{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "# Recent developments in the study of self-dual Chern-Simons vortices\n", "\n", "> #### [Gabriella Tarantello](http://www.mat.uniroma2.it/~tarantel/), Università di Roma \"Tor Vergata\"\n", "\n", "#### [Ascona Winter School 2016](http://www.math.uzh.ch/pde16/index-Ascona2016.html), [(alternate link)](http://www.monteverita.org/en/90/default.aspx?idEvent=295&archive=)\n", "\n", "Book: [Selfdual Gauge Field Vortices, Birkhauser 2008](http://www.springer.com/gb/book/9780817643102)\n", "\n", "1. [Lecture 1](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/tarantello-lecture1.ipynb)\n", "2. [Lecture 2](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/tarentello-lecture2.ipynb)\n", "3. [Lecture 3](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/tarantello-lecture3.ipynb)\n", "4. [Lecture 4](http://nbviewer.jupyter.org/github/colliand/ascona2016/blob/master/tarantello-lecture4.ipynb)\n", "\n", "[source](https://github.com/colliand/ascona2016)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We call this problem $(P)_k$:\n", "\n", "$$ -\\Delta u = \\frac{4}{k^2} e^u (1 - e^u) - 4 \\pi \\sum_{j=1}^N \\delta_{p_j}\n", "$$\n", "\n", "**Theorem (G. Tarantello, Birkhauser PNDE 2008):** There exists a critical value of the Chern-Simons parameter $k_c = k_c (N, |M|) > 0$ such that $(P)_k$ admits a soluiton $\\iff k \\in (0, k_c]$. Moreover, if $0 -1. \n", "$$\n", "\n", "\n", "The set of solutions of $(1)_\\rho$ is compact provided that $\\rho \\in [0,L]\\backslash \\Gamma$ where $\\Gamma$ is a discrete set. In particular, if $\\alpha_j \\in \\mathbb{N} \\bigcup \\{ 0 \\} \\implies \\Gamma = 8 \\pi \\mathbb{N}.$\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\"Leray-Schauder degree\" of the regular part of the solutions is independent of $\\rho \\in (8 \\pi (k-1), 8\\pi k)$, ~k \\in \\mathbb{N}$. The degree depends *only* on $k$ here.\n", "\n", "[Chen-Lin](http://onlinelibrary.wiley.com/doi/10.1002/cpa.3014/abstract)\n", "\n", "Malchiodi-Djiali\n", "\n", "[Andrea Malchiodi](https://en.wikipedia.org/wiki/Andrea_Malchiodi)\n", "\n", "Interesting analytical features connected to $\\chi(M)$, the Euler characteristic!\n", "\n", "Interesting dichotomy in the **concentration-compactness** analysis. When the $\\alpha_j$ are non-integer, there are interesting excesses that accumulate into the blowup concentrations." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**blow-up analysis** up to suitable scaling, bubbles are formed which are described as solutions of a *Liouville problem*:\n", "\n", "$$ -\\Delta u = e^u - 4 \\pi \\alpha \\delta_0, ~{\\mbox{in}}~ \\mathbb{R}^2$$\n", "$$ \\int_{\\mathbb{R}^2} e^u < \\infty$$\n", "where $\\alpha =0$ if $z_k \\notin \\{ p_1, \\dots, p_N \\}$ OR $\\alpha = \\alpha_i$ if $z_k = p_j$.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## What do we know about systems?\n", "\n", "We have a whole systems extension of all this! Not all of what I said persists but some of it extends. The work is \"much more delicate\".\n", "\n", "Systerm versions of these results toward the applications to non-abelian vortices.\n", "\n", "Coupling matrix (2x2 case). $G = U(1) \\times SU(N)$. In the case $N=2$ and $k =3$, you get the *Toda System*. Most of the results described in these lectures (in the \"regular\" case $\\alpha_j = 0$) extend to the Toda System. ... connections to Algebraic Geometry here. When you are away from the Today System, we don't really know what's going on." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q:** Time varying extensions?\n", "\n", "$$\n", "\\frac{d}{dt} u = \n", "$$\n", "\n", "Look at the mean field...\n", "\n", "$$ \\int_M \\frac{1}{2} |\\nabla u |^2 - \\rho \\ln \\frac{1}{|M|} \\int h_0 e^u = E(u).\n", "$$\n", "\n", "Now, study the gradient flow of this problem. \n", "\n", "**Q:** Well-posedness for the Chern-Simons system?\n", "\n", ">A: Chae et. al. have some classical local existence for wave generlizations for given CAuchy data. " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }