being said, once again it would be easy to
provide the missing combinators in a different or one of the
existing libraries.

8.1.3 Uniformly Designed Combinators. The nonuni-
form defining of certain combinators as infix operators, cer-
tain combinators as functions and one as both leads to a
suboptimal design. As with the previous two reasons, this
could be remedied with a standalone library that redefined
the combinators in a uniform manner.

8.1.4 Invisible Combinators. Also known as “invisible
modifiers”[27], invisible combinators exist in array lan-
guages in the form of trains (see Table 4). This is a language
level feature making it impossible to replicate in Haskell

Combinatory Logic and Combinators in Array Languages

or any other language through a library. As the B and &
combinators are ubiquitous in programming, it leads to an
extremely convenient way of composing functions because
there is zero syntax that needs to be added for the composi-
tion to occur.

8.1.5 Combinator Spelling. The spelling of combinators
in Haskell makes the “tax” of using them higher than in ar-
ray languages. For instance, Table 20 shows the additional
code required in order to “commute” a minus operation.

Table 20. Commuting minus.

Language Minus Commuted Minus
Haskell - flip (-)
APL - -=

Haskell’s C combinator isn’t terrible, but the minus oper-
ation went from one character to eight whereas in APL it
only went from 1 to 2. This is a non-trivial difference that is
even worse when it comes to other combinators such as ®
in Haskell.

8.1.6 Combinator Precedence. Of all the five reasons
why combinators are so powerful in array languages, one
stands out as by far the most important: the fact that combi-
nators have higher precedence than function application. In
Haskell, infix operators have a specified precedence. How-
ever, the maximum precedence of an infix operator is 9,
meaning it can never be higher than the precedence of func-
tion application which is 10. Table 21 shows the precedence
of the combinators that take the form of infix operators.

Table 21. Combinator precedence in Haskell.

Name Precedence
Function Application 10
B .) 9
B1 (.) 8
S (<x>) 4
A $) 0

It makes complete sense that combinators should have
higher precedence than function application because com-
binators can be viewed as “function application modifiers.”
In fact, BON’s combinators sit in a category of primitives
called modifiers. The documentation even states that combi-
nators control the application of functions.

This leads to more expressive code in that composition of
functions using combinators doesn’t need to be parenthe-
sized. In Haskell, you encounter the following:

import Control.Applicative (<*>)

> (==) <*> reverse "tacocat" -- error

ARRAY ’22, June 13, 2022, San Diego, CA, USA

-- parentheses required
> ((==) <*> reverse) "tacocat" -- success

Compare this to array languages where the parentheses
are not needed. Below is the equivalent expression in BQN.

= "tacocat" # success

8.2 A Simple Example

A simple problem will be solved in both Haskell and BON to
illustrate how richer, builtin combinators with higher prece-
dence than function application can lead to more expressive
code.

The problem is to generate a list of absolute differences
between all pairs of numbers generated from a list of num-
bers (with replacement).

8.2.1 Haskell.

import Data.List.HT (outerProduct)
import Control.Monad (join)
import Data.Composition ((.:))
import Data.List.Unique (sortUniq)

allDiffs
= sortUniq
. concat
. join (outerProduct (abs .: (-)))

allpiffs [1,-5,3,-8,6]
-- Results in:
--[90,2,3,5,6,8,9,11,14]

Multiple parentheses are required to get the correct or-
der of function application, not to mention the difference
between the prefix join and the infix .: / . and that they
each come from separate libraries.

8.2.2 BON.

vec « 1_"5_3_78_6

Difference of all pairs

with C
(-"7) vec
—
0o 6 "2 9 -5
6 0 "8 3 711
2 8 011 73
9 73 711 0 14
5 11 3 14 0
]
Absolute value with B1
(1e=-"7) vec
—
l'o 6 2 9 5
6 0 8 3 11
2 8 011 3

ARRAY ’22, June 13, 2022, San Diego, CA, USA

9 311 0 14

511 3 14 O
J

Deshape
(#]e-"7) vec
(062956083 11

Deduplicate with B
(Eoelo—r~) vec
(06295831114)

ALLDiffs « gos|o-""

In the BON code, no parentheses are required. The ~ and
o have higher precedence than function application and no
libraries are required.

9 Examples

Each of the examples are run with one or two test cases in
only APL, but the output is the same for all of the APL, BQN
and J functions.

9.1 average

// Translation (Tacit)

avg = phi(sum, divide, length)

// Translation (Explicit)

avg(x) = divide(sum(x), length(x))

A APL
avg « +/+%¢ A ¢
BQN
Avg « +752 # ¢
NB. J
avg =. +/%# NB. ¢
A Test

avg 1 2 3 &4
2.5

9.2 plusOrMinus

// Translation (Tacit)
plusOrMinus = phil(plus, concat, minus)
// Translation (Explicit)
plusOrMinus(x, y) =

concat(plus(x,y), minus(x,y))
A APL
plusOrMinus <« +,- a ¢1
BQN
PlusOrMinus
NB. J
plusOrMinus
A Test

10 plusOrMinus 5

t

+>- # 01

+,- NB. o1

15 5

Conor Hoekstra

9.3 absoluteDifference

// Translation (Tacit)

absDiff = b1(abs, minus)

// Translation (Explicit)
absDiff(x, y) = abs(minus(x,y))

A APL
absDiff <« |- A B1
absDiff « |©o- A B1
BQN
AbsDiff « |- # B1
AbsDiff <« |o- # B1
NB. J
absDiff =. |@:- NB. B1
A Tests

10 absDiff 7
3

7 absDiff 10
3

9.4 isPalindrome

// Translation (Tacit)

isPalindrome = phi(reverse, equals, i)
isPalindrome = s(equals, reverse)

// Translation (Explicit)

isPalindrome(x) = equals(reverse(x), i(x))
isPalindrome(x) = equals(x, reverse(x))

A APL

isPalindrome <« ¢=+ A oI
jsPalindrome <« =o¢= ADW
BQN
IsPalindrome <« ¢=+ # o1
IsPalindrome <« =o¢ # S
IsPalindrome <« =o¢~ # D W
NB. J
isPalindrome =. |.-:] NB. ¢ I
isPalindrome =. -:]|. NB. S
isPalindrome =. (-:].)~ NB. D W
A Tests

isPalindrome 'tacocat’
1

isPalindrome 'tacodog'’
0

9.5 isAnagram

// Translation (Tacit)

isAnagram = psi(equals, sort)

// Translation (Explicit)

isAnagram(x, y) = equals(sort(x), sort(y))
A APL

sort « copfl+ A Bl &I
isAnagram <« =0sort A v

Combinatory Logic and Combinators in Array Languages

BQN
IsAnagram « =04 # U
#7J
sort =, /:~ NB. W
isAnagram =, -:&:sort NB. U
A Tests

‘owls' isAnagram 'slow'
1

‘cats' isAnagram 'dogs'
0

9.6 isDisjoint
// Translation (Tacit)
isDisjoint = e(nil, equals, intersect)
// Translation (Explicit)
isDisjoint(x, y) = equals(nil, intersect(x, y))
A APL
isDisjoint « 8=n A E
BQN
IsDisjoint (Yse/~ # E o1
IsDisjoint « ~-v’e # B B1
NB. J
isDisjoint =. (i.0)-:e.#[NB. E o1
A Tests

1 2 isDisjoint 3 4 5

f

2 3 isDisjoint 3 4 5
0

9.7 isPrefixOf

// Translation (Tacit)

isPrefix0f = b1(first, find)

// Translation (Explicit)
isPrefix0f(x, y) = first(find(x, y))
A APL
isPrefixOf
isPrefixOf

+ 4
U u
oc|m
m

D D
@
- -

BQN
IsPrefixOf « Ce # B1
IsPrefixOf « Cece # B1
NB. J
isPrefixOf =. {.@:E. NB. B1
A Tests

‘cat' isPrefixOf 'catch'
1

‘dog' isPrefixOf 'catch'
0

10 Summary

In this paper, a brief history of both array languages and
combinatory logic was provided. The relationships between

ARRAY ’22, June 13, 2022, San Diego, CA, USA

combinators were examined and captured visually by the
combinator hierarchy in Figure 2. Combinators as they exist
in the modern array languages Dyalog APL, J and BON were
enumerated and explained and differences were highlighted
where they existed. Finally, the power and expressivity of
combinators in modern array languages was examined.

Acknowledgments

Thank you to the following individuals who have pro-
vided reviews and meaningful feedback: Adam Brudzewsky,
Computer Programmer at Dyalog Limited and creator
of Extended Dyalog APL[10] and APLCart[11]; Marshall
Lochbaum, creator of the I[23] and BQN[24] program-
ming languages; Dr. Troels Henriksen, assistant professor at
DIKU and creator of the Futhark[1] programming language;
and Dr. David Mason, Chair of Computer Science at Toronto
Metropolitan University.

References

[1] 2013. The Futhark Programming Language. https://futhark-lang.org/

[2] 2021. Family tree of array languages - APL Wiki. https://aplwiki.
com/wiki/Family_tree_of array_languages

[3] 2021. K- APL Wiki. https://aplwiki.com/wiki/K

[4] 2021. Timeline of APL dialects - APL Wiki. https://aplwiki.com/wiki/
Timeline_of APL_dialects

[5] 2022. Dyalog APL - APL Wiki. https://aplwiki.com/wiki/Dyalog_APL

[6] 2022. List of language developers - APL Wiki. https://aplwiki.com/
wiki/List_of_language_developers

[7] Alexander Aiken, John H Williams, and Edward L Wimmers. 1994.
The FL project: The design of a functional language. Citeseer.

[8] John Backus. 1978. Can programming be liberated from the von Neu-
mann style? A functional style and its algebra of programs. Commun.
ACM 21, 8 (1978), 613-641. Publisher: ACM New York, NY, USA.

[9] John Backus. 1985. From function level semantics to program trans-
formation and optimization. In Colloquium on Trees in Algebra and
Programming. Springer, 60-91.

[10] Adam Brudzewsky. 2018. dyalog-apl-extended: Dyalog APL Extended.
https://github.com/abrudz/dyalog-apl-extended

[11] Adam Brudzewsky. 2019. APLcart - Find your way in APL. https:
//aplcart.info/

[12] Haskell B Curry. 1929. An analysis of logical substitution. American
Jjournal of mathematics 51, 3 (1929), 363-384. Publisher: JSTOR.

[13] Haskell Brooks Curry. 1930. Grundlagen der kombinatorischen Logik.
American journal of mathematics 52, 4 (1930), 789-834. Publisher:
JSTOR.

[14] Haskell Brooks Curry. 1931. The universal quantifier in combinatory
logic. Annals of Mathematics (1931), 154-180. Publisher: JSTOR.

[15] Haskell Brooks Curry. 1932. Some additions to the theory of combina-
tors. American Journal of Mathematics 54, 3 (1932), 551-558. Publisher:
JSTOR.

[16] Haskell B. Curry. 1941. A Revision of the Fundamental Rules of
Combinatory Logic. The Journal of Symbolic Logic 6, 2 (1941), 41—
53. http://www.jstor.org/stable/2266655 Publisher: Association for
Symbolic Logic.

[17] Haskell B Curry. 1942. The combinatory foundations of mathematical
logic. The Journal of Symbolic Logic 7, 2 (1942), 49-64. Publisher:
Cambridge University Press.

[18] Haskell B Curry. 1948. A simplification of the theory of combinators.
Synthese (1948), 391-399. Publisher: JSTOR.

https://futhark-lang.org/
https://aplwiki.com/wiki/Family_tree_of_array_languages
https://aplwiki.com/wiki/Family_tree_of_array_languages
https://aplwiki.com/wiki/K
https://aplwiki.com/wiki/Timeline_of_APL_dialects
https://aplwiki.com/wiki/Timeline_of_APL_dialects
https://aplwiki.com/wiki/Dyalog_APL
https://aplwiki.com/wiki/List_of_language_developers
https://aplwiki.com/wiki/List_of_language_developers
https://github.com/abrudz/dyalog-apl-extended
https://aplcart.info/
https://aplcart.info/
http://www.jstor.org/stable/2266655

ARRAY ’22, June 13, 2022, San Diego, CA, USA

[19] Haskell Brooks Curry, Robert Feys, William Craig,] Roger Hindley,
and Jonathan P Seldin. 1958. Combinatory logic. Vol. 1. North-Holland
Amsterdam.

[20] Roger Kwok Wah Hui. 1992. An Implementation of J. Iverson Soft-
ware.

[21] Roger Kwok Wah Hui. 2006. Essays/Hook Conjunction? - J Wiki.
https://code.jsoftware.com/wiki/Essays/Hook_Conjunction%3F

[22] Kenneth E. Iverson. 1962. A programming language. John Wiley &
Sons, Inc., New York, NY, USA. http://portal.acm.org/citation.cfm?
id=SERIES11430.1098666

[23] Marshall Lochbaum. 2012. ILanguage: An interpreter for a J-inspired
language. https://github.com/mlochbaum/ILanguage

[24] Marshall Lochbaum. 2020. BON: finally, an APL for your flying saucer.
https://mlochbaum.github.io/BQN/

[25] Marshall Lochbaum. 2022. BQN for birdwatchers. https://
mlochbaum.github.io/BQN/doc/birds.html

[26] Eugene E McDonnell and Kenneth E Iverson. 1989. Phrasal forms. In
Conference proceedings on APL as a tool of thought. 197-199.

[27] Henry Rich. 2002. J for C Programmers. (2002).

[28] Barkley Rosser. 1943. Review of: The Combinatory Foundations of
Mathematical Logic by Haskell B. Curry. The Journal of Symbolic Logic
8, 1(1943), 31-31. http://www.jstor.org/stable/2267984 Publisher:
Association for Symbolic Logic.

Conor Hoekstra

[29] Moses Schonfinkel. 1924. Uber die Bausteine der mathematischen
Logik. Mathematische annalen 92, 3 (1924), 305-316. Publisher:
Springer.

[30] Moses Schonfinkel. 1967. On the building blocks of mathematical
logic. From Frege to Géidel (1967), 355-366. Publisher: Harvard Uni-
versity Press Cambridge MA.

[31] Raymond M Smullyan. 2000. To Mock a Mockingbird: and other logic
puzzles including an amazing adventure in combinatory logic. Oxford
University Press, USA.

[32] DA Turner. 1976. SASL Language Manual. Andrews University, Fife,
Scotland (1976).

[33] David A Turner. 1979. Another algorithm for bracket abstraction. The
Journal of Symbolic Logic 44, 2 (1979), 267-270. Publisher: Cambridge
University Press.

[34] David A Turner. 1982. Recursion equations as a programming lan-
guage. In A List of Successes That Can Change the World. Springer,
459-478.

[35] David A Turner. 1985. Miranda: A non-strict functional language
with polymorphic types. In Conference on Functional Programming
Languages and Computer Architecture. Springer, 1-16.

[36] Stephen Wolfram. 2021. Where Did Combinators Come From? Hunt-
ing the Story of Moses Schonfinkel. arXiv preprint arXiv:2108.08707
(2021).

https://code.jsoftware.com/wiki/Essays/Hook_Conjunction%3F
http://portal.acm.org/citation.cfm?id=SERIES11430.1098666
http://portal.acm.org/citation.cfm?id=SERIES11430.1098666
https://github.com/mlochbaum/ILanguage
https://mlochbaum.github.io/BQN/
https://mlochbaum.github.io/BQN/doc/birds.html
https://mlochbaum.github.io/BQN/doc/birds.html
http://www.jstor.org/stable/2267984

	Abstract
	1 Introduction
	2 A Brief Introduction to Array Languages
	3 Brief History of Array Languages
	4 Brief History of Combinatory Logic
	4.1 Moses Schönfinkel, 1924
	4.2 Haskell Curry, 1929
	4.3 Haskell Curry, 1930
	4.4 Haskell Curry, 1931
	4.5 Haskell Curry, 1931-1948
	4.6 Haskell Curry, 1958
	4.7 David Turner, 1979
	4.8 Raymond Smullyan, 1985

	5 Combinator Specializations
	6 Evolution of Combinatory Logic in Array Languages
	6.1 Phrasal Forms, 1989
	6.2 Hook Conjunction?, 2006
	6.3 Dyalog APL and BQN

	7 Combinators in APL, BQN & J
	7.1 I
	7.2 K
	7.3 S
	7.4 B
	7.5 B1
	7.6 C
	7.7 W
	7.8
	7.9 (S')
	7.10 1
	7.11 D
	7.12 D2

	8 The Power of Combinators in Array Languages
	8.1 Combinator Support: Haskell vs Array Languages
	8.2 A Simple Example

	9 Examples
	9.1 average
	9.2 plusOrMinus
	9.3 absoluteDifference
	9.4 isPalindrome
	9.5 isAnagram
	9.6 isDisjoint
	9.7 isPrefixOf

	10 Summary
	Acknowledgments
	References

