
Systems Biology Markup Language (SBML) Level 2:
Structures and Facilities for Model Definitions

Michael Hucka (Chair) California Institute of Technology, US
Frank T. Bergmann California Institute of Technology, US
Andreas Dräger University of California, San Diego, US
Stefan Hoops Virginia Bioinformatics Institute, US
Sarah M. Keating European Bioinformatics Institute, GB
Nicolas Le Novère Babraham Institute, GB
Chris J. Myers University of Utah, US
Brett G. Olivier VU University Amsterdam, NL
Sven Sahle University of Heidelberg, DE
James C. Schaff University of Connecticut, US
Lucian P. Smith University of Washington, US
Dagmar Waltemath University of Rostock, DE
Darren J. Wilkinson Newcastle University, GB

sbml-editors@caltech.edu

SBML Level 2 Version 5

Release 1

3 August 2015

Corrections and other changes to this SBML language specification may appear over time.
Notifications of new releases are broadcast on the mailing list sbml-announce@sbml.org

The latest release of the SBML Level 2 Version 5 specification is available at
http://sbml.org/specifications/sbml-level-2/version-5/

This release of the specification is available at
http://sbml.org/specifications/sbml-level-2/version-5/release-1/

The list of known issues in all releases of SBML Level 2 Version 5 is available at
http://sbml.org/specifications/sbml-level-2/version-5/errata/

The XML Schema for SBML Level 2 Version 5 is available at
http://sbml.org/xml-schemas/

mailto:sbml-editors@caltech.edu
http://www.sbml.org/forums
http://sbml.org/specifications/sbml-level-2/version-5/
http://sbml.org/specifications/sbml-level-2/version-5/release-1/
http://sbml.org/specifications/sbml-level-2/version-5/errata/
http://sbml.org/xml-schemas/

Contents
1 Introduction 3

1.1 Developments, discussions, and notifications of updates . 3
1.2 SBML Levels, Versions, and Releases . 3
1.3 Language features and backward compatibility . 4
1.4 Document conventions . 5

2 Overview of SBML 9
3 Preliminary definitions and principles 11

3.1 Primitive data types . 11
3.2 Type SBase . 13
3.3 The id and name attributes on SBML components . 18
3.4 Mathematical formulas in SBML Level 2 . 20

4 SBML components 31
4.1 The SBML container . 31
4.2 Model . 32
4.3 Function definitions . 34
4.4 Unit definitions . 36
4.5 Compartment types . 43
4.6 Species types . 44
4.7 Compartments . 45
4.8 Species . 49
4.9 Parameters . 53
4.10 Initial assignments . 55
4.11 Rules . 58
4.12 Constraints . 63
4.13 Reactions . 65
4.14 Events . 78

5 The Systems Biology Ontology and the sboTerm attribute 85
5.1 Principles . 85
5.2 Using SBO and sboTerm . 86
5.3 Relationships to the SBML annotation element . 92
5.4 Discussion . 92

6 A standard format for the annotation element 94
6.1 Motivation . 94
6.2 XML namespaces in the standard annotation . 94
6.3 General syntax for the standard annotation . 95
6.4 Use of URIs . 96
6.5 Relation elements . 97
6.6 Model history . 98
6.7 Examples . 99

7 Example models expressed in XML using SBML 106
7.1 A simple example application of SBML . 106
7.2 Example involving units . 107
7.3 Example of a discrete version of a simple dimerization reaction . 109
7.4 Example involving assignment rules . 111
7.5 Example involving algebraic rules . 113
7.6 Example with combinations of boundaryCondition and constant values on Species with RateRule objects 115
7.7 Example of translation from a multi-compartmental model to ODEs . 116
7.8 Example involving function definitions . 119
7.9 Example involving delay functions . 120
7.10 Example involving events . 121
7.11 Example involving two-dimensional compartments . 123

8 Discussion 128
8.1 Future enhancements: SBML Level 3 and beyond . 128

Acknowledgments 130
A XML Schema for SBML 131
B XML Schema for MathML subset 139
C Validation rules for SBML 143
D A method for assessing whether an SBML model is overdetermined 157
E Mathematical consequences of the fast attribute on Reaction 160
F Processing and validating SBase notes and Constraint message content 162
G Major changes between versions of SBML Level 2 and implications for backward compatibility 163

G.1 Between Version 2 and Version 1 . 163
G.2 Between Version 3 and Version 2 . 164
G.3 Between Version 4 and Version 3 . 165
G.4 Between Version 5 and Version 4 . 166

References 168

2

1 Introduction

We present the Systems Biology Markup Language (SBML) Level 2 Version 5 Release 1, a model repre-

sentation format for systems biology. SBML is oriented towards describing systems of biochemical reactions

of the sort common in research on a number of topics, including cell signaling pathways, metabolic path-

ways, biochemical reactions, gene regulation, and many others. SBML is defined in a neutral fashion with

respect to programming languages and software encoding; however, it is primarily oriented towards allowing

models to be encoded using XML, the eXtensible Markup Language (Bosak and Bray, 1999; Bray et al.,

2000). This document contains many examples of SBML models written in XML, as well as the text of an

XML Schema (Biron and Malhotra, 2000; Fallside, 2000; Thompson et al., 2000) that defines SBML Level 2

Version 5. A downloadable copy of the XML Schema and other related documents and software are also

available from the SBML project web site, http://sbml.org/.

The SBML project is not an attempt to define a universal language for representing quantitative models. The

rapidly evolving views of biological function, coupled with the vigorous rates at which new computational

techniques and individual tools are being developed today, are incompatible with a one-size-fits-all idea of a

universal language. A more realistic alternative is to acknowledge the diversity of approaches and methods

being explored by different software tool developers, and seek a common intermediate format—a lingua

franca—enabling communication of the most essential aspects of the models.

The definition of the model description language presented here does not specify how programs should

communicate or read/write SBML. We assume that for a simulation program to communicate a model

encoded in SBML, the program will have to translate its internal data structures to and from SBML, use a

suitable transmission medium and protocol, etc., but these issues are outside of the scope of this document.

1.1 Developments, discussions, and notifications of updates

SBML has been, and continues to be, developed in collaboration with an international community of re-

searchers and software developers. As in many projects, the primary medium for interactions between

members is electronic messaging. Discussions about SBML take place on the combination web forum and

mailing list sbml.org/forums/sbml-discuss. The mailing list archives and a web-browser-based interface

to the list are available at the same location.

A low-volume, broadcast-only web forum/mailing list is available where notifications of revisions to the

SBML specification, notices of votes on SBML technical issues, and other critical matters are announced.

This list is sbml.org/forums/sbml-announce and anyone may subscribe to it freely. This list will never be

used for advertising and its membership will never be disclosed. It is vitally important that all users of SBML

stay informed about new releases and other developments by subscribing to sbml-announce, even if they do

not wish to participate in discussions on sbml-discuss. Please visit sbml.org/forums/sbml-announce for

information about how to subscribe to the list as well as for access to the list archives.

In Section 8.1, we attempt to acknowledge as many contributors to SBML’s development as we can, but as

SBML evolves, it becomes increasingly difficult to detail the individual contributions on a project that has

truly become an international community effort.

1.2 SBML Levels, Versions, and Releases

Major editions of SBML are termed levels and represent substantial changes to the composition and structure

of the language. The edition of SBML defined in this document, SBML Level 2, represents an evolution

of the language resulting from the practical experiences of many users and developers working with SBML

Level 1 since since its introduction in the year 2001 (Hucka et al., 2001, 2003). All of the constructs of

Level 1 can be mapped to Level 2. In addition, a subset of Level 2 constructs can be mapped to Level 1.

However, the levels remain distinct; a valid SBML Level 1 document is not a valid SBML Level 2 document,

and likewise, a valid SBML Level 2 document is not a valid SBML Level 1 document.

Minor revisions of SBML are termed versions and constitute changes within a Level to correct, adjust, and

refine language features. The present document defines SBML Level 2 Version 5 Release 1. In Section 1.4.1

3

http://sbml.org/
http://sbml.org/Forums/sbml-discuss
http://sbml.org/Forums/sbml-announce
http://sbml.org/Forums/sbml-announce
http://sbml.org/Forums/sbml-discuss
http://sbml.org/Forums/sbml-announce

below explains how color is used in this document to indicate changes; a separate document provides a

detailed listing of the changes between versions of SBML Level 2 as well as between SBML Level 2 Version 5

and SBML Level 2 Version 4 Release 1.

Specification documents inevitably require minor editorial changes as its users discover errors and ambi-

guities. As a practical reality, these discoveries occur over time. In the context of SBML, such problems

are formally announced publicly as errata in a given specification document. Borrowing concepts from the

World Wide Web Consortium (Jacobs, 2004), we define SBML errata as changes of the following types:

(a) formatting changes that do not result in changes to textual content; (b) corrections that do not affect

conformance of software implementing support for a given combination of SBML Level and Version; and (c)

corrections that may affect such software conformance, but add no new language features. A change that

affects conformance is one that either turns conforming data, processors, or other conforming software into

non-conforming software, or turns non-conforming software into conforming software, or clears up an ambi-

guity or insufficiently documented part of the specification in such a way that software whose conformance

was once unclear now becomes clearly conforming or non-conforming (Jacobs, 2004). In short, errata do not

change the fundamental semantics or syntax of SBML; they clarify and disambiguate the specification and

correct errors. (New syntax and semantics are only introduced in SBML Versions and Levels.) An electronic

tracking system for reporting and monitoring such issues is available at http://sbml.org/issue-tracker.

SBML errata result in new Releases of the SBML specification. Each release is numbered with an integer,

with the first release of the specification being called release number 1. Subsequent releases of an SBML

specification document contain a section listing the accumulated errata reported and corrected since the

first release. A complete list of the errata for SBML Level 2 Version 5 since the publication of Release 1

is also made publicly available at http://sbml.org/specifications/sbml-level-2/version-5/errata/.

Announcements of errata, releases of the SBML specification and other major changes are made on the

sbml.org/forums/sbml-announce web forum and mailing list.

1.3 Language features and backward compatibility

Some language features of previous SBML Levels and Versions have been either deprecated or removed

entirely in SBML Level 2 Version 5. For the purposes of SBML specifications, the following are the definitions

of deprecated feature and removed feature:

Removed language feature: A syntactic construct that was present in previous SBML Levels and/or Versions

within a Level, and has been removed beginning with a specific SBML Level and Version. Models

containing such constructs do not conform to the specification of that SBML Level and Version.

Deprecated language feature: A syntactic construct that was present in previous SBML Levels and/or

Versions within a Level, and while still present in the language definition, has been identified as non-

essential and planned for future removal. Beginning with the Level and Version in which a given

feature is deprecated, software tools should not generate SBML models containing the deprecated

feature; however, for backward compatibility, software tools reading SBML should support the feature

until it is actually removed.

As a matter of SBML design philosophy, the preferred approach to removing features is by deprecating them

if possible. Immediate removal of SBML features is not done unless serious problems have been discovered

involving those features, and keeping them would create logical inconsistencies or extremely difficult-to-

resolve problems. The deprecation or outright removal of features in a language, whether SBML or other,

can have significant impact on backwards compatibility. Such changes are also inevitable over the course

of a language’s evolution. SBML must by necessity continue evolving through the experiences of its users

and implementors. Eventually, some features will be deemed unhelpful despite the best intentions of the

language editors to design a timeless language.

Throughout the SBML specification, removed and deprecated features are discussed in the text of the sections

where the features previously appeared. Appendix G lists the changes and describes their motivations in

more detail.

4

http://sbml.org/issue-tracker
http://sbml.org/specifications/sbml-level-2/version-5/errata/
http://sbml.org/Forums/sbml-announce

1.4 Document conventions

In this section, we describe the conventions we use in this specification document in an effort to communicate

information more effectively and consistently.

1.4.1 Color conventions

Throughout this document, we use coloring to carry additional information for the benefit of those viewing

the document on media that can display color:

• We use red color in text and figures to indicate changes between this version of the specification (SBML

Level 2 Version 5 Release 1) and the most recent previous version of the specification (which, for the

present case, is SBML Level 2 Version 4 Release 1). The changes may be either additions or deletions

of text; in the case of deletions, entire sentences, paragraphs or sections are colored to indicate a change

has occurred inside them.

• We use blue color in text to indicate a hyperlink from one point in this document to another. Clicking

your computer’s pointing device on blue-colored text will cause a jump to the section, figure, table or

page to which the link refers. (Of course, this capability is only available when using electronic formats

that support hyperlinking, such as PDF and HTML.)

1.4.2 Typographical conventions for names

The following typographical notations are used in this document to distinguish objects and data types from

other kinds of entities:

AbstractClass: Abstract classes are classes that are never instantiated directly, but rather serve as parents of

other classes. Their names begin with a capital letter and they are printed in a slanted, bold, sans-serif

typeface. In electronic document formats, the class names are also hyperlinked to their definitions in

the specification. For example, in the PDF and HTML versions of this document, clicking on the word

SBase will send the reader to the section containing the definition of this class.

Class: Names of ordinary (concrete) classes begin with a capital letter and are printed in an upright,

bold, sans-serif typeface. In electronic document formats, the class names are also hyperlinked to their

definitions in the specification. For example, in the PDF and HTML versions of this document, clicking

on the word Species will send the reader to the section containing the definition of this class.

SomeThing, otherThing: Attributes of classes, data type names, literal XML, and generally all tokens other

than SBML UML class names, are printed in an upright typewriter typeface. Primitive types defined by

SBML begin with a capital letter, but unfortunately, XML Schema 1.0 does not follow any convention

and primitive XML types may either start with a capital letter (e.g,. ID) or not (e.g., double).

1.4.3 UML notation

Previous specifications of SBML used a notation that was at one time (in the days of SBML Level 1) fairly

close to UML, the Unified Modeling Language (Eriksson and Penker, 1998; Oestereich, 1999), though many

details were omitted from the UML diagrams themselves. Over the years, the notation used in successive

specifications of SBML grew increasingly less UML-like. Beginning with SBML Level 2 Version 3, we have

completely overhauled the specification’s use of UML and once again define the XML syntax of SBML using,

as much as possible, proper and complete UML 1.0. We then systematically map this UML notation to XML,

using XML Schema 1.0 (Biron and Malhotra, 2000; Fallside, 2000; Thompson et al., 2000) to express the

overall syntax of SBML. In the rest of this section, we summarize the UML notation used in this document

and explain the few embellishments needed to support transformation to XML form. A complete Schema

for SBML is given in Appendix A.

We see three main advantages to using UML as a basis for defining SBML data objects. First, compared

to using other notations or a programming language, the UML visual representations are generally easier

to grasp by readers who are not computer scientists. Second, the notation is implementation-neutral: the

5

objects can be encoded in any concrete implementation language—not just XML, but C, Java and other

languages as well. Third, UML is a de facto industry standard that is documented in many resources.

Readers are therefore more likely to be familiar with it than other notations.

Object class definitions

Object classes in UML diagrams are drawn as simple tripartite boxes, as shown in Figure 1 (left). UML

allows for operations as well as data attributes to be defined, but SBML only uses data attributes, so all

SBML class diagrams use only the top two portions of a UML class box (see the right-hand diagram of

Figure 1).

Class Name

attributes
operators

ExampleClass

attribute: int
anotherAttribute: double

Figure 1: (Left) The general form of a UML class diagram. (Right) Example of a class diagram of the sort seen in SBML.
SBML classes never use operators, so SBML class diagrams only show the top two parts.

As mentioned above, the names of ordinary (concrete) classes begin with a capital letter and are printed in

an upright, bold, sans-serif typeface. The names of attributes begin with a lower-case letter and generally

use a mixed case (sometimes called “camel case”) style when the name consists of multiple words. Attributes

and their data types appear in the part below the class name, with one attribute defined per line. The colon

character on each line separates the name of the attribute (on the left) from the type of data that it stores

(on the right). The subset of data types permitted for SBML attributes is given in Section 3.1.

In the right-hand diagram of Figure 1, the symbols attribute and anotherAttribute represent attributes of

the object class ExampleClass. The data type of attribute is int, and the data type of anotherAttribute is

double. In the scheme used by SBML for translating UML to XML, object attributes map directly to XML

attributes. Thus, in XML, ExampleClass would yield an element of the form <element attribute="42"

anotherAttribute="10.0">.

Notice that the element name is not <ExampleClass ...>. Somewhat paradoxically, the name of the element

is not the name of the UML class defining its structure. The reason for this may be subtle at first, but quickly

becomes obvious: object classes define the form of an object’s content, but a class definition by itself does

not define the label or symbol referring to an instance of that content. It is this label that becomes the name

of the XML element. In XML, this symbol is most naturally equated with an element name. This point will

hopefully become more clear with additional examples below.

Subelements

We use UML composite aggregation to indicate a class object can have other class objects as parts. Such

containment hierarchies map directly to element-subelement relationships in XML. Figure 2 gives an example.

Whole

A: int
B: string

Part

C: double

inside

Figure 2: Example illustrating composite aggregation: the definition of one class of objects employing another class of
objects in a part-whole relationship. In this particular example, an instance of a Whole class object must contain exactly
one instance of a Part class object, and the symbol referring to the Part class object is inside. In XML, this symbol
becomes the name of a subelement and the content of the subelement follows the definition of Part.

The line with the black diamond indicates composite aggregation, with the diamond located on the “con-

tainer” side and the other end located at the object class being contained. The label on the line is the

symbol used to refer to instances of the contained object, which in XML, maps directly to the name of an

6

XML element. The class pointed to by the aggregation relationship (Part in Figure 2) defines the contents

of that element. Thus, if we are told that some element named barney is of class Whole, the following is an

example XML fragment consistent with the class definition of Figure 2:

<barney A="110" B="some string">

<inside C="444.4">

</barney>

Sometimes numbers are placed above the line near the “contained” side of an aggregation to indicate how

many instances can be contained. The common cases in SBML are the following: [0..*] to signify a list

containing zero or more; [1..*] to signify a list containing at least one; and [0..1] to signify exactly

zero or one. The absence of a numerical label means “exactly 1”. This notation appears throughout this

specification document.

Inheritance

Parent

A: int
B: boolean

Child

C: int
D: string

Figure 3: Inheritance.

Classes can inherit properties from other classes. Since SBML only uses

data attributes and not operations, inheritance in SBML simply involves

data attributes from a parent class being inherited by child classes. Inheri-

tance is indicated by a line between two classes, with an open triangle next

to the parent class; Figure 3 illustrates this. In this example, the instances

of object class Child would have not only attributes C and D, but also at-

tributes A and B. All of these attributes would be required (not optional)

on instances of class Child because they are mandatory on both Parent and

Child.

Additional notations for XML purposes

Not everything is easily expressed in plain UML. For example, it is often necessary to indicate some con-

straints placed on the values of an attribute. In computer programming uses of UML, such constraints are

often expressed using Object Constraint Language (OCL), but since we are most interested in the XML ren-

dition of SBML, in this specification we use XML Schema 1.0 (when possible) as the language for expressing

value constraints. Constraints on the values of attributes are written as expressions surrounded by braces

({ }) after the data type declaration, as in the example of Figure 4.

SBase

Sbml

level: positiveInteger { use=”required” fixed=”2” }
version: positiveInteger { use=”required” fixed=”4” }

Model
model

Figure 4: A more complex example definition drawing on the concepts introduced so far in this section. Both Sbml and
Model are derived from SBase; further, Sbml contains a single Model object named model. Note the constraints on
the values of the attributes in Sbml; they are enclosed in braces and written in XML Schema language. The particular
constraints here state that both the level and version attributes must be present, and that the values are fixed as
indicated.

In other situations, when something cannot be concisely expressed using a few words of XML Schema, we

write constraints using English language descriptions surrounded by braces ({ }). To help distinguish these

from literal XML Schema, we set the English text in a slanted typeface. The text accompanying all SBML

component definitions provides explanations of the constraints and any other conditions applicable to the

use of the components.

7

Compatibility issues and warnings

One important and confusing point that goes against the grain of XML must be highlighted: the order

in which subelements appear within SBML elements is significant and must follow the order given in the

corresponding object definition. This ordering is also difficult to express in plain UML, so we resort to

using the approach of stating ordering requirements as constraints written in English and (again) enclosed

in braces ({ }). Figure 8 on page 14 gives an example of this.

The ordering restriction also holds true when a subclass inherits attributes and elements from a base class:

the base class attributes and elements must occur before those introduced by the subclass.

This ordering constraint stems from aspects of XML Schema beyond our control (specifically, the need to

use XML Schema’s sequence construct to define the object classes). It is an occasional source of software

compatibility problems, because validating XML parsers will generate errors if the ordering within an XML

element does not correspond to the SBML object class definition.

8

2 Overview of SBML

The following is an example of a simple network of biochemical reactions that can be represented in SBML:

S1
k1[S1]/([S1]+k2)−−−−−−−−−−−−→ S2

S2
k3[S2]−−−−−−−−−−−−→ S3 + S4

In this particular set of chemical equations above, the symbols in square brackets (e.g., “[S1]”) represent

concentrations of molecular species, the arrows represent reactions, and the formulas above the arrows

represent the rates at which the reactions take place. (And while this example uses concentrations, it

could equally have used other measures such as molecular counts.) Broken down into its constituents, this

model contains a number of components: reactant species, product species, reactions, reaction rates, and

parameters in the rate expressions. To analyze or simulate this network, additional components must be

made explicit, including compartments for the species, and units on the various quantities.

SBML allows models of arbitrary complexity to be represented. Each type of component in a model is

described using a specific type of data object that organizes the relevant information. The top level of an

SBML model definition consists of lists of these components, with every list being optional:

 beginning of model definition
 list of function definitions (optional) (Section 4.3)
 list of unit definitions (optional) (Section 4.4)
 list of compartment types (optional) (Section 4.5)
 list of species types (optional) (Section 4.6)
 list of compartments (optional) (Section 4.7)
 list of species (optional) (Section 4.8)
 list of parameters (optional) (Section 4.9)
 list of initial assignments (optional) (Section 4.10)
 list of rules (optional) (Section 4.11)
 list of constraints (optional) (Section 4.12)
 list of reactions (optional) (Section 4.13)
 list of events (optional) (Section 4.14)
 end of model definition

The meaning of each component is as follows:

Function definition: A named mathematical function that may be used throughout the rest of a model.

Unit definition: A named definition of a new unit of measurement, or a redefinition of an SBML predefined

unit. Named units can be used in the expression of quantities in a model.

Compartment Type: A type of location where reacting entities such as chemical substances may be located.

Species type: A type of entity that can participate in reactions. Typical examples of species types include

ions such as Ca2+, molecules such as glucose or ATP, and more.

Compartment : A well-stirred container of a particular type and finite size where species may be located. A

model may contain multiple compartments of the same compartment type. Every species in a model

must be located in a compartment.

Species: A pool of entities of the same species type located in a specific compartment.

Parameter : A quantity with a symbolic name. In SBML, the term parameter is used in a generic sense

to refer to named quantities regardless of whether they are constants or variables in a model. SBML

Level 2 provides the ability to define parameters that are global to a model as well as parameters that

are local to a single reaction.

9

Initial Assignment : A mathematical expression used to determine the initial conditions of a model. This

type of object can only be used to define how the value of a variable can be calculated from other

values and variables at the start of simulated time.

Rule: A mathematical expression added to the set of equations constructed based on the reactions defined

in a model. Rules can be used to define how a variable’s value can be calculated from other variables,

or used to define the rate of change of a variable. The set of rules in a model can be used with the

reaction rate equations to determine the behavior of the model with respect to time. The set of rules

constrains the model for the entire duration of simulated time.

Constraint : A means of detecting out-of-bounds conditions during a dynamical simulation and optionally

issuing diagnostic messages. Constraints are defined by an arbitrary mathematical expression comput-

ing a true/false value from model variables, parameters and constants. An SBML constraint applies at

all instants of simulated time; however, the set of constraints in model should not be used to determine

the behavior of the model with respect to time.

Reaction: A statement describing some transformation, transport or binding process that can change the

amount of one or more species. For example, a reaction may describe how certain entities (reactants) are

transformed into certain other entities (products). Reactions have associated kinetic rate expressions

describing how quickly they take place.

Event : A statement describing an instantaneous, discontinuous change in a set of variables of any type

(species quantity, compartment size or parameter value) when a triggering condition is satisfied.

A software package can read an SBML model description and translate it into its own internal format for

model analysis. For example, a package might provide the ability to simulate the model by constructing

differential equations representing the network and then perform numerical time integration on the equations

to explore the model’s dynamic behavior. By supporting SBML as an input and output format, different

software tools can all operate on an identical external representation of a model, removing opportunities for

errors in translation and assuring a common starting point for analyses and simulations.

10

3 Preliminary definitions and principles

This section covers certain concepts and constructs that are used repeatedly in the rest of SBML Level 2.

3.1 Primitive data types

Most primitive types in SBML are taken from the data types defined in XML Schema 1.0 (Biron and

Malhotra, 2000; Fallside, 2000; Thompson et al., 2000). A few other primitive types are defined by SBML

itself. What follows is a summary of the XML Schema types and the definitions of the SBML-specific types.

Note that while we have tried to provide accurate and complete summaries of the XML Schema types, the

following should not be taken to be normative definitions of these types. Readers should consult the XML

Schema 1.0 specification for the normative definitions of the XML types used by SBML.

3.1.1 Type string

The XML Schema 1.0 type string is used to represent finite-length strings of characters. The characters

permitted to appear in XML Schema string include all Unicode characters (Unicode Consortium, 1996)

except for two delimiter characters, 0xFFFE and 0xFFFF (Biron and Malhotra, 2000). In addition, the

following quoting rules specified by XML for character data (Bray et al., 2000) must be obeyed:

• The ampersand (&) character must be escaped using the entity &.

• The apostrophe (’) and quotation mark (") characters must be escaped using the entities ' and

", respectively, when those characters are used to delimit a string attribute value.

Other XML built-in character or entity references, e.g., < and &x1A;, are permitted in strings.

3.1.2 Type boolean

The XML Schema 1.0 type boolean is used as the data type for SBML object attributes that represent

binary true/false values. XML Schema 1.0 defines the possible literal values of boolean as the following:

“true”, “false”, “1”, and “0”. The value “1” maps to “true” and the value “0” maps to “false”.

Note that there is a discrepancy between the value spaces of type boolean as defined by XML Schema 1.0

and MathML: the latter uses only “true” and “false” to represent boolean values and “0” and “1” are

interpreted as numbers. Software tools should take care to not to use “0” and “1” as boolean values in

MathML expressions. See further discussion in Section 3.4.4.

3.1.3 Type int

The XML Schema 1.0 type int is used to represent decimal integer numbers in SBML. The literal represen-

tation of an int is a finite-length sequence of decimal digit characters with an optional leading sign (“+” or

“-”). If the sign is omitted, “+” is assumed. The value space of int is the same as a standard 32-bit signed

integer in programming languages such as C, i.e., 2147483647 to −2147483648.

3.1.4 Type positiveInteger

The XML Schema 1.0 type positiveInteger is used to represent nonzero, nonnegative, decimal integers:

i.e., 1, 2, 3, The literal representation of an integer is a finite-length sequence of decimal digit characters,

optionally preceded by a positive sign (“+”). There is no restriction on the absolute size of positiveInteger

values in XML Schema; however, the only situations where this type is used in SBML involve very low-

numbered integers. Consequently, applications may safely treat positiveInteger as unsigned 32-bit integers.

3.1.5 Type double

The XML Schema 1.0 type double is the data type of floating point numerical quantities in SBML. It is

restricted to IEEE double-precision 64-bit floating point type IEEE 754-1985. The value space of double

consists of (a) the numerical values m × 2x, where m is an integer whose absolute value is less than 253,

11

and x is an integer between -1075 and 970, inclusive, (b) the special value positive infinity (INF), (c) the

special value negative infinity (-INF), and (d) the special value not-a-number (NaN). The order relation on

the values is the following: x < y if and only if y − x is positive for values of x and y in the value space of

double. Positive infinity is greater than all other values other than NaN. NaN is equal to itself but is neither

greater nor less than any other value in the value space. (Software implementors should consult the XML

Schema 1.0 definition of double for additional details about equality and relationships to IEEE 754-1985.)

The general form of double numbers is “xey”, where x is a decimal number (the mantissa), “e” is a separator

character, and y is an exponent; the meaning of this is “x multiplied by 10 raised to the power of y”, i.e.,

x × 10y. More precisely, a double value consists of a mantissa with an optional leading sign (“+” or “-”),

optionally followed by the character E or e followed by an integer (the exponent). The mantissa must be a

decimal number: an integer optionally followed by a period (.) optionally followed by another integer. If the

leading sign is omitted, “+” is assumed. An omitted E or e and exponent means that a value of 0 is assumed

for the exponent. If the E or e is present, it must be followed by an integer or an error results. The integer

acting as an exponent must consist of a decimal number optionally preceded by a leading sign (“+” or “-”).

If the sign is omitted, “+” is assumed. The following are examples of legal literal double values:

-1E4, +4, 234.234e3, 6.02E-23, 0.3e+11, 2, 0, -0, INF, -INF, NaN

As described in Section 3.4, SBML uses a subset of the MathML 2.0 standard (W3C, 2000b) for expressing

mathematical formulas in XML. This is done by stipulating that the MathML language be used whenever

a mathematical formula must be written into an SBML model. Doing this, however, requires facing two

problems: first, the syntax of numbers in scientific notation (“e-notation”) is different in MathML from that

just described for double, and second, the value space of integers and floating-point numbers in MathML

is not defined in the same way as in XML Schema 1.0. We elaborate on these issues in Section 3.4.2; here

we summarize the solution taken in SBML. First, within MathML, the mantissa and exponent of numbers

in “e-notation” format must be separated by one <sep/> element. This leads to numbers of the form <cn

type="e-notation"> 2 <sep/> -5 </cn>. Second, SBML stipulates that the representation of numbers in

MathML expressions obey the same restrictions on values as defined for types double and int (Section 3.1.3).

3.1.6 Type ID

The XML Schema 1.0 type ID is identical to the XML 1.0 type ID. The literal representation of this type

consists of strings of characters restricted as summarized in Figure 5.

 NameChar ::= letter | digit | ’.’ | ’-’ | ’ ’ | ’:’ | CombiningChar | Extender

 ID ::= (letter | ’ ’ | ’:’) NameChar*

Figure 5: Type ID expressed in the variant of BNF used by the XML 1.0 specification (Bray et al., 2004). The characters
(and) are used for grouping, the character * indicates “zero or more times”, and the character | indicates “or”. The
production letter consists of the basic upper and lower case alphabetic characters of the Latin alphabet along with a
large number of related characters defined by Unicode 2.0; similarly, the production digit consists of the numerals 0..9
along with related Unicode 2.0 characters. The CombiningChar production is a list of characters that add such things
as accents to the preceding character. (For example, the Unicode character #x030A when combined with ‘a’ produces
‘å’.) The Extender production is a list of characters that extend the shape of the preceding character. Please consult the
XML 1.0 specification (Bray et al., 2004) for the complete definitions of letter, digit, CombiningChar, and Extender.

In SBML, type ID is the data type of the metaid attribute on SBase, described in Section 3.2. An important

aspect of ID is the XML requirement that a given value of ID must be unique throughout an XML document.

All data values of type ID are considered to reside in a single common global namespace spanning the entire

XML document, regardless of the attribute where type ID is used and regardless of the level of nesting of

the objects (or XML elements).

3.1.7 Type SId

The type SId is the type of the id attribute found on the majority of SBML components. SId is a data

type derived from the basic XML type string, but with restrictions about the characters permitted and the

sequences in which those characters may appear. The definition is shown in Figure 6 on the next page.

12

 letter ::= ’a’..’z’,’A’..’Z’
 digit ::= ’0’..’9’
 idChar ::= letter | digit | ’ ’
 SId ::= (letter | ’ ’) idChar*

Figure 6: The definition of the type SId. (Please see the caption of Figure 5 for an explanation of the notation.)

The equality of SId values is determined by an exact character sequence match; i.e., comparisons of these

identifiers must be performed in a case-sensitive manner. This applies to all uses of SId.

The SId is purposefully not derived from the XML ID type (Section 3.1.6). Using XML’s ID would force all

SBML identifiers to exist in a single global namespace, which would affect not only the form of local parameter

definitions but also future SBML extensions for supporting model/submodel composition. Further, the use

of the ID type for SBML identifiers would have limited utility because MathML 2.0 ci elements are not of

the type IDREF (see Section 3.4). Since the IDREF/ID linkage cannot be exploited in MathML constructs, the

utility of the XML ID type is greatly reduced. Finally, unlike ID, SId does not include Unicode character

codes; the identifiers are plain text.

3.1.8 Type UnitSId

The type UnitSId is derived from SId (Section 3.1.7) and has identical syntax. The UnitSId type is used as

the data type for the identifiers of units (Section 4.4.1) and for references to unit identifiers in SBML objects.

The purpose of having a separate data type for such identifiers is enable the space of possible unit identifier

values to be separated from the space of all other identifier values in SBML. The equality of UnitSId values

is determined by an exact character sequence match; i.e., comparisons of these identifiers must be performed

in a case-sensitive manner.

A number of reserved symbols are defined in the space of values of UnitSId. These reserved symbols are the

list of base unit names defined in Table 1 on page 38, and the SBML predefined units “substance”, “volume”,

“area”, “length”, and “time” listed in Table 2 on page 42. These symbols and their use is described in

Section 4.4.

3.1.9 Type SBOTerm

The type SBOTerm is used as the data type of the attribute sboTerm on SBase. The type consists of strings

of characters matching the restricted pattern described in Figure 7.

 digit ::= ’0’..’9’

 SBOTerm ::= ’SBO:’ digit digit digit digit digit digit digit

Figure 7: The definition of SBOTerm. The SBOTerm type consists of strings beginning with SBO: and followed by seven
decimal digits. (Please see the caption of Figure 5 for an explanation of the notation.)

Examples of valid string values of type SBOTerm are “SBO:0000014” and “SBO:0003204”. These values are

meant to be the identifiers of terms from an ontology whose vocabulary describes entities and processes in

computational models. Section 5 provides more information about the ontology and principles for the use

of these terms in SBML models.

3.2 Type SBase

Nearly every object composing an SBML Level 2 model definition has a specific data type that is derived

directly or indirectly from a single abstract type called SBase. In addition to serving as the parent class for

most other classes of objects in SBML, this base type is designed to allow a modeler or a software package

to attach arbitrary information to each major element or list in an SBML model. The definition of SBase is

presented in Figure 8 on the following page.

SBase contains two attributes and two subelements, all of which are optional: metaid, sboTerm, notes and

annotation. These are discussed separately in the following subsections.

13

SBase

metaid: ID { use="optional" }
sboTerm: SBOTerm { use="optional" }

Notes

xmlns: string { "http://www.w3.org/1999/xhtml" }
{ Almost any well-formed content permitted in XHTML,
subject to a few restrictions; see text. }

Annotation

{ Any well-formed XML content, and with each top-level
 element placed in a unique XML namespace; see text. }

notes

annotation

0..1

0..1

{ Order is significant. }

Figure 8: The definition of SBase. Please refer to Section 1.4 for a summary of the UML notation used here. Note that the
order of appearance of subelements notes and annotation is significant in instances of objects derived from SBase:
notes must always come before annotation. (This requirement arises from XML Schema 1.0.)

3.2.1 The metaid attribute

The metaid attribute is present for supporting metadata annotations using RDF (Resource Description

Format; Lassila and Swick, 1999). It has a data type of XML ID (the XML identifier type; see Section 3.1.6),

which means each metaid value must be globally unique within an SBML file. The metaid value serves to

identify a model component for purposes such as referencing that component from metadata placed within

annotation elements (see Section 3.2.4). Such metadata can use RDF description elements, in which an

RDF attribute called “rdf:about” points to the metaid identifier of an object defined in the SBML model.

This topic is discussed in greater detail in Section 6.

3.2.2 The sboTerm attribute

The attribute called sboTerm is provided on SBase to support the use of the Systems Biology Ontology

(SBO; see Section 5). When a value is given to this attribute, it must conform to the data type SBOTerm

(Sections 3.1.9). SBO terms are a type of optional annotation, and each different class of SBML object

derived from SBase imposes its own requirements about the values permitted for sboTerm. Specific details

on the permitted values are provided with the definitions of SBML classes throughout this specification

document, and a broader discussion is provided in Section 5.

3.2.3 The notes element

The element notes in SBase is a container for XHTML 1.0 (Pemberton et al., 2002) content. It is intended

to serve as a place for storing optional information intended to be seen by humans. An example use of the

notes element would be to contain formatted user comments about the model element in which the notes

element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value

for notes, allowing users considerable freedom when adding comments to their models.

XHTML 1.0 is simply a formulation of HTML 4 in XML 1.0. This means the full power of HTML formatting

is available for use in notes content. The intention behind requiring XHTML (rather than, for example,

plain HTML or plain text) for notes content is to balance several conflicting goals: (1) choosing a format

for notes that is compatible with the XML form of SBML (plain HTML would not be); (2) supporting

an international formatting standard so that users have more control over the appearance of notes and

can predict to some degree how their notes will be displayed in different tools and environments (which

argues against using plain-text notes); and (3) achieving these goals using an approach that is hopefully easy

enough for software developers to support using off-the-shelf programming libraries. It is worth noting in

passing that the requirement for XHTML does not prevent users from entering plain-text content with simple

space/tab/newline formatting: it merely requires using the standard <pre>...</pre> element of (X)HTML.

14

Modern libraries for displaying and editing (X)HTML content are commonly available in contemporary

software programming environments, and software developers may wish to avail themselves of these facilities

rather than implementing their own XHTML support systems.

XML namespace requirements for notes

The XML content of notes elements must declare the use of the XHTML XML namespace. This can be

done in multiple ways. One way is to place a namespace declaration for the appropriate namespace URI

(which is http://www.w3.org/1999/xhtml) on the top-level Sbml object (see Section 4.1) and then reference

the namespace in the notes content using a prefix. The following example illustrates this approach:

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5"

xmlns:xhtml="http://www.w3.org/1999/xhtml">

...

<notes>

<xhtml:body>

<xhtml:center><xhtml:h2>A Simple Mitotic Oscillator</xhtml:h2></xhtml:center>

<xhtml:p>A minimal cascade model for the mitotic oscillator

involving cyclin and cdc2 kinase</xhtml:p>

</xhtml:body>

</notes>

...

Another approach is to declare the XHTML namespace within the notes content itself, as in the following

example:

...

<notes>

<body xmlns="http://www.w3.org/1999/xhtml">

<center><h2>A Simple Mitotic Oscillator</h2></center>

<p>A minimal cascade model for the mitotic oscillator

involving cyclin and cdc2 kinase</p>

</body>

</notes>

...

The xmlns="http://www.w3.org/1999/xhtml" declaration on body as shown above changes the default XML

namespace within it, such that all of its content is by default in the XHTML namespace. This is a particularly

convenient approach because it obviates the need to prefix every element with a namespace prefix (i.e., xhtml:

in the previous case). Other approaches are also possible.

The content of notes

SBML does not require the content of notes to be any particular XHTML element; the content can be

almost any well-formed XHTML content. There are only two simple restrictions. The first restriction comes

from the requirements of XML: the notes element must not contain an XML declaration nor a DOCTYPE

declaration. That is, notes must not contain

<?xml version="1.0" encoding="UTF-8"?>

nor (where the following is only one specific example of a DOCTYPE declaration)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The second restriction is intended to balance freedom of content with the complexity of implementing software

that can interpret the content. The content of notes in SBML can consist only of the following possibilities:

1. A complete XHTML document (minus the XML and DOCTYPE declarations, of course), that is,

XHTML content beginning with the html tag. The following is an example skeleton:

15

<notes>

<html xmlns="http://www.w3.org/1999/xhtml">

...

</html>

</notes>

2. The body element from an XHTML document. The following is an example skeleton:

<notes>

<body xmlns="http://www.w3.org/1999/xhtml">

...

</body>

</notes>

3. Any XHTML content that would be permitted within a body element. If this consists of multiple

elements, each one must declare the XML namespace separately. The following is an example fragment:

<notes>

<p xmlns="http://www.w3.org/1999/xhtml">

...

</p>

<p xmlns="http://www.w3.org/1999/xhtml">

...

</p>

</notes>

Another way to summarize the restrictions above is simply to say that the content of an SBML notes element

can be only be a complete html element, a body element, or whatever is permitted inside a body element. In

practice, this does not limit in any meaningful way what can be placed inside a notes element; for example,

if an application or modeler wants to put a complete XHTML page, including a head element, it can be

done by putting in everything starting with the html container. However, the restrictions above do make it

somewhat simpler to write software that can read and write the notes content. Appendix F describes one

possible approach to doing just that.

3.2.4 The annotation element

Whereas the notes element described above is a container for content to be shown directly to humans, the

annotation element is a container for optional software-generated content not meant to be shown to humans.

Every object derived from SBase can have its own value for annotation. The element’s content type is XML

type any, allowing essentially arbitrary well-formed XML data content. SBML places only a few restrictions

on the organization of the content; these are intended to help software tools read and write the data as well

as help reduce conflicts between annotations added by different tools.

The use of XML namespaces in annotation

At the outset, software developers should keep in mind that multiple software tools may attempt to read

and write annotation content. To reduce the potential for collisions between annotations written by different

applications, SBML Level 2 Version 5 stipulates that tools must use XML namespaces (Bray et al., 1999)

to specify the intended vocabulary of every annotation. The application’s developers must choose a URI

(Universal Resource Identifier ; Harold and Means 2001; W3C 2000a) reference that uniquely identifies the

vocabulary the application will use, and a prefix string for the annotations. Here is an example. Suppose an

application uses the URI http://www.mysim.org/ns and the prefix mysim when writing annotations related

to screen layout. The content of an annotation might look like the following:

<annotation>

<mysim:nodecolors xmlns:mysim="http://www.mysim.org/ns"

mysim:bgcolor="green" mysim:fgcolor="white"/>

</annotation>

In this particularly simple example, the content consists of a single XML element (nodecolors) with two

attributes (bgcolor, fgcolor), all of which are prefixed by the string mysim. (Presumably this particular

content would have meaning to the hypothetical application in question.) The content in this particular

16

example is small, but it should be clear that there could easily have been an arbitrarily large amount of data

placed inside the mysim:nodecolors element.

The key point of the example above is that application-specific annotation data is entirely contained inside

a single top-level element within the SBML annotation container. SBML Level 2 Version 5 places the

following restrictions on annotations:

• Within a given SBML annotation element, there can only be one top-level element using a given

namespace. An annotation element can contain multiple top-level elements but each must be in a

different namespace.

• No top-level element in an annotation may use an SBML XML namespace, either explicitly by refer-

encing one of the SBML XML namespace URIs or implicitly by failing to specify any namespace on

the annotation. As of SBML Level 2 Version 5, the defined SBML namespaces are the following URIs:

– http://www.sbml.org/sbml/level1

– http://www.sbml.org/sbml/level2

– http://www.sbml.org/sbml/level2/version2

– http://www.sbml.org/sbml/level2/version3

– http://www.sbml.org/sbml/level2/version4

– http://www.sbml.org/sbml/level2/version5

– http://www.sbml.org/sbml/level3/version1/core

– http://www.sbml.org/sbml/level3/version2/core

• The ordering of top-level elements within a given annotation element is not significant. An application

should not expect that its annotation content appears first in the annotation element, nor in any

other particular location. Moreover, the ordering of top-level annotation elements may be changed by

different applications as they read and write the same SBML file.

The use of XML namespaces in this manner is intended to improve the ability of multiple applications to

place annotations on SBML model elements with reduced risks of interference or name collisions. Annota-

tions stored by different simulation packages can therefore coexist in the same model definition. The rules

governing the content of annotation elements are designed to enable applications to easily add, change,

and remove their annotations from SBML elements while simultaneously preserving annotations inserted by

other applications when mapping SBML from input to output.

As a further simplification for developers of software and to improve software interoperability, applications are

only required to preserve other annotations (i.e., annotations they do not recognize) when those annotations

are self-contained entirely within annotation, complete with namespace declarations. The following is an

example:

<annotation>

<topLevelElement xmlns="URI">

... content in the namespace identified by “URI”...

</topLevelElement>

</annotation>

Some more examples hopefully will make these points more clear. The next example is invalid because it

contains a top-level element in the SBML XML namespace—this happens because no namespace is declared

for the <cytoplasm> element, which means by default it falls into the enclosing SBML namespace:

<annotation>

<cytoplasm/>

</annotation>

The following example is also invalid, this time because it contains two top-level elements using the same

XML namespace. Note that it does not matter that these are two different top-level elements (<nodecolors>

and <textcolors>); what matters is that these separate elements are both in the same namespace rather

than having been collected and placed inside one overall container element for that namespace.

17

<annotation>

<mysim:nodecolors xmlns:mysim="http://www.mysim.org/ns"

mysim:bgcolor="green" mysim:fgcolor="white"/>

<mysim:textcolors xmlns:mysim="http://www.mysim.org/ns"

mysim:bgcolor="green" mysim:fgcolor="white"/>

</annotation>

On the other hand, the following example is valid:

<annotation>

<mysim:geometry xmlns:mysim="http://www.mysim.org/ns"

mysim:bgcolor="green" mysim:fgcolor="white">

<graph:node xmlns:graph="http://www.graph.org/ns"

graph:x="4" graph:y="5" />

</mysim:geometry>

<othersim:icon xmlns:othersim="http://www.othersim.com/">

WS2002

</othersim:icon>

</annotation>

For completeness, we note that annotations can legally be empty:

<annotation />

It is worth keeping in mind that although XML namespace names must be URIs, they are (like all XML

namespace names) not required to be directly usable in the sense of identifying an actual, retrieval document

or resource on the Internet (Bray et al., 1999). URIs such as http://www.mysim.org/ may appear as though

they are (e.g.,) Internet addresses, but there are not the same thing. This style of URI strings, using a

domain name and other parts, is only a simple and commonly-used way of creating a unique name string.

Finally, note that the namespaces being referred to here are XML namespaces specifically in the context of

the annotation element on SBase. The namespace issue here is unrelated to the namespaces discussed in

Section 3.3.1 in the context of component identifiers in SBML.

Content of annotations and implications for software tools

The annotation element in the definition of SBase exists in order that software developers may attach

optional application-specific data to the elements in an SBML model. However, it is important that this

facility not be misused. In particular, it is critical that data essential to a model definition or that can be

encoded in existing SBML elements is not stored in annotation. Parameter values, functional dependencies

between model elements, etc., should not be recorded as annotations. It is crucial to keep in mind the fact

that data placed in annotations can be freely ignored by software applications. If such data affects the

interpretation of a model, then software interoperability is greatly impeded.

Here are examples of the kinds of data that may be appropriately stored in annotation: (a) information

about the graphical layout of model components; (b) application-specific processing instructions that do not

change the essential meaning of a model; (c) identification information for cross-referencing components in

a model with items in a data resource such as a database; and (d) information about the model that cannot

be readily encoded in existing SBML elements.

Standardized format for certain classes of annotations

For case (c) above (i.e., cross-references between model components and data resources), SBML Level 2

Version 5 recommends a standard format for use within annotation elements. It should be used in preference

to proprietary syntaxes to maximize the likelihood that multiple software tools will converge on the same

syntax for this kind of information. The recommended scheme is described in Section 6.

3.3 The id and name attributes on SBML components

As will become apparent below, most objects in SBML include two common attributes: id and name. These

attributes are not defined on SBase (as explained in Section 3.3.3 below), but where they do appear, the

common rules of usage described below apply.

18

3.3.1 The id attribute and identifier scoping

The id attribute is mandatory on most objects in SBML. It is used to identify a component within the

model definition. Other SBML objects can refer to the component using this identifier. The data type of id

is always either Sid (Section 3.1.7) or UnitSId (Section 3.1.8), depending on the object in question.

A model can contain a large number of components representing different parts. This leads to a problem

in deciding the scope of an identifier: in what contexts does a given identifier X represent the same thing?

The approaches used in existing simulation packages tend to fall into two categories which we may call

global and local. The global approach places all identifiers into a single global space of identifiers, so that an

identifier X represents the same thing wherever it appears in a given model definition. The local approach

places symbols in separate identifier namespaces, depending on the context, where the context may be, for

example, individual reaction rate expressions. The latter approach means that a user may use the same

identifier X in different rate expressions and have each instance represent a different quantity.

The fact that different simulation programs may use different rules for identifier resolution poses a problem

for the exchange of models between simulation tools. Without careful consideration, a model written out in

SBML format by one program may be misinterpreted by another program. SBML Level 2 must therefore

include a specific set of rules for treating identifiers and their scopes.

The scoping rules in SBML Level 2 are relatively straightforward and are intended to avoid this problem

with a minimum of requirements on the implementation of software tools:

• The identifier (i.e., the value of the attribute id) of every FunctionDefinition, CompartmentType, Speci-

esType, Compartment, Species, Parameter, Reaction, SpeciesReference, ModifierSpeciesReference, Event,

and Model, must be unique across the set of all such identifiers in the model. This means, for example,

that a reaction and a species definition cannot both have the same identifier.

• The identifier of every UnitDefinition must be unique across the set of all such identifiers in the model

plus the set of base unit definitions in Table 1 on page 38. However, unit identifiers live in a separate

space of identifiers from other identifiers in the model, by virtue of the fact that the data type of unit

identifiers is UnitSId (Section 3.1.8) and not SId.

• Each Reaction instance (see Section 4.13) establishes a separate private local space for local Parameter

identifiers. Within the definition of that reaction, local parameter identifiers override (shadow) identical

identifiers (whether those identifiers refer to parameters, species or compartments) outside of that

reaction. Of course, the corollary of this is that local parameters inside a Reaction object instance are

not visible to other objects outside of that reaction.

The set of rules above can enable software packages using either local or global identifier spaces for parame-

ters to exchange SBML model definitions. Software systems using local identifiers for parameters internally

should, in principle, be able to accept SBML model definitions without needing to change component iden-

tifiers. Environments using a common global space of identifiers for parameters internally can perform

manipulations of the identifiers of local parameters within reaction definitions to avoid identifier collisions.

The guidelines described here will hopefully provide a clean transition path to future levels of SBML, when

submodels are introduced (Section 8.1). Submodels will provide the ability to compose one model from

a collection of other models. This capability will have to be built on top of SBML Level 2’s namespace

organization. A straightforward approach to handling namespaces is to make each submodel’s space be

private. The rules governing identifier scoping within a submodel can simply be the Level 2 namespace rule

described here, with each submodel having its own (to itself, global) namespace.

3.3.2 The name attribute

In contrast to the id attribute, the name attribute is optional and is not intended to be used for cross-

referencing purposes within a model. Its purpose instead is to provide a human-readable label for the

component. The data type of name is the type string defined in XML Schema (Biron and Malhotra, 2000;

Thompson et al., 2000) and discussed further in Section 3.1. SBML imposes no restrictions as to the content

of name attributes beyond those restrictions defined by the string type in XML Schema.

19

The recommended practice for handling name is as follows. If a software tool has the capability for displaying

the content of name attributes, it should display this content to the user as a component’s label instead of

the component’s id. If the user interface does not have this capability (e.g., because it cannot display or use

special characters in symbol names), or if the name attribute is missing on a given component, then the user

interface should display the value of the id attribute instead. (Script language interpreters are especially

likely to display id instead of name.)

As a consequence of the above, authors of systems that automatically generate the values of id attributes

should be aware some systems may display the id’s to the user. Authors therefore may wish to take some

care to have their software create id values that are: (a) reasonably easy for humans to type and read; and

(b) likely to be meaningful, e.g., the id attribute is an abbreviated form of the name attribute value.

An additional point worth mentioning is although there are restrictions on the uniqueness of id values (see

Section 3.3.1 above), there are no restrictions on the uniqueness of name values in a model. This allows

software packages leeway in assigning component identifiers.

3.3.3 Why id and name are not defined on SBase

Although many SBML components feature id and name, these attributes are purposefully not defined on

SBase. There are several reasons for this.

• The presence of an SBML identifier attribute (id) necessarily requires specifying scoping rules for the

corresponding identifiers. However, the SBase abstract type is used as the basis for defining components

whose scoping rules are in some cases different from each other. (See Section 3.3.1 for more details).

If SBase were to have an id attribute, then the specification of SBase would need a default scoping

rule and this would then have to be overloaded on derived classes that needed different scoping. This

would make the SBML specification even more complex.

• Identifier are optional on some SBML components and required on most others. If id were defined as

optional on SBase, most component classes would separately have to redefine id as being mandatory—

hardly an improvement over the current arrangement. Conversely, if id were defined as mandatory on

SBase, it would prevent it from being optional on components where it is currently optional.

• The SBase abstract type is used as the base type for certain objects such as Sbml, AssignmentRule,

etc., which do not have identifiers because these components do not need to be referenced by other

components. If SBase had a mandatory id attribute, all objects of these other types in a model

would then need to be assigned unique identifiers. Similarly, because SBase is the base type of the

listOf lists, putting id on SBase would require all of these lists in a model to be given

identifiers. This would be a needless burden on software developers, tools, and SBML users, requiring

them to generate and store additional identifiers for objects that never need them.

• SBase does not have a name simply because such an attribute is always paired with an id. Without id

on SBase, it does not make sense to have name.

3.4 Mathematical formulas in SBML Level 2

Mathematical expressions in SBML Level 2 are represented using MathML 2.0 (W3C, 2000b). MathML is

an international standard for encoding mathematical expressions using XML. There are two principal facets

of MathML, one for encoding content (i.e., the semantic interpretation of a mathematical expression), and

another for encoding presentation or display characteristics. SBML only makes direct use of a subset of

the content portion of MathML. By borrowing a separately-developed XML standard, we can avoid having

to define a specialized syntax for mathematical expressions in SBML and simultaneously leverage existing

intellectual and technological work already done in the MathML community. However, it is not possible

to produce a completely smooth and conflict-free interface between MathML and other standards used by

SBML (in particular, XML Schema). Two specific issues and their resolutions are discussed in Sections 3.4.2.

The XML namespace URI for all MathML elements is http://www.w3.org/1998/Math/MathML. Everywhere

MathML content is allowed in SBML, the MathML elements must be properly placed within the MathML 2.0

20

namespace. In XML, this can be accomplished in a number of ways, and the examples throughout this

specification illustrate the use of this namespace and MathML in SBML. Please refer to the W3C document

by Bray et al. (1999) for more technical information about using XML namespaces.

3.4.1 Subset of MathML used in SBML Level 2

The subset of MathML 2.0 elements used in SBML Level 2 is similar to that used by CellML (Hedley et al.,

2001), another model definition language with similar goals as SBML. The subset of MathML elements used

in SBML is listed below:

• token: cn, ci, csymbol, sep

• general : apply, piecewise, piece, otherwise, lambda (the last is restricted to use in FunctionDefinition)

• relational operators: eq, neq, gt, lt, geq, leq

• arithmetic operators: plus, minus, times, divide, power, root, abs, exp, ln, log, floor, ceiling,

factorial

• logical operators: and, or, xor, not

• qualifiers: degree, bvar, logbase

• trigonometric operators: sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin,

arccos, arctan, arcsec, arccsc, arccot, arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth

• constants: true, false, notanumber, pi, infinity, exponentiale

• annotation: semantics, annotation, annotation-xml

The inclusion of logical operators, relational operators, piecewise, piece, and otherwise elements facilitates

the encoding of discontinuous expressions. Note that MathML elements for representing partial differential

calculus are not included. We anticipate that the requirements for partial differential calculus will be ad-

dressed in proposals for future SBML geometry representations (see Section 8.1).

As defined by MathML 2.0, the semantic interpretation of the mathematical functions listed above follows

the definitions of the functions laid out by Abramowitz and Stegun (1977) and Zwillinger (1996). Readers are

directed to these sources and the MathML specification for information about such things as which principal

values of the inverse trigonometric functions to use.

Software authors should take particular note of the MathML semantics of the N-ary operators plus, times,

and, or and xor, when they are used with different numbers of arguments. The MathML specification (W3C,

2000b) appendix C.2.3 describes the semantics for these operators with zero, one, and more arguments.

The following are the only attributes permitted on MathML elements in SBML (in addition to the xmlns

attribute on math elements):

• style, class, and id on any element;

• encoding on csymbol, annotation, and annotation-xml elements;

• definitionURL on ci, csymbol, and semantics elements; and

• type on cn elements.

Missing values for these attributes are to be treated in the same way as defined by MathML. These restrictions

on attributes are designed to confine the MathML elements to their default semantics and to avoid conflicts

in the interpretation of the type of token elements.

3.4.2 Numbers and cn elements

In MathML, literal numbers are written as the content portion of a particular element called cn. This

element takes an optional attribute, type, used to indicate the type of the number (such as whether it is

meant to be an integer or a floating-point quantity). Here is an example of its use:

21

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/> <cn type="integer"> 42 </cn> <cn type="real"> 3.3 </cn>

</apply>

</math>

The content of a cn element must be a number. The number can be preceded and succeeded by whitespace

(see Section 3.4.5). The following are the only permissible values for the type attribute on MathML cn

elements: “e-notation”, “real”, “integer”, and “rational”. The value of the type attribute defaults to

“real” if it is not specified on a given cn element.

Value space restrictions on cn content

SBML imposes certain restrictions on the value space of numbers allowed in MathML expressions. According

to the MathML 2.0 specification, the values of the content of cn elements do not necessarily have to conform

to any specific floating point or integer representations designed for CPU implementation. For example, in

strict MathML, the value of a cn element could exceed the maximum value that can be stored in a IEEE

64 bit floating point number (IEEE 754). This is different from the XML Schema type double that is used

in the definition of floating point attributes of objects in SBML; the XML Schema double is restricted

to IEEE double-precision 64-bit floating point type IEEE 754-1985. To avoid an inconsistency that would

result between numbers elsewhere in SBML and numbers in MathML expressions, SBML Level 2 Version 5

imposes the following restriction on MathML content appearing in SBML:

• Integer values (i.e., the values of cn elements having type=“integer” and both values in cn elements

having type=“rational”) must conform to the int type used elsewhere in SBML (Section 3.1.3)

• Floating-point values (i.e., the content of cn elements having type=“real” or type=“e-notation”)

must conform to the double type used elsewhere in SBML (Section 3.1.5)

Syntactic differences in the representation of numbers in scientific notation

It is important to note that MathML uses a style of scientific notation that differs from what is defined in XML

Schema, and consequently what is used in SBML attribute values. The MathML 2.0 type “e-notation” (as

well as the type “rational”) requires the mantissa and exponent to be separated by one <sep/> element. The

mantissa must be a real number and the exponent part must be a signed integer. This leads to expressions

such as

<cn type="e-notation"> 2 <sep/> -5 </cn>

for the number 2× 10−5. It is especially important to note that the expression

<cn type="e-notation"> 2e-5 </cn>

is not valid in MathML 2.0 and therefore cannot be used in MathML content in SBML. However, elsewhere in

SBML, when an attribute value is declared to have the data type double (a type taken from XML Schema),

the compact notation “2e-5” is in fact allowed. In other words, within MathML expressions contained in

SBML (and only within such MathML expressions), numbers in scientific notation must take the form <cn

type="e-notation"> 2 <sep/> -5 </cn>, and everywhere else they must take the form “2e-5”.

This is a regrettable difference between two standards that SBML replies upon, but it is not feasible to

redefine these types within SBML because the result would be incompatible with parser libraries written to

conform with the MathML and XML Schema standards. It is also not possible to use XML Schema to define

a data type for SBML attribute values permitting the use of the <sep/> notation, because XML attribute

values cannot contain XML elements—that is, <sep/> cannot appear in an XML attribute value.

Units of numbers in MathML cn expressions

What units should be attributed to values appearing inside MathML cn elements? One answer is to assume

that the units should be “whatever units appropriate in the context where the number appears”. This

22

implies that units can always be assigned unambiguously to any number by inspecting the expression in

which it appears, and this turns out to be false. Another answer is that numbers should be considered

“dimensionless”. Many people argue that this is the correct interpretation, but even if it is, there is an

overriding practical reason why it cannot be adopted for SBML’s domain of application: when numbers

appear in expressions in SBML, they are rarely intended by the modeler to have the unit “dimensionless”

even if the unit is not declared—the numbers are supposed to have specific units, but the units are usually

undeclared. (Being “dimensionless” is not the same as having undeclared units!) If SBML defined numbers

as being by default dimensionless, it would result in many models being technically incorrect without the

modeler being aware of it unless their software tools performed dimensional analysis. Most software tools

today still do not perform dimensional analysis, and so the inconsistency of units (and potential errors in

the model) would not be detected until other researchers and database curators attempted to use the model

in software packages that did check units. We believe the negative impact on interoperability and people’s

confidence in SBML as a reliable medium would be too high.

As a result, the current approach in SBML is to leave the default units of literal numbers in MathML

content undefined. Software packages and modelers are encouraged to explicitly add unit declarations to

numbers. There is a simple mechanism in SBML for associating units with numbers: do not use literal

numbers at all; instead, define Parameter objects (Section 4.9) for every quantity, declare units for each such

parameter value in its definition, and then insert the parameters in place of numbers in expressions. This

leads to mathematical formulas whose units can be fully determined, permitting software tools to perform

dimensional analysis and potentially report problems with a model.

In summary: literal numbers appearing within MathML content in SBML have no declared units.

3.4.3 Use of ci elements in MathML expressions in SBML

The content of a ci element must be an SBML identifier that is declared elsewhere in the model. The

identifier can be preceded and succeeded by whitespace. The set of possible identifiers that can appear in a

ci element depends on the containing element in which the ci is used:

• If a ci element appears in the body of a FunctionDefinition object (Section 4.3), the referenced identifier

must be either (i) one of the declared arguments to that function, or (ii) the identifier of a previously

defined FunctionDefinition object in the model.

• Otherwise, the referenced identifier must be that of a Species, Compartment, Parameter, FunctionDefi-

nition, or Reaction object defined in the model. The following are the only possible interpretations of

using such an identifier in SBML:

– Species identifier : When a Species identifier occurs in a ci element, it represents the quantity of

that species in units of either amount of substance or units of concentration, depending on the

species’ definition; see Section 4.8.5.

– Compartment identifier : When a Compartment identifier occurs in a ci element, it represents the

size of the compartment. The units of measurement associated with the size of the compartment

are those given by the Compartment instance’s units attribute value; see Section 4.7.5.

– Parameter identifier : When a Parameter identifier occurs in a ci element, it represents the nu-

merical value assigned to that parameter. The units associated with the parameter’s value are

those given by the Parameter instance’s units attribute; see Section 4.9.3.

– Function identifier : When a FunctionDefinition identifier occurs in a ci element, it represents a

call to that function. Function references in MathML occur in the context of using MathML’s

apply and often involve supplying arguments to the function; see Section 4.3. The units associated

with the value returned by the function call are the overall units of the mathematical expression

contained in the function definition.

– Reaction identifier : When a Reaction identifier occurs in a ci element, it represents the rate of

that reaction as defined by the math expression in the KineticLaw object within the Reaction. The

units associated with that rate are substance/time, where the substance and time units established

by the values of the SBML predefined units “substance” and “time”, respectively. These units

23

may be redefined globally in the model; see Section 4.4.3. If a Reaction instance has no KineticLaw,

its reaction identifier has no mathematical definition within the model (perhaps indicating that

the model is incomplete).

The content of ci elements in MathML formulas outside of a KineticLaw or FunctionDefinition must always

refer to objects declared in the top level global namespace; i.e., SBML uses “early binding” semantics. Inside

of KineticLaw, a ci element can additionally refer to local parameters defined within that KineticLaw instance;

see Section 4.13.5 for more information.

3.4.4 Interpretation of boolean values

As noted already in Section 3.1.2, there is another unfortunate difference between the XML Schema 1.0 and

MathML 2.0 standards that impacts mathematical expressions in SBML: in XML Schema, the value space

of type boolean includes “true”, “false”, “1”, and “0”, whereas in MathML, only “true” and “false”

count as boolean values.

The impact of this difference thankfully is minimal because the XML Schema definition is only used for

attribute values on SBML objects, and those values turn out never to be accessible from MathML content

in SBML—values of boolean attributes on SBML objects can never enter into MathML expressions. Never-

theless, software authors and users should be aware of the difference and in particular that “0” and “1” are

interpreted as numerical quantities in mathematical expressions. There is no automatic conversion of “0” or

“1” to boolean values in contexts where booleans are expected. This allows stricter type checking and unit

verification during the validation of mathematical expressions.

3.4.5 Handling of whitespace

MathML 2.0 defines “whitespace” in the same way as XML does, i.e., the space character (Unicode hex-

adecimal code 0020), horizontal tab (code 0009), newline or line feed (code 000A), and carriage return (code

000D). In MathML, the content of elements such as cn and ci can be surrounded by whitespace characters.

Prior to using the content, this whitespace is “trimmed” from both ends: all whitespace at the beginning

and end of the content is removed (Ausbrooks et al., 2003). For example, in <cn> 42 </cn>, the amount

of white space on either side of the “42” inside the <cn> . . . </cn> container does not matter. Prior to

interpreting the content, the whitespace is removed altogether.

3.4.6 Use of csymbol elements in MathML expressions in SBML

SBML Level 2 uses the MathML csymbol element to denote certain built-in mathematical entities without

introducing reserved names into the component identifier namespace. The encoding attribute of csymbol

must be set to “text”. The definitionURL should be set to one of the following URIs defined by SBML:

• http://www.sbml.org/sbml/symbols/time. This represents the current simulation time. See Sec-

tion 3.4.7 for more information. The units of the current time entity is determined from the built-in

time of Table 2 on page 42.

• http://www.sbml.org/sbml/symbols/delay. This represents a delay function. The delay function has

the form delay(x, d), taking two MathML expressions as arguments. Its value is the value of argument

x at d time units before the current time. There are no restrictions on the form of x. The units of the d

parameter are determined from the built-in time. The value of the d parameter, when evaluated, must

be numerical (i.e., a number in MathML real, integer, or “e-notation” format) and be greater than or

equal to 0. The delay function is useful for representing biological processes having a delayed response,

but where the detail of the processes and delay mechanism is not relevant to the operation of a given

model. See Section 3.4.7 below for additional considerations surrounding the use of this csymbol.

