{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Nonlinear Schrödinger as a Dynamical System\n", "\n", "> #### [J. Colliander](http://colliand.com) ([UBC](http://www.math.ubc.ca))\n", "\n", "#### [Ascona Winter School 2016](http://www.math.uzh.ch/pde16/index-Ascona2016.html), [(alternate link)](http://www.monteverita.org/en/90/default.aspx?idEvent=295&archive=)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Lectures\n", "\n", "1. [Introduction](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture1.ipynb)\n", "2. [Conservation](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture2.ipynb)\n", "3. [Monotonicity](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture3.ipynb)\n", "4. **[Research Frontier](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/colliander-lecture4.ipynb)**\n", "\n", "\n", "\n", "### https://github.com/colliand/ascona2016\n", "\n", "\n", "***" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Overview of Lecture 4\n", "\n", "* Review of the main issue: understand the dynamics.\n", "* Critical Scattering Conjecture?\n", " * Robust Methods for Global Well-posedness?\n", " * Partial Regularity?\n", " * High Regularity Globalizing Estimates?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Initial Value Problem for NLS\n", "\n", "$$\n", "\\begin{equation*}\n", "\\tag{$NLS^{\\pm}_p (\\Omega)$}\n", " \\left\\{\n", " \\begin{matrix}\n", " (i \\partial_t + \\Delta) u = \\pm |u|^{p-1} u \\\\\n", " u(0,x) = u_0 (x), ~ x \\in \\Omega.\n", " \\end{matrix}\n", " \\right.\n", "\\end{equation*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "## What happens?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Dilation Invariance\n", "\n", "One solution $u$ generates parametrized family $\\{u^\\lambda\\}_{\\lambda > 0}$ of solutions:\n", "\n", "$$u:[0,T) \\times \\mathbb{R}^d_x \\rightarrow \\mathbb{C} ~{\\mbox{solves}}~ NLS_p^{\\pm}(\\mathbb{R}^d)$$ \n", "\n", "$${\\iff}$$\n", "\n", "$$u^\\lambda: [0,\\lambda^2 T )\\times \\mathbb{R}^d_x \\rightarrow \\mathbb{C} ~{\\mbox{solves}}~ NLS_p^{\\pm}(\\mathbb{R}^d)$$ \n", "where\n", "$$\n", "u^\\lambda (\\tau, y) = \\lambda^{-2/(p-1)} u( \\lambda^{-2} \\tau, \\lambda^{-1} y).\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Critical Regularity Regimes\n", "\n", "\n", "\n", "| critical Sobolev index | Regime | \n", "|:---------------:|:-------------------------------:| \n", "| $ s_c < 0$ | mass subcritical |\n", "| $0 < s_c < 1$ | mass super/energy subcritical | \n", "| $s_c = 1$ | energy critical | \n", "| $1 < s_c < \\frac{d}{2}$| energy supercritical |" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Critical Scattering Conjecture?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "\n", "\n", "$ H^{s_c} ({\\mathbb{R}}^d) \\ni u_0 \\longmapsto u$ solves defocusing $NLS_p^{\\pm}(\\mathbb{R}^d)$ globally in time with globally bounded spacetime Strichartz size.\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$ \\implies $ the behavior of $u(t)$ is described by associated linear evolutions as $ t \\rightarrow \\pm \\infty$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Status of Critical Scattering?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "* Energy Critical ($s_c = 1$): $\\checkmark$ " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "* Mass Critical ($s_c = 0$): $\\checkmark$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "* $0 < s_c < 1$: OPEN" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "* Energy Supercritical ($s_c > 1$): OPEN" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Remarks\n", "\n", "* Conditional results under critical norm bounds\n", "$$\\sup_t \\| u(t) \\|_{H^{s_c}} < \\infty.$$\n", "* Interesting analogies with global issue for Navier-Stokes.\n", "* Corresponding problems for NLW might be resolved first.\n", "* $H^{1/2}$-Critical seems most tractable, e.g. $NLS_3^+ ({\\mathbb{R}}^3)$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Robust GWP Methods down to $s_c + \\epsilon$?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Local to Global via Almost Conservation\n", "\n", "The almost conservation property\n", "$$ \\sup_{t \\in [0,T_{lwp}]} \\widetilde{E} [I u(t)] \\leq \\widetilde{E}[Iu_0] + N^{-\\alpha}$$\n", "led to GWP for \n", "$$\n", "s > s_\\alpha = \\frac{2}{2+\\alpha}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Better Bootstraps?\n", "\n", "* Bootstrap arguments using Morawetz control generated improvements.\n", "* Precise bootstraps with Raphaël led to results for $s > s_c$.\n", "* **Q:** Could improved bootstraps lead to robust method to prove global regularity for $s>s_c$?\n", "\n", "> Addendum from discussion after the talk! See [recent work](http://arxiv.org/pdf/1506.06239.pdf) by Ben Dodson on NLW. Recently, Dodson announced corresponding results for $NLS_3^+ (\\mathbb{R}^3)$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Partial Regularity? " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "![ckn](https://wwejubwfy.s3.amazonaws.com/1982_Caffarelli_Partial_regularity_of_suitable_weak_Comm._Pure_Appl._Math.pdf-2016-01-14-21-18-08.jpg)\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Notations for $NLS_p^+ (\\mathbb{R}^d)$.\n", "\n", "$$\n", "u_\\lambda (t,x) = [\\frac{1}{\\lambda}]^{\\frac{2}{p-1}} u(\\frac{t}{\\lambda^2}, \\frac{x}{\\lambda}).\n", "$$\n", "Exponents appearing in dilation invariant spaces used in the study of $NLS_p$:\n", " $$ s_c = \\frac{d}{2} - \\frac{2}{p-1}, ~\\mbox{(Scaling invariant Sobolev index)} $$\n", " $$ \\frac{2}{q} + \\frac{d}{r} = \\frac{2}{p-1}, ~(H^{s_c} ~\\mbox{admissible Strichartz pairs} ~(q,r))$$\n", " $$ \\frac{d}{p_c} = \\frac{2}{p-1}, ~\\mbox{(Scaling invariant spatial Lebesgue space exponent)}$$\n", " $$ \\frac{2+d}{q_c} = \\frac{2}{p-1}, ~\\mbox{(Diagonal scaling invariant Strichartz exponent)}.$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## The Singular Set" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "* Spacetime point $z_0 = (t_0, x_0) \\in \\mathbb{R} \\times {\\mathbb{R}}^d.$ \n", "* $Q_\\lambda$ denote the parabolic box of scale $\\lambda$ behind $z_0$\n", "$$\n", "\\{(t,x) \\in \\mathbb{R}^{1+d}: 0< t_0 - t < \\lambda^2, |x - x_0| < \\lambda\\}.\n", "$$\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "\n", "**Definition:** A spacetime point $z_0$ is called a **singular point** for a weak solution $u$ of $NLS_p$ if\n", "$$\n", "\\lim_{\\lambda \\searrow 0} \\int_{Q_\\lambda} |u|^{q_c} dx dt = + \\infty.\n", "$$\n", "Points which are not singular are called **regular** points. The set of all singular points is denoted $\\Sigma$.\n", "The diagonal Strichartz norm diverges on all parabolic boxes behind a singular point. Points which are not singular are called **regular points** for $u$.\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Concentration Statement? \n", "**Singular Point $\\implies$ Consistent $L^{q_c}_{t,x}$ Concentration:**\n", "If $z_0$ is a singular point for the weak solution $u$ then $z_0$ is also a point of (scaling consistent) concentration. That is, there exists $\\epsilon_0 > 0$ (a constant independent of $z_0$) and a sequence of scales $\\lambda_j \\searrow 0$ satisfying\n", "$$\n", "\\int_{Q_{\\lambda_j}} |P_{< \\frac{1}{\\lambda_j}} u|^{q_c} dx dt > \\epsilon_0.\n", "$$\t\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "The converse would be an \"$\\epsilon$-regularity\" statement." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "## Parabolic Hausdorff Dimension of $\\Sigma$?\n", "\n", "Absorption of Interaction Morawetz $\\implies {\\mbox{dim}}_{\\mathscr{P}} \\Sigma \\leq 4 (s_c - \\frac{1}{4})$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## High Regularity Globalizing Estimates?\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Consider the $H^2$-critical problem \n", "$$\n", "\\begin{equation*}\n", "\\tag{$NLS^{\\pm}_5 (\\mathbb{R}^5)$}\n", " \\left\\{ \n", " \\begin{matrix}\n", " (i \\partial_t + \\Delta) u = \\pm |u|^{4} u \\\\ \n", " u(0,x) = u_0 (x), ~ x \\in \\mathbb{R}^5.\n", " \\end{matrix}\n", " \\right.\n", "\\end{equation*}\n", "$$\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Assume $u_0$ is nice (smooth, compactly supported). Can one prove that\n", "$$\n", "\\sup_t \\| u(t) \\|_{H^k (\\mathbb{R}^5)} < \\infty?\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Possible ingredients: Almost conservation techniques, a priori spacetime estimates, Gronwall estimate, contradiction arguments, ...?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "# Thank you!\n", "\n", "![alpenglow](https://wwejubwfy.s3.amazonaws.com/friday-morning-ascona.jpg)\n" ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }