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I. INTRODUCTION

A hurricane is one of the most destructive weather
events in the United States. Every fall, major storms
threaten states along the Gulf Coast and Atlantic ocean
with high winds, heavy rain, and storm surge. Some
hurricanes proceed to make landfall, causing significant
damage to life and property, while others avoid land
altogether, having almost zero human impact. So un-
derstandably, the modeling and prediction of Atlantic
hurricanes is an important topic of study. The goal of
this paper is to present a statistical method of estimating
the probability that a hurricane makes landfall based on
its formation and early motion.

In this paper, I will begin by presenting the revised
Atlantic hurricane database, called HURDAT?2
let al.), which will provide the data used for our algo-
rithms. I will discuss some of the key variables within
the data that my analysis will focus on, provide some
high-level information about the data, and briefly look at
how I process the data into my code. Next, I will present
the prediction method. I will discuss the time series
similarity metrics presented by and explain
how I use them to perform dimension reduction on the
set of hurricane tracks. I then explain how I compute a
local linear kernel regression esimate of the projected
data, with respect to whether or not a storm made landfall.
I also mention the procedure for using the learned model
to predict whether or not a hurricane will make landfall.
At this point, I will also compare methods of generating
new hurricane data, and perform some basic analysis to
demonstrate that the generated data is realistic. I will
then perform a full analysis demonstrating the strengths
and weaknesses of my method. The paper will conclude
with a brief discussion on the implications of my work,
and directions of future research.

II. DATA

After an Atlantic hurricane dissipates, the National
Hurricane Center (NHC) determines the most accurate
track of the storm, and collects various other information
about the storm throughout its lifetime. Both modern
and historical data have been combined to produce a
database containing information on every single Atlantic
hurricane since 1851, known as the revised Atlantic
hurricane database, or HURDAT?2 (Landsea et al)). The
available data includes information about the hurricane
taken every six hours, from the formation of the storm
to its dissipation. This includes:

Fig. 1: A satellite image of Hurricane Katrina, taken in 2005. Over
1200 people were killed, and the storm did over $160 billion dollars
of damage. NOAA

Fig. 2: A flooded neighborhood of New Orleans, in the aftermath of
Hurricane Katrina. Paul Morse
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On occasion, there will be additional measurements
besides the six hour updates, to mark important events in
the storm’s lifetime. For example, the data for Hurricane
Irene (from 2011) contains an entry at 9:35 AM on
August 28 to indicate a landfall that occurred at that time.
Another example is Hurricane Gordon (from 2018); the
dataset contains an entry at 9:00 AM on September 3
to provide additional detail on the intensity of the storm
during a period of time where that intensity is rapidly



Fig. 3: A map of the track of every Atlantic tropical storm in 2018.
The color represents the maximum wind speed of the hurricane at that
point in time — magenta being the most intense.

changing.

The tracked latitude and longitude of the system
center is one very important component of the dataset,
as it allows us to examine the path a hurricane has
taken throughout its lifetime. It also implicity gives us
information on where the hurricane formed, and can be
used to compare different storms to see how similar they
are. For these reasons, the track of a hurricane is the
most useful information to us, and will be the variable
we focus on for prediction.

The maximum sustained wind and minimum batro-
metric pressure are two pieces of information that can
be helpful for tracking how powerful a hurricane is.
Both represent the peak strength of a hurricane at a
given time, albeit in different ways. Maximum sustained
wind speed and minimum barometric pressure are direct
measurements of the power of a storm. In addition, the
change in barometric pressure indicates whether a storm
is strengthening or weakening. However, the focus of
this paper is primarily predicting whether or not a storm
will landfall, so the strength of historical storms is only
tangentially relevant.

The extent of hurricane and tropical storm winds
for a given hurricane gives us valuable information
about how large a storm is. In addition, because those
measurements are separated by the quadrant of the
storm, they provide knowledge of the shape of the storm.
Utilizing this information to improve my predictions
could be successful, but it is beyond the scope of this
paper.

Finally, tracking whether or not a hurricane made
landfall, and the conditions when it made landfall, allows
us to esimate how dangerous the hurricane was. A
strong hurricane which never makes landfall is much
less hazardous than a weak hurricane that does. I will
specifically use this information as the dependent variable

when training my statistical models.

A. High-Level Analysis

Figure [3] plots the track of every Atlantic hurricane in
2018, in order to demonstrate the most common paths
for hurricanes to take. The majority of storms form off
the west coast of Africa, initially move west across the
Atlantic, then gradually turn north, and eventually back
east. Depending on how this change occurs, and where
exactly the storm formed, there are several common
outcomes. Some storms turn to the north early and
remain in the mid-Atlantic. Others turn later, moving up
the Atlantic coast. The remaining hurricanes pass into
the Gulf of Mexico before turning north towards the
Gulf Coast and continental United States. There are also
some storms which form within the Carribean or Gulf
of Mexico — they tend to move north-northeast towards
the United States.

B. Using the Data

As a part of constructing the HURDAT?2 database, its
creators took the time to examine historical records to
ensure that the dataset is as complete as possible. There
are no empty cells in the track data, which means all
historical track data is usable without requiring any sort
of interpolation. There are some empty cells in other
variables, such as barometric pressure and wind speed
extent, but this information is not relevant to this paper’s
analysis. Historical research is currently in progress to
attempt to find some of these values, but ultimately, some
measurements just don’t exist.

The data from every storm, from 1851 to present, is
stored in a single comma-separated values (CSV) file. The
size of the file can be inconvenient, so I’ve written shell
scripts to separate out individual years or specified ranges
of years. In addition, each hurricane has a header row
with different column specifications then the best track
data lines that follow. I created a custom Hurricane
object to hold all information about a given storm, and
then wrote code to read in all the hurricanes from a given
data file.

There are several other slight changes we make to
the data. We reformat latitude and longitude as ordinary
cartesian coordinates, and date and time information as
a python datetime object. We also explicitly record
several aspects of the storm that are only implicitly
mentioned in the data, such as the maximum wind speed,
minimum barometric pressure, and weather the storm
made landfall.

III. METHOD

There are four parts to the methodology. First, I discuss
the time series similarity metrics presented by [Ho et al.|in
their paper Manifold Learning for Multivariate Variable-
Length Sequences With an Application to Similarity
Search. Then, I explain how the metrics are used to



perform dimensionality reduction on the hurricane tracks.
Next, I present the local linear extension to Nadaraya-
Watson kernel regression. Finally, I explain how to use
the learned model to predict whether a hurricane will
make landfall.

A. Time Series Similarity Metrics

In order to compare two hurricanes, we model their
tracks as arbitrary-length multivariate spatiotemporal data
sequences. Consider two hurricanes with track lengths r
and s. Then their data sequences are

A=[(tar,za1,9y41)s--,tar, Tar,yar))

and

B={[(ts1,2B,1,YB,1)s---» (B TB,r YBr)

(respectively). The ¢, are translated so that ¢, ; = O,
and the = and y coordinates correspond to longitude and
latitude (respectively).

I now present slightly modified versions of two
similarity metrics used in the paper. There are parameters
d,e > 0, where § controls the temporal similarity range,
and ¢ controls the distance similarity range. Let .Z(A)
give the length of A, and let Z(A) return all but the last
term of the time series A. Indexing by —1 is taken to
mean accessing the last element in a list.

Define
~ LCSS(A, B, é,¢)
Mi(A, B,6,e) = — (Z(A), Z(B)} (1)
and
My(A, B, d,¢) = SLC(A, B, 6,¢) o

min {Z(A), Z(B)}

LCSS(A, B, d,¢) is the approximate longest common
subsequence, and SLC(A, B, 4, ¢) is the soft longest com-
mon subsequence. I explicitly write out their equations in
Figure [ and implement them using bottom-up dynamic
programming.

B. Dimensionality Reduction

Now that I have a metric with which I can compare
two hurricanes, compute a modified dissimilarity matrix
S for hurricanes Hy, ..., H,

1
[S]i’j = —i(Mg(H“Hj,(S,E))Q 1,] € {1,...,n} (6)

M, the SLC metric, is used because it is more effective
than the LCSS metric according to [Ho et al In Figure [3]
I plot several sets of similar hurricanes to demonstrate
the function of the metric. Because SLC is a symmetric
function, S is symmetric, so I only compute half of it
and then reflect across the diagonal.

I assume that there is some k € N such that I can
project our hurricanes into an R¥ vector space, where
the Euclidean distance between two hurricanes in R*

is approximately equal to their dissimilarity. Let P
be this projection operator. To compute the P, I use
kernel principal component analysis (KPCA) |Scholkopf]
et all with S as a precomputed kernel. This is im-
plemented by |Pedregosa et al.| in the python package
scikit-learn.

C. Kernel Regression

In order to infer a relationship between the probability
a storm makes landfall and its projection, I use Nardaraya-
Watson kernel regression, presented jointly in papers
by Nadaraya and |Watson,. For L the indicator random
variable of whether or not a hurricane H makes landfall,
assume that L = pu(P(H)) + e where e is an error
term and E(e) = 0. Let H® for i = 1,...,n be the
Hurricanes used to train the model, with L(® whether
or not each of them made landfall. Then the Nardaraya-
Watson estimator for kernel function K and bandwidth

h is
WP(H)) — i:ln _ %
fi(P(H)) <P(H(Z))P(H))
YK | —————
; h
i=1
Code to compute the estimator is implemented

by |Seabold and Perktold| in the python package
statsmodels. I use a local linear regression, to
mitigate bias issues at the edge of the support.

D. Predicting Landfall

Now that I have described the full model, I'll walk
through the process of actually making a prediction for a
new hurricane. Let H be a recently-formed hurricane or
tropical storm (for our purposes, I assume at most 3 days
of track information). First, [ compute the dissimilarity s;
with respect to each hurricane H (), i=1,...,n in the
training data sets in the same manner as Eq (6). This gives
us a vector S, which I can then project using our KPCA
embedding to some vector x = P(S) € RF. Finally,
plugging z into the Nardaraya-Watson estimator gives
us some y € [0, 1], which we take to be the probability
that the hurricane will make landfall.

IV. SIMULATIONS

In order to generate more data from the limited real-
world data available, I can add Gaussian noise to existing
data. One way to do so is simply adding Gaussian noise to
each point in a track. A more complex way is generating
random walks of the same length, and then add them
pointwise to the track. I will analyze how realistic the
data generated by these methods are, and use the larger
dataset to examine the quality of my estimators.

The first way to add noise to a track is to just
independently add Gaussian noise to each point. Let
A =[(#1),...,(Z,)] (with Z; € R?) be the track of a



(0 ZL(A)=0o0r Z(B)=0
1+ LCSS(Z(A), #(B)) [ta,—1 —tp 1] <4 and

LCSS(A, B,d,¢) = I[(xa,—1,94,-1) — (xB,—1,yB,-1)|l, <€ (3)
max {LCSS(Z(A), B, 5, &),
L LCSS(A,#(B),d,e)} otherwise
0 Z(A)=0o0r Z(B)=0
C +SLC(R(A), #(B))  |ta-1—tp1] <3 and
SLC(A, B,d,¢) = I[(xa,~1,94,-1) — (xB,~1,¥B,~1)|l, <€ )

max {SLC(Z(A), B, d,¢),
SLC(A,#(B),d,¢e)} otherwise

(&)

€— —1 — - —1 —
C’:min{l,l— I(a,—1,94,1) — (¥B,-1,yB, 1)||2}
€

Fig. 4: Equations for LCSS and SLC, used in computing the similarity between spatiotemporal data sequences. Note the usage of Eq (EI) in the
computation of Eq ().

Fig. 5: The tracks from several sets of similar storms, according to the metric M2>. The red portion of the track is when the storm was hurricane
strength, whereas the blue portion is when the winds were tropical storm force or lower. Qualitiatively, it’s clear that the metric works as intended.



(a) Original Hurricane Track

(b) Pointwise Noise

(¢) Random Walk

Fig. 6: A comparison of the impact of adding noise to copies of the track of a single hurricane with the pointwise noise method and the random
walk method. The random walk clearly is more desirable, as it both appears smoother, and has greater variance.

Number of Number of ¢
Landfalls ¢ Hurricanes n n
Original Data 81 798 0.102
Gaussian Noise 80 798 0.100
Random Walk 85 798 0.107
TABLE I: Comparing the number of direct landfalls
hurricane. For i = 1,...,n, let ¢; ~ J\/(,u,E), where

u € R? and ¥ € R?*?2 are some mean and covariance.
Then our new hurricane track is

A/:[fl+€1,...7fn+8n}

A more advanaced way to add noise to a track is to
compute a Gaussian random walk of the same length
as the track, and then add them together. Let A be the
track of the hurricane as before. For i = 1,...,n, let
g; ~ N(Zic1 +€i-1,%) and g ~ N(p, X) for some
initial mean p and covariance Y. Once again, our new
hurricane track is

Alz[fl+€1,...,fn+€n}

Investigating the means and covariances that would be
mimic real-world data is beyond the scope of this paper,
but would represent an interesting direction of future
work. For now, I keep 1 = 0, and let X = 0.1/, for the
purposes of comparing the two methods of adding noise.
Given every hurricane from 1970 through 2018, I make
duplicate copies and add noise from both methods. In
Table [I, we measure the number of direct landfalls from
each category, and compare the two noised totals to the
original. (A direct landfall is where the epicenter of the
storm directly passes over land — this allows us to use
basemap software to directly determine whether or not
a hurricane track with added noise has made landfall.)
We find that both methods of adding noise to hurricane
data preserve the average number of direct landfalls to a
high degree of accuracy.

Although quantitatively, both simulation methods have
similar results, Figure[6] provides the basis of a qualitative
comparison of the two ways of adding noise. Specifically,

Fig. 7: A plot of accuracy of the estimator versus the number of
dimensions the hurricanes are embedded into by KPCA.

Fig. 8: A plot of accuracy of the estimator for only points in which it
has high confidence (at least 90%) versus the number of dimensions
the hurricanes are embedded into by KPCA.

it’s clear that adding noise via random walk better
accomplishes the goal of producing realistic hurricanes.
The simulated tracks from the random walk method are
smoother than those of the pointwise noise method, and
they tend to diverge further from the seed hurricane
track.

V. ANALYSIS

I perform two major experiments to analyze the
efficacy. First, I need to determine the underlying
dimensionality of the vector space the hurricanes lie in.



To do this, I try embedding a subset of the full dataset into
R for i = 1,...,15, and then regressing the Nardaraya-
Watson estimator for each case. I then predict a different
subset of the data to evaluate the accuracy of the model,
for each number of dimensions. In Figure [/| I plot the
accuracy by the number of dimensions 4. In Figure [§] I
plot the accuracy (but this time only including points for
which the estimator has at least 90% confidence) by the
number of dimensions. The overall accuracy is roughly
improving up to ¢ = 15, but not after. On the other hand,
the accuracy for high confidence points appears to be
optimal at ¢ = 10. This makes it difficult to judge the
underlying dimension of the data, so I will experiment
with both choices of dimension.

First, I will test with ¢ = 10. In order to fully
evaluate how accurate my algorithm is, I train it on
every huurricane from 2000 through 2018, and then test
it on every hurricane from 1970 through 1999. Out of
479 hurricanes in the test dataset, the learned model
correctly predicts 344; this is an accuracy of 0.72.

Now, I will test with ¢ = 15. In order to fully
evaluate how accurate my algorithm is, I train it on
every huurricane from 2000 through 2018, and then test
it on every hurricane from 1970 through 1999. Out of
479 hurricanes in the test dataset, the learned model
correctly predicts 335; this is an accuracy of 0.70.

Additionally, in the case where ¢ = 15, I plot all of the
successfully predicted storms in Figure 0] and all of the
not successfully predicted storms in Figure [I0] There’s a
clear trend — storms further to the north are significantly
easier to predict in the early stages of their lifetime just
using statistics, whereas storms further to the south and
in the Gulf of Mexico are more challenging.

VI. DISCUSSION

In this paper, I've presented a new statistical method
for predicting whether or not a hurricane will make
landfall. T use time series similarity metrics to compare
hurricanes, and use KPCA to find a representation
for them in a Euclidean space. I then use Nardaraya-
Watson kernel regression to approximate the relationship
between these embedded coordinates and the probability
a hurricane will make landfall. The analysis section
provides evidence supporting the efficacy of my method.

Of course, this is a relatively primitive model, and
there’s a wealth of available information about a hurricane
that I don’t utilize. Factors such as the size of a storm, the
extent in various directions of its winds, the barometric
pressure, and much more could help tune an extension
of the model to be much more accurate.

Another challenge my technique faces is speed. Com-
puting the similarity between large numbers of hurricanes
becomes expensive very quickly. The number of compar-
isons is O(n?) for the number of hurricanes in the train-
ing dataset, and each comparison is O(.Z(A).Z(B)),
even when utilizing dynamic programming. With more

computational resources, it would be possible to train
and test on larger datasets, and make full use of the
simulation capabilities to generate new data.

Another ineresting area for future research would be
high level modeling of hurricane behavior. This could
be useful for further tweaking the simulation work, such
as choosing a better mean and/or covariance.

Obviously, only 70% accuracy is not enough to make
life-or-death predictions, and any purely statistical model
will always be inferior to a more complex model that
takes present weather patterns into account. However,
this paper makes it clear that there are merits to using
statistical techniques to model and understand hurricanes.
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Fig. 9: A plot of all hurricanes successfully predicted by the dimension-15 model.

Fig. 10: A plot of all hurricanes not successfully predicted by the dimension-15 model.
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