A Report on Seraphis

coinstudent2048

July 31, 2023

Abstract

This document contains a concise description of koe’s Seraphis [I1], a novel privacy-preserving trans-
action protocol abstraction, and its security model. Note that this does not cover all of it, but a rather
simple variant of it for easier security analysis. Because of this, extensions/modifications presented there,
with some mentioned here, would not be analyzed here.

1 Preliminaries

1.1 Public parameters

Let A be the security parameter. Let G be a prime order group based on A where the Discrete Loga-
rithm (DL) and Decisional Diffie-Hellman (DDH) problems are hard, and let F be its scalar field. Let
Hy, Hy, Gy, G1,Ga, J be generators of G with unknown DL relationship to each other (see Definition for
the formalization); these may be produced through public randomness. Let amaz, d1,mez € F (to be used in
range proofs and account balance respectively) with d1 maz < Gmaz, and s € N (to be used in membership
proofs). Let H : {0,1}* — F be a cryptographic hash function. We assume that # is a random oracle, hence
we work in the random oracle model. We add a subscript to H, such as Hy, in lieu of domain-separating the
hash function explicitly; any domain-separation method may be used in practice. All these public parameters
are collected as pp, and we now define the setup algorithm: pp < Setup(1*). Setup is implicitly executed by
all players involved in the beginning, hence it can be omitted in protocol descriptions.

The notation < will be used to denote for a uniformly randomly chosen element, and (1/z) for the
modular inverse of = € F. Lastly, we use additive notation for group operations.

1.2 E-notes and e-note images

Definition 1.1. An e-note for scalars k$,k3,a € F is a tuple (C, K°,m) such that C = xHy + aH; for
T <i F, K° = k§Go + kG1 + k§G2, and m s arbitrary data.

C is called the amount commitment for the amount a with blinding factor x, K¢ is called the one-
time address for (one-time) private keys kg, k¢, kS (the o superscript indicates “one-time”), and m is the
memo field which includes information helping wallet owners to know if they own the e-note. We say that

someone owns an e-note if they know the corresponding scalars kg, k{, kS, a,x € F. Basically, e-notes are
exactly what the (hidden) wallet owners currently own and can currently spend.

Definition 1.2. An e-note image for an e-note (C, K°,m) is a tuple (C',K’O,R’) such that

C'=t.Hy+C
= (t. +x)Ho + aH;
=v.Ho +aH; ,
K" =t,Go+ K°
= (ty + k) Go + K9G + k3G
= v,Go + k{G1 + k5G2 , and
K = (k3/k9)J

forte, ty EF and independent to each other.

C’ is called the masked amount commitment, K’° is called the masked address, and K is called
the linking tag. Basically, e-note images are “commitments” to e-notes for wallet owners to communicate
that those e-notes are just spent in a transaction.

1.3 Sender-receiver shared secret scheme

Although Diffie-Hellman key exchange would be the most common implementation for this, any scheme that
satisfies the following can be used:

Definition 1.3. A sender-receiver shared secret scheme is a tuple of functions (Sy, S1,S2) such that:
o If X =Sp(z) and (R,S) = S1(r, X), then S = Sa(x, R).
e Given X, R, and the tuple, the problem of determining S satisfying the previous condition is hard.

Definition 1.4. A receiver address is a tuple (K", M") = So(kj, k], k5, m") such that K™ = kjGo +
k1G1+ k5Ga and M" and m”™ are public and private arbitrary data, respectively.

We say that someone owns a receiver address if they know the corresponding scalars k{, k7, k5, m" € F.

1.4 Authenticated symmetric encryption scheme

We require the use of an authenticated symmetric encryption scheme. The shared secret can be used to
produce the key for encryption and the authentication tag. We denote the encryption and decryption of
data x with the input k for Key Derivation Function (KDF) as enc[k](z) and dec[k](x), respectively. We
put overlines (e.g. T) to indicate encrypted data.

The required security properties for application to Seraphis are described in Subsection

2 A Simple Seraphis transaction

Suppose that Alice would send a; € F amount of funds to Bob. Alice owns a set of e-notes {(C;, K2, m;)}"
with a total amount of (Z?:l ai) > ay, all connected to a receiver address (K7, M7,.). This “connection”
will be elaborated later on. On the other hand, Bob owns a receiver address (K} ,, M} ;). For Bob to receive
the funds, he will now send his receiver address to Alice. Alice will actually send funds to two addresses: to
Bob’s and to herself (for the “change” a. = ZZL:I a; — ay even if a. = 0). Hence, Alice must create 2 new

e-notes. She starts the transaction by doing the following:

1. Generate 745, Tpob <i F and independent to each other.

2. Compute (Sali,,Rali) = Sl(rboba (KglﬂMz:li)) and (SbobaRbob) = 81(7’1)01), (KlfolﬂMl;rob)) and store R,

and Rpop to new empty memos myg;; and mpep, respectively. The two secrets must be independent to
each other.

3. Compute the one-time addresses
K21 = Mo(Sa1i)Go + H1(Sa1i)G1 + Ha(Saii) G2 + Ky
Kip = Ho(Sbon) Go + H1(Sbon) G1 + Ha(Shon) G2 + Ky,
4. Compute the amount commitments Cyy; = H3(S41:)G + acH and Cpop = H3(Spop)G + arH.

5. Encrypt the amounts: @, = enc[H4(Sq)](ac) and @ = enc[H4(Skop)|(a:), and store @, and @z to
memos Mygy; and Mmyep, respectively.

Alice now has two new e-notes: enoteq;; = (Casi, KO, Mais) and enotepor = (Chob, Ky Mboy). These
will then be stored to a new (empty) whole transaction T. Other objects that will be stored to the whole
transaction are from proving systems, which can be executed in any order. Proving systems are discussed
in the next subsections and the required security properties for application to Seraphis are described in
Subsection B.11

For specific instances of Seraphis, there might be changes in some parts of the above steps, and as a

consequence, in reflected parts of the Receipt. Here are some notable changes:

e A Seraphis transaction can easily have multiple receivers aside from Bob, which implies that Alice will
create more than 2 new e-notes. This technically breaks the privacy property described in Subsection
[3:4 However, the same property guarantees that the number of receivers would be the only break.

e It may be possible that a Seraphis transaction can be collaboratively constructed by multiple players.
This is the subject of the so-called “Modular Transaction Building” in “Implementing Seraphis” [I1],
Section 10.

2.1 Ownership and Unspentness (O&U) proofs

Ownership and unspentness proof guarantees to verifiers that Alice the sender truly owns her set of e-notes
and she doesn’t already spent it. For each of Alice’s owned e-notes {(C;, K2, m;)} ,, Alice must do the
following:

1. If the masked address K/° is already in the e-note image enimg, in 7', then go to next step. Else
generate K[° from (C;, K?,m;) as per definition, and insert it to enimg, in T

2. If the linking tag K; is already in enimg; in T', then go to next step. Else generate K; from (Cj, K¢, m;)
as per definition, and insert it to enimg, in 7.

3. Prepare the proof transcript Il,g. ; for a non-interactive proving system for the following relation:
{(K°, K; € G; this Vk,ir k7, K9 ; €F) K? = v iGo + k?:G1+ ks ;G2 ANkT; # 0N K; = (k5 ;/k7:)J}

4. Insert gy, to {enimg,,...} in T.
Aside from verifying the proof transcript, the verifier must confirm that the linking tags do not yet appear
in the ledger.

2.2 Amount balance

Amount balance guarantees to verifiers that the sum of input amounts always equals the sum of output
amounts in every transaction. For each of Alice’s owned e-notes {(C;, K2,m;)}" ,, Alice must do the
following:

1. If the masked amount commitment C/ is already in enimg, in 7', then exit this subsection. Else generate
C! from (C;, K¢, m;) as per definition. Then compute the difference:

D = doHy + diHy = Cai + Cyop — Y _ C}
i=1

Note that dy is uniformly random because of ¢. inside C} and random oracle H inside Cyy; and Chop,
while d; is a publicly known extra amount (e.g. transaction fee).

2. Insert Cf to enimg, in T', and store (do,d1) to T

The verifier must verify the amount balance Y, C/ 4+ D = Cyi; + Chop and 0 < dy < di imas-

2.3 Membership proofs

Membership proof guarantees to verifiers that each owned e-note of Alice is in a set of e-notes in the ledger.
For each of Alice’s owned e-notes {(C;, K?,m;)}"_ 1, Alice must do the following:

1. If the masked amount commitment C] is already in enimg, in T, then go to next step. Else generate
C! from (C;, K¢, m;) exactly like in Step 1 of Subsection and insert it to enimg; in 7.

2. If the masked address K° is already in enimg, in T, then go to next step. Else generate K° from
(Ci, K?,m;) as per definition, and insert it to enimg; in T'.

3. Collect s — 1 number of random e-notes from the ledger and add her owned (C;, K2, m;), for a total of
s e-notes. The number s is called the anonymity size.

4. For each e-note in the collection (of size s), extract only the amount commitment and one-time address
like this: (Cj, K7). Then arrange the s e-notes in random positions. Alice now has an array (of length
s) of pairs: S; = {(Cj, K7)};_;, which is called the ring. Its elements (Cj, KY) are called the ring
members.

5. Prepare the proof transcript Il em,; for a non-interactive proving system for the following relation:

{(C;,Kl{o S G,Si C Gz;ﬂ'i S N, tc,iatk,i S F) 1< <sA Cz/ — Cm = tc7iH0 A\ KZ(O — KT(:L' = tk,iGO}

6. Insert S;, Iem,; to {enimg,,...} in T

Aside from verifying the proof transcript, the verifier must confirm that all the collected e-notes in rings
appear in the ledger.

Specific proving systems satisfying the relation include CSAG (CLSAG [5] without linking) and One-out-
of-Many proving system adapted from Groth and Bootle et al. [0 [].

2.4 Range proofs

Range proof guarantees to everyone that the committed amount a lies in a range. For the new e-notes
enote,;; and enoteyyy, Alice must do the following;:

1. Prepare the respective proof transcript Il;an q1i and Ilan pos for a non-interactive proving system for
the following relation:

{(C e€G,amazr €EF;2,a €F): C=aHy+aH; AN0<a < amaz}
where a,,4, 1S the maximum e-note amount.

2. Store I;an,ai and yan pop to T

Specific proving systems satisfying the relation include Bulletproofs [2] and Bulletproofs+ [3].

2.5 Receipt

Once the construction of T' is completed, Alice sends it to the network. Its contents must now be
T= {enOtealia enotepop, Hran,alia Hran,boba do,dy, {enimgiy Ho&u,ia Si, Hmem,i}?zl}-

We denote the full construction of T' as the function tx(-). This function would be used for describing
Seraphis security properties (Subsection .

Suppose that the verifier accepts T', hence T is now stored in the ledger. When Bob scans the ledger for
new transactions, he must do the following for every T he encounters:

1. Get a new e-note (C,K° m) in T. Note that m contains {R,a} (see the beginning of this whole
section).

2. Compute the nominal sender-receiver shared secret: S,om = So((k§, k7, k5, m"), R).

3. Compute the nominal spend public key: K/, . = K° — Ho(Snom)Go — H1(Snom)G1 — Ha(Snom)Ga.
If K}, = K[, then the e-note is connected to Bob’s receiver address, and proceed to the next step
(this is the “connection” hinted at the beginning of this whole section). Otherwise (if not equal), the

e-note is not connected, and hence go to Step 1.
4. Decrypt the amount: a = dec[Ha(Snom)](@)-

5. Compute the nominal amount commitment: Chom = H3(Snom)Ho + aHy. If Chom # C, then the
e-note is malformed and cannot be spent. The balance property described in Subsection must
prevent Bob from spending it successfully.

6. Compute the nominal linking tag:

[kT Snom
Knom = ,,2A+H2(7) J.

kT + H1(Snom)
If he finds a copy of Kpom in the ledger, then the e-note has already been spent. The balance property
described in Subsection [3.4] and the verifier checking that new linking tags do not yet appear in the
ledger (see Subsection must prevent Bob from spending it successfully.

If an e-note (C,K° m) is connected to Bob’s receiver address, then he knows its corresponding scalars
kS, kS, kS, a,x (e.g. k§ = ki + Ho(Snom)). Hence, connection implies e-note ownership. The transaction is
complete for Bob.

For Alice to receive the change e-note, she must do the same above steps. After that, the transcation is
complete for Alice. This finishes a Seraphis transaction.

3 Security model

For a start, we assume that the distributed ledger is immutable. Therefore, the adversary in our analysis will
never be able to modify transactions already stored in the ledger. This ledger immutability can be actualized
through, for instance, the Nakamoto consensus protocol [§].

Subsections to outline the required security properties of the cryptographic components for
Seraphis, and Subsection is the main security analysis of Seraphis. Proofs for these properties are
found in Appendix [A]

3.1 Proving systems security properties

We define a proving system as a tuple (Setup, P, V). Setup is the setup algorithm: pp < Setup(1?), and P and
V are PPT algorithms called Prover and Verifier, respectively. We denote the transcript (all data being sent
and received in the protocol) produced by P and V when dealing with inputs z and y as tr < (P(x), V(y)).
Once the transcript is produced, we denote the final transcript verification as tr = 1 if accepted and tr = 0
if rejected.

Let R be an NP (polynomial-time verifiable) relation of the form {(z,w) : P(z,w)} where z is the
statement, w is the witness, and P is a predicate of and w. Then “(Setup,P,V) is a proving system for
the relation R” informally means that when P gives an = to V, P must convince V that it knows a w such
that (z,w) € R by generating tr < (P(pp,z,w), V(pp, z)) that V accepts.

Here are the minimal needed security properties of proving systems for Seraphis:

Definition 3.1 (Perfect Completeness). (Setup, P, V) is perfectly complete for R if for all PPT adversary
A,

pp | (@w) €R | pp < Setup(1); (w, w) < Alpp); | _,

Atr=0 | tr (P(pp,z,w),V(pp,x)) |

Definition 3.2 (Computational Soundness). (Setup,P,V) is computationally sound for R if for all PPT
adversary A, there exists a negligible function negl(\) such that

(x,w) € R | pp Setup(l’\); (z,w) < A(pp);
Pr { ANtr=1 tr < (P(pp, z,w), V(pp, x)) < negl(\).

There is another notion of soundness called Special Soundness. For a proving system to be special sound,
there must exist a witness extractor that has an ability to “rewind time” and make the prover answer several
different challenges, and it must be able to extract a witness given the several accepted transcripts with
the prover. Special soundness is a stronger notion of soundness, hence this already implies computational
soundness.

Definition 3.3 (Perfect Special HVZK). (Setup,P,V) is perfect special honest-verifier zero knowledge
(PSHVZK) for R if there exists a PPT simulator S such that for all PPT adversary A,

p | (@w) eR | pp« Setup(1*); (z,w, p) < A(pp);
Atr=1 tr < (P(pp, x,w),V(pp, z; p))

_ Py (z,w) € R | pp < Setup(11); (z,w, p) + A(pp);
ANtr=1 tr < S(pp, x, p)

where p is the public randomness used by V.

Fiat-Shamir heuristic is applied to make interactive protocols non-interactive. Moreover, it transforms
interactive protocols satisfying PSHVZK into non-interactive (fully) zero-knowledge (NIZK) protocols in the
random oracle model.

All proving systems for application to Seraphis must be non-interactive and at least have perfect com-
pleteness, computational soundness, and NIZK.

3.2 Authenticated symmetric encryption scheme

We require that the authenticated symmetric encryption scheme must at least have the following proper-
ties: indistinguishable against adaptive chosen-ciphertext attack (IND-CCA2) and key-private under chosen-
ciphertext attacks (IK-CCA). The definitions of these properties can be found in [7], Appendix A.4.

