{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "<img src=\"http://www.nserc-crsng.gc.ca/_gui/wmms.gif\" alt=\"Canada logo\" align=\"right\">\n", "\n", "<br>\n", "\n", "<img src=\"http://www.triumf.ca/sites/default/files/styles/gallery_large/public/images/nserc_crsng.gif?itok=H7AhTN_F\" alt=\"NSERC logo\" align=\"right\" width = 90>\n", "\n", "\n", "\n", "# Exploring NSERC Awards Data\n", "\n", "\n", "Canada's [Open Government Portal](http://open.canada.ca/en) includes [NSERC Awards Data](http://open.canada.ca/data/en/dataset/c1b0f627-8c29-427c-ab73-33968ad9176e) from 1991 through 2016.\n", "\n", "The awards data (in .csv format) were copied to an [Amazon Web Services S3 bucket](http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html). This open Jupyter notebook starts an exploration of the NSERC investment portfolio during the 1995 -- 2016 epoch. If you'd like access to the data hosted on S3, please contact [James Colliander](http://colliand.com).)\n", "\n", "> **Acknowledgement:** I thank [Ian Allison](https://github.com/ianabc) and [James Colliander](http://colliand.com) of the [Pacific Institute for the Mathematical Sciences](http://www.pims.math.ca/) for building the [JupyterHub service](https://pims.jupyter.ca) and for help with this notebook. -- I. Heisz" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: plotly in /home/iheisz/.local/lib/python3.6/site-packages\n", "Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from plotly)\n", "Requirement already satisfied: requests in /opt/conda/lib/python3.6/site-packages (from plotly)\n", "Requirement already satisfied: nbformat>=4.2 in /opt/conda/lib/python3.6/site-packages (from plotly)\n", "Requirement already satisfied: pytz in /opt/conda/lib/python3.6/site-packages (from plotly)\n", "Requirement already satisfied: decorator>=4.0.6 in /opt/conda/lib/python3.6/site-packages (from plotly)\n", "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /opt/conda/lib/python3.6/site-packages (from requests->plotly)\n", "Requirement already satisfied: idna<2.7,>=2.5 in /opt/conda/lib/python3.6/site-packages (from requests->plotly)\n", "Requirement already satisfied: urllib3<1.23,>=1.21.1 in /opt/conda/lib/python3.6/site-packages (from requests->plotly)\n", "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.6/site-packages (from requests->plotly)\n" ] } ], "source": [ "# For Plotting\n", "import matplotlib.pyplot as plt\n", "import matplotlib.ticker as mtick\n", "!pip3 install plotly --user; #Plotly for graphing\n", "import plotly.plotly as py\n", "import plotly.graph_objs as go" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2009\n", "2010\n", "2011\n", "2012\n", "2013\n", "2014\n", "2015\n", "2016\n" ] } ], "source": [ "# Note: haven't yet uploaded this to github or shared it\n", "import numpy as np\n", "import pandas as pd\n", "import sys\n", "\n", "## Bring in a selection of the NSERC awards data starting with 1995 and ending with 2016.\n", "## Throw away as much as you can to keep the DataFrame small enough to manipulate using a laptop.\n", "\n", "df = pd.DataFrame()\n", "\n", "startYear = 2009\n", "endYear = 2017 ## The last year is not included, so if it was 2017 it means we include the 2016 collection but not 2017.\n", "\n", "## Reads and processes the raw csv datafiles.\n", "for year in range(startYear, endYear):\n", " file = 'https://s3.ca-central-1.amazonaws.com/open-data-ro/NSERC/NSERC_GRT_FYR' + str(year) + '_AWARD.csv.gz'\n", " df = df.append(pd.read_csv(file, compression='gzip', usecols = [9, 11, 17], encoding='latin-1'))\n", " \n", " print(year)\n", " \n", "## Rename columns for better readability.\n", "df.columns = ['FiscalYear', 'AwardAmount', 'Committee'] " ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>FiscalYear</th>\n", " <th>AwardAmount</th>\n", " <th>Committee</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1753</th>\n", " <td>2009</td>\n", " <td>34728</td>\n", " <td>1508</td>\n", " </tr>\n", " <tr>\n", " <th>3805</th>\n", " <td>2009</td>\n", " <td>46190</td>\n", " <td>1508</td>\n", " </tr>\n", " <tr>\n", " <th>5722</th>\n", " <td>2009</td>\n", " <td>48530</td>\n", " <td>1508</td>\n", " </tr>\n", " <tr>\n", " <th>5780</th>\n", " <td>2009</td>\n", " <td>23630</td>\n", " <td>1508</td>\n", " </tr>\n", " <tr>\n", " <th>18980</th>\n", " <td>2009</td>\n", " <td>38941</td>\n", " <td>1508</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " FiscalYear AwardAmount Committee\n", "1753 2009 34728 1508\n", "3805 2009 46190 1508\n", "5722 2009 48530 1508\n", "5780 2009 23630 1508\n", "18980 2009 38941 1508" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get the data for the Mathematics and Statistics Funding\n", "mathFundingData = df.loc[(df['Committee'] == 1508)]\n", "mathFundingData.head()\n", "\n", "# Make years the index so that data is easier to manipulate\n", "# mathFundingData = mathFundingData.set_index('FiscalYear')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Total Awards Granted Per Year \n", "Note: Committee 1508 for Mathematics and Statistics was created in 2009 so there is no pre-2009 data on it" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>FiscalYear</th>\n", " <th>TotalAward</th>\n", " <th>AwardCount</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>24129</th>\n", " <td>2009</td>\n", " <td>217360</td>\n", " <td>6</td>\n", " </tr>\n", " <tr>\n", " <th>24222</th>\n", " <td>2010</td>\n", " <td>3813412</td>\n", " <td>190</td>\n", " </tr>\n", " <tr>\n", " <th>23299</th>\n", " <td>2011</td>\n", " <td>6834781</td>\n", " <td>356</td>\n", " </tr>\n", " <tr>\n", " <th>23611</th>\n", " <td>2012</td>\n", " <td>10187618</td>\n", " <td>518</td>\n", " </tr>\n", " <tr>\n", " <th>13302</th>\n", " <td>2013</td>\n", " <td>13480881</td>\n", " <td>691</td>\n", " </tr>\n", " <tr>\n", " <th>24247</th>\n", " <td>2014</td>\n", " <td>16235610</td>\n", " <td>845</td>\n", " </tr>\n", " <tr>\n", " <th>24483</th>\n", " <td>2015</td>\n", " <td>16354650</td>\n", " <td>863</td>\n", " </tr>\n", " <tr>\n", " <th>25084</th>\n", " <td>2016</td>\n", " <td>17231868</td>\n", " <td>865</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " FiscalYear TotalAward AwardCount\n", "24129 2009 217360 6\n", "24222 2010 3813412 190\n", "23299 2011 6834781 356\n", "23611 2012 10187618 518\n", "13302 2013 13480881 691\n", "24247 2014 16235610 845\n", "24483 2015 16354650 863\n", "25084 2016 17231868 865" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Make a new column that is the sum of all Awards for each individual year\n", "awardTotalsByYear = mathFundingData.assign(TotalAward=mathFundingData.groupby(['FiscalYear'])['AwardAmount'].transform('sum'))\n", "\n", "# Count the number of awards given in each year and make a new column with them called 'AwardCount'\n", "awardTotalsByYear = awardTotalsByYear.assign(AwardCount=awardTotalsByYear.groupby('FiscalYear').cumcount() + 1)\n", "#awardTotalsByYear = \n", "# Make a new column that is the sum of all Awards that each individual has received \n", "#year2016 = year2016.assign(TotalAward=year2016.groupby(['Name'])['AwardAmount'].transform('sum'))\n", "\n", "# Drop all but the last of duplicate years, now that we have the award amount info from them. \n", "# We keep the last one because that is where the final value of cumCount is.\n", "deduplicatedData = awardTotalsByYear.drop_duplicates(subset = 'FiscalYear', keep = 'last')\n", "\n", "deduplicatedData[['FiscalYear','TotalAward', 'AwardCount']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot of the Data" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEbCAYAAADJWrOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8HFWd/vHPExIIawCJIQGTwAREQASNBGQZBJRNWWYQ\nEWVQQWREEdGRgI7EBYi4sYnKDxUYWQQUiSICBgMiEA0QkZ0oBAIJBDABJBcI+f7+OOeSSnOXyr29\n1c3zfr36Vd1V1d1P961bp+ucOqcUEZiZmfVmUKsDmJlZNbjAMDOzUlxgmJlZKS4wzMysFBcYZmZW\nigsMMzMrxQXGACRpkqSf1em1Rki6SdLzkr5Tj9dsFEnTJB3RoNe+R9IujXjtHt6zbn/HdibpGkmH\ntTqH9c4FRhNIOljSdEn/kvRUvv8pSWp1thKOBJ4G1oqIz3e3Ut65haQJzYtWH5JWlvQVSQ/kv9Hj\neSf23s51ImKLiJjWwpj9JukQSTMkvSBpbv6MO7Y6V0TsFREX5IwflXRzcbmk8yV9oxHvnf/2V0h6\nJG+/u9QsnyTplfyddd42LiwfK+kPkl6UdL+k3Wue/xlJD0t6Ln/3Lf+++8MFRoNJ+jxwBvAtYH1g\nBHAUsAOwcjfPWalpAXs3Brg3eujhmQu+/wKezdOGkjS4zi95BbAfKfs6wEakv9k+dX6flpF0HHA6\ncAppGxwNfB/Yt5W52sTNwEeAed0s/3lErFG4/aOw7BLgTuANwJeAKyQNB8g/niYDBwLDgB8DV7bZ\n//fyiQjfGnQjbST/Av6zl/XOB34A/DavvztpZ3Un8BzwGDCpsP5YIEi//p8A5gJfKCyfBFwGXAg8\nD9wDjO/h/d8F/AVYmKfvKuR6BXgZeAHYvZvn7wwsAj4MPAOsXFg2G3hHvv/hnHuL/Phw4Ff5/rbA\nrcCC/HnOrnmdAI4GHgIezvPeA9yfc58N3AgckZeNy48Xko6Qft5N9t1z9g17+Rs9ktcdlddft7Bs\nm/weQ/LjjwP3Af8ErgXG1HyOo/LnWEDaaaub95xEKsx+nv+OdwBvy8v+B/hFzfpnAmd0sx2+AHyg\nh8+3CqlAeSLfTgdWyct2AeYAXwSeyn+f/YG9gQdJPxROrMl9OfCznPtvwKbACfn5jwHvLaw/DTgC\neAvQAbya8y4gbePFbfDX+TmjgF8A84GHgWMKrzcImAj8nbQ9Xlb8e/XwHcwBdunib/CzbtbfFHgJ\nWLMw7ybgqHz/g8CfC8tWz3//ka3YH9Xj1vIAA/kG7AksBgb3st75pB3bDnljH5r/Sd+aH28FPAns\nn9cfmze8S/JG+Nb8j7N7Xj4p/+PtDawEnArc1s17r0vasR0KDAY+lB+/oZDtG73k/3H+pxyS/0H/\ns7DsQuDz+f65+Z/4vwvLPpfvvwPYLmcYS9rhHlt4nQCuz3lXBdYj7YwOzO/7ufxddxYYl5B+8XV+\nnzt2k30yMK3E3/KRwvd7A/CJwrJvAT/M9/cDZpF2foOBLwO31HyO3wBrk37lzwf27OY9J5F2lp2f\n8QukneMQYCTpx8Xaed3BpJ3xO/qyHQJfA24D3ggMB24Bvp6X7ZKf/5X83p/IuS8G1gS2IBWiG9Vs\nf3vkXBfm3F8qPP/hwntPK/zdPgrc3MX/xzcKjwcBt+c8KwMbA/8A9sjLP5s/y4akgvBHwCUl/sbd\nFRgLSYXiPeRtNy87ALivZv2zgLPy/bVyzgmk/8PPkH4EdvkDoQq3lgcYyDfyYW7NvFtIv5wWATvn\neecDF/byWqcD38v3x+Ydz2aF5acBP873JwG/LyzbHFjUzeseSuFXUJ53K/DRQrZuCwxgNdJRUGdh\n9iPgqsLyw4Ep+f59pF+Sl+bHs4G3d/O6xwJXFh4HsGvh8X9RKAQB5X/4zh3PhaQCqrcjh/M68+TH\n6+a/z0KgozD/EZYWGEcANxTe97HC3/Ia4PDC8wYBL5KPMvLn2LGw/DJgYjfZJtV8xkGkX/c7Fd7r\nE/n++0hVh129zodrt8Mu1vk7sHfh8R7AI/n+Lnl7XSk/XjN/jgmF9W8vbAOTgOsLy95POjqofX5n\nYTeN5SswJgCP1qxzAvDTwna2W2HZSFLB29sPt64KjM1JRzMrkY7E5wIfKvzv3Faz/snA+YVt48T8\n3otJR6Hv7ClDu9/chtFYzwDrFevcI+JdEbF2Xlb8/h8rPlHShNyYNl/SQlI1xno1r198zmzSht2p\nWB/7IjC0m7r/Ufm5RbOBDbr/WMs4gPTP8Nv8+CJgr856XFK10E6SRpL+6S4DdpA0llRVMhNA0qaS\nfiNpnqTnSHXtPX3eUcXHkf5Di8u/SPqH/XM+w+nj3eR/hrRD6XydZ/Pf5x2kX6dd+QWwff5MOwNL\ngD/mZWOAMyQtkLSA9MtULPt91v5t1ujmfaj5jEtIO7XOv/MFpB8l5On/9fAZ1+ul7ad2O6jdnp6J\niFfz/UV5+mRh+SKW/Ry1y57u4vk9fe6ejAFGdX7H+Xs+kdQ207n8ysKy+0jVXCO6frnuRcS9EfFE\nRLwaEbeQ2rYOzItfIB1FFA0jHflC+rH0cdIR2Mqkv9FvJI2iolxgNNatpDrO/UqsGzWPLwamAG+K\niGHAD0k7nqI3Fe6PJtU9L68nSP9gRaOBx0s+/zDSP/6jkuaR6q6HAIcARMQs0k7xM8BNEfEcaYd5\nJOmX5JL8Oj8gtUdsEhFrkXYAtZ+3+B3NpfD5c8P7a48jYl5EfCIiRgGfBM6RNK6L/FOBd0rasOTn\nJSL+CVxHqqM+hHSE0pntMeCTEbF24bZq3tn0RfEzDiJVs3T+nX8FbCVpS9IRxkXdvEbndrh/D+9T\nux30dXvqr9r/g67mPUaq0ip+x2tGxN6F5XvVLB8aEWW36d7ydW6X9wAbS1qzsPxteT7A1qQ2lwcj\nYklE/I603b6rDjlawgVGA0XEAuCrpJ3VgZLWlDRI0taktoeerAk8GxEdkrYl74Br/K+k1SRtAXyM\n1Di6vH4LbJpPuRws6YOkw/Df9PZESRsAu5F2Vlvn29uAb7Ls2VI3Ap/OU0hVEMXHkD7vc8ALkjYD\n/ruXt78a2ELSf+RfzseQzkLrzPaBQiHwT9I/+pLaF4mI64A/AL/KR3UrSxpCak/pycX5Mx6Y73f6\nIXBC/psgaZikD/TyWj15R+EzHkva8d+Ws3eQGsUvJlUrPtrVC0TEQlJ9//cl7Z+3mSGS9pJ0Wl7t\nEuDLkoZLWi+v34o+IE8CG0pauWbexoXHfwael3S8pFUlrSRpS0nvzMt/CJwsaQxA/kzd/miTtIqk\nofnhypKGdp7yLmk/Seso2ZbUPnIVQEQ8SDpCPik/5z9I7Ym/yK/1F2AfSRvn57+H1FB+d1+/nJZr\ndZ3YinAj1SH/mfRLez4wnfQLe+W8/Hxq2glIO6LZpMPb35DOAvpZXjaWZc+Smgd8sfDcSRTO7Cis\n32UdLrAjqQ56YZ4W69hfl62wbCJwexfzR5HqbbfMjz+Z339Mfvw+Xl8HvjPpCOMFUvXO1yjUZef1\nx9W8z56ks3S6OkvqNNJR0guk+vkje/j7rJy/s4fy32gOqX2geCbPIxTOEiM1vD8P3NPF6x1KOjOo\n8wy3n3T3OXr5fiex7FlSd1LT5pP/dgF8rOR2OIPUWD6PVOh2nhE3lHSW1dx8OxMYmpftAswpvM7g\n/J5jC/NuBj7Szfa3O7k9pOb5G+bH0wp/t5VzrmdJ1VgAm5B2zAtYelbdKFIhN4/0g+A2lrYxDQKO\nAx7I39vfgVN6+F4eyXmKt7F52SWkKr0XSNvnMTXPHZvzL8rvV9xGRNqOH8057gMObdV+qB435Q9m\nFZLr/x8mnca5uLVprJUkjSbtyNaPVN1n1jCukjKrqNymcRypDcWFhTVc0woMST9RGhbj7sK8b+Xu\n9HdJulLS2oVlJ0iapTRcwx7NymlWBZJWJ1V5vQc4qcVxbAXRtCopSTuT6gEvjIgt87z3ks5nXyzp\nmwARcbykzUl1h9uS6ip/D2waS0/LMzOzJmvaEUZE3ERqyCrOu65QB9/ZMxPSaaiXRsRLEfEwqefs\nts3KamZmr1fvQdz64+MsPS10A/Kpg9kcuulIJulI0tlCrL766u/YbLPNGpnRzGzAuf3225+OiOG9\nrdcWBYakL5F6C3fX8ahbEXEuaQgIxo8fHzNmzKhzOjOzgU1S7WgPXWp5gSHpo6Tz8neLpQ0qj7Ns\nL+YNKd/z2MzMGqClp9VK2pM05s++EfFiYdEU4ODcA3MjUsedP7cio5mZJU07wpB0CanH6HqS5pBO\nBTyBNMDb9bkn/m0RcVRE3CPpMuBeUlXV0T5DysystQZUT2+3YZiZLT9Jt0fE+N7Wc09vMzMrxQWG\nmZmV4gLDzMxKcYFhZmaluMAwM7NSXGCYmVkpLjDMzKyUUgWGpIPyUOSdj78iaY6kayWNbFw8MzNr\nF2WPMCZ13pH0duBE0jV/hwDfqX8sMzNrN2WHBhlDusA5wAGkC7GfJuk64NqGJDMzs7ZS9gijA1gz\n39+NdAU8gIWF+WZmNoCVPcL4I/AdSTcD44ED8/xNgccaEczMzNpL2SOMTwMvkwqKoyLiiTx/L1wl\nZWa2Qih1hBERc4D3dzH/2LonMjOztuR+GGZmVkq3RxiSlgClLpYRESvVLZGZmbWlnqqkDmJpgTEC\n+BpwJXBrnrc9sD/pynlmZjbAdVtgRMQVnfclTQFOiIj/V1jlJ5L+TCo0zmlcRDMzawdl2zB2Bf7Q\nxfw/kK7TbTYgXDx9NtudOpWLp89udRSztlO2wHiapX0vig4E5tcvjllrnXnDLOYt7OCsG2a1OopZ\n2ynbce8rwE8lvZulbRjbAbsDhzcimFkrHLPrOM66YRaf2XVcq6OYtZ2y/TAulPQAcAywb559H7BD\nRExvVDizZjtkwhgOmTCm1THM2lLZIwxywfDhBmYxM7M2VrrAAJA0CngjNW0fEXFHPUOZmVn7KVVg\nSNoG+BmwGaCaxQG4456Z2QBX9gjjXNKotJ8AnqBkD3AzMxs4yhYYmwPbRMSDjQxjZmbtq2w/jL8B\n6/fnjST9RNJTku4uzFtX0vWSHsrTdQrLTpA0S9IDkvboz3ubmVn/lS0wTgROk7S7pBF5R//areRr\nnA/sWTNvIjA1IjYBpubHSNocOBjYIj/nHEluJzEza6GyVVKdl2S9jmXbL0TJRu+IuEnS2JrZ+7F0\naJELgGnA8Xn+pRHxEvCwpFnAtiztNGhmZk1WtsB4d4Pef0REzM3355FGxQXYALitsN6cPM/MzFqk\nbE/vGxsdJCJC0nKffSXpSOBIgNGjR9c9l5mZJX3puDcaWLk4PyJu6uP7PylpZETMlTQSeCrPfxx4\nU2G9DfO814mIc0mn/TJ+/Hif7mtm1iBlO+6NAi4Gdia1WXS2XXTqa4P0FOAwYHKeXlWYf7Gk7wKj\ngE2AP/fxPczMrA7KniV1OvAqqT/Gi8BOwAdIAxDWnvnUJUmXkBqt3yxpjqTDSQXFeyQ9RBr5djJA\nRNwDXAbcC/wOODoiXi37oczMrP7KVkn9O7BPRNyf2xnmR8SfJL0EfB24vrcXiIgPdbNot27WPxk4\nuWQ+MzNrsLJHGKuSLqIE8CxpAEJIRwBb1TuUmZm1n7IFxv2kgQcBZgJHSRoDHE03jdFmZjawlK2S\nOoOlQ4N8jdSu8CHgJVJjtZmZDXBl+2FcVLh/R+6xvRnwaEQ83d3zzMxs4ChbJbWMiHgReA54ob5x\nzMysXZUqMCSdIumwfF+SrgceBOZKmtDIgGZm1h7KHmF8GHgg398L2BrYDriQ3HfCzMwGtrKN3iNI\nAwAC7A1cFhF/lvQsMKMhyczMrK2UPcJ4BhiT77+XdO0KSAVO7TW+zcxsACp7hPEL0thODwLrAtfm\n+VsDsxoRzMzM2kvZAuM4YDZppNovRsS/8vyRwA8aEczMzNpL2X4Yi4HvdDH/e3VPZGZmbans8OZv\n72l5RNxRnzhmZtauylZJzWDpdTA61eN6GGZmVhFlC4yNah4PAbYBvgScUNdEZmbWlsq2YczuYvYs\nSQuBk4Br6prKzMzaTp/Gkip4mHRqrZmZDXBlG73XrZ1FOqV2EkuHDDEzswGsbBvG0yzbyA2p0HgM\n+GBdE5mZWVsqW2C8u+bxEmA+MCv30TAzswGubKP3jY0OYmZm7a3sEQaSRpCu4b05qXrqXuCciHiy\nQdnMzKyNlL2A0g6kQQYPARYBHaRrZDwkafvGxTMzs3ZR9gjj28AlwFERsQRA0iDgh6Qxpt7VmHhm\nZtYuyhYYWwMf7SwsACJiiaTvAnc2JJmZmbWVsh33FvL64UHI8xbUL46ZmbWrskcYlwI/lvRF4JY8\nbwfgm6SqKjMzG+DKFhhfJHXU+0nhOa+QLp40sQG5zMyszZSqkoqIlyPis8A6pPaMrYF1I+JzEfFy\nf0NI+pykeyTdLekSSUMlrSvpekkP5ek6/X0fMzPru+UafDAiXoyIv+Xbi/UIIGkD4BhgfERsSbq2\nxsGkI5epEbEJMBUfyZiZtVTZfhhDJR0v6TpJMyXdVbzVIcdgYFVJg4HVgCeA/YAL8vILgP3r8D4D\nwsXTZ7PdqVO5eHpXo86bmTVG2TaMc4ADgMtJjd61AxH2WUQ8LunbwKOkToHXRcR1kkZExNy82jxg\nRFfPl3QkcCTA6NGj6xWrrZ15wyzmLezgrBtmcciEMa2OY2YriLIFxv7AByLi9/UOkNsm9mPpKbqX\nS/pIcZ2ICEldFlIRcS5wLsD48ePrVpC1s2N2HcdZN8ziM7uOa3UUM1uBlC0wXiQNZd4IuwMPR8R8\nAEm/JPUcf1LSyIiYK2kk8FSD3r9yDpkwxkcWZtZ0ZRu9TwOOk6QGZHgU2E7Savn1dwPuA6YAh+V1\nDgOuasB7m5lZSd0eYUiaUjNrZ2BPSfeS+mC8JiL27WuAiJgu6QrgDmAxaaiRc4E1gMskHQ7MBg7q\n63uYmVn/9VQl9UzN4ysbFSIiTgJOqpn9Eulow8zM2kC3BUZEfEzSaGBOcdBBMzNbMfXWhvEwsF4z\ngpiZWXvrrcBoRCO3mZlV0HINDWJmZiuuMv0wviDphZ5WiIiv1SmPmZm1qTIFxvtJp7t2JwAXGGZm\nA1yZAuPfI8K9rM3MVnC9tWGsEGMzmZlZ73yWlJmZldJbgfFVoMcGbzMzWzH02IYREV9tVhAzM2tv\n7odhZmaluMAwM7NSXGCYmVkpLjDMzKyUUpdolTQU+Czp+hRvpKagiYit6h/NzMzaSdlrep8DHABc\nDtyCO/SZma1wyhYY+wMfiIjfNzKMmZm1r7JtGC8CjzUyiJmZtbeyBcZpwHGSPFSImdkKqmyV1HuA\nnYA9Jd0LvFJcGBH71juYmZm1l7IFxtPAlY0MYmZm7a1UgRERH2t0EDMza2/uuGdmZqX0eIQhaUqZ\nF3EbhpnZwNdbldQzTUlhZmZtr7frYbjtwszMgDZpw5C0tqQrJN0v6T5J20taV9L1kh7K03VandPM\nbEXWFgUGcAbwu4jYDHgbcB8wEZgaEZsAU/NjMzNrkZYXGJKGATsDPwaIiJcjYgGwH3BBXu0C0nhW\nBlw8fTbbnTqVi6fPbnWUUqqU11kbp0p5q5QVmpe35QUGsBEwH/ippDslnSdpdWBERMzN68wDRnT1\nZElHSpohacb8+fObFLm1zrxhFvMWdnDWDbNaHaWUKuV11sapUt4qZYXm5S1VYEga3dU4UkpG9zPD\nYODtwA8iYhvgX9RUP0VE0M2Q6hFxbkSMj4jxw4cP72eUajhm13GMHDaUz+w6rtVRSqlSXmdtnCrl\nrVJWaF5epX1xLytJrwIjI+KpmvlvAJ6KiJX6HEBaH7gtIsbmxzuRCoxxwC4RMVfSSGBaRLy5p9ca\nP358zJgxo69RzMxWSJJuj4jxva1XtkpKdP0Lfw2gY3mC1YqIecBjkjoLg92Ae4EpwGF53mHAVf15\nHzMz65/eenqfme8GcKqkFwuLVwK2BWbWIcdngIskrQz8A/gYqTC7TNLhwGzgoDq8j5mZ9VFvPb3f\nmqcC3gK8XFj2MnAH8O3+hoiImUBXh0O79fe1zcysPnqskoqId0fEu0mnte7V+Tjf9oiIT0bEQ82J\nalVVpVMUq5T12EvvZOMTrubYS+9sdZRSqpS3SlmheXlLtWFExMci4rmGJrEBq0qnKFYp65S/PsGS\nSNMqqFLeKmWF5uUte1rtUEnHS7pO0kxJdxVvDU1or1OlX8EA2220LoMEEzZat9VRelWlrFttMGyZ\naburUt593zaKQUrTKmjWd1v2invnAAcAlwO30E2fCGuO4q/gQyaMaXWcXt328LMsCZj+8LOtjtKr\nKmWd9/xLADyZp+2uSnlPP3gbTj94m1bHKK1Z323Z02r3Bz4QEUdGxKSI+Grx1siA9nruVNQ4zto4\nVctbJe3WcW8OsFtEPNDQNP3kjntmZsuv3h33TgOO62p4ELPeVK3Nxcy6VrYN4z3ATsCeku4FXiku\n9CVarSdVa3Mxs66VPcJ4GrgSuIE0cuwzNTezblWp7rpK599XKStUK+/+Z9/M2IlXs//ZN7c6SinN\nylvqCMOXarX+OGTCmMocWfxq5hOvTdv9LJmrZj5B5Gm7Z4Vqfbcz5yxcZtrumpW3Ha6HYdY2hg4Z\ntMy0na0yWMtM212VvtshK2mZabtrVt6yHff+VttZzx33rKwqNXrvucX6DFKatrs9txyZsm45stVR\nStlsxJrLTNvZFiPXWmba7vZ5a9oW9nlrY7eFso3eV9Q8HgJsDewAfL+uiWzAqVKjd5U67lUpK8Bd\njy9cZtrOqpQVmrctlB1L6qs1ty9HxPuAU4C1G5rQKq9Kjd7O2jhVGm6jSlmhzTrudftk6d+AGRGx\nTv0i9V1/Ou5dPH02Z94wi2N2Hdf2v4LNzOqp3h33urMz8GKva1VAlUYp9Sl/jbPj5KmMnXg1O06e\n2uoovapSVqhW3iq1u0Hz8pZt9J5Sc/u1pBnAecCPGpqwSap0eO9T/hpnzoKOZabtrEpZoVp5q/QD\nEpqXt2yjd23nvCXAPcCJEXFdfSO1RpX6Cmy94TBmzlnI1hu2/zDRAGuvOpgFixaz9qplN7fWWXWw\nWLQ4WLUCp6oOFiyONK2CKuXtzFiRs2pZf81VmLewgxFrrtLQ93HHvaxKbRi/+vSOrY6wXBYsWrzM\ntJ11LI5lpu2sM2IFogLVyluloyFo0457kjaW9D5J+0jauFGhWqFqh6DWGFXqDNcZsQJRgerltdcr\n24axlqTLgVnAr4CrgIckXSap/XvhlFClNoyq6aw6q0IVmmqm7axqvZGrpErbQTOVrVQ+A9gKeDfp\ninuQOu39EDgdOLz+0ZqrSm0YVVOlK60tyvUliypQb1KlrFCtKqmomVpStkpqX+CIiLgxIl7Jt2nA\nkaSr8VkTVWnUT6jWdbI7G7ur0OjtX8GNU7Xvtll5yxYYq9L1MObPAkPrF8fKmPLXJ1gSaVoFVRrC\nYtjq6SyTtVdv7Nkm9eBfwY3Team4qlwyrll5yxYYfwK+Lmm1zhmSVge+ytIqKmsSD1vQOFXKWqW2\nIahW3qr9jzUrb9lrem8JXAusBnSOTvtWUi/vPSLinoYlXA6+preZ2fIrOzRI2X4Yd0vaBPgwsFme\n/X/ARRGxqO8xrS+q1GcE0pAQcxZ0sOHaQ7l54m6tjtMjZ22cKuWtUlZo3j6hdD+MiHgxIv5fRHw+\n386rZ2EhaSVJd0r6TX68rqTrJT2Up20xwGE7qFqfkSp1gnLWxqlS3iplhebtE0oXGJJGSPoPSUdJ\n+lTxVqcsnwXuKzyeCEyNiE2AqfmxUa16doAN1x66zLSdOWvjVClv1ToZNmsok1JVUpI+QhpoUMA/\nWfbEjADO6U8ISRsC+wAnA8fl2fsBu+T7FwDTgOP78z4Dxdd/fQ+LFgdf//U9laiSmrewY5lpO3s8\n/6J8vAK/LKuUFaqVt0p9RqB5R0RljzBOBk4DVo+I9SNiZOFWj2b504EvkgY17DQiIubm+/OAEV09\nUdKRkmZImjF//vw6RGl/7rDVOFU6VbVKWaF6ee31yhYYawHnR0TdR4+T9D7gqYi4vbt1Ip3K1eV2\nFhHnRsT4iBg/fPjwPueo0vj3VepcBtU6vK9Sh60qZa2aKlWfNVPZoUEuIlUZndWADDsA+0ram9QJ\ncC1JPwOelDQyIuZKGgk81YD3fk2Vrjt93zf2bnWE5TLr1H1aHaG0hyc7a6OsP2wo8xZ2MHJY+++E\nO4+GX63I4VCzvtuyBcZxwK8k7Qb8DXiluDAivtbXABFxAnACgKRdgC9ExEckfQs4DJicp1f19T3K\nOGbXcZx1w6zKNCSbjZ149Wv3H6lA4dHZhjW3Am1ZVcoKzctbtsD4JLAn8DQwjtc3eve5wOjBZOAy\nSYcDs4GDGvAer/Hgg2ZmPStbYPwv8PmI+F4jw+QBDafl+88A7d9jxsxsBVF2aJBngG0j4u+Nj9R3\nK8rQIFXr6W1m7a3s0CBlz5L6KWlYEGsDk6+5n3kLO/jmNfe3OkopVToDzVkbp0p5d5w8lbETr2bH\nyVNbHaWU/c++mbETr2b/s29u6PuULTBWA46T9CdJP5B0ZvHWyID2es91pLObF3a0/zWyAU688m7m\nLezgxCvvbnWUXjlr41Qpb9WGBmnWNb3LtmG8Bei8Ws9mPa1YVa7mMTPrWdnRat/d6CCtVqV+GGuv\nOpgFixaz9qply3szs/7r1x4n95s4IiI+Up84rVOlfhgzT9qj1RGWS5U6bFWhP4NZqyx3gSFpfeBj\nwMeBjYDGtrI0ifthNE6VCmMz617Z02oHAe8DjgD2IjWWfxU4NyLmNTThclhRTqs1Myvqb6//upxW\nK2mcpMnAHOB7wB3A5qRRZa9op8LCzNpblU6rrVLWZurttNp7gfWAgyLi3yJiUkQ81IRcZjbAVOlK\nkVXKCjA0DwU9tMFDQvdWYNxHqoLaT9JWDU1iA5Z/rRlU60qRVRt8sCMPr9vR4IvO9NjoHRFvk/RO\n4HDgJkmPAv/XubihyaxbVRultLOj1olX3t32JxZU6butUlao1nZgXeu1p3dE/CUijgJGAd8F9gVW\nAn4s6eh79KaPAAARVklEQVR8rQozMxvgyg4NQkS8GBHnR8ROpJ7ffyKNYvtYo8KZmVn76FPHvYh4\nAPgfSScA769vJOtNFaofiqrUca9KWc2ardsCQ9Lokq/R7bW4zaBaDYhVymrWbD0dYTxC+Ybtlfof\nxczM2llPBcY7C/c3BU4DfgjcmudtT7p06/GNiWYDhUi/PBp7hviKx9+rNVvZoUFuBM6KiCtq5h8I\nfDY3hLechwZpTx463qyxmjU0SNlG722Bu7qYfxfwjuUJZv1XtR1wlc6/r1LfhiplhWrlrVLWZip7\nWu0jwKe6mP8pYEB0361Sb+SqDVtgZgND2QLjc8AnJd0v6fx8u4/UhnFc4+I1T5V2wlUaYsHMBo5S\nBUZE/A7YBPglsFa+/RLYNCKuaVy85qnSTvjEK+9mbkWujWxmA0evbRiShgAnA9+PiBMbH6l1PDiW\nmVn3yowl9QqprWJAn71XpSopM7NWKNuGcS2wayODtFqVqqTWz8NWVGX4iirlrVJWs2Yre1rtVOCU\nfE2M24F/FRdGxC/rHazZqnRN76pdI7tKeauU1azZyhYYZ+fpMV0sC/oxNIikNwEXAiPya50bEWdI\nWhf4OTCWdFrvQRHxz76+z0BTpfaWKhXGVcpatf4BVctrr1eqwIiI0sOg98Fi4PMRcYekNYHbJV0P\nfBSYGhGTJU0EJuJhSACYfM39PNexmMnX3F+JndvWX72WBYsWs/aqg5l50h6tjtOjKnXYqlJWqF5e\ne71GFgSlRMTciLgj33+edFnYDYD9gAvyahcA+7cmYfuqylkICxYtXmZqZtVU+noYktYhXd97NLBy\ncVlEfK0eYSSNBbYBpgMjImJuXjSPVGVlwHMdace7sMM7YDNrnlIFhqTtgKuBl4DhwOPAyPz4EaDf\nBYakNYBfAMdGxHPS0t/PERGSuqy2l3QkcCTA6NFlL+FhZmbLq2yV1LeAi0hVRR2kU2xHAzOAb/Y3\nRO4c+AvgosIZV092Xi88T5/q6rkRcW5EjI+I8cOHD+9vFDMz60bZAmMr4OxIY6G/CqwSEU+SGqEn\n9SeA0qHEj4H7IuK7hUVTgMPy/cOAq/rzPgPJKQdsyfrDhnLKAVu2OoqZrUDKFhgvF+4/CXSemvMC\nMKqfGXYADgV2lTQz3/YGJgPvkfQQsHt+bKSzpOYt7GDyNfe3OoqZrUDKNnrfQboC34PANOAbkkYA\nH6Hr62SUFhE30/0JP7v157UHuqqcJWVmA0PZI4wvAU/k+18G5gNnAeuQG5yteSbutRkjhw3l+L02\na3UUM1uBlO24N6Nwfz7p9FproSr19DazgaHUEYakQzrPWLLW88i6ZtYKZdswJgMbSPo7qQ1jGjAt\nIp7o6UnWGPMWdgAwN0/NzJqh7BX3RgNvBk4DViUVII9JelDSjxqYz8zM2kTpsaQiYlZEnEcaFPCD\npPGdxgJHNCSZmZm1lbJDg2wL7AK8m9Rv4mngRuATpOopayKP9GlmrVC2DeM20qm03wY+GRGPNi6S\nmZm1o7IFxinAvwNfBw6T9AeWNnw/06Bs1g1fV8DMWqFso/eXI2InUke9zwIL8vRxSX9tYD4zM2sT\ny3sBpbWA9YA3AuuTrouxXr1DmZlZ+ynbce8Hku4lDQ/yPVLB8R3gLRGxQQPzWRcGadmpmVkzlG3D\nWBs4g9Rm8UAD81gJo4YNZc6CDkYNG9rqKGa2Aik7ltSHulsmafeI+H39Illvnsg9vJ9wT28za6Ll\nbcMAQNIGkr4s6R/AtXXOZL3Y922jGKQ0NTNrFqWL6JVYUVoJ2A84HHgv6ToYPwcuj4iHG5ZwOYwf\nPz5mzJjR+4pmZj24ePpszrxhFsfsOo5DJozp/Qkt1t+8km6PiPG9rdfrEYakN0v6FqnB+9vAnXnR\noRFxWrsUFiuSi6fPZrtTp3Lx9NmtjlJKlfI6a+NUKW/VRoRuVt4eCwxJfyT18l4HOCgiNo6ILzc0\nkfXKG3PjOGvjVCnvdhutyyDBhI3WbXWUUo7ZdRwjhw3lM7uOa+j79HaEsT1wIfC9iLixoUmstGZt\nHPVSpbxV2lFU6XuFan23tz38LEsCpj/8bKujlHLIhDHcesJuDa8+6+0sqXeSRqO9WdIjpMLjkoYm\nsl4dMmFMJepVO1Upb9V2FFW68mKVvttjdh3HWTfMqkxh3Cw9HmFExJ0RcTQwEvgusC/wWH7ePpLW\naXxEs+ap0q/2ydfcz7yFHUy+5v5WRymlSt9ts36xV03ps6Ree4I0jnTU8V/AG4AbIqItrvHts6Rs\nRbLVpGt5rmMxw4YO5q+T9mh1HKuwup0lVStfSGki8CbgIODlPuQzs36auNdmjBw2lOP32qzVUUqp\n0llS1rXlPsJoZz7CMGtf2506lXkLOxg5bCi3nrBbq+P06NhL72TKX59g37eN4vSDt2l1nIZr2BGG\nmVlfVKkNY8pfn2BJpKkt5QLDrKKqWMVTlfqMrTYYtszUEhcYZhVVpY5wUK28855/CYAn89QSFxhm\nFVWlKh6oVt4qZYXmHW2WvR5Gy0jak3QtjpWA8yJicosj2QBWpUHnqtQhslNVqqSq9t0Wj94ambut\njzDyCLnfB/YCNgc+JGnz1qaygaxK1SZVU6Xvdv+zb2bsxKvZ/+ybWx2llGYNu9LWBQawLTArIv4R\nES8Dl5KGWDdriKpVRVRJlcaSmjln4TLTdtesYVfauh+GpAOBPSPiiPz4UGBCRHy6sM6RwJH54ZuB\n/lxCdj3g6X48v5mqlBWqlddZG2DI8I22WvLSC0MGrbLGK6/Mf/iuVufpyZA3vGmzJa90rD5oyNB/\nvfLMY20/9sqg1dZeTyuttGG8+uqcJS8u6Mv2MCYihve2Utu3YfQmIs4Fzq3Ha0maUabzSjuoUlao\nVl5nbRxJMxbHU5XIm7JW67tt9LbQ7lVSj5OGIOm0YZ5nZmZN1u4Fxl+ATSRtJGll4GBgSoszmZmt\nkNq6SioiFkv6NHAt6bTan0TEPQ18y7pUbTVJlbJCtfI6a+NUKW+VskIT8rZ1o7eZmbWPdq+SMjOz\nNuECw8zMShnQBYakN0n6g6R7Jd0j6bN5/rqSrpf0UJ6uU3jOCZJmSXpA0h6F+R+UdFd+nW+2Oquk\nN+T1X5B0ds1rvUPS3/LnOFOS2jzvyZIek/RCvXPWM6uk1SRdLen+/Dp1H6amzt/r7yT9Nb/OD/PI\nCW2bt/CaUyTd3c5ZJU3L+4iZ+fbGNs+7sqRzJT2Yt9//7FOoiBiwN9K1yN+e768JPEgaYuQ0YGKe\nPxH4Zr6/OfBXYBVgI+DvpMb2NwCPAsPzehcAu7U46+rAjsBRwNk1r/VnYDtAwDXAXm3w3faUd7v8\nei+0yXbQZVZgNeDd+f7KwB/r/d3W+XtdK08F/AI4uF2/28Lr/QdwMXB3O2cFpgHjG7G9NijvV4Fv\n5PuDgPX6lKmRH7jdbsBVwHtIvcFHFv4oD+T7JwAnFNa/FtgeeCcwtTD/UOCcVmYtrPfRmp3aSOD+\nwuMPAT9q9XfbXd6aZQ0pMBqRNS8/A/hEu2cFhgC/Bj7Yzt8tsAZwc94p1r3AqHPWaTS4wKhz3seA\n1fubYUBXSRVJGgtsA0wHRkTE3LxoHjAi39+A9MV2mpPnzQLeLGmspMHA/izbobAVWbuzASl3p87P\n0DD9zNtU9coqaW3g/cDUOkcsvsdY+plV0rXAU8DzwBX1T7nMe42lf3m/DnwHeLER+YrqtB1ckKuj\n/rcR1b5F/cmbt1WAr0u6Q9Llkvr0f7lCFBiS1iAdkh8bEc8Vl0Uqfns8tzgi/gn8N/BzUjXEI8Cr\n7Zi12aqUt15Z84+GS4AzI+IfdQ9K/bJGxB6kX6GrALvWO2en/uaVtDXwbxFxZaMyFt6rHt/thyNi\nC2CnfDu07kGzOuQdTBol45aIeDtwK/DtvmQZ8AWGpCGkL/uiiPhlnv2kpJF5+UjSLzDoYSiSiPh1\nREyIiO1Jh4QPtjhrdx7PuTs1bDiVOuVtijpnPRd4KCJOr3/S+n+vEdFBqs5oyEjPdcq7PTBe0iOk\naqlNJU1r06xEROd+4XlSm8u29c5ax7zPkI7aOp9/OfD2vuQZ0AVGPkz8MXBfRHy3sGgKcFi+fxjp\nn6lz/sGSVpG0EbAJqQGZzrMg8hkJnwLOa3HWLuVD1eckbZdf8796e04r8zZDPbNK+gYwDDi23jnz\n69clq6Q1CjuVwcA+QN1HXa3jdvuDiBgVEWNJDbcPRsQu7ZhV0mBJ6+X7Q4D3AY04q6te322Q2rB2\nybN2A+7tU6hmNto0+0ba8AK4C5iZb3uTznqaCjwE/B5Yt/CcL5HOjnqAwhkwpCqIe/OtEWeb9CXr\nI8CzwAuktorN8/zxpA3478DZ5B79bZz3tPx4SZ5OasespKO1AO4rvM4RbZp1BGkstrvytnAWMLid\nt4PC8rE05iypen23qwO359e5h3xF0HbNm+ePAW7KrzUVGN2XTB4axMzMShnQVVJmZlY/LjDMzKwU\nFxhmZlaKCwwzMyvFBYaZmZXiAsMGFEkflRTd3HbPt5C0Y4vyzZF0Xr5/uqQOSW/pYr235GXfan5K\ns6619SVazfrhAyw7phYs7ay0Pen8+VY7kTQe1XmSdoqIJQCSBpE6bD0KfKWF+cyW4QLDBqqZETGr\nm2W3NTVJNyLiRUlHkDpSfYrUyRLgaNKQ7ztHxKJmZMm9igdHxCvNeD+rJldJ2QqlqyopSXtJulXS\nwnzxmfslfanmedtIukrSs5IW5XWOLyzfU9I1kuZJelHS3ZKOVS8XLYqIP5DGpjpV0mhJY4BTgO9H\nxM01Gd4r6cac8XlJv5H05pp13i/p2pzjX0oX0jo6H7UU13ta6aJKR0t6CHiFpUNHmHXJRxg2UK2U\nx1DqFBHxuhGGJW1CGovnUtJFZl4hjSE2prDO9sANpOFiPksazHFT0jARnTbO65xNGujtncA3gPWA\nL/eS9X9IQz78KD9+mnRhnGLOg3LGy0nXOBlCGsbmJklbRcSThRzXkYar6AAmkEYmXSfnKXo/adC8\nL5GGk3iol5y2oqv3+Ce++dbKG+niMdHF7ea8fPf8eMf8+OD8uNuLywC3ALOBVUtmEOnH2Emknb8K\ny+YA53XxnD0LWXevWbYSqZCaUjN/PeA58pXUeshxKvB4zbKngYXAOq3+m/lWnZuPMGygOoBlG72f\n72a9O4HFwM8l/RS4KSLmdy6UtCapPeGU6KE9QdIo0hHKHsAo0k6+0xtIO+huRcTvJP0FWBwRv69Z\nvFV+zc/VHDUtIA2Ct3Mhx5uAr5EKxpHFHJLWiIjiddNvjHStF7NSXGDYQHV3dN/o/ZqIeEDSnsAX\ngZ8Bq0iaDnwxIv4IrEv6pV57xtVrcjvFb4DhpELjflJ10H+SqpaGlsz8MqnwqvXGPP15N8+7N+cY\nAvyWdKnTk0jXbOkgVWEdl3MUC4y5mC0HFxi2wouIqcBUSUOBHUiXCv1tboB+llRN1NNlbjclXT7z\nQxFxaedMSQfUKeIzeXos8Kculnce+WyZbwdExK8KOT7Uzet6qGpbLi4wzLJIV6abKmkY6SpnYyLi\nTkm3AodKOjmvU2u1PH3tlFRJKwOH1CnaTOBJYLOIOKOH9brKsSrwwTrlsBWcCwxboUk6mtSR73fA\nY6RqpRNJVVCdHf0+D/wBuEXSd0kN0P8GvDUiPkvqBDgHmCwpSBeCOo46Xfc9IhZL+gxwidL1nX8J\n/BNYn3SRnXsi4gekgmUe8O1cPTUI+AKpWsqs39wPw1Z0M4G1gMmk01HPIp1eultEvAQQEbeRdsxz\nge+T2gk+TypgOo9M9iNdW/ln+TVuAOo2rEdEXE66tOZw4KekAu5U0umyf8nr/CvnWEi6zvTpwNXA\nmfXKYSs2X3HPzMxK8RGGmZmV4gLDzMxKcYFhZmaluMAwM7NSXGCYmVkpLjDMzKwUFxhmZlaKCwwz\nMyvl/wOc8/F6rNYacQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f1ad07b91d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot Settings\n", "data = mathFundingData\n", "\n", "xAxis = 'FiscalYear'\n", "yAxis = 'AwardAmount'\n", "\n", "yAxisRange = [0,120]\n", "yScalingFactor = 10**3\n", "yScalingFactorString = ' In Thousands'\n", "\n", "plotPointSizes = 3 \n", "\n", "title = 'Graph of Awards Given by Committee 1508'\n", "\n", "# Make the Plot\n", "axes = plt.gca()\n", "x = data[xAxis]\n", "plt.xlabel(xAxis, fontsize=16)\n", "\n", "y = data[yAxis]\n", "plt.ylabel(yAxis+yScalingFactorString, fontsize=14)\n", "axes.set_ylim(yAxisRange)\n", "y = y/yScalingFactor\n", "\n", "plt.title(title)\n", "\n", "plot = plt.scatter(x,y,s=plotPointSizes)\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAAEbCAYAAADtb/40AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHLRJREFUeJzt3XmYXFWBxuHfl40ghASkhYRIAgZEiSzSsoMxgmwu4KBG\n1ggYVxBlRsKiEzHDoLMhogKKAwwSQJBFBDdCdJDNzgCyQ5AAgQSaJRskYuDMH+cUuX1T1Xt1n0p/\n7/PUU/eeu51z762vbp3aFELAzMz636D+roCZmUUOZDOzTDiQzcwy4UA2M8uEA9nMLBMOZDOzTKx1\ngSxphqRLe2ldm0j6o6Rlkv6jN9ZZL5LmSDquTut+QNKkeqy7nW322nHMmaSbJB3d3/Xob/1xjuWo\n7oEsaYqkOyW9Iun5NPxFSar3tnvBNOAFYIMQwkm1ZkrhESTt0ndV6x2Shkn6pqRH0jF6JoXEhyrz\nhBC2DSHM6cdq9pikwyS1SFouaWFq4579Xa8QwgEhhItTHadKurU4XdJFkmbWY9vp2F8laX46fyeV\nps+Q9Pe0zyq3LQvTx0u6RdKrkh6WtE9p+eMlPSFpadr3Nfd3d88xSW+TNEvSs5KWSPpT+XGYjv2T\n6fy+VtJGhWmflHRbasMa25c0WNLMtP5lku6WNKqr9eysugaypJOA7wH/BmwKbAJ8HtgDGFZjmcH1\nrFMXjQMeDO18eyY9sRwFvJTu60rSkF5e5VXAx4h13xDYgnjMDurl7fQbSV8DzgbOJJ6DmwM/AD7a\nn/XKxK3AEcCiGtOvCCGsX7j9tTBtFnA38FbgNOAqSU0AKRTPAg4FRgIXAtfU4fG9PvBnYCdgI+Bi\n4FeS1k/12BY4HziSeOxfBX5YWP4l4rlxVo31fwvYHdgN2CCtZ2Uvt2G1EEJdbsSD8ArwDx3MdxHw\nI+DGNP8+xDC4G1gKPA3MKMw/HgjEq9dngYXAPxamzwCuBC4BlgEPAM3tbH934gFdku53L9Tr78Br\nwHJgnxrL7w2sAA4HXgSGFaY9CeyUhg9P9d42jR8LXJuGdwZuBxan9pxbWk8AvgQ8BjyRyvYFHk71\nPhf4A3BcmjYhjS8hXuFfUaPu+6S6j+3gGM1P845J829UmLZj2sbQNH4M8BDwMvAbYFypHZ9P7VhM\nDEXV2OYM4pPFFek4/h+wfZr2T8DVpfnPAb5X4zxcDnyinfatQ3xQPptuZwPrpGmTgAXA14Hn0/E5\nGDgQeJT4gD61VO+fA5emet8HbA2ckpZ/GvhQYf45wHHAu4gP9NdTfRcTz/HiOfjLtMwY4GqgFXgC\nOKGwvkHAdOBx4vl4ZfF4tbMPFgCTqhyDS2vMvzXwN2BEoeyPwOfT8KeAuwrT1kvHf3R751h3HsNV\n1rWU1Y+7M4HLCtPekfbniNIyxwFzSmUbpv3+js5uu6e3+q0Y9gdWAUM6mO8iYnDskU6m4elB8J40\nvh3wHHBwmn98OrCz0kF+TzoxiwdzZXrADAb+FbijxrY3IgbHkcAQ4NNp/K2Fus3soP4XppNnaHoA\n/ENh2iXASWn4gvQg+UJh2lfT8E7ArqkO44mBdmJhPQH4XarvusDG6UQ9NG33q2lfVwJ5FvGKpbI/\n96xR97PKJ2EnHiyzgc8Wpv0bcF4a/hgwjxguQ4DTgdtK7bgBGEW8Sm0F9q+xzRnEMKq08R+J4TMU\nGE188h6V5h1CDLudunMeAmcAdwBvA5qA24Bvp2mT0vLfTNv+bKr3ZcAIYFvik9QWpfNvv1SvS1K9\nTyss/0Rh23MKx20qcGuVx8fMwvggYG6qzzBgS+CvwH5p+ldSW8YSn2jOB2Z14hjXCuQlxCedB0jn\nbpp2CPBQaf7vA99Pwxukeu5CfBweT7zIqvUEXDzHKvuww8dwlfXskJYdmcavA04uzbOsfK5QPZD3\nJj4xnkx8BfEo8KXO1KO7t3oG8hHAolLZbamBK4C9CyfcJR2s62zgv9LweOIDe5vC9O8CFxYO5u8L\n094NrKix3iMpPIunstuBqdUeDFWWfwvx2bjyZHE+cF1h+rHA9Wn4oXTQL0/jTwLvrbHeE4FrCuMB\nmFwYP6p4ggJKD6jKA/sS4hNAR1e+P6nUJ41vlI7PEmBljQfLccDswnafLhzLm4BjC8sNIr5EHFdo\nx56F6VcC02vUbUapjYOIV6d7Fbb12TT8YWLXUrX1HF4+D6vM8zhwYGF8P2B+Gp6UztfBaXxEascu\nhfnnFs6BGcDvCtM+QrzKKi9feTKZQ9cCeRfgqdI8pwD/XTjPPliYNpr4xNbRhVG1QH438Wp8MPGV\n5ELg04XHzh2l+f8FuKhwbpyatr2K+Crqfe1sv3iOzaCTj+HSOjYgviI5pVB2M+mqvVD2TJW2Vgvk\nw9KxupB4IbQd8cl4347q0t1bPfuQXwQ2LvZ5hhB2DyGMStOK2366uKCkXdKbBa2SlhBf5m5cWn9x\nmSeJJ05FsT/sVWB4jb7XMWnZoieBzWo3q41DiCfbjWn8Z8ABlX40YrfBXpJGE0/qK4E9JI0nvpS+\nB0DS1pJukLRI0lLiy6z22jumOB7i2VOc/nXiA+Ku9O71MTXq/yLxAVtZz0vp+OxEvLqq5mpgt9Sm\nvYE3gP9N08YB35O0WNJi4pWVaLs/y8dm/RrbodTGN4ihUTnOFxOf9En3/9NOGzfuoO+9fB6Uz6cX\nQwivp+EV6f65wvQVtG1HedoLVZZvr93tGQeMqezjtJ9PJfaPVqZfU5j2ELEbZJPqq6sthPBgCOHZ\nEMLrIYTbiO8tHJomLycGYNFI4tUnxIuRY4ivIIYRj9ENksbQOZ19DAMgaV3gl8QniX8tTOqonu2p\nHKszQggrQgh/AS4nXrnXRT0D+XZiH9PHOjFvKI1fBlwPvD2EMBI4j/jALnp7YXhzYt9fVz1LPIGL\nNic+g3bG0cQH1lOSFhH7DocSn1kJIcwjnkzHA38MISwlnmjTiFdCb6T1/IjYH7xVCGED4gOs3N7i\nPlpIof3pjcU3x0MIi0IInw0hjAE+B/xQ0oQq9b8ZeJ+ksZ1sLyGEl4HfEvsIDyNeYVfq9jTwuRDC\nqMJt3fRg7o5iGwcRX4ZXjvO1wHaSJhKvkH9WYx2V8/DgdrZTPg+6ez71VPlxUK3saWKXR3Efjwgh\nHFiYfkBp+vAQQmfP6Y7qVzkvHwC2lDSiMH37VA6x6+CXIYRHQwhvhBB+TTxvd++FerQhaR3i+bCA\neL4XPZDqVZn3HcQniEc7seq/pPviMah2jHpN3QI5hLCY+A7lDyUdKmmEpEGSdiD2/bZnBPBSCGGl\npJ1JAVfyDUlvSe+ifob45k9X3QhsnT4WM0TSp4gvj27oaEFJmwEfJIbBDum2PfAd2n7a4g/Al9M9\nxJeoxXGI7V0KLJe0DfCFDjb/K2BbSR9PVw0nED/FUqnbJwoh+zLxJHqjvJIQwm+BW4Br06uSYZKG\nEvuz23NZauOhabjiPOCUdEyQNFLSJzpYV3t2KrTxRGKw3pHqvpL4pt9lxG6np6qtIISwhNjf+gNJ\nB6dzZqikAyR9N802CzhdUpOkjdP8/fEZ6OeAsZKGlcq2LIzfBSyTdLKkddPHsiZKel+afh7wL5LG\nAaQ21bwokrSOpOFpdJik4ekJHkkfk7Shop2J/dPXAYQQHiW+wvvntMzHie/nXJ3W9WfgIElbpuX3\nJb4ReH93d06N+g8lngcrgKMLFzkVPwM+ImkvSesB3wZ+EUJYlpYfnNo/BBiU2jI0tfFx4qu/09J+\nehcwhU7kQ7fVqy+k0A9zOPEkepXY/3In8QpxWKjSR5bKDiW+bFyWGn8u6d1e1vyUxSLg64VlZ1B4\nZ7gwf9U+NGBPYh/gknRf7ONco26FadOBuVXKxxD7zSam8c+l7Y9L4x9mzT7IvYlXyMuJJ8AZFPoS\n0/wTStvZn/gsX+1TFt8lXuUvJ/aPTmvn+AxL++yxdIwWEPtni58EmE/hUybE/rRlwANV1ncksR+v\n8gmZn9ZqRwf7dwZtP2VxN6U+93TsAvCZTp6HLcQ3AxcRn9Qqn6gZTvyUxsJ0OwcYnqZNAhYU1jMk\nbXN8oexW4Iga598+pP7o0vJj0/icwnEblur1ErGbA2ArYvAtZvWncsYQn0QWEZ9w72B1/+sg4GvA\nI2m/PQ6c2c5+mZ/qU7yNT9NmEbt8lhPPzxNKy45P9V+Rtlc8R0Q8j59K9XgIOLKDeuxTYx+Op8Zj\nGHh/mvZqqmfltldhnsNSPV4hPqEUPyU0tUr7LypM3wz4dVrnX4mvAOuWl0obbRip//UJ4sesVvVv\nbaw/SdqcGBSbhtgdZNbQ1rqvTtvAkPqUv0bsw3YY21qht7/1ZVZ3qS/wOWK31v79XB2zXtNwXRZm\nZmsrd1mYmWWiwy4LSdOIn2hgvfXW22mbbbape6XMzNYmc+fOfSGE0NTRfF3qsmhubg4tLS09qpiZ\n2UAjaW4Iobmj+dxlYWaWCQeymVkmHMhmZplwIJuZZcKBbGaWCQeymVkmHMhmZplwIJuZZcKBbGaW\nCQeymVkmHMhmZplwIJuZZcKBbGaWCQeymVkmHMhmZplwIJuZZcKBbGaWCQeymVkmHMhmZplwIJuZ\nZcKBbGaWCQeymVkmHMhmZplwIJuZZcKBbGaWCQeymVkmHMhmZplwIJuZZcKBbGaWCQeymVkmHMhm\nZplwIJuZZcKBbGaWCQeymVkmHMhmZplwIJuZZcKBbGaWCQeymVkmOgxkSdMktUhqaW1t7Ys6mZkN\nSB0GcgjhghBCcwihuampqS/qZGY2ILnLwswsEw5kM7NMOJDNzDLhQDYzy4QD2cwsEw5kM7NMOJDN\nzDLhQDYzy4QD2cwsEw5kM7NMOJDNzDLhQDYzy4QD2cwsEw5kM7NMOJDNzDLhQDYzy4QD2cwsEw5k\nM7NMOJDNzDLhQDYzy4QD2cwsEw5kM7NMOJDNzDLhQDYzy4QD2cwsEw5kM7NMOJDNzDLhQDYzy4QD\n2cwsEw5kM7NMOJDNzDLhQDYzy4QD2cwsEw5kM7NMOJDNzDLhQDYzy4QD2cwsEx0GsqRpkloktbS2\ntvZFnczMBqQOAzmEcEEIoTmE0NzU1NQXdTIzG5DcZWFmlgkHsplZJhzIZmaZcCCbmWXCgWxmlgkH\nsplZJhzIZmaZcCCbmWXCgWxmlgkHsplZJhzIZmaZcCCbmWXCgWxmlgkHsplZJhzIZmaZcCCbmWXC\ngWxmlgkHsplZJhzIZmaZcCCbmWXCgWxmlgkHsplZJhzIZmaZcCCbmWXCgWxmlgkHsplZJhzIZmaZ\ncCCbmWXCgWxmlgkHsplZJhzIZmaZcCCbmWXCgWxmlgkHsplZJhzIZmaZcCCbmWXCgWxmlgkHsplZ\nJjoMZEnTJLVIamltbe2LOpmZDUgdBnII4YIQQnMIobmpqakv6mRmNiC5y8LMLBMOZDOzTDiQzcwy\n4UA2M8uEA9nMLBMOZDOzTDiQzcwy4UA2M8uEA9nMLBMOZDOzTDiQzcwy4UA2M8uEA9nMLBMOZDOz\nTDiQzcwy4UA2M8uEA9nMLBMOZDOzTDiQzcwy4UA2M8uEA9nMLBMOZDOzTDiQzcwy4UA2M8uEA9nM\nLBMOZDOzTDiQzcwy4UA2M8uEA9nMLBMOZDOzTDiQzcwy4UA2M8uEA9nMLBMOZDOzTDiQzcwy4UA2\nM8uEA9nMLBMdBrKkaZJaJLW0trb2RZ3MzAakDgM5hHBBCKE5hNDc1NTUF3UyMxuQ3GVhZpYJB7KZ\nWSYcyGZmmXAgm5llwoFsZpaJIX2xkcvufJJzZs/jhMkTOGyXcWuM95fO1mP89F+9OTz/rIM6Vbbp\nyOGcMHkCp15zf5eXrZRddueTbZY/85CJnDN7HouWrOzyOs88ZCJAj+pTrX21jme15fc862YWLF7J\n2FHDuXX6B7u97a60+aybHgZg+gHbvFm3Sn07sx+Lx0DAE2m+g8+9lXsWLGGHsSO59st7Uku1Ohbr\nUNxnW0z/FaET2+nseXvi5Xdz/b3P8tHtx3D2lB0BeNfpN7JiVWDdIeKhmQfWLKu1fGe3XW2+amWd\n3Y9d2U61evdEX+ZVn1whV07+78+eV3W8v9SzHr2x3nNKy5dDpCu+P3veGuvrie4czwWLV7a5r7dz\nZs9j6cpVLF25qk3durIfi/ssFMrvWbCkzX136lbeZ6F0X2s7nd3f19/7LG+EeF+xYlVoc1+rrNby\nnd12tfmqldVjP1ard0/0ZV71SSCfMHkCo0cO5/jJE6qO95d61qM31ntCaflKfbvj+MkT1lhfT3Tn\neI4dNbzNfb2dMHkCI4cPYYPhQ9rUrSv7sbjPVCjfYezINvfdqVt5n6l0X2s7nd3fH91+DIMU7yvW\nHaI297XKai3f2W1Xm69aWT32Y7V690Rf5pVCCB3PlTQ3N4eWlpY6VsfMbO0jaW4Iobmj+fymnplZ\nJhzIZmaZcCCbmWXCgWxmlgkHsplZJhzIZmaZcCCbmWXCgWxmlgkHsplZJhzIZmaZcCCbmWXCgWxm\nlgkHsplZJhzIZmaZcCCbmWXCgWxmlgkHsplZJhzIZmaZcCCbmWXCgWxmlgkHsplZJhzIZmaZcCCb\nmWXCgWxmlgkHsplZJhzIZmaZcCCbmWXCgWxmlgkHsplZJjoMZEnTJLVIamltbe2LOpmZDUgdBnII\n4YIQQnMIobmpqakv6mRmNiC5y8LMLBMOZDOzTDiQzcwy4UA2M8uEA9nMLBMOZDOzTDiQzcwy4UA2\nM8uEA9nMLBMOZDOzTDiQzcwy4UA2M8uEA9nMLBMOZDOzTDiQzcwy4UA2M8uEA9nMLBMOZDOzTCiE\n0PmZpVbgyU7OvjHwQncqlam1qT1uS77Wpva4LauNCyF0+B94XQrkrpDUEkJorsvK+8Ha1B63JV9r\nU3vclq5zl4WZWSYcyGZmmahnIF9Qx3X3h7WpPW5Lvtam9rgtXVS3PmQzM+sad1mYmWXCgWxmlom6\nBLKk/SU9ImmepOn12EZ3SPqppOcl3V8o20jS7yQ9lu43LEw7JbXhEUn7Fcp3knRfmnaOJKXydSRd\nkcrvlDS+jm15u6RbJD0o6QFJX2nU9kgaLukuSfemtnyrUdtSqMdgSXdLumEtaMv8VI97JLU0cnsk\njZJ0laSHJT0kabes2hJC6NUbMBh4HNgSGAbcC7y7t7fTzbrtDbwXuL9Q9l1gehqeDnwnDb871X0d\nYIvUpsFp2l3AroCAm4ADUvkXgfPS8BTgijq2ZTTw3jQ8Ang01bnh2pO2u34aHgrcmerTcG0ptOlr\nwGXADY18nqVtzAc2LpU1ZHuAi4Hj0vAwYFRObalHg3cDflMYPwU4pZ4nTBfrN562gfwIMDoNjwYe\nqVZv4DepbaOBhwvlnwbOL86ThocQv9mjPmrXdcC+jd4e4C3A/wG7NGpbgLHAzcBkVgdyQ7YlbWM+\nawZyw7UHGAk8UV53Tm2pR5fFZsDThfEFqSxXm4QQFqbhRcAmabhWOzZLw+XyNsuEEFYBS4C31qfa\nq6WXRTsSrywbsj3pJf49wPPA70IIDdsW4Gzg68AbhbJGbQtAAH4vaa6kaamsEduzBdAK/HfqTvqJ\npPVyaovf1CsI8WmtoT4HKGl94GrgxBDC0uK0RmpPCOH1EMIOxKvLnSVNLE1viLZI+jDwfAhhbq15\nGqUtBXumY3MA8CVJexcnNlB7hhC7LH8UQtgReIXYRfGm/m5LPQL5GeDthfGxqSxXz0kaDZDun0/l\ntdrxTBoul7dZRtIQ4kukF+tVcUlDiWH8sxDCL1Jxw7YHIISwGLgF2J/GbMsewEclzQcuByZLurRB\n2wJACOGZdP88cA2wM43ZngXAgvTqC+AqYkBn05Z6BPKfga0kbSFpGLFj+/o6bKe3XA8cnYaPJvbF\nVsqnpHdNtwC2Au5KL22WSto1vbN6VGmZyroOBWanZ9xel7Z9IfBQCOE/G7k9kpokjUrD6xL7wh9u\nxLaEEE4JIYwNIYwnnvuzQwhHNGJbACStJ2lEZRj4EHB/I7YnhLAIeFrSO1PRB4EHs2pLb3ecp20f\nSHzX/3HgtHpso5v1mgUsBP5OfLY8lti/czPwGPB7YKPC/KelNjxCehc1lTcTT8rHgXNZ/Y3H4cDP\ngXnEd2G3rGNb9iS+tPoLcE+6HdiI7QG2A+5Obbkf+GYqb7i2lNo1idVv6jVkW4iflro33R6oPJ4b\nuD07AC3pXLsW2DCntvir02ZmmfCbemZmmXAgm5llwoFsZpYJB7KZWSYcyGZmmXAgD0CSfiwpSPqv\n/q5LR1I9Z9SY1jDt6ApJUyUd09/1sL7nQB5g0hcvPplGD0vfJmo4a0s7apgKOJAHIAfywHMwsAFw\nI/A24leU+42kdbq5aFbtMOsNDuSB52jgZeJV2ApWf82z8qPbQdKehbLjU9nMQtlWqeygNN4k6XxJ\nj0p6VdLTki6T1OZX/iTNSMtNlPQbScuBK9O0wZJmSlqY1jFH0rbdaUeV7W2TtveKpKckfSZNP1Lx\nh8qXK/7Y/ztKyw9NdZov6bV0PzP9hkhlnklpG5NKy05N5eMLZfMlXSppiuKPo78iqaW0v+cA7wf2\nSMuHVGYDwNr0Ms86IGkMsA/w4xBCq6RrgY9L2jCE8DLx68uLib/je2tabDIx8CYXVjUZWAX8MY1v\nBLwGnA48R/y92JOAP0naJoSwslSV64i/w/EdVv9E5QzgVOA/gd8Sv5pa9TdQOtGOsp8DPwb+nfgD\n4j+VtBXxq83TiT+K/z3iD8rvUljuYmK3yJlpf+xO/CrtlsBh1erWCXsB7wS+AawEvg3cIGl8iD+s\n9EXgUuIfPXwuLbO02opsLVTv7/P7ls+N+Bu9gdU/oL1fGv98YZ7rgFvS8CDgJeA/iL//UflXj8uB\nO9rZzmDiL14F4JBC+YxU9pXS/BsCy0n/tFAoPznNP6Or7Sht76jStlYRf4Frg0L5CWnecWl8Yo1t\nn57Kt0vjk9L4pNJ8U1P5+ELZfOJV/YaFsuY032GFsjnArf19vvjW9zd3WQwsRwOPhRBuT+O/B56l\n7cv92cBukoYTf4il8hc3fyNe3QF8gPgTmW+S9AXF/8RbTgy8p9Kkd7Kma0rj7wHWI3VfFFzeg3YU\n3VQZCPEK+nniE0rxyvPhdF/5ucXKb/5eWlpXZfz9NbbVkdtD26v4+9L95t1cn61FHMgDhKRm4n+E\n/ULxjx5HEf+L7xfArpK2TrPeQvwPsd2JwXtvCOE54kv2D6R+3bcRg7uy7uOBHxKD8ePE38vdNU0e\nXqU6C0vjo9P9c6Xy8nhX2lFU7sZ4rUZZsb4b1ajrotL0rnqpOBJC+FtpuzaAOZAHjsrV48nEMKrc\nvpzKj0r39xH/B2xyulWCd3ah7DXgT4V1TwFuDiGcFEL4bQjhz6z+ke9qyj8xWAm9TUrl5fGutKOn\nKsG5aal809L0Sv/4sNJ8df/rLlv7OJAHAMU/Cvg08T/3PlDldg9wpCSFEAKxD3NfYhdFMZB3BA4h\n/kj3q4VNvIXYx1z0mS5U8S/Ev9P5ZKl8Snfb0YVt11J5w3JKqfzwdD8n3T+Z7ieW5juoB9v+G7Bu\nD5a3BuVPWQwMBxGv2E4KIcwpT5R0PvAj4htUt6TbD4DXgf9Ns90NLCMG3xmlVfwaOFnSqcQf5Z5M\n/LeETgkhLE7ftjtN0jLipyzeR/wDgZ60o9tCCPdLmgXMSF86uY34j8PfAGaFEO5L8y2U9AfgFEkv\nEF8ZHEH8JEZ3PQh8UdKniD+AviyE8EgP1mcNwlfIA8PRxDD9eY3ps2j7Wd5KmLVU3vgKIbwO/KE0\nveIM4Hzgq8Q37LYjfvKhK2YQP152JPHjbh8CPtLDdvTUVOJH844hfgHl2DReXv8RwB3AOcBFxDc0\nZ9J93yH+g8VPiH+Jdn4P1mUNxP8YYmaWCV8hm5llwoFsZpYJB7KZWSYcyGZmmXAgm5llwoFsZpYJ\nB7KZWSYcyGZmmfh/CroTT+nLF/0AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f1ac7cccba8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot Settings\n", "year = 2016\n", "data = mathFundingData.loc[(mathFundingData['FiscalYear'] == year)]\n", "\n", "yAxis = 'FiscalYear'\n", "xAxis = 'AwardAmount'\n", "\n", "xScalingFactor = 10**3\n", "xScalingFactorString = ' In Thousands'\n", "\n", "yAxisRange = [1.99,2.1]\n", "\n", "plotPointSizes = 3 \n", "\n", "title = 'Graph of Awards Given by Committee 1508 in 2016'\n", "\n", "# Make the Plot\n", "axes = plt.gca()\n", "x = data[xAxis]\n", "plt.xlabel(xAxis, fontsize=16)\n", "\n", "y = data[yAxis]\n", "#plt.ylabel(yAxis+yScalingFactorString, fontsize=14)\n", "axes.set_ylim(yAxisRange)\n", "y = y/yScalingFactor\n", "axes.set_yticklabels([]) # make it so the y axis is not numbered\n", "\n", "plt.title(title)\n", "\n", "plot = plt.scatter(x,y,s=plotPointSizes)\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJ8CAYAAABqYVUQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X20XWV9L/rvjxdNJUglRGrxHAJUCgLGYmoZDIP0aI/2\nKBaJ994oUtGraF9sq3ZoxrUetNRWWj10eLzewqnWWiEVAanILb2lvmFLraGCFE0RPaFGkcaAQnhR\nwef+sdfO2SzzspJnr/36+YyxRtaaz3rm/D1z7r12vmOuOZ9qrQUAAAB67DPbBQAAADD/CZcAAAB0\nEy4BAADoJlwCAADQTbgEAACgm3AJAABAN+ESAACAbsIlAOylqrqmqn53B8t/qaq+VVX7zUZdADAb\nhEsA2Ht/nuSlVVVDy89KcnFr7aFZqAkAZoVwCQB778oky5KsnlxQVY9L8vwkH9xRh6o6uKr+rKq+\nWVV3V9WVU9peVVW3VdVdVfWxqvrJKW2tqn61qr5SVfdW1XlVdVRV/UNV3VNVl1bVowbvPbWqNlfV\n/1VV366qTVV15rh2AgAkwiUA7LXW2gNJLk3yy1MW/+9JNrbWbtpJt79I8pgkxyV5fJILkqSq/lOS\nPxj0f0KS25P85VDf5yR5WpKTkrwxyUVJXprkPyQ5PsmLp7z3J5IckuSwJC9LclFV/fTejBMARlGt\ntdmuAQDmrap6RpKPJ/mJ1tqDVfX3SS5rrV2wg/c+Ick3kixrrd091Pa+JFtba28cvF6a5O4kT2qt\nbaqqluQZrbW/H7TfkOTS1tr5g9fvSrJva+23qurUJNcmOai1dt+g/dIkN7fWzhvDbgAAZy4BoEdr\n7bNJvp3k9Ko6KsnTk1yyk7f/hyR3DQfLgZ/MxNnKyfVuS7I1E2ceJ9055fkDO3i9dMrruyeD5cDt\ng20AwFi4ix0A9PtgJr4a+9NJ/qa1dudO3vf1JAdX1Y+31r4z1PbNJIdPvqiqAzJxPec39rKmx1XV\nAVMC5n9M8i97uS4A2C1nLgGg3weTPDvJqzJxB9kdaq3dkeSvk7y3qh5XVftX1SmD5vVJXl5VT62q\nRyf5/SSfa61t6qjrbVX1qKpanYmbDH2kY10AsEvCJQB0GgTAf0hyQJKP7ebtZyX5QZKNSf49yW8N\n1nFtkrckuTzJHUmOSrK2o6xvZeKazW8muTjJa1prGzvWBwC75IY+ALDADG7o86HW2hNnuxYAFg9n\nLgEAAOgmXAIAANDN12IBAADo5swlAAAA3YRLAAAAuu032wXMRYccckhbsWLFbJcBAAAwK2644YZv\nt9aW70kf4XIHVqxYkQ0bNsx2GQAAALOiqm7f0z6+FgsAAEA34RIAAIBuwiUAAADdXHMJAACMxQ9+\n8INs3rw5Dz744GyXwk4sWbIkT3ziE7P//vt3r0u4BAAAxmLz5s058MADs2LFilTVbJfDkNZatm7d\nms2bN+eII47oXp+vxQIAAGPx4IMPZtmyZYLlHFVVWbZs2bSdWRYuAQCAsREs57bpPD7CJQAAsKBd\neeWVqaps3LhxrNv51Kc+lec///mPWHb66afnpJNOGut2d2fTpk255JJLxr4d11wCAAAzYsW6q6d1\nfZve8byR3rd+/fo84xnPyPr16/O2t71t2rb/8MMPZ999991p+3e+853ccMMNWbp0ab72ta/lyCOP\nnLZt74nJcPmSl7xkrNtx5hIAAFiwtm3bls9+9rN53/vel7/8y79Mkvzar/1aPvaxjyVJXvjCF+YV\nr3hFkuT9739/3vzmNyeZOOP4tKc9Lccdd1wuuuii7etbunRp3vCGN2TlypW5/vrrc8011+SYY47J\niSeemCuuuOIR277iiity2mmnZe3atdu3nSRnn312fuVXfiUnnXRSjjzyyHzqU5/KK17xihx77LE5\n++yzt79v/fr1OeGEE3L88cfnTW960yNqmHTZZZdt73P22WfnN37jN3LyySfnyCOPzGWXXZYkWbdu\nXa677ro89alPzQUXXNC7S3dKuAQAABasv/qrv8pzn/vcHH300Vm2bFluuOGGrF69Otddd12S5Bvf\n+Ea+9KUvJUmuu+66nHLKKUkmguYNN9yQDRs25N3vfne2bt2aJLnvvvvycz/3c7npppuyatWqvOpV\nr8pVV12VG264Id/61rcese3169fnxS9+cV784hdn/fr1j2i7++67c/311+eCCy7IC17wgrzuda/L\nLbfckptvvjk33nhjvvnNb+ZNb3pTPvGJT+TGG2/M5z//+Vx55ZW7He8dd9yRz372s/n4xz+edevW\nJUne8Y53ZPXq1bnxxhvzute9rm+H7oJwCQAALFjr16/P2rVrkyRr167N+vXrt4fLL33pS3nyk5+c\nQw89NHfccUeuv/76nHzyyUmSd7/73Vm5cmVOOumkfP3rX89XvvKVJMm+++6bNWvWJEk2btyYI444\nIk960pNSVXnpS1+6fbt33nlnvvKVr+QZz3hGjj766Oy///75l3/5l+3tp512WqoqJ5xwQg499NCc\ncMIJ2WeffXLcccdl06ZN+fznP59TTz01y5cvz3777Zczzzwzn/nMZ3Y73tNPPz377LNPnvzkJ+fO\nO++ctv04CtdcAgAAC9Jdd92VT3ziE7n55ptTVXn44YdTVfmjP/qjfOc738k111yTU045JXfddVcu\nvfTSLF26NAceeGA+9alP5dprr83111+fxzzmMTn11FO3T9exZMmSXV5nOenSSy/N3XffvX3+yHvu\nuSfr16/P29/+9iTJox/96CTJPvvss/355OuHHnoo+++//07XPfUOr8PTiExdV2ttt3VOJ2cuAQCA\nBemyyy7LWWedldtvvz2bNm3K17/+9RxxxBG57rrrctJJJ+WP//iPc8opp2T16tV55zvfmdWrVydJ\nvvvd7+Zxj3tcHvOYx2Tjxo35x3/8xx2u/5hjjsmmTZvy1a9+NUke8dXX9evX55prrsmmTZuyadOm\n3HDDDY+47nJ3nv70p+fTn/50vv3tb+fhhx/O+vXr88xnPjNJcuihh+bLX/5yfvjDH+ajH/3obtd1\n4IEH5t577x1523tLuAQAABak9evX54UvfOEjlq1Zs2b7V2Mfeuih/NRP/VROPPHE3HXXXdvD5XOf\n+9w89NBDOfbYY7Nu3bqdTiWyZMmSXHTRRXne856XE088MY9//OOTTNyd9fbbb39EvyOOOCIHHXRQ\nPve5z41U+xOe8IS84x3vyM///M9n5cqVedrTnpZf+qVfSjJxDeXzn//8nHzyyXnCE56w23U95SlP\nyb777puVK1eO9YY+NdOnSueDVatWtQ0bNsx2GQAAMK99+ctfzrHHHjvbZbAbOzpOVXVDa23VnqzH\nmUsAAAC6CZcAAAB0Ey4BAADoJlwCAABj4x4vc9t0Hp8ZDZdVtbaqvlxV91XVV6tq9WD5s6pqY1Xd\nX1WfrKrDp/Spqjq/qrYOHufXlIldqmrFoM/9g3U8e2ibL6mq2wfbvLKqDp65EQMAwOK1ZMmSbN26\nVcCco1pr2bp1a5YsWTIt69tvWtYygqr6hSTnJ/k/kvxTkicMlh+S5Iokr0xyVZLzknw4yeR9e89J\ncnqSlUlakr9N8j+T/MmgfX2S65P8l8Hjsqp6UmttS1Udl+TCJM9L8s9JLkry3iRrxzlWAAAgeeIT\nn5jNmzdny5Yts10KO7FkyZI88YlPnJZ1zdhUJFX1D0ne11p739Dyc5Kc3Vo7efD6gCTfTvIzrbWN\ng34faK1dNGh/RZJzWmsnVdXRSW5Ockhr7d5B+2eSXNJa+5Oq+v0kK1prLxm0HZXky0mWTb5/R0xF\nAgAALGZzdiqSqto3yaoky6vqtqraXFXvqaofS3Jckpsm39tauy/JbYPlGW4fPJ/a9rWhoDjcPnXd\nX03yvSRHT9fYAAAAmLlrLg9Nsn+SFyVZneSpSX4mye8kWZrku0PvvyfJgYPnw+33JFk6uO5yT/sO\nt29XVedU1Yaq2uC0PYvRinVXz3YJAADMYzMVLh8Y/PvfW2t3tNa+neS/ZeIayW1JHjv0/oOSTJ6N\nHG4/KMm2NvF93j3tO9y+XWvtotbaqtbaquXLl488MAAAAGYoXLbW7k6yORM35Nm+ePDvLZm4WU+S\n7ddcHjVY/iPtg+dT246sqgN30T513UcleVSSWzuGAwAAwJCZnIrkz5K8tqoeX1WPS/K6JB9P8tEk\nx1fVmqpakuTcJDe11jYO+n0wyeur6rCqOizJG5J8IElaa7cmuTHJuVW1pKrOSHJCkssHfS9OclpV\nrR6E1vOSXLGrm/kAAACw52ZsKpJMBLtDMnHW8MEklyZ5e2vtwapak+Q9ST6U5HN55FQhFyY5MhN3\nhU2SPx0sm7Q2E2Hz7iT/luRFrbUtSdJau6WqXpOJkLksybVJXj6OwQEAACxmMxYuW2s/SPKrg8dw\n27VJjtlJv5bkjYPHjto3JTl1F9u9JMkle1wwAAAAI5vJr8UCAACwQAmXAAAAdBMuAQAA6CZcAgAA\n0E24BAAAoJtwCQAAQDfhEgAAgG7CJQAAAN2ESwAAALoJlwAAAHQTLgEAAOgmXAIAANBNuAQAAKCb\ncAkAAEA34RIAAIBuwiUAAADdhEsAAAC6CZcAAAB0Ey4BAADoJlwCAADQTbgEAACgm3AJAABAN+ES\nAACAbsIlAAAA3YRLAAAAugmXAAAAdBMuAQAA6CZcAgAA0E24hDlixbqrZ7sEAADYa8IlAAAA3YRL\nAAAAugmXAAAAdBMuAQAA6CZcAgAA0E24BAAAoJtwCQAAQDfhEgAAgG7CJQAAAN2ESwAAALoJlwAA\nAHQTLgEAAOgmXAIAANBNuAQAAKCbcAkAAEA34RIAAIBuwiUAAADdhEsAAAC6CZcAAAB0Ey4BAADo\nJlwCAADQTbgEAACgm3AJAABAN+ESAACAbsIlAAAA3YRLAAAAugmXAAAAdBMuAQAA6CZcAgAA0E24\nBAAAoJtwCQAAQDfhEgAAgG7CJQAAAN2ESwAAALoJl8CisGLd1bNdAgADPpNhYRIuAQAA6CZcAgAA\n0E24BAAAoJtwCQAAQDfhEgAAgG7CJQAAAN2ESwAAALoJlwAAAHQTLgEAYJasWHf1bJcA00a4BAAA\noJtwCQAAQDfhEgAAgG4zFi6r6lNV9WBVbRs8/nVK27OqamNV3V9Vn6yqw6e0VVWdX1VbB4/zq6qm\ntK8Y9Ll/sI5nD233JVV1e1XdV1VXVtXBMzNiAACAxWOmz1z+emtt6eDx00lSVYckuSLJW5IcnGRD\nkg9P6XNOktOTrEzylCSnJXn1lPb1Sb6QZFmSNye5rKqWD9Z9XJILk5yV5NAk9yd579hGBwAAsEjN\nha/FnpHkltbaR1prDyZ5a5KVVXXMoP1lSd7VWtvcWvtGkncmOTtJquroJCcmObe19kBr7fIkX0yy\nZtD3zCRXtdY+01rblokAe0ZVHThDYwMAAFgUZjpc/kFVfbuq/r6qTh0sOy7JTZNvaK3dl+S2wfIf\naR88n9r2tdbavbton7ruryb5XpKjp2U0AAAAJJnZcPmmJEcmOSzJRUmuqqqjkixN8t2h996TZPLs\n4nD7PUmWDq673NO+w+3bVdU5VbWhqjZs2bJlT8YFAACw6M1YuGytfa61dm9r7XuttT9P8vdJ/kuS\nbUkeO/T2g5JMno0cbj8oybbWWtuLvsPtU+u7qLW2qrW2avny5Xs2OAAAgEVuNq+5bEkqyS2ZuFlP\nkqSqDkhy1GB5htsHz6e2HTl0DeVw+9R1H5XkUUlunbZRAAAAMDPhsqp+vKqeU1VLqmq/qjozySlJ\nrkny0STHV9WaqlqS5NwkN7XWNg66fzDJ66vqsKo6LMkbknwgSVprtya5Mcm5g3WfkeSEJJcP+l6c\n5LSqWj0IrecluWLoGk0AAAA67TdD29k/ye8lOSbJw0k2Jjl9EA5TVWuSvCfJh5J8LsnaKX0vzMS1\nmjcPXv/pYNmktZkIm3cn+bckL2qtbUmS1totVfWaTITMZUmuTfLy6R8eAADA4jYj4XIQ9n52F+3X\nZiJ47qitJXnj4LGj9k1JTt3Fui9Jcsno1QIAALCn5sI8lwAAAMxzwiUAAADdhEsAAAC6CZcAAAB0\nEy4BAADoJlwCAADQTbgEAACgm3AJAABAN+ESAACAbsIlAAAA3YRLAAAAugmXAAAAdBMuAQAA6CZc\nAgAA0E24BAAAoJtwCQAAQDfhEgAAgG7CJQAAAN2ESwAAALoJlwAAAHQTLgHGaMW6q2e7BABgBvib\nL1wCAAAwDYRLAAAAugmXAAAAdBMuAQAA6CZcAgAA0E24BAAAoJtwCQAAQDfhEgAAgG7CJcAiZKJn\nAGC6CZcAAAB0Ey4BAADoJlwCAADQTbgEAACgm3AJAABAN+ESAACAbsIlAAAA3YTLecw8dYuD4wxz\nn99TABAuAQAAmAbCJQAAAN2ESwAAALoJlwAAAHQTLgEAAOgmXAIAANBNuAQAAKCbcAkAAEA34RIA\nAIBuwiUAAADdhEsAAAC6CZcAAAB0Ey4BAADoJlwCAADQTbgEAACgm3AJAABAN+ESAACAbsIlAAAA\n3YRLAAAAugmXAAAAdBMuAQAA6CZcAgAA0E24BAAAoJtwCQAAQDfhEgAAgG7CJQAAAN2ESwAAALoJ\nlwAAAHQTLgEAAOgmXAIAANBNuAQAAKCbcAkAAEA34RIAAIBuwiUAAADdhEsAYM5ase7q2S5hTtSw\nUNm3sLAIlwAAAHQTLgEAAOgmXAIAANBNuAQAAKDbjIfLqnpSVT1YVR+asuxZVbWxqu6vqk9W1eFT\n2qqqzq+qrYPH+VVVU9pXDPrcP1jHs4e295Kqur2q7quqK6vq4JkZKQAAwOIxG2cu/+8kn598UVWH\nJLkiyVuSHJxkQ5IPT3n/OUlOT7IyyVOSnJbk1VPa1yf5QpJlSd6c5LKqWj5Y93FJLkxyVpJDk9yf\n5L3jGBQAAMBiNqPhsqrWJvlOkr+bsviMJLe01j7SWnswyVuTrKyqYwbtL0vyrtba5tbaN5K8M8nZ\ng/UdneTEJOe21h5orV2e5ItJ1gz6npnkqtbaZ1pr2zIRYM+oqgPHOU4AAIDFZsbCZVU9NsnvJnn9\nUNNxSW6afNFauy/JbYPlP9I+eD617WuttXt30T513V9N8r0kR/eMBQAAgEeayTOX5yV5X2tt89Dy\npUm+O7TsniQH7qT9niRLB9dd7mnf4fbtquqcqtpQVRu2bNkywnBmlkmGYf6bC7/Hc6EGAGBhmpFw\nWVVPTfLsJBfsoHlbkscOLTsoyb07aT8oybbWWtuLvsPt27XWLmqtrWqtrVq+fPmuBwQAAMAjzNSZ\ny1OTrEjyb1X1rSS/nWRNVf1zklsycbOeJElVHZDkqMHyDLcPnk9tO3LoGsrh9qnrPirJo5LcOh2D\nAgAAYMJMhcuLMhEYnzp4/EmSq5M8J8lHkxxfVWuqakmSc5Pc1FrbOOj7wSSvr6rDquqwJG9I8oEk\naa3dmuTGJOdW1ZKqOiPJCUkuH/S9OMlpVbV6EFrPS3LF0DWaAAAAdNpvJjbSWrs/E9OAJEmqaluS\nB1trWwav1yR5T5IPJflckrVTul+Y5MgkNw9e/+lg2aS1mQibdyf5tyQvmlxva+2WqnpNJkLmsiTX\nJnn5NA8PAABg0ZuRcDmstfbWodfXJjlmJ+9tSd44eOyofVMmvna7s21dkuSSvasUAACAUczoPJcA\nAAAsTMIlAAAA3YRLAABgLMyvvLgIlwAAAHQTLgEAAOgmXAIAANBNuAQAAKCbcAkAAEA34RIAAIBu\nwiUAAADdhEsAAAC6CZfsFRPijs9i37eLffxMLz9PTBc/SzD/+T0eP+ESAACAbsIlAAAA3YRLAAAA\nugmXAAAAdBMuAQAA6CZcAgAA0E24BAAAoJtwCQAAQDfhEgAAgG7CJQAAAN2ESwAAALoJlwAAAHQT\nLgEAAOgmXAIAANBtpHBZVT+3k+VPn95yAAAAmI9GPXP5tztZfs10FQIAAMD8tctwWVX7VNW+E0+r\nBq8nH09K8tDMlAksVCvWXT3bJQAAzHtz4f9U++2m/aEkbcrzqX6Y5O3TXhEAAADzzu7C5RFJKsmn\nk5wyZXlLsqW19sC4CgMAAGD+2GW4bK3dPnh6+AzUAgAAwDy1uzOXSZKqOjjJbyd5apKlU9taa6fs\nsBMAAACLxkjhMsklSR6d5NIk94+vHAAAAOajUcPlyUmWt9a+N85iAAAAmJ9Gnefyi0meOM5CAAAA\nmL9GPXP5iSTXVNWfJfnW1IbW2vunvSoAAADmlVHPXK5OsjnJLyQ5a8rjpWOqi70wFyZOBYDFYKH+\nzV2o4wJmxkhnLltrPz/uQgAAAJi/Rp2KZKdnOFtrP5y+cgAAAJiPRr3m8qEkbSdt+05TLQAAAMxT\no4bLI4ZePyHJuiRXTW85AAAAzEejXnN5+9Ci26vqZUk+n+R9014VAAAA88qod4vdkccmWT5dhQAA\nADB/jXpDn7/II6+5fEySU5J8aBxFAQAAML+MeubytiRfnfL4xyQvaa29dlyFATPDnGazZ7Hs+7kw\nzrlQA8x30/F7tKN1LObfz5kY+2Lev0yYyZ+BUa+5fNu4CwEAAGD+Gvmay6p6eVV9oqr+dfDvy8dZ\nGAAAAPPHqNdcvjnJLyd5V5Lbkxye5I1V9ZOttbePsT4AAADmgVHnuXxlklOnTklSVX+T5DNJhEsA\nAIBFbtSvxR6QZMvQsq1Jfmx6ywEAAGA+GjVcXpPk4qr66ar6sao6JsmfJ/mb8ZUGAADAfDFquPz1\nJPcm+WKSbUluTHJfElORAAAAMPJUJPck+eWqOjvJIUm+3Vr74TgLAwAAYP7Yk6lIHpPk+CQ/leSk\nqjq5qk4eW2WMxMS47Ck/M8Ce8JnBQuLnefZM3fcL/Tgs9PHtyqhTkfxykvck+X6SB6Y0tST/cQx1\nAQAAMI+MOhXJHyZZ01r723EWAwAAwPw06tdiv5/kU2OsAwAAgHls1HD5liT/raoOGWcxAAAAzE+j\nhstbk7wgyZ1V9fDg8cOqeniMtQEAADBPjHrN5V8k+WCSD+eRN/QBAACAkcPlsiT/tbXWxlkMAAAA\n89OoX4v9syRnjbMQAAAA5q9Rz1w+PcmvV9Wbk9w5taG1dsq0VwUAAMC8Mmq4/B+DBwAAAPyIkcJl\na+3Pd7S8qp48veUAAAAwH416zeV2VbWsql5bVRuSfGEMNQEAADDPjBQuq2q/qnphVX00yTeT/HGS\nv02yYoy1AQAAME/sMlxW1c9W1X9P8q1MXHN5Z5JfSLIlyQWttTvGXyIAAABz3e6uufxckq1JXpvk\nI621h5Kkqsx3CQAAwHa7+1rs7ya5J8mfJvlQVZ1WVfslES4BAADYbpfhsrX21tbaUUl+Mcm2JB/K\nxFdkD05ywvjLm1tWrLu6q30c22R6LNb9vFjHzexaDD93i2GMAMMW82ffYh77VCPd0Ke19pnW2iuT\n/ESS30zy6SR/U1X/NM7iAAAAmB/2aCqS1toDrbWLW2vPSXJ4ksvHUxYAAADzyU5v6FNVR47Q/yPT\nWAsAAADz1K7uFntbJm7cU3nkDXyGX+87hroAAACYR3b6tdjW2j6ttX1ba/skeWWSv0xyTJIlg38v\nSfJ/jrqhqvpQVX2rqu6pqlur6pVT2p5VVRur6v6q+mRVHT6lrarq/KraOnicX1U1pX3FoM/9g3U8\ne2i7L6mq26vqvqq6sqoOHrVmAAAARjPqNZfnJXlla+0rrbXvt9a+kuTVSX5vD7b1jiRHttYem+QF\nSX6vqp5WVYckuSLJWzJxF9oNST48pd85SU5PsjLJU5KcNtj2pPVJvpBkWZI3J7msqpYnSVUdl+TC\nJGclOTTJ/Uneuwc1AwAAMIJRw+U+SVYMLTs8e/CV2Nbav7TW7p98OXgcleSMJLe01j7SWnswyVuT\nrKyqYwbvfVmSd7XWNrfWvpHknUnOTpKqOjrJiUnOHdxs6PIkX0yyZtD3zCRXDe52uy0TAfaMqjpw\n1LoBAADYvVHD5QVJPlFVv19Vv1JVv5/k7wbLR1ZV762q+5NsTHJHkv83yXFJbpp8T2vtvkxc73nc\nYNEj2gfPp7Z9rbV27y7ap677q0m+l+ToPakbAACAXRt1nss/SvLyTHy19AWZmO/yFa21P9yTjbXW\nfjXJgUlWZ+KrsN9LsjTJd4fees/gfdlB+z1Jlg6uu9zTvsPt21XVOVW1oao2bNmyZU+GBQvaQpwU\neOqYFsL4FsIYFjLHZ8/YX3PPQjwmszGmhbgf5zr7fObt6m6xSZKq2jfJ+5Oc01q7pneDrbWHk3y2\nql6a5FeSbEvy2KG3HZRk8mzkcPtBSba11lpV7Wnf4fapdV2U5KIkWbVqVRtuBwAAYOd2e+ZyEAb/\nc5IfTvO298vENZe3ZOJmPUmSqjpgyvIMtw+eT207cugayuH2qes+Ksmjktw6baMAAABgj665fFtV\n7b83G6mqx1fV2qpaWlX7VtVzkrw4E9dtfjTJ8VW1pqqWJDk3yU2ttY2D7h9M8vqqOqyqDkvyhiQf\nSJLW2q1JbkxyblUtqaozkpyQ5PJB34uTnFZVqweh9bwkVwxdowkAAECn3X4tduC1mbjO8vVVtSUT\nd3pNkrTW/uMI/VsmvgL7J5kItLcn+a3W2seSpKrWJHlPkg8l+VyStVP6XpjkyCQ3D17/6WDZpLWZ\nCJt3J/m3JC9qrW0Z1HZLVb0mEyFzWZJrM3HtKAAAANNo1HD50p6NDMLeM3fRfm2SY3bS1pK8cfDY\nUfumJKfuYt2XJLlk9GoBAADYUyOFy9bap8ddCAAAAPPXqGcuU1VPzcQUIockqcnlrbX/Ooa6AAAA\nmEdGuqFPVZ2T5O+T/Kckb8rETXPekOSnxlcawybn6jFnz+KwUI/zQh0XzBV+xwDmpsXw+Tzq3WLf\nmOS5rbUXJnlg8O+LkvxgbJUBAAAwb4waLh/fWrtu8PyHVbVPa+2vk5w2proAAACYR0a95nJzVa0Y\n3Jn11iS/VFXfTvL9sVUGAADAvDFquPzDJMcm2ZTkd5NcluRRSX5jPGUBAAAwn4w6FckHpjz/66p6\nXJJHtdZUUQZgAAAgAElEQVS2jaswAAAA5o9R7xb7G1X1lMnXrbXvC5YAAABMGvWGPquSXFVVd1XV\nX1XV66vqaVVVu+0JAADAgjdSuGyt/XJr7fAkJya5IsnxSf4uyd1jrA0AAIB5YtQzl6mqn07yn5M8\nJ8mzMnHX2P8xprrmrB1NfrpQJ0Sdq+Oaq3XNdfYb47Ri3dV+xhawmT62s/Gz5OcXmK/m0ufXSDf0\nqao7k9ybibvEfjDJq1tr946zMAAAAOaPUc9cfizJQ0lOT/LCJKdV1WFjqwoAAIB5ZdRrLl/VWjsm\nyTOTXJvk5CS3VNVt4ywOAACA+WGkr8UmSVX9TCbC5c8nWZ3kviT/NKa6AAAAmEdGveby7iTfTfKZ\nTHxF9g2ttduqauQbAgEAALBwjXrm8mdaa5smX1TVCVX1R0nOTPKT4ygMAACA+WPUay43VdXyqvrN\nqvrnJDcmeXqS3xxrdQAAAMwLuzxzWVX7J3lBkrMzMb/lbUnWJzk8yf/WWvv3cRcIAADA3Le7M5d3\nJrkwyb8mOam19uTW2nlJvj/2ygCY98YxsfNcmiyaH7WYjs9iGutsGNf+ddzGw34l2X24/GKSH0/y\nc0l+tqoeN/6SAAAAmG92GS5ba6cmOSrJ/5fkt5N8q6quSnJAkv3HXh0AAADzwm5v6NNau721dl5r\n7UlJnpXkjiQ/THJTVf3huAsEAABg7tujeSpba59trZ2T5CeSvDbJCWOpCgAAgHllj8LlpNbag621\n9a21X5zuggAAAJh/9ipcAgAAwFTCJQAAAN2ES+YlcykB+CwEYG4RLgEAAOgmXAIAANBNuAQAAKCb\ncAkAAEA34RIAAIBuwiUAAADdhEsAAAC6CZcAAAB0Ey5HZKLq2bMQ9/2ejmkh7oNk5sc1W/txoR6/\n+WYhHIeFMIZxsF/mB8dp1xbK/tnROHY2tpkc80LZv8Pm2riESwAAALoJlwAAAHQTLgEAAOgmXAIA\nANBNuAQAAKCbcAkAAEA34RIAAIBuwiUAAADdhEsAAIAFYsW6q2dt28IlAAAA3YRLAAAAugmXAAAA\ndBMuAQAA6CZcAgAA0E24hEVkNu8eBgDAwiZcAgAA0E24ZK85Czb9FvI+nc2xLeT9OhfMxf077prm\n4piBuWnq58VsfXbMVg072pbPz4VNuAQAAKCbcAkAAEA34RIAAIBuwiUAAADdhEsAAAC6CZcAAAB0\nEy4BAADoJlwCAADQTbjkR6xYd/WcmOB2NmuYC+MHRud3dmbZ39PL/hy/3e3jmT4GjjkLlXAJAABA\nN+ESAACAbsIlAAAA3YRLAAAAugmXAAAAdBMuAQAA6CZcAgAA0E24hIHFPOfUQh37Qh1XL/uF+W7y\nZ9jP8vw014/bXK+PnZtLx26xfk4JlwAAAHQTLgEAAOgmXAIAANBNuAQAAKDbjITLqnp0Vb2vqm6v\nqnur6saq+sUp7c+qqo1VdX9VfbKqDp/SVlV1flVtHTzOr6qa0r5i0Of+wTqePbTtlwy2e19VXVlV\nB8/EmAEAABaTmTpzuV+Sryd5ZpKDkvxOkksHwfCQJFckeUuSg5NsSPLhKX3PSXJ6kpVJnpLktCSv\nntK+PskXkixL8uYkl1XV8iSpquOSXJjkrCSHJrk/yXvHM0QAAIDFa0bCZWvtvtbaW1trm1prP2yt\nfTzJ/0zytCRnJLmltfaR1tqDSd6aZGVVHTPo/rIk72qtbW6tfSPJO5OcnSRVdXSSE5Oc21p7oLV2\neZIvJlkz6Htmkqtaa59prW3LRIA9o6oOnIlxAwAALBazcs1lVR2a5OgktyQ5LslNk22ttfuS3DZY\nnuH2wfOpbV9rrd27i/ap6/5qku8Ntg0AAMA0mfFwWVX7J7k4yZ+31jYmWZrku0NvuyfJ5NnF4fZ7\nkiwdXHe5p32H26fWdU5VbaiqDVu2bNmzQS0gszXR62KbYHaxmsvHeTprm6u/R+Ooa1frHG6by8ef\n3ZsLx2/cNcyFMQ6b7ZpmY/uzPWbmFz8vc8uMhsuq2ifJXyT5fpJfHyzeluSxQ289KMm9O2k/KMm2\n1lrbi77D7du11i5qra1qra1avnz5yGMCAABgBsPl4Ezj+zJxY501rbUfDJpuycTNeibfd0CSowbL\nf6R98Hxq25FD11AOt09d91FJHpXk1mkYEgAAAAMzeeby/0lybJLTWmsPTFn+0STHV9WaqlqS5Nwk\nNw2+MpskH0zy+qo6rKoOS/KGJB9IktbarUluTHJuVS2pqjOSnJDk8kHfi5OcVlWrB6H1vCRXDF2j\nCQAAQKeZmufy8ExMH/LUJN+qqm2Dx5mttS2ZuLvr25PcneTpSdZO6X5hkquS3Dx4fHywbNLaJKsG\nff8gyYsG60xr7ZYkr8lEyPz3JAck+dVxjRMAAGCx2m8mNtJauz1J7aL92iTH7KStJXnj4LGj9k1J\nTt3Fui9Jcsno1QIAALCnZmUqEgAAABYW4RJYkNyaHABgZgmXAAAAdBMuR+AMyNwwVyemZ35aqMd1\nclwLdXy7Mttj3tH2Z7sm9s7OjttcOp7TVcuu1jOb451L+xoYnXAJAABAN+ESAACAbsIlAAAA3YRL\nAAAAugmXAAAAdBMuAQAA6CZcAgAA0E243AszMffSXJ3fabiuuVrnOIxrrHNpH06tZS7VNR/Zf4vH\nuI/1bM6fubvtzJU6FqLFOOZk4f0/Yy7Xv1j/5q9Yd/X2x3Sta5T3TZe58rm8M8IlAAAA3YRLAAAA\nugmXAAAAdBMuAQAA6CZcAgAA0E24BAAAoJtwCQAAQDfhEgAAgG7C5W7M5kSke7Lt2Z4wtcdiGSf/\ny2xOCj+TZmtMC3Ff7sxsjHW2J7B2fGfXbNc0E9uf7THOFbP1+TKTx9ixZroJlwAAAHQTLgEAAOgm\nXALMAb6aBADMd8IlAAAA3YRLAAAAugmXAAAAdBMuAQAA6CZcAgAA0E24ZGTuZgkAs8/f44XHMe1n\nH84NwiXwI3xAAwCwp4RLAAAAugmXAAAAdBMuAQAA6CZcAgAA0E24BAAAoJtwCQAAQDfhci/N1lQN\nC3m7k9vY0bbmytQYK9Zd3V3LXBnLzsxGfTN5zMc9vlHXv6uf93HUMo59vDfrHMd4dzbO6d7He7qe\n6Rzr7j57htvH+fszvF8nl83UZ8fOjuu4jvNs/EzvaN0zsZ2Z2t6ebmMm/x5M9+/tbBs+pnOhpnEb\n12fD7rYz6vamo57Z/t3ZFeESAACAbsIlAAAA3YRLAAAAugmXAAAAdBMuAQAA6CZcAgAA0E24BAAA\noJtwCQAAQDfhckx6Ji0dpe9MT1a9q2XzdULe2a57Nrc/22PfWQ2zVddMTT6/WMz2WGfz83Eumev1\n7c5cqH9vJ0nv3cZMjH3Fuqv3aDszVdNcWe901zIbx3ku/A7NFQt1X8+lzDBJuAQAAKCbcAkAAEA3\n4RIAAIBuwiUAAADdhEsAAAC6CZcAAAB0Ey4BAADoJlwCAADQTbgcA5PWLgyOIzDM5wIAo1qMfzOE\nSwAAALoJlwAAAHQTLgEAAOgmXAIAANBNuIRZtBgv9AYAYGESLgEAAOgmXAIAANBNuJwHfHVyxxbS\nfllIYxk2n8Y2U7UOb2fc252NYzCfjvt8Z18vHLN5LP0czd7fgLlirtY1ivlc+96aq2MWLgEAAOgm\nXAIAANBNuAQAAKCbcAkAAEA34RIAAIBuwiUAAADdhEsAAAC6CZcAAAB022+2C5jPpk5eOvl8rk5o\nOoqd1T6TYxrej7MxufxcOK47q2vTO5431m3szXvGYTq3u6t1zcb4xrXNufD7uyvTXcdCHVfvtmfq\nd2c6+/Sue6Z/p8ZlIfw/osdC+HszV+zpmMaxD0b5fZ36Mz+d/7/Z1fZn00z/n3ZHr6d7P++IM5cA\nAAB0Ey4BAADoJlwCAADQTbgEAACg24yFy6r69araUFXfq6oPDLU9q6o2VtX9VfXJqjp8SltV1flV\ntXXwOL+qakr7ikGf+wfrePbQul9SVbdX1X1VdWVVHTz2wQIAACwyM3nm8ptJfi/J+6curKpDklyR\n5C1JDk6yIcmHp7zlnCSnJ1mZ5ClJTkvy6int65N8IcmyJG9OcllVLR+s+7gkFyY5K8mhSe5P8t5p\nHhcAAMCiN2PhsrV2RWvtyiRbh5rOSHJLa+0jrbUHk7w1ycqqOmbQ/rIk72qtbW6tfSPJO5OcnSRV\ndXSSE5Oc21p7oLV2eZIvJlkz6Htmkqtaa59prW3LRIA9o6oOHNtAAQAAFqG5cM3lcUlumnzRWrsv\nyW2D5T/SPng+te1rrbV7d9E+dd1fTfK9JEcPF1FV5wy+trthy5YtXQOaaXNxLp/5aq7ty7lWz95a\nKOOA3fGzzjgs9jkwgfljLoTLpUm+O7TsniQH7qT9niRLB9dd7mnf4fbtWmsXtdZWtdZWLV++fI8H\nAQAAsJjNhXC5Lcljh5YdlOTenbQflGRba63tRd/hdgAAAKbBXAiXt2TiZj1Jkqo6IMlRg+U/0j54\nPrXtyKFrKIfbp677qCSPSnLrNNYPAACw6M3kVCT7VdWSJPsm2beqllTVfkk+muT4qlozaD83yU2t\ntY2Drh9M8vqqOqyqDkvyhiQfSJLW2q1Jbkxy7mB9ZyQ5Icnlg74XJzmtqlYPQut5Sa4YukYTAACA\nTjN55vJ3kjyQZF2Slw6e/05rbUsm7u769iR3J3l6krVT+l2Y5KokNw8eHx8sm7Q2yapB3z9I8qLB\nOtNauyXJazIRMv89yQFJfnU8wwMAAFi89pupDbXW3pqJaUZ21HZtkmN20taSvHHw2FH7piSn7mK7\nlyS5ZE9qBQAAYM/MhWsuAQAAmOeESwAAALoJlwAAAHQTLgEAAOgmXAIAANBNuAQAAKCbcAkAAEA3\n4RIAAIBuwiUAAADdhEsAAAC6CZcAAAB0Ey4BAADoJlwCAADQTbgEAACgm3AJAABAN+ESAACAbsIl\nAAAA3YRLAAAAugmXAAAAdBMuAQAA6CZcAgAA0E24BAAAoJtwCQAAQDfhEgAAgG7CJQAAAN2ESwAA\nALoJlwAAAHQTLgEAAOgmXAIAANBNuAQAAKCbcAkAAEA34RIAAIBuwiUAAADdhEsAAAC6CZcAAAB0\nEy4BAADoJlwCAADQTbgEAACgm3AJAABAN+ESAACAbsIlAAAA3YRLAAAAugmXAAAAdBMuAQAA6CZc\nAgAA0E24BAAAoJtwCQAAQDfhEgAAgG7CJQAAAN2ESwAAALoJlwAAAHQTLgEAAOgmXAIAANBNuAQA\nAKCbcAkAAEA34RIAAIBuwiUAAADdhEsAAAC6CZcAAAB0Ey4BAADoJlwCAADQTbgEAACgm3AJAABA\nN+ESAACAbsIlAAAA3YRLAAAAugmXAMD/396Zh9l5lYf9d0ajfbMsS94XjG3hFWzjQLyAAUMgwQFK\nCKQEQgKBkCZNaEqbPm32bmmaZqGkDUsgLTEkLiQQVoPBxoYEsLEteYu8yVosbFm7ZjQzGs3pH+/7\n+jtz5nzf/e7cOyNp/P6e5z733m85+/Ke7X0dx3Ecp2d8cOk4juM4juM4juP0jA8uHcdxHMdxHMdx\nnJ7xwaXjOI7jOI7jOI7TMz64dBzHcRzHcRzHcXrGB5eO4ziO4ziO4zhOz/jg0nEcx3Ecx3Ecx+kZ\nH1w6juM4juM4juM4PeODS8dxHMdxHGfOc9avf+FIB8Fx5jw+uHQcx3Ecx3Ecx3F6Zs4PLkMIx4cQ\n/jaEMBRCeDyE8M+PdJgcx3Ecx3Ecx3HmGoNHOgCzwAeBMeBE4AXAF0II98QY7zuywXIcx3Ecx3Ec\nx5k7zOmVyxDCUuCNwG/EGA/EGG8HPgu87ciGzHEcx3Ecx3EcZ24xpweXwHnAeIxxY3LtHuDCIxQe\nx3Ecx3Ecx3GcOUmIMR7pMMwYIYRrgBtjjCcl134eeGuM8drs2XcD79a/64CdLbxYDuzvT2i7wv11\nf+eCn+6v++v+Hrv+Ppvi6v66v+7vsemn+9s7q2OMy7t5Ya6fuTwArMiuraSQ6DHGDwEfsv8hhDta\nuL8GeKyXAE4T99f9nQt+ur/ur/t77Pr7bIqr++v+ur/Hpp/ub+883e0Lc31b7EZgMIRwbnLt+YAr\n83Ecx3Ecx3Ecx+kjc3pwGWMcAj4D/G4IYWkI4Wrgx4H/e2RD5jiO4ziO4ziOM7eY69tiAX4R+Avg\nKeQc5XtbmiH5UOdHuAa4rYewTRf31/2dC366v+6v+3vs+vtsiqv76/66v8emn+7vEWBOK/RxHMdx\nHMdxHMdxZoc5vS3WcRzHcRzHcRzHmR18cOk4juM4juM4juP0jA8uHcdxHMdxHMdxnJ55Nij0mRYh\nhBOACxFbmRtijGPJveXAMuBAjHG/XjtD/+9KnjsD2BJjjPp7d/b8ltjnQ68hhBOBfwv8UYxxSwjh\ntcDFwDuBhfrY8cC9wG7gc8DJwBsRw6tLgQjsAkaABcCExncQGAOC/v4vwJvUzf8CPAd4D7AKOAiM\nA2cDdwB3AucAF6j/84C9wK3AWuAu4JfUrTH1cx/wJ8B5+t7FGuYlwHx1Yz1wIvAkcInGcVS/96gb\n+4AfAH8FLAbep+6NaRh2aRhWIRMu24HNiG2fS4CHgW8BVwMPaXpdrO9MANuA1er2MLBD475Y02+B\nhvNyqgkdi/8fAa/TtHsMOA04Djik7jymafkkckj7NH3nauDF6t6whuN49euwfh4BbgC+q+G9ADnk\nvQbRmnyVhuWQpusmTauTgCfUjSuS/BrTdIya5iH5jGu6o/f3Jnm0RNPzTg3HP2m6Pkf9G9R4HEDK\nXNAwomF6WOO1ArgU+HsNy2s13vP0+VFNixGkLK/Q30/qc0Hd24aU5xcg2qRXA9dpulv5HtD8i4gi\nsE0azqX6GVR/d2lcn6Px3I+YOhrWOK5SN5eqm/P1c1jTbCfwoN67QuM5CizSZyJV/m5G8n8esFXT\nbkDTdIH+36jvD+r/pcBliTsbgHfHGJ/AcRzH6UgI4XiT7UIIi4BzkbZ4PSIvnANchLT9E8CW5Jnz\ngX8E7gfeCqwDTkfa8C1I/7Me6RfOBh4AbkL63QOI/LMW6f93I33aUg3aAPDXVHLQCPBm4Nvq/w+Q\n/vzeGOPGEMLJwAmIzHEj0m+8EZEHL0Rkjk8hct2Ehn8U6edMLnlUw3U/IpvsQfravRrOQzHGXSGE\n9yF97d1I3/NGpJ/+qj77A0QG2Y/0k0NIn3cWooRzFfAbwGepZNdvA8tjjJssXzQOI0if/jxELnpK\n3TtD0+YJpG9cmOTjgN5/qYbz5zT/nlL//knf204lK30reX8p8Msa50/pu8uBH9GwP4LIBWdqGoxr\nuq0FPqHpuQqRQ+br/3nqz0IqeXI1In/8X6Rff5vm6TgiE2zRcA2FEFYDP4H0/ejzASl/L9O0fFly\n/Un1a0mSBlHz9S+B+9TdtwB/G2M0Ga8jrtAHCCGcD/wtUhnHgU8Cb0AqTNRre5HE/inglOT1Cb2/\nQP8f1u951BP1cwNSoH4YaSQ2Io3UFqRhWYkUgKf02lKkoVms/k4glX4DUnhPBf45UlAtbHB0r1BP\nMHPhy92eKb8ikk/9fjdSDZ76gfllg+8m7kM6mxIzmWdt0rKX9H42cJipZcbanINI3v818A2kXbkM\n6bjWIh3hGNLZrEDaozMQQeBjyGD4R5EO73bEbvCXgXch7dJK4B7gucDnkXxai3SyG5C27Er1528Q\ngcAEplFkAsQEovsQweM8ZPA/iLRzD2i4fx0ZmC8Avo5M/KxFBKQVyAD9Wo2LCT43IELahUiHfDtA\nCGExMnGxQON7nr6zHhGITkUmOc7XeK1XP67XcM7XtDkTEcAC0vFfighu24AXIm39QeB7yKTAE8jk\n269qvt0GfBN4lYZxg+bfCkSI2w28Rf26QdPsxUj/FYAXafz+iqq/2IgIi1HTZoPmwcephIkTkDIx\nhgjAVr9GNV0HNTyr1K+bEYHrNZof/4AIrCuA7wN/p3G/XuO4GeknTcgbRoThSFU+LtU0vgzp14I+\ne43+/xtEoF2r+fRWpPyMIpN/39ffr0AE/btjjF9WAfRVqHCUDA6Wanyjhv12pD8eRYT/R5CJxCuA\nDyb5+QrNs6v0/oNImTgPKTtDmsffiDFuCyGcpOl9HyLMvQaZaHuRPrsXKVenI8LzBnX3ZXrvrzS9\nfgyZVHwA+IKm5bs1H8eQsnW+hiEiZeXbmmbnIeX4eKR8jiKC8GpEiH4s+f9GpLxu0XfPQcruQxqO\nzYhAvFWvbQFerml+BlKXb6Mq2wuB+THGJwE0PV6D1IGADGDO1TDZO2v086Cm5VWa12iarUfK/S1U\nk3JBw7Q3xviAPksI4TSk/p6PtAlfizE+rPcWa9iHNG0mNB4TVEboBzWNH0Hq4GWU++RSu9st/ezz\nLTzWX44zcwtK1r+AyAZ7kLo03b56H9Jup+E9iOSfubcZKW+lsOR+pnnzBFJGz+4yTObuENJ2dMpv\nS+/Zkld2UE3Kk/jbi//jwBeRtmUf8KoY46NtXvTBJRBCuAVpPBdQDcyGEGFppgdmdYJgqTB0Eur7\nUYj7USDbuN8PN0pupdc6Vf78/TZhszyoe7bX+I1SdZTdurUN6UTbvHeIqqx3KoOd0sk6EqNUTvNr\nw0jn0Q8sPNMd9KZp0cmPOnYiwk/ToL2T4FDyo04gsM680+SJvb8FEV6PFaZTj/oh3M0E0xXq2rZP\nEZkRXz4NP5r8mwvE5Ltt2zATk2epoDWdNG7q69qU+6Mlbw9QDRKhu3BZGrYdfK1HJrOuq7k/RrUo\nUEebxQJjOmWtNPCbyUHgkcQmtfvdTqfp1Umuacts1ZdSXs/UYkU/mIgxtkrTo3lFazb5YSSDr6Rq\nIBZSDSJy+jkibzuwhMn5dSgLSzrgMnYxle3J782F+wf0uzTzk8d7qCacTdggoInXtHDDvoeT6xNM\nDvc8qs6hyZ26/yUsD+qeDVR5U6Kp7ESk3AUkH7ptJFYnYUhnEkuk5W64cD/U/C79Py77P8DUNMjb\nmsUNYeuW8Ro/UqZbZ62s5nHOy/Bqpg5Q87IXmJzuuRt5/YWqPubu2dbdTljHdVKLZyn4P1G4Nhuk\nExttmUe1NbsTTW1QU/3txAaqLUkW9ukKimmZy9u2/LleB5a5f53aD6NTW57T1B5Pl6Zw2rb9bmSd\nXuSiuvRIjxA0EbPv9P2Sm9BOgLZBaLdYOMYL1/Ow2tGhpjpoA8tIJVPkaWb3ciz9Ok0YG5cweWCZ\np+mC5Hpdus/r4F8pfJ3KT6RqI4zBmt+dmG7bbO9tmuZ708EmXq3cfr4Ht1LS9Er74F4GsN1OeHy5\n5roxRLltaKrXTe7V0Y+B5R36fRAZQzyl/g+1HViCDy6N+cBwjPGO5JoJenWNnNFGmOmmUW9bOKwS\nhZpvmCr0g+wNN07M7kWqvfwgHYpViHlMFbq+krxnZ/FSDup3KqCmbkwk32nF+yMmN/Zj2fMk959M\nrpUGAKXBbB7Ouopr+TaGrEzB5AF1SRAH2cqU329TBjYi5zxBKnS3LEj8TNNijCrcpcHSsuS9unCW\nGsZY+D2B5HFpwJo+ezD5nfuT5n1dp5+S+pWe+0wFo9zNND51K4NNlNKplB6la23cN5YzOW1zIS/l\n4eS5HNue04m8DnXbR3Sqa93SVhg3FjA5jeoGSU3x6rSK3cTFyNZQ6O8Mcpt8GGVy+o8h24VTDia/\nS2lj99sMhNqGK6Vbga/NILebdO7FsHhetoeYGrY0PUam4UepH+8Xedq3mRiwcORtZFo+8kFupyMX\n9s48JL3yMtRpANnJ3W7vleIyHUr9Vp1/Wxv862bCJp+AagpXWh7tvauSa6Xymi8glMK7n+b4Hs7C\nZvmdLiK0WcRJ+8FOz5Zo6jtTvlPj98HCs5YeBwr3UlnXtvPuyZ4plfNSXEpy7D6mjj/q0qzuemnQ\n+wL9HkbOb66l/WTjM/jgUpgAtoUQnoOM1K0gTVCN4qGcuAsRoa4u8UeYWoCskNfNkB/OnithfqUC\nxSEmC70l99+X/F7I5DDns26D2f98C8mPJO+ZgpcUW50aSO7NT9xMv1N/nqfPm2IfsufNT5CzOvm1\n9Pn0nYM1z9V1KGm+LULSKl1xqxPETyjcn1e4lnNu8q6dB7By1WZwmqZz6tcTyIHudFCVP9dpFrzU\nVpT8MqU1K5N7eb3YQbUldiy7n8bBJng6KZ9J/UpnR1PByMJvA82mldn0Wl0bWRqApGkX9X+dP3Uz\n3HlYUjfm0zyrfV7iRqeVDysHabkaoTw4bCp/+fMHsntN5TZSP3Oehj8vIymBqUJTvsKbxz1fNSgJ\nK/nkSP7M1g73ScJRl375pFq35O+aMjNjHvCS7Jl0kiHdZWHXtmT/U0r9SRqv9J08bPsL73aK+zjt\ndmGU/K+79omGe3kePcjkcpBPdtkuk9StNE6LOoQtpSScpnQ7SZOGs273wVjhWhu/D9S4Z+1fmo72\nu5tJpzy8nQbpPyhca1Nm6gTvXGDPy8Xj2f+tSN0wec3anCb/L2i4161cXpeP+USzlcdUrkzbsbS8\nGksL13L3l1BNvhuW3yb/luJkCvHyMBlpuz2e/Lf4WpvyePZsaSBlyoJAlPD8ccE/40VM7TMCVd9b\nKo+vY3L7GJi6ihqYLKvU0TQJkrKMqWW/7bv23xQNplg8H0UUfpq81NVuMz9zCYQQvoVoUfrfwL8H\n3o8UlE3IYfNFSIGy2YeIZMgEcqD9XP0/jmg9fR7lbUoROWQ/X+8PIx1UL8v3JrgMapg3Ar+JrFDu\nRwrg7wI/jyhZuEDjdAuiUfahEMKvAa9EGppNiNKGu5AD7AeRAmgz8mcgA7on9JnXIoOF/4RsDTwb\n2Xp7AXL+72oqJUjPRQroOo33g8ig9DSkkbkS2SqxUZ+/AtEathwRkl6CKI74LlJJR5CG5s0a1gPI\nQP+ngbP02a8hEwRrkVnrNyCNyxrgf+r9V2qY5iHn0m5DZpg2IQ3nLYiijldrej+s169ElEgs0rg+\nF0CT70YAACAASURBVFGAsAtRDjCMKC14CPg3iCKAj+n165Ctil9FFETsU39+SNP5YY3PD/TePYhy\nkisRhRq7NQ0vpNK2tlj/L9I0Ww98Kcb4jRCCbft+ElEU8UpkhupeDd+NmqdnIoOUryMzi+NUiiW2\natyWaXptQ8rCCr23GSkrGzTtXo8oUdis8TlL738Nmaj4EWTQexeiKOMSDbvNHI4hCinG9b13Isol\nPqZxf4X69ZjGewGVko4diLKZ+RqWO/XePTHGe0MI1yMac/830jm9ESnr5yH1ei1Snm9CBNIRfWaB\nxv0Qssr8qObLAk2bXXr9IFKun6/XTkJ2EpyOlO2H9N1b1H9T4LUEKWdnIQrE1mgaBuD3ESUWyxAF\nIycC/w4pd7uRrTk3JNrsbkMUf/wO0kaY8JDPdg8k3504oOlYt3Wn1Mnnz6bP5e+MUA2SFiX3uz0H\nl7+X+2Pci5TfU+muHU7Dk7tdUuRgSiCawmo8SaXsJk/PULheciMNY507/SY/P1Tyx+rNyYXne8H8\negqpu3XkSk6asD6/5E8bTItmQOLay4p4HpamOpSzHWl/TG4xxpk6AdYGmxQZpHO9zNN7Js5Fp/FP\nz9x1qj/7mSqnNaWlTZYNUMVhH/Afkf73pUieL0L6sqeROr8V6aNejPSXJrMNqV9LkLwY0zD9I9Lv\nP59K6dMw0j9Y3Ew7+zxEAdjnkT70dUifsRXpn5cg/fo9SL34afVnkYbvOERu2InUnRH14wIqze0T\n+tu09I8istt/RqwE3AF8CfhFpN8b0rBeifT1a5Dyt1rv7VY/P47025eq27Z4sQzpl9+q7mxG2ukT\nEDnicU3DU9W/WzV9/wLpXxciZXOnps92dfu7wGUxxosAQginUymPsnI8onmzS9NtsabBKUj/ehBR\nsPUriAxlbfqt+t4ZSJka1DQ26wtPq5srNR0+g8izFufdGg6bsBrUdA5U+fwZpFw9n2qH2GF95lZE\nnniRum8adO/UZ1+u6WcabRcjZXUCke3O0PumyX4AkU23IvLHJcDnY4xvpSU+uARCCC9G1PsehyTq\njyKFIm0EDyNC6h8AHwJeEmO8Vd9fggww740xHq67lvhn9zYgBWEZ0lichhSqdUintF7DcD9SKK9C\nGp3XUpkFuQ2pbDtjjPcnfqxCBnobzfxJhzRIVW0fr6qk60yu7NbX5iMFPH9mOUDJX30/AJtLZlgy\n941VJGZbkmfmaziPV/92hRAuRtI8qhbgrWk4SiZg0niam2m6aBwpuIOFtSGuaNrsykzTPBM2+63p\nSf5s7m7BfXPzmXRvyoMkziRpWHxe/dgaY5xIysXJ+ux2OlDKg9RdpMwHpANZlaZ98lya98fnzyTx\nmVQO6+LakB7FMlDnfl1YCuFH43ocPJO/U97VZ4dijPkscHq/WCYK6XQ+IiDMRwSg6/T3VVQD5wGq\nQef3EIHfBudL9boNPLcj2mX/CZmgOVOfO4GqDTCh04TN9Xr/BKR9265+L1S396kbm6jMrdg2ncPq\nxwCV1mIz3/Ko3luGaM48qO/PUzcXIR2yTYjNQ/J1NVU9W4h0qtcjkwM/jkxcrFU/F2m89iHtT3rm\n8W+QyaxfRTrqrYgQdZ66sV3TcjcycbJKP6chnfohpPO/j2qybZmm7TZECPo5KsVeCxHh6f8gfdOl\nGr+/RjSInoRMglyACK8BEVC36v91VJOZplFwCZVCExP4TRizbfI2YbpDn12DlIvdiLB0loZjnEpQ\n309lRuoc9eeAPmN59x0N31s0b0/UewupVufHqATpEaTfe1LT+Z8hdWk51U6FhxHh76VI3zoPEYD3\nIUL9fGTXzmmIuayDSP6Pa/os0HiZRsqViPBl5qluojIXtJLJRzr2qztLqHbLPA78ITJZOI5MONvk\n1XP0/kr1d5jKRJHJHEOaDw/r5wyqicS7EBnk9xFh+if1+3eoBqBPa948gpSzH0bkgePUnzENzzZk\ndWINMvCwCfR0oGFKWB7V51ZQCbwP6/8VVGaSxqhWcW7Wd76tefN1fe7lmjeHNUwTmiamtfV4Tcct\nVBowl2n8tyMKGJci2qPnIWVoHzJpt1I/dyH9ig1SLH/uRQYHlyBy3/Hqh03S2mDPtOEuQibwTtB0\n/JD6P6F5d06M0Y6zOI6DDy4BCCF8ABEyTkEaTbP1902kAVqGzFKsRBqf7cBIjPG2EMKLkE5yHiKg\n7UGElSeRzv4+ded0pFMZQBomkMHlYqqZpN9BGrBJwnZBcKwVuEMIO5DG+lFkNerNiBBgM8RR47gH\nEVguperUDiENpm2XTWfwxpi6TTZnp6ZRun1gEFkh3Kbxs+2Qh5AO7Gakw32h+tnL7K4xhMTvVP1v\nK8aHkE7kEUTwfQWVuZec7RrWdBvDJqQDPJupmjf3I53RKUindz8iDJTOuYxSbTFoWnGo4zDSqZkg\nYXYd6xhHyrQJCvMzP9MVpojk435EGLczf6XthSCd+yeRvLVyY9umzB6krUIOaVheiwjQpXiOIzN8\nH0dmQtPzoOlM/RjVSuG5TN6y3Wl2PN2qZXWvlE+7NA75dpARDbed79vJ5PPLh5i8FcjOnJTKdkSE\noJ9BZpcHqGYszY1Suh+isu0F1aqAaeSz+NigyGagfzLG+OkQwp/FGH+x4K7jOI6ToTYE34j06za5\n8TSyA+c7SBu7jmqyxGxAmh3BiEyGfRrpd96vz+9D+lvrx223jckQ5yMD4lPUrU8hO8IG1I/Tqcxy\n7EBkz89o2P4r1Tm/derm9xD55q1IH/8gIqPeBfwWIrOejEwAjFPt4vsb4F8hstRjiGz0lN47iOyE\nWohMKh2PTN58UNPlpzX+n9Xrb9LnntDwLEAmYh5DJol+XON9EJlYOlvD8WFEVh9E+ss/Bj5KtcK3\ngGqSw+yEn0U18bmMamXRdBjsQWTCHZqG52r+Pq1huY7K1vd+Ta8bNZ9+GZEzJzScT2l+LNGwf0uf\nu5TKlucOTXebmN2MrDCegkz+miKdOxG5eZX6fTEiY9quuFM1rgepVpQfRuSRl2n4/wwxV3ScxvMO\ndec0jct8qgm0Q0jZsdXa/eqv2dD+f8DvxhhbnSX3wSUQQngCyaB3IVsyNyPbGN+DzJJuqHm17RaZ\n/Dnbn784u9e05czYh8wSDulvWwJvCk/dwDAX7m1v+rLsubrtbSm2xWkCaUDrbCQeTbSJ17FKviXO\nvnvditZ2W9NMbb1LqYtLOkmSkpp56ZaIbD26PrnWactlP+iX7TRbLYtIG3cWYqD6Z5BOaBWyamcd\njtnxugcRSF5C1WnbJNKDyMD8dKpOdS/ShmxF2qkLkQ7vw8DlyNbwFcjk10FkZSAgk2C2dW+bvr9M\nw70eEXy+gwgwf0p15s0G3zvUjY9TTbSk2/H2ICt/H0eEu1MQYWCn/n8K2dpvxs3/u4bv96hWaBZT\nbR+ap8/dgQgftgr2aaRdvgyZZNyv6W0rObZSZ4LhAf29jKo/sG1whzR9dyHbp38iycstSPk7Vf2e\nr/c+iJTRy5l8pn2BxvXzVCvZF1FNStiq3Yj6t06/5yOrTa9FBJRx9fubyCreACKIDiKC4mr9HEDs\nRi5HVg7HqOrfCLplHxH+Pq7hMAHnsLphv20yLFCtdi9N4vRdRCg6TfPpc0j5/D5yNGKXurdIP8NI\nGTub6kjJDqrV2KVUQu0W4L9p2M9Bys0nNO4fpVr5HdWwBE2nherGzcjuoh9F7HUeQurNQo3HMqQO\n2KTkSqrtkgsQ2eNTGrfzkF0DtjK4EBGuL0bK1W5ky95bkK1zixFZZoXG38rUAqT8LlK/bJB0QNPE\ntgbaKvUuqlXMh6lWqZ9GtkXuRyYYL1J/diL1eyOy0neKuvEJZMfBdVTbl4eROncI2Yb3aWQ18cXI\ngGoeUt9ssGLPjyBlYbu+Z8cWLqEqxzaRe5/+vhpp5wzb/riFylbti6iE/mHNH9vFZu1wG9NVTdiq\n/Ez2jzPd/x6keYK8RL/6srbxmg0ZZK5jg3LbHfR3McZfaPOiDy6BEIId4P4rpBF7XXK7ZAspLbR1\nq0z5ezNpg610NqSOdCXjaKHUCNQNBPbS7lB0iVJedRpglvItvdbmLFh6LjZ/x1aaoNxp2Z76bs6b\ntT2f1k2ZnOmGutszdUezn3Vl6kjEsVeOlg46MvXMWD8o1S/bfttG6+VsMNN5MF33ewnXbJSrNvVt\nOv1yt/X4aCtPvZDXl0h7u5NHM/0oj3Vnr6frxkzVkX7Hta4+HE3yRZoX6aCnGz+bzrxDfd7NVJ6m\ncSotFHXjT+rWE8iEEMn/Z+TdGGN6r5ZjTdCZKQaRxH0+slUypWRkN820ujTMtaNNRwV7W0oDSxvQ\n5LTN807a3Tpp+utkoiVV65w2UkZqBiTF1Pyn4SnZ20zvm7t12jmbKuEhpsYlzUubkZ/IrqVsoT7/\nv5f5lTNOOdypdrXcv7Z53E3979RQdSqvO2nWTvhO2tsXbNJA2o32zZnqzOrKlKV3p20ldzfcG6Zs\nc84oae/sZQbROtO21D2bX29ys5SH3U6wtKVkG3Me7QcCbdImfSY3k2KYhsxcS60J801+1tWHPP/r\nyl0oPNuGbupPyeZrN3RTfow25aWuXW5yvzRpZM+bGapRqjjb1rJOpCaTOj2Xl6O2ZhbaUpfeuebP\nUr2s0yDcC93a6KyrZzYYzkmF/7q4p+9NZPdKYUwHlp0086aaZvMwGTcX3ktln8PI6nNTP1pqT4w0\nfqU4p7SRgbuReafTF5fCtp+yGbQ0LwKd5b4SIfuuu9/2dzeU5Ok07/O2o+4oTR1p+izJ7tnZ9oV0\noTHWB5fCvcg2jouYuiU0pVT56hpPE06eTp5Ln328Q5hGKatv7xQuI1XjnnIH9QO3lLxsBCYLJ3Vl\nJ1JpcTX2Fp67ScOR2v1JZ0OXUF5RKFXwvDLkcc5nWbthEc2CwSFk+1SginP+vMUFps4wXZ09l2Lh\nLZW1fIBbR0SUKdSphDdSVfhtVdSDnLcohe8QVZmPSOO1scGdX6LzOVPjUeqFqbZtWl39oOZaidSk\nRWkyo+RmpNrCWGICUR5Rx3eo7IqZG7ck93N16Ok3lOtiKZwpeUfV1Em16XibnoPJZ1WnS14+mup9\nU4eZC6Y5bUy0pHHNhZz0d6BSJmKUBLQ87eqEuDz/S+1Ybp6pKV8OMjUNOk0iWjqkYWw7iZTSqfw0\nuRk73O/kXx7n/F7aL9mW7FwLfBuhss4WbX5tsOB2mxWyfMCVl900Lw9kzzaFv6k8TqeNtTJTastK\nz5Voqmd1u5fsfl1ZS99LZQqjVA8PN9zL/SilSZpnVzHVTItpK7X8/DTlyXbjAaZOYpX8tb661J+m\ncklat+oWINJ87NS3dupH02cGmDrgzxVxpv1u3ieYHffSokb+OyJykQ3i7J2SHNKpz4Cp7VFeN4eZ\nnI95+Zhg8g6+eUyOa8n/OgWMuf1Oc9fiuB1ZHNiJbOFvhQ8uhQ8h54+WIAJjPjNo5JmdfufY9dXJ\n//TZMxvCE5HOKVXSkle0oeTZUgG2M5bpjBzIYeXdSEF5C7JKYhXsPkT4TBuNUeQ8yyamzubbc6bl\n0RS5LEAq4q2IMPxSZACWFv4/Qc4z/SWy7J42mqZoxQYlhlUg89PeKW2dTdNkp8bBOk8zA3GIcoM4\nrGEaRxqYSKXk5jPZO8uR8zD7EG2E39ewpwPxE5LfaSORNtCmijydgQpUh6thcl6maTlciEf6/2IN\n1xZ9doTqoL5NBhxA0mgc0UK4NfOjNPu7DzE3YmZg9iHlZBRpkCxvdgHvRc7DPKD3czcvo+oshpGy\naHUwzW87gP9KJB/zcFkn0NTATyDnCG9m6iynvb8eObtVGmjvR8qzpds+/R2T+zuZnH5WX024GUby\nYydyJms4eXYDlYbOPJ1eRqW9dEifeYne26xhKeWV1alXUtmW7NTRp8Jm20mZblaf69ouuz/e4Rmo\nz2cTHKxNKvV1pl27zo28bQlM7ojTZ5/Irqfv5QJMiqVX+nyehzkl9zoJNKPJvfR+em6q6R2Q9n88\nu5a2z6kwVprE2KHf+dbBnJKQZPEdK9yLVPlSN7GT2zZtyvMc87Pkdi7sm4bd/JmUPCxGassvrUcl\nQ+k2OZ3WE5ga/gkmD3AmkvfSyWvrtw37be2MYX3GMPXCqg106vpnmCqXpL/Ta1/U77z+DlOlQanv\nO0znHSJQXuEshaluVTlfxc2Zl33n7qfPld5Pt3Ka9m6TIXJ7vguAt1NNUJX8uUCfTWW5UplbV3g3\nfd4mVNKJjXwAZP15p75jD+W6Xjc+qVs1NU3NpbiVJmAGk3dgalnNJ0kW6LN7k3dKkzptVirz40/5\nZMijVDKzyYdp+uZpU2dLNC0jZ9SEJZ9czSdTzkPOYq9FdNG0ws9cZoQQvocoQ8hnJ9MKsgM5ZL8D\nOaNpKsKv0PcmEC1RO5EGeDMiFL4eKZibkAPtDyCC4bnIHucmbazWSVghfDuS0edTNUxp5bDG5+vA\nf40xfqOLZCjSZF6li/cvRoX3JhMtMcaJbv3MTLws6sWtlvEY1XhMaTzzZ9Lw1PwumbHZUHI7c7+Y\nlv2gTTim835y/WFkt0AxHfuVX0eKNuUke7Y2ri1NG90bYzyc/N+LzGRfStUujVF1vj9AlOjM1Pbg\nEtZGtTmPZOfDU2Gj27CmZ5pz0nTsl6KJPajJGcUE7H6eSUsnn9Iy1aRcajpnt43Smao28SrpK+g3\nNhFsmqpNAZDd64cdzQ8gmqv7lYd7qTRp56R5a3wSkR9OSp6xc46RyiYsyETeKurrSV35aCLN/xEk\nT4c0/KbIq0lusUGI5U9dnnQbNiv7TzPVtul04tkt25AdWNcjE4SfRfLVbAVuQVaBXoDsiHsc+GKM\n8S6AEMIvIPbHbcJ6DVJnVgBfjjF+NoTwbkSR1zf1/YuQdvsM4D8A/xJRZDSm4flDJD0WIDtg3qth\nMk2gf4bIIychfdO1yMTMNzTcP4Yo4nqHPvOfkYmzYX32OkRr6FPAWchA9ka1l/4SRB5ei0y63xxj\nvDuEcBEiU+9EZN9tiBmnaxFzSn+PtJmrNIxmEusKZAJ4k8blsN57GbLb8P9o2rwTWTDZh8hUJ2p6\n7ERWYBdrHC+nMo8EUj5MIdidiDy/B9Hiewmig+VMRBHXMCKvb9b03YIcobsMmbjfoHli5f0kpE7c\nTKU5eKnGY1DdfQ4y+XknUj7egAzibkQU2B3QtN+BaCR+O1LX70XapHfqO3+peWr2wC/WPPg6Mja5\nDNH0+7i6tQppL1+p4RjWMN+D1O+9yMS9hXeHhuXuNmYNDR9cZqh9uAEqA+0vpTLyauY6zETBD1EZ\naY36zElIJv8tovHM1BJbQ3cQKUwnIAVpvj6/HtF2aA3M+kxQ3KC2BjsK3CGEVyENzgVIpR1CbKh9\nB/hajHGjPpfOZKxCZih2Ua0MWYcxHynAL0UahHORCvsUUtC/g1Tu1yENwlp1YxdSiFMB4yBSQZvC\nkrJK43CqpmdAKvfnkIqzFLGZ9nrgpzRddyCraVAJVINI4/RkF36DNADPRVbydmbpcrKGbZ26bYP5\nz1NpDNyrcXgv0rANaPh2aZjMhpilyVdjjA+VwhVj3BxCOEHjPYh0QhchWvgWIdtmzkXK3PH6bVq+\nUj/q4j6scV2IdDJXqTtmGHkM6di+iZT5M5GGfi2VaQzT7GeqwLfpOxvq/I0xbtZradya2IPk9bVU\nwkopfKuRjuFi/T0PKTtP0105WIRsX07LwFq9dpiqfB9EVsM+H2P8nMbnuUgZuBp4FZW9u8b8L+SL\npYvVzYXIed1RZOX8WqSD2qRheJqq7P0LDUdEVoS/TNWZjiN5/S5956OaTpdrWt6MdDqXaFquQLRd\nnqf+TyBl/Z8hde03Nb1PpbJRN4qUgxORMnkhMjP7PY3zlRqHy9WtezTOe5GOf62G5QFE6HkDMpln\nWjOfRnZJnIJoNf0Wkt9rqLRfP4Z02pcjgs1h4M0xxq0hhDVIvVmG1Kd/QCY+rkDal3OQ9vMijcMF\nSNm/RcP4fGT3y72avpcAP6vPvEvT6PlIP2IaWkeQDtwMWC/S8O9TP0eR8nZQ3b0Y0WT5AY3TAs2D\npZrWTyJ17wZ1+z2aVwvVzV0apzv12o8gZeNUvb9R3xtC2rxLEBNSOzWtLkbag+cgwtQHkf7ruYh5\nglHg3yICzNWaX3erX3+KCCfLNZxfp9Lw+Q6kr9qC1Nk1mt7WZp6FtPvPRcrBoxreRzW+e9XNLTHG\nb4QQ1mkYN2mevgIpZys0/QeotKefjRwZGEba7PORfmQIEXh3I/X1Zg3flUg52o5oFr4WKXvbNf02\nUE0w36rhu1fjslrTdCnwh2pi7BqkT92MlP+vaJ6eRWU66qOJXd23aZp8GqlDFwN/HmP8SAhhEJEf\n7tT0uEzz+Csa1zWa/juRcnYRUieXaZi/gZTtq5HB7EJk4ns9Up++jrQ7gxqXx4D7tK0KSL17h7r7\nUaSMnKhpPoKU40/HGB/UuPyGpvV6Dc9XgT9H6sF7kDr+GQ3zGk3nzYjW3WVIO/NdTeOtGta36/e9\n+vlskhZnaXq9EKnLpjHXBhdf03Ber37ej5T7a5A2a7e+c6Km28dijHdoeQsWryZq7FLbMaxJ9pnN\ndjdAJ1vKbcj6kzo73ylTwjOdcCR2zc2/Whvjqf3o1I1e45/E3WTwLSpLl+LNTIalRRhPYfIumCl2\nrRvCDWU7330tS23xwWUDIYRXIw15ujVxuuQzaZFKLfghqlnnO5COqjTQOB/poLYhA9v5SIO5Dekc\nTgN+nWY12bbt0AwKN4UXeo93ExPIDM0vIQJdKQwz5b/5/Raks+lmRn+m02Y2Zl0dYQIRCocRtfn9\nwmy8Qu+rJ/0uDzcBr847rV7RNso6x04CTK0wBbPbCar/qQCyiw7Clr5zPDX0K/wart1JeA4Aa2KM\nj/bD/Q7+QnM+9l2QUX+3JrtNlqtbzwh7fU7blC1o3LqZoe/Sn9Q+dWNa9ujPJP861T99/2wSHQj9\nrIMNaWCrVEOlMOkzPQvHJf/bDKqyMLwd+BVkMiiVFyaQwfYdiAz2fGQwvYDqDOABKjmybgeBbe/O\nz+um920yLT1vZ9um7Z0dyCTXC5GBuW1NPYzIfWNUu93qtlNCpUywSb/GQSozRicgE1gjSBotQyZ1\nUluftnPGBpxtNZzaCv0+pH85h7J9attCam7tU39tR8N8Krm7k/xbd5yi6R1Ljz3IhIa9b+aFzMam\nhRNkgmwZIoMcTzWRsUjDmm47bsovw7ak19nw7hYr378fY/xw25d8cNlACOH7VLO/h5FVyV7VidsW\nE/tuIziWtiV1wxYqG1ok/vb7zG2+fXhecs32qZu9qLTRSm1I9cIY1SqlhQeqimZbw8zGqD0zXduH\nbcKT2iA1UyPpGQfbknAIWbXpdIajLbY943FkdcI6uzSu/YpzaeJkIvuflrnZHjin5cAa61GqcmDl\nZabOoB+mWjGx+JuG6hEqe439TBvrHG37XJs2ZgeyG2EA6RhTrCM8pG6ZoqsBJH7WiS+mqm/mb91k\nl3WwbTrMJsaoBK5RJtujsw49DUPasQ/oO6ZkqaktSM+vDTY81xZrE3YjwudKpJ4u188E7ezpPdP5\nIzYjb9Lra5A+q6RNPM3P/UjembFuE3bmUdnkq5sg6UaQOYQIXduodnHMpypDE+qG5c90bAmWyrHl\n8UOI0P1yjd9xTN7a22Q6IU/ju5C0tQGDlQuLT14v7MyWpVOp7DyBrID/FJI++Tm9MXVvG9KmH6Ky\nubpb/RlG2pNUkG4yU2Zluk1ap4Ob3VRtRNu2wdKmKQ32ImUtDXunrddPUxmVH0LK80Imp80KjavZ\n+m1qa81u7GCHMIwiebYSqa92pnW6k4mlftT6jF7savaT9Pxfm36lG3dzt0wvRF1ZmUnayOWWFtZu\n9KNP6BfpdvTpYOeVUzliBPhIjPHftXHAB5cZIYS/QLbpLKb7Cp0OAttm7lZktmuMShAcoZpRa1M4\nZmOlK1+t68bPfoev6VzRTAxeSiuVeRiGkPLSdMaoG3uk02Gur3jW5UN+bTY5kv7nZ6ybwlA6e2hG\n6k3ATtu72YpPt+l3NJTxbtI9x1a0+yWYWb8xpGH5GPBr9CZYdEtdXzdbeWVHEqx97Uc5tq3qH0C2\nz74ZkQlGkC2X107T3TbYoCKdmJnJdOy0YmRyzWy2CTYxm/vZ60R7P8LQb3/q3J9J2+jTqZv9Ck8v\n7eeRIg9nN5My/fZ7OuxGJg/bsAmZ7Dy1cG8ixnhC4foUfHCZEUKwlQQoa9sqrdC0mfmcCdKttaV7\n6V53sv/drlzuQ2bn0vjbSlyngbSFpUkpTL7NpJNZiojMMB7f4G8pHGRhSWeuO73bNLg0zZ62Ogtl\nleclAczCFJmcX9PpREt+pINui3dpW0oTpsDD3m16ryn/OmmC65a07NnqQSl8aZjy9Og2Ler8j9n1\nbsvVdMJiddDet10RdfUxzf/ZmJDqdsBRd3+2hMpeaQp/L6saQ8juk2NBGNvL5G1706UU1363Hyn9\nUgA0E/Sr/B8L5adEv8pUL+xnsgb/6ZJuuczls/y5bvOqzTudzKNMZ8LU5OY2fpc0587EgkCdmyN6\nr876QaeJsn7VoVRGr3MvXSXu5FZd2KG79sM015fMTMUY4+rC9SkcC531bLOBypTC15DtL+uRA/9f\nzJ41IdZMQbQRJtOtVfn1CSoFLDZw3drgVkAUJ9Tds++Q/QfZLjmm7m9Cts42aeTMB5ZQCbUmqNfN\nVITkufwDss3HzHCMIVtNLEwlrHFYXQhTE2k6mN+bEAHdBof2e6v6XzJuXPq/gGo7Ut05hVJY87xJ\nw2Xp0Y2NtpIf6SpJGrZu0i7f0tzpWaNkcmITk02hlBjTzxZkO1qTXxaPpvDl243T9IgaprwMmDma\nJlL/U3ffz2RTGp3qRu7WeEv/05nTgeS7Lm8DU021zAS2zbHkfzpR0ZaZ7KvysKTbumPNM92S2Wlz\nOQAAESNJREFUbtcv0cm27JHUllzyu6lM90MAT/1JaToD1taNOoaR87YzSV296ETTxG1T/Eay+6mA\nfKSYTlnuZ5kaoWzepVNaLi1cyycUU1NudaT9fC6flfLKjnPY/ab0a9OndzqGlIYn76OtbYzZ/w8n\n/zv5XedXiZJfuV1Ge24fkv77aZaZ5lM+3mb5UienGXl65J/cfnsJk39sIriOdLGiiTzsaRnsduJ8\nMbIDZIl+m1x7mCqfOwfIVy4nE0L4F8iZhyEkIb8KHIoxDocQ5iFayq5BtMF9jEqbJohmueuRMwD/\nE9GquBR4E/BQjPEe9WMe8DP6jM321BWwISZrm50OJuD/I6LFbROibhpgY4xxr4brVA3TuVSqn+1M\n0A0aD1OxPIRoc7sV0eb3akSb3wTScB+kOtCdClXjSCPwMKLN7VPI4e8rkM79Lg3TPg3TFcg2r5cj\nM5eHEU2wP6nheQUysDsVOWNhg/0DGvYhvbYaSetRZLDyGfV7J6LR7goN6+367sYY415Nk1/VZ0xh\niW3DMg3CE1SDoN9HFARdjOTZGRrWF6j/Y8h5oIOI5jnrNPcjExqbEO2GQ0l6gGi8u0bjshQ5T7Vd\n03wMOT+0WL8XUA1s7GB4QDrVXcgEym3I2SybDV6NKCw4kUqL8VL1b5/G7UFE2dS9VBowr0K2WyzW\nMJl7drB9nMru1oOI4iaL2936zluYzCqqSZOdSJ6ZuycgW9JO1Djt0e9diFZD09o4gWhn/TEqO6PW\n4di5HysH9yFlHqQM3KZh3IiU4ffpvUuRenEKVX00u7j71b3vAQ/EGD8RQjgFaQ+uRfL/ePXbFCCc\nyOSzbU8h9fNDSCe5ESkfv6nPnYpoLjxF738S0c64Dqljm5E6fjNSPn9F/U7PIFtnVmewfULjclzh\n3tFEp10ldZgNyQEkbbudhe7HrHVpMPtB4Jen4Y7lp51v20NlW3m2yHdfpOmT2sOziYVxOpsoqZtp\nb7P7w963ctx2dWRUn7GwDVOZObFJnKjXS4OdXsvGONXgJD1/b/aml+m1e5F634Zed1PZmei6tO0n\n5n66glxKTzsHnO72GWWqvb46Op2tDYUwdCpDE8CXkPb7PqT/+hmk3T+PyTJcGn57dx9SdweQdr5O\noc9BKrvSIH2bKSuyM/w2ebGESjlQOuhYj5TfUylv+zV9BAtpnhCz8DyEaPe1cFwH/Gsmr2Ra+q1H\n+lo7HmT3bVv70kJ47P09iHbn7yd+nY1oADcN8OmkwTqkLRxI3ADpZ+08bu6HDV53IrLJEtqT5s/j\niBzzsIbxMn3G8icg8tBqRKbI20ML6w8QWeQkqmNXdWXQZEiT/VYgedzrxKydN/+DGOOft33JB5dH\nkBDCauBtSMU8D+k8bBCwE1kt/QCThZF/A7wVqbiPIEL1NmTwdx3wGmTAcQBZfdug34N6f/MMRMWU\nQeylOtQ/jBTqK6gaudKMUy/YwX9zNzUXM6Lf1lmDVJALqRrmtqxD0rrTKlK3LEDS7V4mCy9tWEQl\nRO6iSoOVTFZQs5pqwNmPrRz5LGun8E4gDf9HgN+LMXZaoekrIYQBxBTHTyKDO5D6cRzdCV1NK/Pd\nkAopdUJyPxvlfMdCHXnHmA5QVjP5/EUqwNhWzVR4ygWYfJbYJp926e8zKXfibYT1NNyLEKGjrp4G\nRPAzAeQMRCA10zl1jCOmL8apBj2nUgn75na34beByi3IwPI3EEHjcjoLdikTSJv298jEyLlImpbO\nzMDk/LS8NIUrppTCyvuTSDuaCylpmrQRZNK4fh9p935W/UyPEdgAdBdVHe0mbUsC3gcQIe06xMzF\ncspb+B5B2s9VTF3BmED65JuQ9uyH9NrDyTNfQgZ976FcLyaQ8vc8piqY2qnp8RbEdl+qCC4gwrdN\nYP0E8HPqDxoX00pq7xhPIe1dGpf9SL6bKY4JKvt7TZTaiG7bBusP1mRhishOsceRNFxOuzJlg5vP\nIRNpFzB5cJVqaLV36gYX44jW/U5hmNCwfpWq330qxnhjTThnxS51C79Ntmy0uTxD/jKbfhfCYPln\nYThq7GYnYVyETB4/gpTTWU+vfuKDy6MQXdn8D/llZOXqmw2vvgRZ4XOcowHbImJbwbciq5XT4QX6\n/tNdvjeACB22xaMfA+xjFdte9STwsn6as9AO8oXIoOZ+xODyUdOBN3GkhK9O5DaOZ9nfWReEZzO+\nsyV0zlbZKgjyzKR/3XCk61c//Q8hnIdMUryIanJqJuhkDzy3hzhbTPLXbFTPFF3Yvu4nK5DJh8cp\nb0HO7cD3k2uQ3UfdHIXqp78gNu3zhaDhbk0l+eDyKCSEsJDqUG2KKeuow8/QOs5UbIZ7hGr18mig\nbotfv85FpWc6rG0w1fYjyLbbXlmECFjzqLZljTS+0Z5OAlbOUSFwdaKfAtksCl+dBK4mehXGOglc\n8ykLRL2wBNnO9irEtnTpvF2/WYysmi6gWl0Eidf9wBfoz86jdcjRjUnEGO/S8nQZ1W6DM4GXIauf\n/WAQiecBqlXNlYi8s7fmHduJdALV0YKn6G6icTGVuZCD6n83O5EWIZNnR0Kp0ASTbXJDZ1mwn7hc\nOZU2u7amw2zma7oby3RPNE2+fxN4U4zxqVaO++DyyKAmT65Gzl2ZcOaVeGaoOyRfIt2fn1e8XitL\n6nbpgPizeVXt2Ug/zu8dSfdnk5KAlTObHXMnf70tn0wv7WcpfdO2ea6U8SPNEP0xuv5sIiKD336l\n2SiVCRRTXpVONqZHXmajreukcMeZm9j50zGqrfMTwK0xxne0ccAHl0cINXkyiHeOM8koU7U0tl0V\nyg/x96OizEY+z6UBxVznSORVaoqkF+HEBk8lN5rutcEErFT7b6qRum6V7mgZXLpA5hzrzLZZtbYc\nbf2bTww/e+hmkaIT6bn21N1+LWS08TeVhdPyu12/T0R2B6RxnIgx1p3ln8TRatPp2cAGpmpbOx1R\nZDCMHLCfa3S1Z7sDi6gMiOdYuX5MvweQirKC9h1mXuH6NcCcadJBw9G0emKmZjppiaxjkGZFLaYt\nM+dmZJuXKemAoyddZlsgMa3R6Hc/DEA31afpCqdL6E5LX8qRytujpUwdTXQrjLURuHz3x+xwNA4s\n4ejL37Qc9uO8rrlVt1p/tObLs5VeyqOVnZJsOZs7mkpHc+w4zXT7YR9cHkE+jpzlSLkQ2ZryOGU7\nOSdTzSqU2IQMqEpCeEQE7Tq7mNNlEGnwRqnORqTYeaTUZMtMs4pKdXWKmYoZ6yIsa5BB/z3MjK25\nJxAzBAuZ/nnA5Ug+7M6uByT8y/T/EJ3tLzURkHMvI9RPFNyZ/C7NwE33PN6y6bwbY3x1fi2EEOg+\nrVcxNX2nwwBy5ukspN6cgkwmbaP/kxd/gkzCmEmhlEX0ZkrATPCUwtw02G9DXcdqbrqAdezSRvtv\nG4FrpgcZdeeh+0lp5aCNv0fbAGs26cYY/GyQhqXf7VKuoXYTIouATNLOhOZ1M1FlbXdeD+dTWQQw\nzdKzxUzEdz6Vxusci5vZml9Kdea3X/E+UpNiTTsATkl+DzFZdmitaMi3xTqO48xBQgivQGzJ5ur4\nj2WeRnYglJgtgauTv3W7HGZaIOtX3DsJXIPUCxlPUk1upsJYbmuuDb4yORlTTNbr1u9llM1xvQdR\njOSLDu3Iy3I/NXym9sA/h9g03tlH9+uwvLc6bDbAS6wEXtonf61Nf6Bwbwmy8HJ74V6vHIdM7pba\nzlP0+vrk2gJEwdVFlCdtp0tA+un5VLaYZ5oBZELEbKEeRJRq/TYSz/OozAsaj8QYP9XGcR9cOo7j\nzFFqbOmmBrx7JZ/FtS01/SAXsG5EBKx+25vtRC5wdaJJIFuBmMZpwwr1e5f+P4RoyQQRRM5BjleA\nrKw37WrphuOYOmNtmOH1xwr3QPInFdTmI+axTBjrdgC8VN0we8UDTD6Di977ALJLY12X7kNlTuIg\nImgeQo5RnKluLkjuzQSDVAKebX0co7JtuQn4HqIxth9160rEGP0kYow3hBBOQcw+Wdq+QJ/vl5bt\n+UhcbXC7Asnj/dTbn16M7JhZiaTNYaR8mubrTixEdmqA7H4xO7fdauW2899PIya1Hk/uraP/7VJq\nPzxPmzOYGZvl7u+z29/TgS1I/dpAYadjjPGTbTzxwaXjOM6zjBpbun1zns42eeeCn+6v++v+Hrv+\nduPnOcCbmf2toI5zJJly1C3GWLdzaBI+uHQcx3mW0WBLt18cCc2tR4u2WPfX/XV/jw1/2/p5NJ3z\ndJyZJB8UTpDoKIkxLm/jiA8uHcdx5iA1tnTnytlLx3Ecx3H6S2lQ+MwA0weXjuM4z2Lclq7jOI7j\nOF1QNyiMwGiMsZV5EtcK5jiOMzcp2dI1AnPTlq7jOI7jONOjbiI6UCnG6ogPLh3HceYmH2eqLV0j\n0JvN0zXIYf86NzrZ5D1W/HR/3V/399j1t19+BkRD8kM195cD/6vr0NWT2g8vcRL9t1nu/rq/JyHa\nYqdrj/wZfFus4ziO4ziO4ziO0zOuActxHMdxHMdxHMfpGR9cOo7jOI7jOI7jOD3jg0vHcRzH6ZIQ\nwhkhhAMhhHkz5P47Qgi3z4TbjuM4jjNT+ODScRzHcRoIIWwKIRzUweSBEMIBYDzGuCzGeHiG/Q4h\nhG+GEH4ru/72EMIjIYRWquEdx3EcZzbwwaXjOI7jdOZ6HUza54nZ8DSK1r13Ae8LIVwIEEJYA/wh\n8K4Y43C//AohDIQQXC5wHMdxpo13Io7jOI7TJSGEs0IIMYQwqP/fEUJ4NISwP4TwWAjhrcmzPx9C\neEDv3R9CuEyv/7quPtr1N5T8ijFuBP4T8FEd/P0p8OkY4zfUnUUhhP8RQtgSQngyhPBnIYRFem91\nCOGLIYQdIYTdIYS/DyGcmoTt9hDC74UQ/gEYAs6YmRRzHMdxng344NJxHMdxeiCEsBQZ8L0mxrgc\nuBK4W++9Cfht4O3ACuDHgZ366iPANcBK4HeAT4QQTq7x5n8g9vb+H3AV8P7k3h8Az0Hsmp4LnAX8\ne703AHwYGTSeidj9+5PM7bcBP6fh29pF1B3HcRxnEm7n0nEcx3EaCCFsAk4AxvXSLcCvIobV5wML\ngW3AO4EvxhgPJu9+Ra/lA7qSP3cDvxVj/GwI4R3Itterk/sXAvcCr48xflavDQDDwLoY4+N67Rrg\nL2KM5xb8eCHwpRjjGv1/O3BTjPF3WyeI4ziO49TgK5eO4ziO05nXxxiP08/r0xsxxiHgzcAvANtD\nCF8IITxPb5+OrFBOQZXy3B1C2BNC2ANchAxii8QY79Of9yWXT0IGt/ck7nweWKt+LAshfCSEsDmE\nsA/4esGPLZ2j7ziO4zid8cGl4ziO4/RIjPErMcZXAicDDyJbUUEGbs/Nnw8hnKnP/BKwOsZ4HLIq\nGbr0+klgDFm5tMHvyhjjSr3/fmTL7A/FGFcALy8Fv0s/HcdxHKeIDy4dx3EcpwdCCCeGEF6nZy9H\ngQPAhN7+CPCvQwiXq1mRc3RguRQZ1O1QN34WWbnsCjWF8hHgj0MIa9SP00IIr9JHliPbZneHEFYD\nv9lDVB3HcRynER9cOo7jOE5vDAD/CngC2AW8FHgvQIzxRkTT6w3AfuDvgONjjPcj5kT+AVl9vBj4\n1jT9/zXgceC7wF7gJkSxD4gioJWIEqFvA1+aph+O4ziO0xFX6OM4juM4juM4juP0jK9cOo7jOI7j\nOI7jOD3jg0vHcRzHcRzHcRynZ3xw6TiO4ziO4ziO4/SMDy4dx3Ecx3Ecx3GcnvHBpeM4juM4juM4\njtMzPrh0HMdxHMdxHMdxesYHl47jOI7jOI7jOE7P+ODScRzHcRzHcRzH6RkfXDqO4ziO4ziO4zg9\n8/8BwUOULfB+uIsAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f1ac7cab438>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = data[[xAxis]].plot(kind='bar', title =\"V comp\", figsize=(15, 10), legend=True, fontsize=12)\n", "ax.set_xlabel(yAxis, fontsize=12)\n", "ax.set_ylabel(xAxis, fontsize=12)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([<matplotlib.axes._subplots.AxesSubplot object at 0x7f1ac95cfc50>], dtype=object)" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEICAYAAAC55kg0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGDVJREFUeJzt3X+QXWV9x/H3xwRiJPwUXGMSTRhSx0AKmG0M/lxEIaA1\nOLVMEEiCSJwBrda0NdHOgHUyg62IpQgay48gP+IW1KQgFYwsqGOIiUU2CUQiCZptSPgdFhGz4ds/\nzrPkZGeT3b27e+/ufT6vmTv3nOec55znmwv3c8+5555VRGBmZnl6Ta0HYGZmteMQMDPLmEPAzCxj\nDgEzs4w5BMzMMuYQMDPLmEPAbB8khaRjaj0Os8HkELAhS1KLpGcljar1WDpJujSFwztqPZbuSJqY\nxjey1mOx4cEhYEOSpInAe4AAPjLI++rVG6YkAXOAZ9Kz2bDnELChag6wCrgBmAsgaZKk5yS9Js1/\nR9KOzg6Svivpc2n6fEkPS3pB0mOSPlVar0nSVklfkPQEcH1q/0dJ2yT9n6RPdDOm9wBjgb8DZks6\nsLTNeZJ+IemKNMbHJL0ztf9B0g5Jc0vrHyrpRklPSnpc0j+X6rpU0k2ldff6dJ+OkL6S9veCpLsl\nHZlWvz89PyepXdJJFf3rWzYcAjZUzQFuTo/TJDVExGZgJ3BiWue9QLukt6X59wH3pekdwIeBQ4Dz\ngSskvb20/TcCRwBvAeZLmgn8A/BBYDLwgW7GNBf4b6A5zf91l+XvAB4CXg/cAiwD/go4BjgXuErS\nmLTufwCHAkencc9J4+ytj6f13wAcmMYOxb8JwGERMSYiftmHbVqGHAI25Eh6N8Wbc3NErAV+R/Gm\nB8Wb/PskvTHN35bmJ1G84f8GICLujIjfReE+4G6KT/KdXgEuiYiXI+Il4Czg+ohYFxEvApd2GdPr\ngL8FbomIXWm/XU8JbY6I6yNiN/A9YALwL2kfdwN/Bo6RNAKYDSyKiBciYgtwOXBeH/6Zro+I36ax\nNwMn9KGv2ascAjYUzQXujoin0vwtqQ2KEGii+MR7P9BC8Un6fcDPIuIVAEmnS1ol6RlJzwFnAEey\nx5MR8afS/JuAP5TmH+8ypo8CHcCP0vzNwOmSjiqts700/RJARHRtG5PGcUCXfTwOjKP3nihN/zFt\n16zPfAWBDSmSRlN8Kh+RztcDjAIOk3Q8RQj8G7A1Tf8c+BbwpzRPuprodopP6ssjYpekHwIq7arr\n7XO3UXxy7/TmLsvnUrzR/r74fhhRvJF/HPj3Ppb5FLCL4mhnQ2l/bWn6ReB1pfXfSO/5tsDWJz4S\nsKHmTGA3MIXiFMcJwNuAnwFzIuJRik/U5wL3RcROik/gf8Oe7wMOpAiOJ4EOSacDp/aw32ZgnqQp\n6dTPJZ0LJI0DTqH4jqFzTMcDX6WCq4TS6aJmYLGkgyW9Bfg80Pll8IPAeyW9WdKhwKI+bP5JilNd\nR/d1XJYnh4ANNXMpznf/PiKe6HwAVwHnpCtk7gOejojO0zf3UXwy/zVARLxAcQVPM/Asxaf1Ffvb\naUTcBXwD+CmwKT13Og94MCLu7jKmK4G/lHRcBXV+huIT/2MURzO3ANelsdxD8Z3CQ8Ba4I7ebjQi\n/ggsBn6RrlKaUcHYLCPyH5UxM8uXjwTMzDLmEDAzy5hDwMwsYw4BM7OMDfnfCRx55JExceLEivq+\n+OKLHHTQQQM7oCHGNdaPHOrMoUYYGnWuXbv2qYg4qscVI2K/D+C1wGqKn+OvB76c2o8A7gEeTc+H\nl/osorjMbiNwWql9GtCall1Jujppf49p06ZFpe69996K+w4XrrF+5FBnDjVGDI06gTXRw/trRPTq\ndNDLwPsj4niKH8nMTNceLwRWRsRkYGWaR9IUivuiHAvMBK5O90oBuAa4kOIGXZPTcjMzq5EeQyCF\nSnuaPSA9ApgFLE3tSyl+6UlqXxbFTbM2U3zqny5pLHBIRKxKKXVjqY+ZmdVAb/+YxgiKXy4eA3wz\nIh5It/bdllZ5AmhI0+Mo7gPfaWtq25Wmu7Z3t7/5wHyAhoYGWlpaelVMV+3t7RX3HS5cY/3Ioc4c\naoThVWevQiCKe52cIOkw4AddfyYfESFpwH56HBFLgCUAjY2N0dTUVNF2WlpaqLTvcOEa60cOdeZQ\nIwyvOvt0iWhEPAfcS3Euf3s6xUN67vwLT23sfTfG8amtLU13bTczsxrpMQQkHZWOADpv8/tB4BGK\nG3J13uN9LrA8Ta+g+NN7o9If+pgMrE6njnZKmlH6W63LMTOzmunN6aCxwNL0vcBrKP7a0x2Sfgk0\nS7qA4g9inAUQEeslNVPcJ70DuDidTgK4iOJvxo4G7koPMzOrkR5DICIeYs/fdC23P01xj/Xu+iym\nuJ1t1/Y1QCW33TUzs0Hg20aYmWVsyN82YjiauPDOqu1rwdQO5pX2t+WyD1Vt32Y2/PlIwMwsYw4B\nM7OMOQTMzDLmEDAzy5hDwMwsYw4BM7OMOQTMzDLmEDAzy5hDwMwsYw4BM7OMOQTMzDLmEDAzy5hD\nwMwsYw4BM7OMOQTMzDLmEDAzy5hDwMwsYw4BM7OMOQTMzDLmEDAzy5hDwMwsYw4BM7OMOQTMzDLm\nEDAzy1iPISBpgqR7JW2QtF7SZ1P7pZLaJD2YHmeU+iyStEnSRkmnldqnSWpNy66UpMEpy8zMemNk\nL9bpABZExK8lHQyslXRPWnZFRHytvLKkKcBs4FjgTcBPJP1FROwGrgEuBB4AfgTMBO4amFLMzKyv\nejwSiIhtEfHrNP0C8DAwbj9dZgHLIuLliNgMbAKmSxoLHBIRqyIigBuBM/tdgZmZVUzF+3EvV5Ym\nAvcDxwGfB84HngfWUBwtPCvpKmBVRNyU+lxL8Wl/C3BZRHwgtb8H+EJEfLib/cwH5gM0NDRMW7Zs\nWUXFtbe3M2bMmIr69kdr2/NV21fDaNj+0p75qeMOrdq+q6VWr2O15VBnDjXC0Kjz5JNPXhsRjT2t\n15vTQQBIGgPcDnwuInZKugb4ChDp+XLgExWOdy8RsQRYAtDY2BhNTU0VbaelpYVK+/bHvIV3Vm1f\nC6Z2cHnrnpdxyzlNVdt3tdTqday2HOrMoUYYXnX26uogSQdQBMDNEfF9gIjYHhG7I+IV4DvA9LR6\nGzCh1H18amtL013bzcysRnpzdZCAa4GHI+LrpfaxpdU+CqxL0yuA2ZJGSZoETAZWR8Q2YKekGWmb\nc4DlA1SHmZlVoDeng94FnAe0SnowtX0ROFvSCRSng7YAnwKIiPWSmoENFFcWXZyuDAK4CLgBGE3x\nPYGvDDIzq6EeQyAifg50dz3/j/bTZzGwuJv2NRRfKpuZ2RDgXwybmWXMIWBmljGHgJlZxhwCZmYZ\ncwiYmWXMIWBmljGHgJlZxhwCZmYZcwiYmWXMIWBmljGHgJlZxhwCZmYZcwiYmWXMIWBmljGHgJlZ\nxhwCZmYZcwiYmWXMIWBmljGHgJlZxhwCZmYZcwiYmWXMIWBmljGHgJlZxhwCZmYZcwiYmWXMIWBm\nljGHgJlZxnoMAUkTJN0raYOk9ZI+m9qPkHSPpEfT8+GlPoskbZK0UdJppfZpklrTsislaXDKMjOz\n3ujNkUAHsCAipgAzgIslTQEWAisjYjKwMs2Tls0GjgVmAldLGpG2dQ1wITA5PWYOYC1mZtZHPYZA\nRGyLiF+n6ReAh4FxwCxgaVptKXBmmp4FLIuIlyNiM7AJmC5pLHBIRKyKiABuLPUxM7MaGNmXlSVN\nBE4EHgAaImJbWvQE0JCmxwGrSt22prZdabpre3f7mQ/MB2hoaKClpaUvw3xVe3t7xX37Y8HUjqrt\nq2H03vurRb2DrVavY7XlUGcONcLwqrPXISBpDHA78LmI2Fk+nR8RISkGalARsQRYAtDY2BhNTU0V\nbaelpYVK+/bHvIV3Vm1fC6Z2cHnrnpdxyzlNVdt3tdTqday2HOrMoUYYXnX26uogSQdQBMDNEfH9\n1Lw9neIhPe9I7W3AhFL38amtLU13bTczsxrpzdVBAq4FHo6Ir5cWrQDmpum5wPJS+2xJoyRNovgC\neHU6dbRT0oy0zTmlPmZmVgO9OR30LuA8oFXSg6nti8BlQLOkC4DHgbMAImK9pGZgA8WVRRdHxO7U\n7yLgBmA0cFd6mJlZjfQYAhHxc2Bf1/Ofso8+i4HF3bSvAY7rywDNzGzw+BfDZmYZcwiYmWXMIWBm\nljGHgJlZxhwCZmYZcwiYmWXMIWBmljGHgJlZxhwCZmYZcwiYmWXMIWBmljGHgJlZxhwCZmYZcwiY\nmWXMIWBmljGHgJlZxhwCZmYZcwiYmWXMIWBmljGHgJlZxhwCZmYZcwiYmWXMIWBmljGHgJlZxhwC\nZmYZcwiYmWXMIWBmlrEeQ0DSdZJ2SFpXartUUpukB9PjjNKyRZI2Sdoo6bRS+zRJrWnZlZI08OWY\nmVlf9OZI4AZgZjftV0TECenxIwBJU4DZwLGpz9WSRqT1rwEuBCanR3fbNDOzKuoxBCLifuCZXm5v\nFrAsIl6OiM3AJmC6pLHAIRGxKiICuBE4s9JBm5nZwBjZj76fkTQHWAMsiIhngXHAqtI6W1PbrjTd\ntb1bkuYD8wEaGhpoaWmpaIDt7e0V9+2PBVM7qravhtF7768W9Q62Wr2O1ZZDnTnUCMOrzkpD4Brg\nK0Ck58uBTwzUoCJiCbAEoLGxMZqamiraTktLC5X27Y95C++s2r4WTO3g8tY9L+OWc5qqtu9qqdXr\nWG051JlDjTC86qzo6qCI2B4RuyPiFeA7wPS0qA2YUFp1fGprS9Nd283MrIYqCoF0jr/TR4HOK4dW\nALMljZI0ieIL4NURsQ3YKWlGuipoDrC8H+M2M7MB0OPpIEm3Ak3AkZK2ApcATZJOoDgdtAX4FEBE\nrJfUDGwAOoCLI2J32tRFFFcajQbuSg8zM6uhHkMgIs7upvna/ay/GFjcTfsa4Lg+jc7MzAaVfzFs\nZpYxh4CZWcYcAmZmGXMImJllzCFgZpYxh4CZWcYcAmZmGXMImJllzCFgZpYxh4CZWcYcAmZmGXMI\nmJllzCFgZpYxh4CZWcYcAmZmGXMImJllzCFgZpYxh4CZWcYcAmZmGXMImJllzCFgZpYxh4CZWcYc\nAmZmGXMImJllzCFgZpYxh4CZWcZ6DAFJ10naIWldqe0ISfdIejQ9H15atkjSJkkbJZ1Wap8mqTUt\nu1KSBr4cMzPri94cCdwAzOzSthBYGRGTgZVpHklTgNnAsanP1ZJGpD7XABcCk9Oj6zbNzKzKegyB\niLgfeKZL8yxgaZpeCpxZal8WES9HxGZgEzBd0ljgkIhYFREB3FjqY2ZmNTKywn4NEbEtTT8BNKTp\nccCq0npbU9uuNN21vVuS5gPzARoaGmhpaalokO3t7RX37Y8FUzuqtq+G0Xvvrxb1DrZavY7VlkOd\nOdQIw6vOSkPgVRERkmIgBlPa5hJgCUBjY2M0NTVVtJ2WlhYq7dsf8xbeWbV9LZjaweWte17GLec0\nVW3f1VKr17HacqgzhxpheNVZ6dVB29MpHtLzjtTeBkworTc+tbWl6a7tZmZWQ5WGwApgbpqeCywv\ntc+WNErSJIovgFenU0c7Jc1IVwXNKfUxM7Ma6fF0kKRbgSbgSElbgUuAy4BmSRcAjwNnAUTEeknN\nwAagA7g4InanTV1EcaXRaOCu9DAzsxrqMQQi4ux9LDplH+svBhZ3074GOK5PozMzs0HlXwybmWXM\nIWBmljGHgJlZxhwCZmYZcwiYmWXMIWBmljGHgJlZxhwCZmYZcwiYmWXMIWBmlrF+30rahpaJVbyN\nddmWyz5Uk/2aWf/4SMDMLGMOATOzjDkEzMwy5hAwM8uYQ8DMLGMOATOzjDkEzMwy5hAwM8uYQ8DM\nLGMOATOzjDkEzMwy5hAwM8uYQ8DMLGMOATOzjDkEzMwy5hAwM8tYv0JA0hZJrZIelLQmtR0h6R5J\nj6bnw0vrL5K0SdJGSaf1d/BmZtY/A3EkcHJEnBARjWl+IbAyIiYDK9M8kqYAs4FjgZnA1ZJGDMD+\nzcysQoNxOmgWsDRNLwXOLLUvi4iXI2IzsAmYPgj7NzOzXlJEVN5Z2gw8D+wGvh0RSyQ9FxGHpeUC\nno2IwyRdBayKiJvSsmuBuyLitm62Ox+YD9DQ0DBt2bJlFY2vvb2dMWPGVNS3P1rbnq/avhpGw/aX\nqra7fZo67tBB23atXsdqy6HOHGqEoVHnySefvLZ0hmaf+vuH5t8dEW2S3gDcI+mR8sKICEl9TpmI\nWAIsAWhsbIympqaKBtfS0kKlfftjXhX/2PuCqR1c3trfl7H/tpzTNGjbrtXrWG051JlDjTC86uzX\n6aCIaEvPO4AfUJze2S5pLEB63pFWbwMmlLqPT21mZlYjFYeApIMkHdw5DZwKrANWAHPTanOB5Wl6\nBTBb0ihJk4DJwOpK929mZv3Xn/MIDcAPitP+jARuiYj/kfQroFnSBcDjwFkAEbFeUjOwAegALo6I\n3f0avZmZ9UvFIRARjwHHd9P+NHDKPvosBhZXuk8zMxtY/sWwmVnGHAJmZhlzCJiZZcwhYGaWMYeA\nmVnGHAJmZhlzCJiZZaz2N52xujBxEO+XtGBqx37vx7Tlsg8N2r7N6p2PBMzMMuYQMDPLmEPAzCxj\nDgEzs4w5BMzMMuYQMDPLmEPAzCxjDgEzs4zV9Y/FWtuer+offTczG258JGBmljGHgJlZxhwCZmYZ\ncwiYmWWsrr8YtjwM5h1M98d3L7V64CMBM7OMOQTMzDLmEDAzy5hDwMwsYw4BM7OMVT0EJM2UtFHS\nJkkLq71/MzPbo6qXiEoaAXwT+CCwFfiVpBURsaGa4zAbCAN9aeqCqR29vteVL0+1gVLtI4HpwKaI\neCwi/gwsA2ZVeQxmZpYoIqq3M+ljwMyI+GSaPw94R0R8ust684H5afatwMYKd3kk8FSFfYcL11g/\ncqgzhxphaNT5log4qqeVhuQvhiNiCbCkv9uRtCYiGgdgSEOWa6wfOdSZQ40wvOqs9umgNmBCaX58\najMzsxqodgj8CpgsaZKkA4HZwIoqj8HMzJKqng6KiA5JnwZ+DIwArouI9YO4y36fUhoGXGP9yKHO\nHGqEYVRnVb8YNjOzocW/GDYzy5hDwMwsY3UZAsPt1hSSJki6V9IGSeslfTa1HyHpHkmPpufDS30W\npfo2Sjqt1D5NUmtadqUkpfZRkr6X2h+QNLHadaZxjJD0v5LuSPP1WONhkm6T9IikhyWdVG91Svr7\n9N/qOkm3SnptPdQo6TpJOyStK7VVpS5Jc9M+HpU0txr1AhARdfWg+ML5d8DRwIHAb4AptR5XD2Me\nC7w9TR8M/BaYAvwrsDC1LwS+mqanpLpGAZNSvSPSstXADEDAXcDpqf0i4FtpejbwvRrV+nngFuCO\nNF+PNS4FPpmmDwQOq6c6gXHAZmB0mm8G5tVDjcB7gbcD60ptg14XcATwWHo+PE0fXpWaa/E/ySC/\niCcBPy7NLwIW1XpcfaxhOcX9lTYCY1PbWGBjdzVRXG11UlrnkVL72cC3y+uk6ZEUv2ZUlesaD6wE\n3s+eEKi3Gg+leINUl/a6qZMiBP6Q3rBGAncAp9ZLjcBE9g6BQa+rvE5a9m3g7GrUW4+ngzr/A+20\nNbUNC+nw8ETgAaAhIralRU8ADWl6XzWOS9Nd2/fqExEdwPPA6we8gP37BvBPwCultnqrcRLwJHB9\nOu31n5IOoo7qjIg24GvA74FtwPMRcTd1VGMX1airZu9b9RgCw5akMcDtwOciYmd5WRQfD4bt9byS\nPgzsiIi1+1pnuNeYjKQ4nXBNRJwIvEhxCuFVw73OdE58FkXgvQk4SNK55XWGe437Uo911WMIDMtb\nU0g6gCIAbo6I76fm7ZLGpuVjgR2pfV81tqXpru179ZE0kuK0xdMDX8k+vQv4iKQtFHePfb+km6iv\nGqH4BLc1Ih5I87dRhEI91fkBYHNEPBkRu4DvA++kvmosq0ZdNXvfqscQGHa3pkhXDlwLPBwRXy8t\nWgF0XiUwl+K7gs722elKg0nAZGB1OmTdKWlG2uacLn06t/Ux4KfpU01VRMSiiBgfERMpXpOfRsS5\n1FGNABHxBPAHSW9NTacAG6ivOn8PzJD0ujS2U4CHqa8ay6pR14+BUyUdno60Tk1tg68aXzxU+wGc\nQXGFze+AL9V6PL0Y77spDjEfAh5MjzMozhWuBB4FfgIcUerzpVTfRtKVB6m9EViXll3Fnl+Fvxb4\nL2ATxZULR9ew3ib2fDFcdzUCJwBr0uv5Q4qrPeqqTuDLwCNpfN+luEJm2NcI3ErxPccuiqO6C6pV\nF/CJ1L4JOL9ar6VvG2FmlrF6PB1kZma95BAwM8uYQ8DMLGMOATOzjDkEzMwy5hAwM8uYQ8DMLGP/\nD4jxUx9PhuIxAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f1ac9672438>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot Settings\n", "year = 2016\n", "data = mathFundingData.loc[(mathFundingData['FiscalYear'] == year)]\n", "\n", "xAxis = 'FiscalYear'\n", "#xAxis = 'AwardAmount'\n", "\n", "xScalingFactor = 10**3\n", "xScalingFactorString = ' In Thousands'\n", "\n", "yAxisRange = [1.99,2.1]\n", "\n", "plotPointSizes = 3 \n", "\n", "title = 'Graph of Awards Given by Committee 1508 in 2016'\n", "\n", "# Make the Plot\n", "\n", "mathFundingData.hist(column='AwardAmount', ax=plt.gca())" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "data": [ { "line": { "color": "rgba (31, 119, 180, 1)", "dash": "solid", "width": 1.5 }, "mode": "lines", "name": "FiscalYear", "type": "scatter", "x": [ 15000, 22000, 20000, 17000, 19000, 25000, 31000, 28000, 18000, 15000, 11000, 11000, 28000, 11000, 31000, 11000, 13000, 14000, 18000, 15000, 25000, 11000, 10000, 26000, 11000, 15000, 46000, 29000, 27000, 13000, 11000, 14000, 15000, 14000, 18000, 17000, 31000, 12000, 40000, 29000, 15000, 29000, 14000, 45000, 33000, 10000, 17000, 35000, 15000, 35000, 34000, 40000, 14000, 28000, 14000, 11000, 45000, 23000, 18000, 23000, 38000, 12000, 15000, 22000, 11000, 20000, 22000, 22000, 28000, 14000, 11000, 15000, 16000, 18000, 14000, 38000, 23000, 18000, 14000, 33000, 17000, 11000, 19000, 19000, 12000, 15000, 25000, 11000, 29000, 28000, 45000, 40000, 15000, 25000, 15000, 17000, 20000, 15000, 11000, 15000, 11000, 22000, 11000, 25000, 15000, 19000, 17000, 28000, 26000, 12000, 16000, 16000, 15000, 13000, 14000, 38000, 27000, 16000, 11000, 20000, 11000, 18000, 11000, 30000, 18000, 20000, 14000, 11000, 11000, 31000, 21000, 10000, 11000, 22000, 13000, 11000, 19000, 11000, 18000, 15000, 15000, 25000, 15000, 52000, 31000, 44000, 15000, 55000, 16000, 11000, 46000, 21000, 15000, 15000, 15000, 14000, 15000, 15000, 25000, 14000, 12311, 18000, 12000, 56000, 23000, 38000, 11000, 29000, 10000, 45000, 25000, 11000, 12000, 25000, 11000, 11000, 12000, 18000, 27000, 18000, 18000, 25000, 12000, 12000, 15000, 18000, 20000, 32640, 28000, 23300, 33000, 14000, 11000, 31000, 34000, 21000, 60000, 18000, 15000, 15800, 18000, 11000, 30000, 23000, 18000, 22000, 1464, 8168, 23000, 15000, 22000, 18000, 18000, 11000, 12000, 25000, 11000, 19000, 14000, 12000, 10000, 23000, 20000, 29000, 17000, 14000, 25000, 36000, 15000, 17000, 14000, 38000, 11000, 15000, 11000, 15000, 11000, 11000, 11000, 14000, 11000, 18000, 23000, 14000, 14000, 21000, 11000, 18000, 18000, 14000, 19219, 21000, 11000, 23000, 52000, 25000, 15000, 30000, 19000, 11000, 30000, 14000, 20000, 12000, 14000, 14000, 25000, 28000, 34000, 12000, 14000, 15000, 56000, 23000, 11000, 18000, 12000, 38000, 40000, 14000, 14000, 15000, 20000, 18000, 17000, 47000, 25000, 14000, 40000, 11000, 12000, 15000, 34000, 15000, 12000, 16700, 22000, 14000, 15000, 18000, 15000, 27000, 20000, 18000, 15000, 11000, 19000, 18000, 12000, 30000, 20000, 30000, 11000, 20000, 19000, 17000, 19000, 15000, 11000, 12000, 15000, 20000, 40000, 21000, 46000, 15000, 11000, 23000, 15000, 21000, 31000, 12000, 14000, 14000, 18000, 10000, 14000, 19000, 35000, 46000, 15000, 18000, 15000, 20000, 23000, 28000, 28000, 15000, 14000, 12000, 20000, 27000, 34000, 11000, 20000, 15000, 31000, 12000, 15000, 28000, 15000, 18000, 11000, 15000, 44000, 42000, 12000, 25000, 11000, 14000, 34000, 29000, 14000, 27000, 11000, 11000, 17000, 15000, 22000, 19000, 15000, 14000, 23000, 15000, 38000, 15000, 34000, 25000, 35000, 12000, 23000, 19000, 27000, 23000, 18000, 11000, 15000, 14000, 28000, 15000, 11000, 11000, 20000, 15000, 15000, 13000, 17000, 23000, 14000, 11000, 18000, 45000, 19000, 10000, 17000, 31000, 15000, 19000, 30000, 22000, 12000, 25000, 14000, 11000, 11000, 23000, 17000, 20000, 11000, 11000, 25000, 25000, 15000, 15000, 11000, 18000, 15000, 15000, 25000, 17000, 18000, 11000, 26000, 12000, 15000, 15000, 11000, 29000, 15000, 14000, 13000, 15000, 18000, 14000, 31000, 20000, 12000, 25000, 16000, 11000, 11000, 30000, 33000, 14000, 15000, 11000, 11000, 18000, 33000, 28000, 20000, 15000, 15000, 22000, 15000, 18000, 15000, 15000, 15000, 11000, 27000, 10000, 18000, 15000, 20000, 16000, 11000, 21000, 11000, 18000, 20000, 21000, 14000, 23000, 27000, 17000, 17000, 30000, 28000, 14000, 17000, 41000, 18000, 11000, 20000, 15000, 21000, 15000, 21000, 11000, 25000, 15000, 18000, 46000, 25000, 18000, 21000, 11000, 10000, 15000, 20000, 38000, 14000, 35000, 23000, 20000, 11000, 16000, 28000, 20000, 15000, 19000, 11000, 14000, 15000, 41000, 38000, 19000, 17000, 14000, 35000, 27000, 15000, 14000, 18000, 17000, 31000, 28000, 14000, 15000, 17000, 20000, 11000, 30000, 14000, 26000, 11000, 28000, 33000, 14000, 22000, 11000, 12000, 11000, 14000, 18000, 15000, 20000, 10000, 15000, 10000, 17000, 16000, 19000, 27000, 20000, 15000, 28000, 15000, 15000, 22000, 38000, 15000, 18000, 10000, 12000, 27000, 20000, 13000, 22000, 14000, 14000, 19000, 15000, 12000, 15000, 35000, 17000, 15000, 19000, 20000, 30000, 14000, 34000, 11000, 15000, 11000, 31736, 11000, 19000, 23000, 27000, 19000, 40000, 23000, 45000, 29000, 35000, 19000, 15000, 25000, 34000, 21000, 52000, 15000, 41000, 34000, 11000, 14000, 18000, 20000, 19000, 27000, 18000, 15000, 48000, 11000, 15000, 15000, 21000, 33000, 19000, 23000, 31400, 14000, 23000, 18000, 18000, 18000, 15000, 14000, 14000, 22000, 679, 33000, 27000, 30000, 15000, 11000, 11000, 22000, 12000, 15000, 21000, 14000, 17000, 15000, 11000, 11000, 20000, 16000, 15000, 14000, 11000, 14000, 15000, 14000, 14000, 22000, 17000, 18000, 20000, 15000, 18000, 23000, 14000, 30000, 23000, 12000, 22000, 14000, 34000, 51000, 16000, 25000, 17000, 17000, 29000, 11000, 34000, 14000, 12000, 12000, 23000, 17000, 18000, 22000, 11000, 34750, 25000, 21000, 38000, 11000, 11000, 11000, 14000, 15000, 34000, 23000, 15000, 15000, 23000, 17000, 18000, 17000, 11000, 18000, 12000, 11000, 20000, 18000, 29000, 25000, 15000, 11000, 15000, 11000, 13000, 33000, 19740, 11000, 29000, 50000, 34000, 27000, 31000, 25000, 11000, 11000, 23000, 39000, 25000, 33000, 11000, 23000, 33000, 11000, 25000, 11000, 15000, 18000, 19000, 20000, 18000, 18000, 15000, 38000, 15000, 25000, 15000, 22000, 14000, 16000, 17000, 33000, 20000, 12000, 16000, 21000, 15000, 11000, 11000, 30000, 15000, 14000, 25000, 38000, 18000, 18000, 18000, 18000, 18000, 15000, 17000, 15000, 23000, 18000, 27000, 33000, 11000, 38000, 11000, 12000, 27000, 34000, 12000, 15000, 18000, 18000, 14000, 31000, 47000, 15000, 33000, 21000, 12961, 21000, 18000, 11000, 29000, 15000, 18000, 11000, 13000, 18000, 30000, 18000, 17000, 17000, 23000, 29000, 18000, 36000, 11000, 15000, 20000, 11000, 18000, 15000, 12000, 14000, 25000, 28000, 11000, 36000, 18000, 24000, 11000, 15000, 14000, 34000, 11000, 18000, 13000, 22000, 18000, 20000, 11000, 23000, 33000, 46000, 18000, 10000, 11000, 40000 ], "xaxis": "x1", "y": [ 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016, 2.016 ], "yaxis": "y1" } ], "layout": { "autosize": false, "height": 288, "hovermode": "closest", "margin": { "b": 36, "l": 54, "pad": 0, "r": 43, "t": 34 }, "showlegend": false, "width": 432, "xaxis1": { "anchor": "y1", "domain": [ 0, 1 ], "mirror": "ticks", "nticks": 9, "range": [ -2287.05, 62966.05 ], "showgrid": false, "showline": true, "side": "bottom", "tickfont": { "size": 10 }, "ticks": "inside", "type": "linear", "zeroline": false }, "yaxis1": { "anchor": "x1", "domain": [ 0, 1 ], "mirror": "ticks", "nticks": 11, "range": [ 1.90512, 2.12688 ], "showgrid": false, "showline": true, "side": "left", "tickfont": { "size": 10 }, "ticks": "inside", "type": "linear", "zeroline": false } } } }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Make the Plot Interactive \n", "import plotly.offline as py\n", "from plotly.offline import init_notebook_mode, iplot\n", "import plotly.tools as tls\n", "import matplotlib.pylab as plt\n", "from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas\n", "\n", "fig = plt.Figure()\n", "axes = fig.gca()\n", "\n", "axes.plot(x,y)\n", "canvas = FigureCanvas(fig)\n", "plotly_fig = tls.mpl_to_plotly(fig)\n", "py.iplot(plotly_fig)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }