
APL: Good For The Brain

A Programming Language has been around for many years, yet it is fast becoming
THE new language. This exciting development in small computing systems is
something that we think will be good for all of us.

IT HAS BEEN observed that not only
does a language (English, French etc!)
provide a means of expressing thoughts,
it also tends to limit thoughts, to those
expressible in the language whether to
others, or to one's self. Just as a road
provides a path for transportation, if
you get used to travelling by car you
kind of have to stick to the road, and
the surrounding terrain remains un-
discovered.

So it is with computer languages.
Iverson Notation was developed for
humans to use, to advance their ability
to think and solve problems. APL
grew from this, and is probably the
only language to pick up an already
developed notation, as opposed to
acting as a compromise between English
and machine code.

Thus while other languages tend
frequently to constrict one in trying
to solve a problem, learning and using
APL tends to help one to handle the
problem. In fact with experience one
seems to be able to write an APL pro-
gram while thinking up the method of
solution. Other languages usually re-
quire an intermediate block diagram or
flow chart stage for a similar problem.
The proof of this lies in the absolutely
fanatical following for APL, and the
well attended and highly regarded APL
conferences which take place to discuss
applications and possible new features
for the language.

We think APL is great for the mind
and body, and that it's about to arrive
in a big way. This article deals with
what it is, where it's been, and a look
at when it should be used, and where
it's going.

WHAT IT'S LIKE
In as much as APL is quite different

from other computer languages, has
vastly different qualities, and has

fanatical supporters, it is very useful
to know something about the language
itself.

APL having originally evolved from
Iverson Notation, it is most helpful to
start with those features which are
actually part of the notation.

IVERSON NOTATION
The first step to getting a grasp on

Iverson Notation is to be familiar with
a few 'buzz -concepts' essential to the
topic.

Essentially Iverson Notation is a

mathematical notation which permits
expressions to be written in very com-
pact and condensed forms. The idea is

' that by giving a lot of the most used
functions single symbol names (instead
of just + - x and ÷) the user can not
only more easily write his ideas down,
but even learn to think on a higher
level. A good example of this is a

sorting operation, for example putting
a list of names in alphabetical order.
Iverson Notation gives you the concepts
of how to think of the list of names,
and then allows you to write down,
using just a couple of symbols, the
method used to do it. Example later.
DATA TYPE

In a mathematical expression, one
may have a variety of different types

APL Applied
APL's big strength stems from the

ability of a person familiar with the
language to write a program as fast as
thinking of the method. In fact one
even tends to think of the solution in
APL form. The other influential
feature is that APL is an interactive
language.

These two combine to produce an
ideal way to use a computer for applica-
tions where the programs need to be
ready fast, and where the applications
area may be new (and hence the pro-
gram is experimental and may require
much revision). This is not to say
that in other applications APL is not
suitable, but until recently APL has
been thought of as expensive in terms
of execution time and memory use, or
even simply to obtain access. In add-
ition compared to other languages
there are relatively few experienced
APL programmers, the number familiar
with the language will of course grow.

One estimate holds that an APL
programmer can produce a program on
the order of 25 times the speed of a
COBOL programmer, (including debugg-
ing) and that the result is of course
a far more compact listing.

One point to watch, however, is

that while almost anyone can plough
though a BASIC, FORTRAN or COBOL
program (with enough patience), it is

possible to program in APL in such a
dense and tricky manner as to make
the program virtually impossible to
decipher by other persons. Program-
mers who do this also enjoy reducing
100 line FORTRAN programs to an
APL one-liner. (There seems to be
some special attraction to the 'one -line'
challenge!)

However, if a program is written with
reading also in mind, with a bit of
descriptive documentation, there is no
problem.

22 ETI CANADA-MARCH 1979

What APL Looks Like
SCALAR DYADIC FUNCTIONS MIXED FUNCTIONS SYSTEM COMMANDS

soy X plus Y XpY Reshape Y to have dimensions of X Note. Bracketed words are optional
X -Y X minus Y oY Dimensions of Y
SoY X times X(Y) /Y-th elements of X /1.1
boy X divided by Y X 1Y I First locations of Y within vector X
boY X to the Y-th power Y /V consecutive integers from origin (0 or I)) MUM= peek'

Y Maximum of X and Y Xe Y Membership of X in Y (BLOT
XLY Minimum of X and Icy Representation of Y in number system X (CLEAR
sly X -residue of Y X1). Value of the representation Y in number system X (CONTINUE [SOLD)):lock]
XOY Base -X logarithm of Y X?Y /X integers selected randomly without repetition from tY
X! Y Binomial coefficient. X4.(2)7 Rotation by X along the Z-th dimension of Y)COPY name Hock] [list)

1, items taken X at a time 0(231 Reversal along the Z-th dimension of Y (DROP name) lock)
XoY See trigonometric functions 1101 /Transpose of V according to X)ERASE list
boy X less than Y BY Transpose of Y (01poY)0Y)FNS Potion)
boy X less than or equal to Y X ,MY Catenate or laminate Y to X along Z-th dimension)GROUP name list

X equal to Y .r Ravel of Y (makes Y a vector) (GROUP name
boy X greater than or equal to Y XtY Take first or last X elements of Y as X is + or -)GRP name
X>Y X greater than Y X4Y Drop first or last X elements of Y as X is + or -)GRPS [letters)
boy X not equal to Y XY X is assigned the value of Y)XEYB LOCK
boy X and Y IY /Index vector such that 1(51) is in ascending order)XEYB NOMSO
XoY X or Y VY /Index vector such that VERY] is in descending order (1118
boy Not both X and X/(Z]Y X (logical) compressing along the Z-th dimension of)LIB Isom]
XvY Neither X nor Y X\(2)Y X (logical) expanding along the Z-th dimension of)LOAD name (:lock)

RoX93Y Matrix divide. X approximates Ro .xY)MSG taskid text
33Y

sY

Generalized matrix inverse of Y
Executes the character string Y

)MSGN taskid text

TRIGONOMETRIC FUNCTIONS

RXoY

'Y

XTY
Character 'representation of Y
Numeric expression Y is converted to character according to nu-
meric format control vector X

)OFF (HOLD: Iilockl
)CPR text
)0PRN text

(Y in radians) (R in radians) below denotes any scalar dyadic function)PCOPY name Pock])'.its)

X R X R

0 (1-Y.2).5
.1 Sine Y 1 Arcsin Y

-2

is\[Z]Y

/(2)Y
X..41Y

 applied cumulatively along the Z-th dimension of Y
The reduction along the Z-th dimension of Y
Generalized outer product of X and Y

)PORTS rasa
)PORTS mammon

2 Cosine Y Arsons3

Tangent I' -3 Arnan Y
(10Y*2).5 (-I+Y*2).5

5 Sinh Y -5 Arcsinh Y
6 Cosh Y -6 Arccosh
7 Tanh Y 7 Arctanh Y

Generalized inner product of X and Y
e.g.In .14Y is ordinary matrix product of X and 1'

0 applied to first dimension t reverse or rotate)
/ applied to first dimension tcompress or reduce)
\ applied to first dimension (expand or scan)

(RESET
)SAVE frame) Hock)
)SEAL

)SI

)SIV

SCALAR MONADIC FUNCTIONS

If the expression (5] is omitted, the operation applies to the last
dimension of the argument arr.sy Y. The expression [2] is 3/0
dependent.

)SYMBOLS in)
)TERM Insane!

07

-r O -Y

xY Signum Y
*7 Reciprocal of Y
x7 e to the Y-th power
rY Ceiling of
1.7 Floor of
I Y Absolute value of
Y Natural logarithm of Y
!Y Factorial Y; Gamma Y+ I
oY Pi times Y
?Y IA random number from
--y Not Y

 DCT dependent
I ELIO dependent

SYMBOLS

O
()
0

0

0

 OCT dependent
1110 dependent

Fig. 1. I. P. Sharp Associates provide a handy reference card for programmers using their systems. It is just
about all you would ever need to remember or take with you to a desert island equipped with only an APL
computer, on a scant 224 square inches of card. No more heavy manuals to lug around! Most of the information
in this exerpt is general, we have included the section on system commands to give an idea of what is typical.
The special characters shown here are those produced on an impact kind of typewriter terminal.

Parentheses for nesting
Brackets for indexing
Quad for input-output
Quote -quad for character input
Quote delimits character literals
Lamp indicates comment
Negative sign
Exponential notation
Delta. Trace (TA) and stop (SA) control
I-beam for system functions
Decimal point
Caret locates errors
Semicolon separates list elements
Diamond used as statement separator
Branch
Colon delimits labels and locks
Squish -quad display of non -printable characters

The following characters are available as graphics:

a n

) u

FUNCTION DEFINITION

Function definition is opened or closed by V.
Use of 9 at the close will lock the function.

The following are valid with open definition

10]
[.0]
[Do)
[nOp]

f.001
[n]

Display entire function
Display line n
Display from line n to the end
Display line n and position at
p prior to editing
Display line a and position at right-hand end of line
(Re)define line n

)VARS Petters]
)WSID [name]

Allow editing of immediate execution line at
position a
Sign -on - invalid sign -on arts as (BLOT
Print a mask for typing secure information
Clear the active workspace
Terminate a session and store the active work-
space in CONTINUE
Copy objects from a workspace
Delete a stored workspace
Erase objects
List names of functions
Define a group
Disperse a group
List members of a group
List names of groups
Lock keyboard (to receive messages)
Suppress incoming messages
Return keyboard to normal state
List names of workspaces in library
Activate a copy of a stored workspace
Send message to designated terminal
Send message to designated terminal without
locking sender's keyboard to receive reply
Terminate a work session
Send message to SHARP APL operator
Send message to SHARP APL operator with-
out locking sender's keyboard to receive reply
As)COPY, but protect contents of active WS
from being overwritten.
List pan number and task -ID of user an
List pan number and task -ID of user
9999909
Clear the)S./ stack
Store a copy of the active workspace
Lock all functions in the workspace, prevent
dispersal of contents
Display the state indicator
Display state indicator and names of local vari-
ables
Display/set symbol table size
Display/set terminal type. See WS S TERM for
current list of names
List names of variables
Display/set workspace name

of data. Most people are familiar with
integers and real numbers, but also
letters, words, collections of characters
can be data.

Do not confuse, however, character
data with names for variables. For
example, in the ordinary algebraic
expression A=2xB, A and B are variables
while 2 is a constant. On the other
hand, in a computer context it would be
quite permissible for C='ABCD', ie
'ABCD' is the 'value' of variable C.

RANK
In ordinary algebra we mostly use

variables of a single 'element', known
as scalars (eg a=2). Sometimes vectors
are used, really a list of numbers known
by one variable name (eg a=3, 7, 2, -1,
or a(1)=3, a(2)=7, a(3)=2 and
a(4)=-1). 'Matrices' are expecially
popular for such applications as solution
of complicated equations, and have two
'subscripts'.

Example:

or a(1,1) =

The concept of using subscripts can
be extended on and on to any number
of 'dimensions'. The general term for
all such variables is 'array'. The number
of dimensions or subscripts, it has is
known as its 'rank'. Hence a (b,c,d)
has rank of 3, a 2 dimensional matrix
has a rank of 2, a vector rank 1, and
a scalar has rank 0.

FUNCTIONS
APL has a large number of characters

which denote functions (examples are
the familiar + - x 4- but there are many
more exciting ones! A couple of useful
words to know here are 'monadic' and
'dyadic' which mean 'having one argu-
ment' and 'having two arguments'
respectively. Note that each argument
may be an array. Thus A+B may yield
a scala r if A and B are scalar , but if
they are arrays of the same size and
shape, each element of A is added to
the corresponding element of B to make
the corresponding element of the
resulting array.

a= 1 3 0 CONSISTENCY AND
7 5 4 EXECUTION ORDER
8 -7 2 One of the great virtues of Iverson

1, a(2,1) = 7, a(3,3) = 2, etc. Notation is its consistency. All monadic

ETI CANADA-MARCH 1979 23

[1]
[2]
[3]
[41
CS]
[6]
[7]
CS]
[9]

[1]
E2]
[3]
[4]
E5]
E6]
E7J
CS]

1.1]

[.:2]

En
[4]
E5i

Ell
E2]

E1]
E23
En
[4]
CS]
E61:1

[7]
1.8]

C91

vACCUM[O]v
 7.4-ACCUM A;B;L

n IMPROVED
444-Ar.+A[;11;]

B4 -A[;11
1 -4 -(14,E')11 -11,B

L4 -L,1

B4-L/E,

414--74AA[f2]

-.7.(-4,,[:1.5] A
V

vCHARSCO]v
 Z4 -CHARS X;A

R RETURNS A LIST OF CHARACTERS IN (X>,
A SORTED ACCORDING TO THEIR POSITION IN

.,ACHAR
2:4-AcX

Z4-Z/A

X4-AAVIX,2.
74-6AV[X[AIX]]

V

AAV

9DEBEMV
 Z(..DED X

p DELETE LEADING, TRAILING AND EXTRA it0fX IN (X>
Z4-1tOrX
4(1.ffX)0-1

,vZ4---lt.2):(2vOr 14Z4-Xi07)/X
V

vDLBDT:0[0]V
 7,74-DLBDTP X

R REMOVES LEADING AND
Z4-((v\Z)A0v\OZ.4-Xix!'

V

TRAILING BLANKS FROM TEXT INPUT (X)

VCOMPRESSNAME[O]v
 7..4-COMPRESSNAME NAME;L

N AN ALGORITHM FOE: NAME
A

rf

4(pNAME4-DED NAME) 4p::4-'
4-,,L4-NAMECAEIOUY.

L4-(0,14L),,NAME=14,NAME,
4-L/NAME

COMPRESSION
Cl] DELETE SECOND ELEMENT OF REPEATED CONSONANT PAIR
[2] DELETE ,AEIOUY. EXCEPT WHEN FIRST LETTER IN NAME

1ST STATEMENT IS NOT ABSOLUTELY REQUIRED

V

Fig. 2. Another example of what APL looks like, this printout from a DEC dot matrix
terminal. The resolution is not quite as good, nor the resulting characters so exotic
looking, but the terminal is faster and quieter.

functions are written with the one
function symbol to the left of the
argument, such as !F which means the
factorial of F, ÷X which is the recip-
rocal of X, or ?Y, a random selection
from the first. Y integers, while IA
means absolute value of A. And remem-
ber F,X,Y and A could be arrays! In
fact, the APL user tends to think that
the basic data form is the array, which
occassionally 'happens' to be a scalar or
vector.

Similarly, all dyadic functions are
written with the symbol between the
two arguments.

Finally, execution order is right to

24

left, regardless of functions (ie x does
not take precedence over +). The order
may be changed using brackets. This
order is consistent with the normal
use of functions such as sin, log, d/dx
etc.

THE APL CHARACTER SET
In order to write all functions

compactly, a large collection of new
symbols was designed, which is now
fossilized in the type elements of var-
ious impact type terminals. These
usually have all the upper case letters,
plus numbers and punctuation and so
forth, and of course quite a selection

of not normally found symbols. Even
more symbols are made by backspacing
and over striking a second symbol on
the first. (eg A, I:1 and ÷ to make
E etc).

Before non -APL fans get turned
off by all this new symbology, it must
be said that learning these symbols
is extraordinarily easy, as many of them
remind you of their meaning by their
shape.

Two important notes to make:
the use of the proper multiply sign
(rather than an asterisk for multiply
as in many languages) and instead
of =. This is a logical choice since
A -.---A+1 really means 'A is assigned the
value A+1', rather than 0=1. (By the
way, APLers often say 'gets' rather
than 'is assigned the value').

In Fig. 1 is a listing of APL symbols
and their meanings, while Fig. 2 shows
what a typical output looks like and
there are more annotated examples
in Fig. 3.

ENVIRONMENT
The implementation of Iverson Nota-

tion as a computer language brought
real muscle to the elegant notation.
As a computer language it is used
interactively, that is to say you sit at
a terminal (or at your personal APL
machine!) and communicate directly
and immediately with the computer.

You have the option of typing a
statement and obtaining its result on
the spot (immediate execution mode),
writing a function or program (function
definition mode), and executing such
a function or program (again - immedi-
ate execution mode). Various editing
and line numbering facilities are pro-
vided for function writing, and diagnos-
tics and error messages help to debug
functions.

THE WORKSPACE
On 'big systems', each APL user has

a 'workspace', a fenced -off piece of
memory, as it were, of some arbitrary
size, say 50k bytes, where all his work
is stored, all variables functions and
programs, and in which the programs
are executed. On completion of a

session the user can store his workspace,
even including partially executed pro-
grams, as complete state information
is contained in the workspace. This
storing process is usually onto disk,
and is done in a relatively fool proof
way as the user signs off. The work-
space then sits in suspended animation,
awaiting the user's continued efforts
next time.

A user may also copy functions
from another workspace into his own,

ETI CANADA-MARCH 1979

APL: Good For The Brain

(if so permitted) which of course gives
access to alot of useful software which
others on the same system have develop-
ed.

OTHER BIG SYSTEM APL
FEATURES

Just as a user may copy information
from another workspace, so can he
access system 'libraries' where large
volumes of software are typically
found, such as routines for plotting,
various engineering, statistical, and work
processing packages, and of course
games.

Additionally, extensive file systems
(usually disk) are generally available for
storing large amounts of program code
or data.

APL CHARACTERS ON
EXISTING MACHINES

How do you put APL on a machine
which has no APL character set? While
new machines will be able to display
the characters, and new character
generator ROMs may satisfy a few
other ways around the problem are
possible.

One is to use three to five letter
keywords instead of symbols, such
that a single key could signify the
function, and the whole keyword pops
onto the screen. This doesn't provide
an elegant looking display, but it does
give you APL with only a small sacri-
fice.

IMPLEMENTATION ON MICROS
The workspace, library and file

concepts are more system dependent
than the Iverson Notation part of APL.
They are also likely to be seen only
in limited form at first on small systems.
For instance, one workspace is likely
to be almost the entire memory of
a micro -based machine, so there will
be only one user at a time. A disk
unit will be essential, for storing work-
space(s) and files, and one will presum-
ably be able to create one's own librar-
ies, or buy library disks with various
useful packages on them.

'Virtual Workspace' schemes are
already being worked on, wherein the
user thinks he has a large amount of
memory available, when in fact the
machine has only a small amount,
but swaps portions of the workspace
on and off a disk as they are needed.
This requires some fancy memory
management to accomplish effectively.

Fig. 3. An example of how to sort a list of
names. The 3 functions are listed at the top.
Below is a series showing what the user did
(indented), and what the machine's response
was. (Yes, we know it could be done in one
line or less).

V

V

E: PETRY

E`E-1.0111
AE -A

RESHAPE
C(((PAH-10),10

p A

OP DE F:

E.EALPHAI

NE -10
F4-F[4.F[AN];]
1144-1

45+3)04=0
D4-DEF[; 11]

Below, the functions in action.

ENTRY a lows the user to enter a list of names,
one at a time, alloting ten characters to each name,
and filling any unused positions with blanks.
ENTRY stops if the user types a single "*".
The resulting vector is A.

RESHAPE changes the list of names from a vector
to an array with one name per row.

ORDER takes the array D, makes a numerical array
E whose entries represent the letters in D, according
to ALPHA. E is sorted by row, and the new order is
then imposed on D. Job finished!

ALPHA
ABCDEFGH/JKLMNOPORSTUVWXYZ

ALPHA is the vector variable to which we assigned the
deSired organizing sequence. It's value is the character
"blank'" followed by the alphabet. Other orders or
characters could have been chosen instead.

JOHN
FF:ED
ANDY

JOHN

4 10

JOHN
FRED
ANDY

4

11
7

28

E Ni T F:

User types "ENTRY", the the function waits
for the users entries, until it encounters the """.

A

FRET..

RESHAPE:

ORDER

E

16
19
15

1

L

ANUT
The resulting A and 6 values after ENTRY.

RESHAPE, and the resulting C and D values.

9 15
6 5
5 26
1 1

F

2 15 5
7 19 6

11 16 9
28 1 1

L

ANDY
FF:ED
JOHN
A

9 EXAMPLE
[1] 0,..

[2] ENTF:Y

[3] F:ESHAPE
[4] ORDER
[5] EI'

V

26
5

15
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

User executes the function
ORDER, and the resulting
values of E, L, F, and finally
what we were waiting for ...
D, now in order.

EXAMPLE is a function which ties these
three functions together into one, and
then prints the result out.

3
2
1

4

ETI CANADA-MARCH 1979 Want to read more about electronics? See card facing page 3. 25

'This historic photograph was taken in the hospitality suite at the recent APL users meeting. From left to
right are Dick Lath well, Ken Iverson, Roger Moore, Adin Falkoff, Phil Abrams and Larry Breed. It is believed to be the first time that all six
originators of APL' have been in the same place at the same time, it is probably the first time that all six have worn jackets and ties simultaneously
and the first time that Ken and Adin have been observed to smile simultaneously." Reproduced by kind permission from The I. P. Sharp Newsletter.

Where has APL Been?
It was in the late 1950's that Kenneth

Iverson, a Canadian, at that time a
professor at Harvard University, de-
veloped his notation system. Iverson
Notation was intended for analyzing
and communicating problems in in-
formation processing which he and his
students were involved with.

Iverson and IBM joined forces in
1960, and there, with the help of those
fellows in Fig. 4, IBM's APL interpreter
resulted.

For a long time, APL was only avail-
able to those with access to large
computers, which made it expensive
to get into, but the enthusiasm of
those who could use it was extrordin-
ary. So much so, in fact, that I. P.

Sharp Associates now provide addicts
in Europe, North America, Scandinavia
and Australia with access to APL on

Not hiding, just expensive?

their Toronto systems via a vast com-
munications network.

What was needed was a stand-alone
type machine which was inexpensive,
in order for APL to be worthwhile
for the smaller user, or even as an
educational tool. Steps in that way
were taken with IBM's 5100 series
(a dedicated APL machine which pre-
tended to be a 360 cpu and thus could
run the 360 APL interpreter unchanged,
including bugs!), also machines from
Hewlett Packard and DEC.

THE MCM MACHINE
In what might seem like attempting

to win the Indianapolis 500 on roller
skates, MCM Computers, (a Canadian
company!) in 1974 introduced the
MCM70 a desktop APL computer
with one line alphanumeric display,
keyboard, dual cassettes and was based
on the 8008! It might be obvious

these days that microprocessors are
the way to go but at the time develop-
ment started on that MCM machine
people were skeptical of seeing any
kind of high level language on a micro,
let alone APL, and especially on the
8008! More on this in 'The MCM
Story'.

RECENT MICRO MOVES
Until recently there hasn't been

much stiring in the way of APL for
the microcomputer system, in the
way BASIC has been available for
every microcomputer around.

Now, suddenly there appears to be
a terrific battle brewing, as the race
is on to feed APL to what is expected
to be an open-mouthed market. Judging
by the almost astounding enthusiasm of
current APL users, each new user will
be spreading the word far more quickly
than was true with BASIC, that is if he

26 ETI CANADA-MARCH 1979

Fig. 5. Here's what the MCM 900 system looks like. This collec!ion costs around $20,000.
The keyboard -display unit contains the guts. The display itself is a 12 inch screen with 21 lines
by 96 characters.

can tear himself away from the console!

VIDEOBRAIN
First out with APL appears to be

Umtech with their F8 based Video
Brain. Fitting into 13k - worth of
ROM -in -a -cartridge, APL/S is a subset
of 'full APL', although there is no
standard APL. While a standard for
APL is being worked on, big machine
versions provide a reference which
differs only slightly from one to an-
other, and then only in housekeeping
facilities rather than in the basic nota-
tion.
Z80 AND VANGUARD

Vanguard Systems Corp. have an-
nounced an APL interpreter on floppy
disk for Z80, and of course all compan-
ies with Z80 based machines are eagerly
waiting for it. It is reported to be 27K.

MICROSOFT
Meanwhile, over at Microsoft, much

brain work is going into the develop-
ment of APL interpreters for all kinds
of processors, past present and future,
ie 8080, Z80 and the 16 bit micros
8086, Z8000, and 68000. Bill Gates,
president and APL Product Manager
at Microsoft figures fall '79 will be the
time his 8080 and Z80 interpreters

will be ready with the 16 bit versions
in early 1980. Vanguard are hoping
to manage the same feat.

IT'S COMING!
Well, it's almost here. It appears

that the development of APL on a 16
bit microprocessor will make the
first really comfortable implementation
of APL for personal, home, business
or educational use. Because of this
general purpose nature most new
APL machines will be easy to use and
hence either contain APL on ROM
(fool proof) or on disk (most machines
will have a disk or two anyhow).

Where Is APL
Going?
Microsoft's Bill Gates
has a bit to say.

Microsoft is a name in the micro-
computer software field regarded with
a great deal of awe. The US trade
magazine 'Electronics' describes Micro-
soft as a 'small...software house', but
with customers like Radio Shack and
Commodore (TRS-80 Level II and
PET BASICs) who are the leaders in
consumerized home computing, and
a huge list of other microcomputer
companies, Microsoft has to be the
major 'force' in micro software.

Bill Gates is the president of the
company, and the APL job is largely
his baby. So we asked him for his
views on the micro APL scene.

NEAR FUTURE
What is about to happen in the way of
micro APL?

'APL will see an incredible increase
in popularity because it will be exposed
to so many new people. To date, it
has been an expensive language to use
and is almost never introduced to
first time computer users. APL's
strengths assure that a significant
percentage of personal computer users
will adopt it as "the language". How-
ever it is not the ideal first time langu-
age and has some limitations of its own.
BASIC will continue to dominate in
this role, although specialized languages
will be supported by personal computer
manufacturers. Microsoft will intro-
duce APL on the TRS-80, Exidy Sor-
cerer, Interact One, Nascom and NEC
TK-80 in 1979.

Also the old time APL users will
enjoy the low cost and ease of access
to the low priced machines. These old

Fig. 6. This is the Exidy Sorcerer, which currently runs BASIC language. Plug in ROM -PACs,
just visible to the right, will allow the use of other languages, with APL to be ready in the
fall.

ETI CANADA-MARCH 1979 27

time users will be key in generating new
converts. New tutorial material making
APL seem less mathematical and not
forcing the user to see the utility of
all the operators will be required. The
statistical, accounting, and model type
applications that APL is excellent at
will be key ones for the new small
business computers. With APL's fol-
lowing, IBM's support of it and its
strength, our OEMs have decided they
can't ignore it. Our response on the
product to date has been incredible.'

FIRST VERSION
Details of the 8080/Z80 version:

'Our 8080/Z80 version (long await-
ed) will be out in April running under
CP/M. Other versions such as the
virtual workspace one will follow....
Equivalence with the 5100 was my
goal - and I met that with 24K of
code.

We will license our APL to most of
our existing OEMs.'

PERFORMANCE
What kind of performance is expected
from micro APL?

'Microsoft APL has all the features
of IBM APL/SV (360/370) APL except
that the I/O and shared variables are
handled differently and the math will
not be totally the same since we use
binary exponents where IBM uses hex.
Our APL is twice as fast as the 5100
which is very adequate and often better
than remote APL timesharing systems.
Our 8086 and Z-8000 APLs will be at
least five times faster and will be avail-
able in early 1980. This APL will
outperform APL on most minis.

The string search and block transfer
are an advantage that our Z-80 version
will use. In specific cases this could
cause a 2:1 speed difference, but overall
the Z-80 to 8080 difference will be
less than 15% at equal clock speeds.
More important are the design tech-
niques which allow a 32K byte work
space to be equivalent to almost twice
that much workspace on the 5100
through more efficient management
and special representations.'

FAR FUTURE
Looking forward about a year

Gates sees some of the following fea-
tures being offered:
Workspaces upto 40K with virtual
workspace to follow.
Libraries on disk.
Unlimited number of dimensions for
arrays.
16 digit computation (floating point)

Availability of all primitives normally
found.
Sophisticated system commands, error
messages.
Initially only SAVE and LOAD work-
space 'file' operations, but later random
access I/O on arbitrary objects.

Later on Gates thinks 16 bit APL
will have up to 10 meg workspaces,
same library facilities as I.P. Sharp.
Significantly, he comments that many
language extensions may be persued,
something he feels IBM has stifled.
'APL should not be allowed to stagnate.
It is very weak in control structures.
General lists should be added.'

AN EXCITING NEW COMPANY
Starting a new company can be a

thrill, and it sounds like Microsoft
is an example:
'Paul Allen and I started Microsoft in
November 1974. The incredible po-
tential for the microprocessor when
combined with good software pre-
sented a unique opportunity for us to
start on our own. The conventional
languages and our enhancements of
them (BASIC, FORTRAN and COBOL)
have kept us extremely busy and
delayed our introduction of APL
for over 18 months. Providing these
packages for the 16 bit processors as
well as our new 8 -bit products: a

BASIC compiler, a Data base manager,
a PASCAL based systems programming
language and of course APL, will be
our primary emphasis in 1979.

The APL project was started in
January 1976. At one time people
had doubted the ability of micro-
processors to support high level langu-
ages. After BASIC had disproven this,
APL seemed like a great follow-on
product. APL provided a new challenge
because of its complexity and require-
ment for lots of memory. However,
FORTRAN got higher priority and
only one person was left on APL after
November 1976. FORTRAN was
introduced in June 1977. COBOL
was introduced in June 1978.

Microsoft now employs 14 full time
technical people and has moved to new
and bigger offices in Seattle, Washing-
ton, as well as purchasing a DEC 2020
for in house development.'

THE MCM STORY
This company, based in Toronto and

Kingston Ontaio, has had a very interes-
ting past, and a unique part in the
development of APL machines.

In late 1971, early 72, two fellows
by the names of Mers Kutt and Gord
Ramer started the company. Their first

product was the MCM 70 desktop APL
computer, which was based on the
8008 the first 8 bit microprocessor.
This model was quickly superceded by
the MCM 700 which was a slightly
modified version. This machine had dual
cassette drives, and one line alpha-
numeric display. 32K of ROM con-
tained the interpreter, with 2K RAM
provided, expandable to 8K.The 700
even came with battery power, enough
for the APL addict to get his fix
anywhere! This machine was offered for
about $8000 in 1974.

Kutt left the company in mid 74,
and in the spring of 75 Ted Berg became
it's president.

In mid 76 the company's second
model, the MCM 800 was introduced.
Because the APL interpreter already
developed was so good, but the 8008 a
little slow, the 800 was centred on a
CPU board built with a couple of ALUs
and other supporting chips imitating the
8008. This resulted in a computation
power improvement of around 10 over
the 700. The 800 is generally used in a
system with dual floppy disks, with
perhaps a printer. About $9,000 could
get you the 800 itself, which incorpor-
ated a VDU and single cassette, and

came with 8K RAM.
In mid '78, Berg moved to take

on MCM's US distributor Interactive
Computer Systems Inc. The company's
new president, Chuck Williams explains
that with MCM's third generation
machine, the MCM 900, the marketing
strategy can now be more solidly aimed
at a wide market of business applica-
tions. The 900 is based again on an
'imitation' high speed 8008, using a
pair of 2901 4 bit slice processors,
giving an increased performance of
5-10 over the 800 according to John
Koiste, General Manager of MCM's
Kingston R & D and production facil-
ity. Williams likens this improvement
from 800 to 900 to the production of
automobiles with top speeds of 60 and
80 miles an hour. While the perfor-
mance improvement is relatively small,
and the first car will accomplish trans-
portation, there is a certain threshold
level at which the product becomes
widely acceptable. This, Williams
feels, has happened with their 900,
which strongly competes with time-
sharing and other more expensive
models. The 900 itself is priced around
$10,000, but is really intended for use
with a dual disk and printer. Essen-
tially it is part of an $18 - 20,000
business problem solving package.

As for the future, Koiste admits
that MCM has gone about as far as it
can with using the 8008 interpreter

28 ETI CANADA-MARCH 1979

APL: Good For The Brain

and will have to develop new software
around 'more up-to-date technology'.
This we take to mean they are looking
at 16 bit microprocessors. Meanwhile,
Williams says he isn't worried about
competition from the hobby computer
manufacturers, even as they pursue
APL on 8 and 16 bit machines. He
feels his personnel and their experience
are the company's strengths, and that
they will stay ahead of the game in
the business market, where they have
seven more years of experience than
the newcomers.

I. P. SHARP
An interesting story came to our

attention recently in connection with
micro APL. I.P. Sharp Associates,
known worldwide for their APL com-
munications network and software
expertise, were apparently working on a
micro based APL consumer product!
Sharp's Steve Kohalmi described the
project. A major Canadian manufacturer
of entertainment products went to Sharp
with the idea, and developed the hard-
ware prototype while Sharp worked on

the software. The produce was based
on a GI 1600 microprocessor, and was
to have floppy disk(s) and some colour
graphics capability. The APL inter-
preter, which was developed on a

PDP11/34 simulating GI code, has

dynamic workspace management,
floating point numbers, but only one
dimensional arrays. 16K of 16 bit words
was, required. Unfortunately the whole
combination was never tested as interest
in further development has appeared to
lapse. Anybody want to take over an
almost debugged GI 1600 APL? Call
Sharp.

III

ACKNOWLEDGEMENTS
Our thanks to the following people

who were very helpful in the prepara-
tion of this article:

Bill Gates, Microsoft;
Chuck Williams, John Koiste, MCM
Computers;
Steve Kohalmi, I. P. Sharp Associates;
I. P. Sharp Newsletter

SUGGESTED BOOKS

Kenneth E. Iverson: "Elementary
Analysis"; APL Press, 1976.

The APL Press has available a comp-
rehensive collection of publications on
APL. the interested reader should write
for a complete list.

Leonard Gilman and Allen J. Rose:
"APL An Interactive Approach"; John
Wiley and Sons Inc, 1974.

A. D. Falkoff, and K. E. Iverson, "APL
Language", IBM Corp, 1975 (Form No.
GC26-3847)

111 11111111111111111111111111111111111

ADDRESSES
APL Press, Box 378, Pleasantville NY
10570.

Exidy Inc., 969 West Maude Ave.,
Sunnyvale, CA 94086.

MCM Computers Limited, 6700 Finch
Ave. West, Suite 600, Rexdale, Ont.,
M9W 5P5.

NEW LOW COST LX303 DMM
$99.95

HICKOK
the value Innovator

ETI CANADA-MARCH 1979

Operates up to 200 hours on a single 9
volt battery. 100 mV DC f.s. sensi-
tivity. Features auto zero, polarity,
overrange indication. Nineteen ranges
and functions. With easy -to -read Y2"
LCD display for convenient use
in any kind of light. Removeable
cover stores test lead set furnished
as part of the unit. Excellent overload
protection. Colour coded panel. Car-
ries a full one year warranty. Avail-
able accessories include 10 kV probe/
adapter, 40 kV probe, 10 amp DC
shunt, AC adapter and deluxe padded
vinyl carrying case.

Duty and FST included.
Chargex (Visa) accepted.
Ont. res. add 7% sales tax
F.O.B. Ajax.

SPECIFICATIONS:

DC VOLTS (5 RANGES): 0.1
mV to 1000V; Accuracy ±0.5%
rdg ±0.5% f.s.; Input imped: 10M
ohm; Max. input 1kV except 500V
on 200mV range. AC VOLTS (40Hz
to 5kHz): 0.1V to 600V; Accuracy:
±1.0% rdg ±0.5%f.s. (-2db max. at
5kHz); Max. input: 600V.
RESISTANCE (6 LOW POWER
RANGES): 0.1 ohm to 20M ohm;
Accuracy: ±0.5% rdg ±0.5%
(±1.5% rdg on 20M ohm range);
input protected to 120 VAC all
ranges.

DC CURRENT (6 RANGES): .01nA
to 100mA; Accuracy: ±1.0% rdg
±0.5% f.s.

DIMENSIONS AND WEIGHT:
5-7/8" x 3-3/8" x 1-3/4", 8 oz.;
POWER: 9V battery (not included)
or Hickok AC adapter; READ
RATE: 3/sec.

R O G E R S electronic initrunienti ltd.
P.O. Box 31G, 595 Mackenzie Avenue Units 1 & 2.
Ajax, Ontario L1S 305. Tel. (416) 683-4211

29