3.3 Commitment schemes

We define a commitment scheme as a tuple (Setup, Comm). Setup is the setup algorithm: pp < Setup(1*),
and Comm : M x x — C is the commitment function, where M is the message space, x is the randomness
space, and C is the commitment space. Note that M, x and C are all constructed from pp. To commit to a
message m € M, the sender selects r & x and computes the commitment C' = Comm(m;r). We define the
required security properties of commitment schemes.

Definition 3.4 (Hiding Property). A commitment scheme (Setup, Comm) is computationally hiding if for
all PPT adversary A, there exists a negligible function negl(\) such that

L pp < Setup(1%); (mo, m1) < A(pp);

i_Pr V=>b bﬁ{O,l};rﬁx; < negl(}).
C = Comm(my;7); b’ + A(C)

A commitment scheme is perfectly hiding if negl()) is replaced by 0.

Definition 3.5 (Binding Property). A commitment scheme (Setup, Comm) is computationally binding if for
all PPT adversary A, there exists a negligible function negl(\) such that

Comm(myg; o)
Pr | = Comm(mq;71)
A mg # my

pp — Setup(lA);

< [(A\).
(mo, my,r0,71) < Alpp) | — negl(})

A commitment scheme is perfectly binding if negl()\) is replaced by 0.
The first kind of commitment we define is commonly known as Pedersen commitments [9]. We define
two instances, PedersenC : F?2 — G and PedersenK : F? — G as follows:

PedersenC(a; x) = xHy + aH;
PedersenK(ky, k95 k§) = kGGo + k{G1 + k5G4

PedersenC corresponds to the formulas of amount commitment C' and masked amount commitment C’, while
PedersenK corresponds to the formulas of one-time address K°.

Theorem 3.1 (From [9]). Pedersen commitment is perfectly hiding and computationally binding under the
DL assumption.

We now define a custom commitment LinkTag: F x F\ {0} x F x F — G? as follows:

LinkTag(k§, k7. kS: ti) = ((ti + k§)Go + K9G + k3G, (k3/k9))

with ¢ & F being the blinding factor. LinkTag corresponds to the combination of formulas of masked
address K'° and linking tag K.

Theorem 3.2. LinkTag is perfectly hiding and computationally binding under the DL assumption.

3.4 Seraphis security properties

The required security properties for Seraphis are loosely based on Omniring’s security model, with modifica-
tions to fit Seraphis. The Omniring paper presents a rigorous treatment of RingCT constructions, providing
precision for security analysis against several realistic attacks.

The first security property is Completeness (called Correctness in Omniring), which means that if an
e-note appears on the ledger, then its owner can honestly generate an accepted transaction spending it.
Seraphis satisfying completeness immediately follows from the completeness properties of the cryptographic
components and by inspection of the protocol description.

Next we consider the Balance property, which means that a spender adversary should never be able to
spend more amounts than it truly owns, hence preventing double-spending. Balance property involves an
experiment BAL(A, 1*) on a PPT adversary A. The adversary succeeds in the experiment (i.e. BAL(A, 1) =
1) if it managed to generate an accepted transaction such that 1) some of “spent e-notes” are just made up
and not in the ledger, 2) all spent e-notes are in the ledger, but some are supposedly owned by others, 3)
some linking tags are not generated from the given one-time private keys, leading to double-spend of owned
e-notes, or 4) the amount of the new e-note for the receiver is larger than the supposed total amount of
e-notes it owns.

Theorem 3.3 (Balance). Seraphis is balanced: for all PPT adversary A, there exists a negligible function
negl(A) such that

Pr[BAL(A,1%) = 1] < negl()).
where BAL is described in Figure[]

Next we consider the Privacy property, which means that an adversary should never be able to dis-
tinguish between transactions, hence providing sender and receiver anonymity, and confidential transfer of
amounts. Privacy property involves an experiment PRV(A,1*) on a PPT adversary A. In the experiment,
it is as if A itself “sent” amounts to the two potential senders, hence A is provided the sender and receiver
addresses, the e-notes themselves, and the private scalars of the amount commitment C' in those e-notes.
Given a whole transaction T, the adversary succeeds in the experiment if it can guess which of the two is
used, hence breaking the privacy of T

Theorem 3.4 (Privacy). Seraphis is private: for all PPT adversary A, there exist a negligible function
negl(A) such that

Pr[PRV(A,1%) = 1] < negl()).
where PRV is described in Figure[3.

BAL(A,1%)

pp < Setup(17).

A is provided the whole ledger {T;}, scalars k{, k7, k5, m"” to construct the address
addry = (K[, MY}), scalars {k§,, k7 ;, kS, a;,v;};-; that makes addr4 connect to
{enote} 4 = {(Ci, K?,m;)}"; in the ledger, all the other addresses {addr} 4, and
knowledge of all the connections between every e-note to every address. The e-notes
not owned by A are denoted as {enote}_ 4.

A chooses any receiver address addrpg.

T < A(pp, {enote} 4, {enote} 4, {k§ ;, k7 ;, kS ;, ai, i }}), where T' is a transaction.
bo := 1 if Verifier accepts T, else := 0.

b1 := 1 if some “spent e-notes” in T are not in ledger, else := 0.

by := 1 if some spent e-notes in T are from {enote}_ 4, else := 0.

bs := 1 if all spent e-notes in T are owned by A, but i : K; # (kS ;/kS ;) J, else := 0.
by := 1 if all spent e-notes in T" are owned by A, but a; > > | a;, else := 0.

Return bo A (bl \Y bQ \ bg \Y b4)

Figure 1: Balance experiment BAL

PRV(A, 1*)

pp < Setup(1?).

A is provided two random potential sender addresses sendy and send;, sets of e-notes
{enote}o and {enote}; (with both containing n e-notes) connected to sendy and send;
respectively, private scalars of C, {zg,,a0,}i—; and {x14,a1,};, of each e-note in
enotep and enote;, respectively, and two random potential receiver addresses recvg
and recvjy.

A constructs {S;}?_; such that each S; contains only one e-note in {enote}y and only
one e-note in {enote};.

A chooses any valid amount the potential senders would send: 0 < a4 < Z?Zl ao,i
and 0 <ayg1 < Z?Zl a1,; for sendy and send;, respectively.

b < {0,1}.

T + tx(pp, sendy, recvy, {enote}y, {S;}71,a4,5). The owner of send;, honestly spends
all e-notes in {enote};, (which are also in {S;}? ;) to send the amount a4 to recvy.

If Verifier rejects T, then return 0.
b < A(pp, T, {send;,recv;,{z;;,a;:}", aA,j}je{o,1})-

Return 1 if b =¥/, else 0.

Figure 2: Privacy experiment PRV

Lastly, we consider the Non-slanderability property, which means that an adversary should never be
able to forge a linking tag of an honest user’s e-notes when those are spent. Non-slanderability property
involves an experiment NSLAND(A, 1) on a PPT adversary .A. This property prevents the following attack
known as denial-of-spending attack [I0]: the adversary is in a remote node that can receive transactions, and
also acts as a verifier of a victim transaction 7. This means that A can see the linking tags in 7. A then
temporarily blocks T' from entering the ledger, creates a new transaction 7’ that matches some linking tags
in T, and enters T” first in the ledger before finally entering T'. This way T is marked as a double-spend,
and some e-notes of the victim sender are now unspendable. Now the adversary succeeds in the experiment
if it successfully accomplished a denial-of-spending attack.

NSLAND(A, 1*)
e pp < Setup(1?).

e A is provided the whole ledger {T;}, scalars kfj, k7, k5, m" to construct the address
addry = (K, M}), scalars {k§;, k7 ;, kS ;,a;,z;}7—; that makes addr4 connect to
{enote} 4 = {(C;, K?,m;)}?_, in the ledger, all the other addresses {addr}- 4, and
knowledge of all the connections between every e-note to every address. The e-notes
not owned by A are denoted as {enote} 4.

o A chooses any receiver address addrp, the victim address addre, and another address
addrp.

o T < tx(pp,addrc, addrp, {enote}c). The owner of addre honestly spends all e-notes
in {enote}¢ to send some amounts to addrp. Let {K¢} be all the linking tags in 7.

e A is provided T and verifies it honestly. If A rejects T', then return O.

o T’ « A(pp, {enote} 4, T), where T" is a transaction. Let {K 4} be all the linking tags
inT".

e by := 1 if Verifier accepts 7", else := 0
o by :=1if {KA}N{Kc} #0, else :=0

e Return by A by.

Figure 3: Non-slanderability experiment NSLAND

Theorem 3.5 (Non-slanderability). Seraphis is non-slanderable: for all PPT adversary A, there exist a
negligible function negl(\) such that

Pr [NSLAND(A, 1*) = 1] < negl()).

where NSLAND s described in Figure [3

References

[1] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and Christophe Petit.
Short accountable ring signatures based on ddh. Cryptology ePrint Archive, Report 2015/643, 2015.
https://ia.cr/2015/643.

[2] Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. Cryptology ePrint Archive, Report
2017/1066, 2017. https://ia.cr/2017/1066.

https://ia.cr/2015/643
https://ia.cr/2017/1066

[3] Heewon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, and Jae Hong Seo. Bulletproofs+:
Shorter proofs for privacy-enhanced distributed ledger. Cryptology ePrint Archive, Report 2020/735,
2020. https://ia.cr/2020/735.

[4] Marc Fischlin and Arno Mittelbach. An overview of the hybrid argument. Cryptology ePrint Archive,
Paper 2021/088, 2021. https://eprint.iacr.org/2021/088.

[5] Brandon Goodell, Sarang Noether, and RandomRun. Concise linkable ring signatures and forgery
against adversarial keys. Cryptology ePrint Archive, Report 2019/654, 2019. https://ia.cr/2019/654.

[6] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin.
Cryptology ePrint Archive, Report 2014/764, 2014. https://ia.cr/2014/764.

[7] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schroder, Sri Aravinda Krishnan Thya-
garajan, and Jiafan Wang. Omniring: Scaling up private payments without trusted setup - formal
foundations and constructions of ring confidential transactions with log-size proofs. Cryptology ePrint
Archive, Report 2019/580, 2019. https://ia.cr/2019/580.

[8] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[9] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 129-140, Berlin, Heidelberg,
1992. Springer Berlin Heidelberg.

[10] Tim Ruffing, Sri Aravinda Thyagarajan, Viktoria Ronge, and Dominique Schréder. Burning zerocoins
for fun and for profit: A cryptographic denial-of-spending attack on the zerocoin protocol. Cryptology
ePrint Archive, Report 2018/612, 2018. https://ia.cr/2018/612.

[11] UkoeHB. Seraphis: Privacy-focused tx protocol. https://github.com/UkoeHB/Seraphis.

A Proofs of theorems in Section (3| [WIP!]

We first present another hardness assumption which will be helpful for the next proof. This assumption is
used in Bulletproofs [2] and Bulletproofs+ [3]:

Definition A.1 (Discrete Logarithm Relation Assumption). DL Relation assumption holds relative to Setup
if for alln > 2 and PPT adversary A, there exists a negligible function negl(\) such that

Fe{l,...,n}:2; £0 (G,F) « Setup(1*);
Pr A thGz — O . {Gi}?zl (i G; . S negl(A)'
i=1 {wi}ie, « A(G,F {Gi}isy)

Proof of Theorem[3.3 For perfect hiding, assume an adversary with unlimited computational power. It can
easily find the DL of K base J, which is (k$/k¢). However, it still cannot find the inputted kg, k¢ and
kg because K'° = (t, + k§)Go + k§G1 + (k9)(k§/k$)Ga = (tk + k§)Go + k9 (G1 + (k§/k$)Gs2) is a Pedersen
commitment for k¢ with ¢; + k§ as blinding factor.

For computational binding, by breaking the binding of LinkTag, A finds (k§, k, k9; tx) and (k{’, k1, k55 t}.)
such that the two are not equal but LinkTag evaluates to the same commitment value. This implies that

(tr + kS — t, — ki")Go + (k) — K12)G1 + (kS — k)G =0
and this breaks the DL relation assumption of Gg, G1,Gs € G. O

Proof of Theorem[3.3 Assume that A succeeds in the BAL experiment with non-negligible probability. There
are four cases to consider:

10

https://ia.cr/2020/735
https://eprint.iacr.org/2021/088
https://ia.cr/2019/654
https://ia.cr/2014/764
https://ia.cr/2019/580
https://ia.cr/2018/612
https://github.com/UkoeHB/Seraphis

1. Case 1: bgAb; = 1. A makes up enote, = (C, K°,m), and pretends owning it. Then A has two possible
actions: 1) A successfully found a set of corresponding scalars kg, k9, k9, a, x € F. However this breaks
the hiding or binding property of PedersenC and PedersenK. 2) Even without a set of corresponding
scalars, A managed to produce verified proofs for enote,. For the case of C, if C’ is generated correctly
(i.e. C" =t.Hy+C), then A found dy, d; € F such that doHy+d1 Hy = Cgpi+ Cpop — C’ for a successful
amount balance check, but this breaks the DL assumption of G. On the other hand, if A came up
with dp,d; € F, then A produced a verified membership proof because t. is among the witness. But
successfully finding ¢, breaks the DL assumption of G and not finding it breaks the soundness of
membership proof. For the case of K°, A produced a verified o&u proof because k¢, k9 are among the
witnesses, but this breaks the soundness of o&u proof.

2. Case 2: bg A by = 1. This is the same with Case 1 but with A knowing the addr, connected to an
enote, € {enote}_ 4 and the rest of the transaction T, containing enote,.. Then A has four possible
actions: 1) A successfully found a set of corresponding scalars kf, k7, k5, m” € F of addr,, 2) A
successfully found just Spom, 3) A successfully found a set of corresponding scalars kg, k9, k9, a,x € F
with the use of T, and 4) even without a set of corresponding scalars, A managed to produce verified
proofs for enote, with the use of Ti. Actions 1 and 2 both break the shared-secretness of (Sp, S1, S2).
For action 1, it is because A can now easily compute S, through S;. Action 3 breaks either the
hiding or binding property of PedersenC (from range proof) or LinkTag (from o&u proof), or NIZK of
proving systems. Lastly, action 4 also breaks NIZK of proving systems, because action 4 implies that
A obtained some information about the witnesses in proofs of Ty.

3. Case 3: bg A b3 = 1. This means for some i, A made up R}-’* € G and then produced a verified o&u
proof with K, in statement, but K; . # (k3 ,/k?;)J, but this breaks the soundness of o&u proof.

4. Case 4: byAby = 1. For a start, the soundness of range proof prevents A in producing a valid transaction
such that a; > amas. If A just made a; to be greater than Z?:l a; and proceed honestly, then the
dy in account balance becomes “negative”, which implies that account balance is violated. If account
balance is satisfied, then A successfully found (a’,z’) # (a;,x;) such that PedersenC(a’;2") = C; for
some 7, but this breaks the binding property of PedersenC.

This completes the proof. O
Proof of Theorem[3.J] We prove by hybrid arguments [4]. O

Proof of Theorem[3.5 Assume that A succeeds in the NSLAND experiment with non-negligible probability.
O

11

	Preliminaries
	Public parameters
	E-notes and e-note images
	Sender-receiver shared secret scheme
	Authenticated symmetric encryption scheme

	A Simple Seraphis transaction
	Ownership and Unspentness (O&U) proofs
	Amount balance
	Membership proofs
	Range proofs
	Receipt

	Security model
	Proving systems security properties
	Authenticated symmetric encryption scheme
	Commitment schemes
	Seraphis security properties

	Proofs of theorems in Section 3 [WIP!]