The following examples demonstrate these concepts. The XML fragment below encodes the formula x + t,

where t stands for time.

24

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<plus/>

<ci> x </ci>

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/time">

t

</csymbol>

</apply>

</math>

In the fragment above, the use of the token t is mostly a convenience for human readers—the string inside

the csymbol could have been almost anything, because it is essentially ignored by MathML parsers and

SBML. Some MathML and SBML processors will take note of the token and use it when presenting the

mathematical formula to users, but the token used has no impact on the interpretation of the model and it

does not enter into the SBML component identifier namespace. In other words, the SBML model cannot

refer to t in the example above. The content of the csymbol element is for rendering purposes only and can

be ignored by the parser.

As a further example, the following XML fragment encodes the equation k + delay(x, 0.1) or alternatively

kt + xt−0.1:

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<plus/>

<ci> k </ci>

<apply>

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/delay">

delay

</csymbol>

<ci> x </ci>

<cn> 0.1 </cn>

</apply>

</apply>

</math>

Note that the URI in the value of definitionURL, as all URIs, is intended to serve as a unique identifier and

is not intended to be dereferenced as an Internet address. There is nothing actually located at the address

http://www.sbml.org/sbml/symbols/delay.

3.4.7 Simulation time

The principal use of SBML is to represent quantitative dynamical models whose behaviors manifest them-

selves over time. In defining an SBML model using constructs such as reactions, time is most often implicit

and does not need to be referred to in the mathematical expressions themselves. However, sometimes an

explicit time dependency needs to be stated, and for this purpose, the time csymbol (described above in Sec-

tion 3.4.6) may be used. This time symbol refers to “instantaneous current time” in a simulation, frequently

given the literal name t in one’s equations.

An assumption in SBML is that “start time” or “initial time” in a simulation is zero, that is, if t0 is the

initial time in the system, t0 = 0. This corresponds to the most common scenario. Initial conditions in

SBML take effect at time t = 0. There is no mechanism in SBML for setting the initial time to a value

other than 0. To refer to a different time in a model, one approach is to define a Parameter for a new time

variable and use an AssignmentRule in which the assignment expression subtracts a value from the csymbol

time. For example, if the desired offset is 2 time units, the MathML expression would be

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<minus/>

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/time"> t

</csymbol>

<cn> 2 </cn>

</apply>

</math>

25

SBML’s assignment rules (Section 4.11.3) can be used to express mathematical statements that hold true at

all moments, so using an assignment rule with the expression above will result in the value being equal to

t− 2 at every point in time. A parameter assigned this value could then be used elsewhere in the model, its

value could be plotted by a simulator, etc.

3.4.8 Initial conditions and special considerations

The identifiers of Species, Compartment, Parameter, and Reaction object instances in a given SBML model

refer to the main variables in a model. Depending on certain attributes of these objects (e.g., the attribute

constant on species, compartments and parameters—this and other conditions are explained in the relevant

sections elsewhere in this document), some of the variables may have constant values throughout a simulation,

and others’ values may change. These changes in values over time are determined by the system of equations

constructed from the model’s reactions, initial assignments, rules, and events.

As described in Section 3.4.7, an SBML model’s simulation is assumed to begin at t = 0. The availability

of the delay csymbol (Section 3.4.6) introduces the possibility that at t ≥ 0, mathematical expressions in a

model may draw on values of model components from time prior to t = 0. A simulator may therefore need

to compute the values of variables at time points ti ≤ 0 to allow the calculation of values required for the

evaluation of delay expressions in the model for t ≥ 0. If there are no delays in the model, then ti = 0.

The following is how the definitions of the model should be applied:

1. At time ti:

• Every Species, Compartment, and Parameter whose definition includes an initial value is assigned

that value. If an element has constant=“false”, its value may be changed by other constructs or

reactions in a model according to the steps below; if constant=“true”, only an InitialAssignment

can override the value.

• All InitialAssignment definitions take effect, overriding the initial value attributes on any Species,

Compartment and Parameter definitions that are the targets of the initial assignments.

• All AssignmentRule and AlgebraicRule definitions take effect, overriding the initial value attributes

on any Species, Compartment, or Parameter in the model that are targets of the rules and have the

attribute constant=“false”. (Note there cannot be both an AssignmentRule and an InitialAs-

signment for the same identifier, nor may an AlgebraicRule determine the value of any element

that has an InitialAssignment; see Section 4.11.)

• The identifier of each Reaction definition assumes the value of its KineticLaw’s Math formula.

Reactions do not yet affect Species that are reactants or products, but the reaction identifier may

appear in the mathematical formulas of other elements calculated above.

2. For time ti < t < 0

• Every Species, Compartment, or Parameter that is not the target of an InitialAssignment or Rule

continues to have the value defined by the relevant initial value attribute in its definition.

• All InitialAssignment definitions continue to have effect. Note that their mathematical formulas

may compute different values at every moment t in ti ≤ t ≤ 0.

• All AssignmentRule or AlgebraicRule definitions continue to have effect, and may not be overridden.

As is the case for other constructs, the mathematical formulas in rules may compute different

values at every moment t in ti ≤ t ≤ 0.

• The identifier of every Reaction definition continues to assume the value of its KineticLaw’s Math

formula. Again, as is the case for other constructs, the mathematical formulas may compute

different values at every moment t in ti ≤ t ≤ 0.

3. At time t = 0:

• All AssignmentRule or AlgebraicRule definitions continue to have effect, and may not be overridden.

• All InitialAssignment definitions continue to take effect, but may now be overridden by “fast”

Reaction definitions or any triggered Event, as explained below.

26

• Reaction definitions begin to affect Species that are listed as products and/or reactants. Reaction

definitions with fast attribute values of “false”—the default—compute rates of change (i.e.,

amount per time) that affect species as described in Section 4.13.6; however, because no time has

passed at t = 0, the species’ amounts will not be affected by these reactions. Reaction definitions

with fast attribute values of “true” do affect the species that are listed as their products and/or

reactants, and thus may change the value of their referenced Species even at time t = 0.

• All Event definitions triggered by a change produced by “fast” Reaction definitions begin to take

effect. Because events are only fired when their trigger condition changes from false to true, “fast”

reactions are the only SBML construct that can cause this to happen at time t = 0, though an

Event cascade may also result (that is, a “fast” Reaction can cause a change that triggers an Event,

whose EventAssignment triggers another Event, etc.).

• All Constraint definitions begin to take effect (and a constraint violation may result; see Sec-

tion 4.12).

4. For time t > 0:

• The value of every SBML object with a mathematical interpretation may now be changed by

other constructs in SBML. (Such objects retain their original value if no such constructs apply.)

• The value of every element with an InitialAssignment may now be changed by other constructs

in SBML. (Such objects retain their original value set by InitialAssignment definitions if no such

constructs apply.)

• All AssignmentRule or AlgebraicRule definitions continue to take effect, and still may not be

overridden by any other SBML construct.

• All Reaction definitions affect the Species referenced as their reactants and/or products. The

identifier of each reaction continues to assume the value of the Math formula in its KineticLaw.

• RateRule definitions can begin to take effect.

• All Event definitions can begin to take effect. (Note that an Event cannot be defined to change

the value of a variable that is also the subject of an AssignmentRule; see Section 4.14.)

• System simulation proceeds.

To reiterate: in modeling situations that do not involve the use of the delay csymbol, ti = 0, but this does

not alter the steps above.

3.4.9 Underdetermined models

A valid SBML model must not be overdetermined : the value of any symbol must not be established by more

than one construct in the model. The rules governing SBML constructs such as InitialAssignment and Rule

are designed to prevent the creation of overdetermined models because such models are self-contradictory.

The opposite situation, in which a model is underdetermined, is not invalid. An SBML model may contain

one or more symbols whose values are not established by the model directly, as when a Parameter has no

initialValue attribute and is not the target of an InitialAssignment or a relevant Rule object; a model

may also have multiple solutions, such as when an AlgebraicRule object determines either one—but not

both—of two different symbols in the model, or when an AlgebraicRule object has multiple solutions (such

as 0 = x2 − 4). Such models cannot be simulated without additional information, but although they are

incomplete models, they are not contradictory, and therefore not invalid.

Underdetermined models may arise for various reasons. For example, a model may be created to reflect the

current state of knowledge about a biological system, and that knowledge may itself be incomplete. In other

cases, a model may be a work in progress, or an intermediate part of an automated model-creation pipeline.

In still other situations, a model may be intended for non-numerical simulation such as structural analysis,

where having numerical values for all symbols, or mathematical formulas establishing the rates of reactions,

may not be required. In all these cases, practical exigencies demand that these SBML Level 2 models be

considered valid even if they are incomplete (as long as the parts that are present are not overdetermined

or invalid for other reasons!).

27

SBML Level 2 Version 5 does not stipulate a particular course of action for handling underdetermined

models; software systems may handle them as they see fit. For example, numerical simulation systems could

reasonably refuse to process such models (and inform the user why); other types of software may find it

more appropriate to take other actions, such as asking the user to fill in the missing information.

3.4.10 MathML expression data types

MathML operators in SBML each return results in one of two possible types: boolean and numerical. By

numerical type, we mean either (1) a number in MathML real, integer, rational, or “e-notation” format;

or (2) the csymbol for delay or the csymbol for time described in Section 3.4.6. The following guidelines

summarize the different possible cases.

The relational operators (eq, neq, gt, lt, geq, leq), the logical operators (and, or, xor, not), and the boolean

constants (false, true) always return boolean values. As noted in Section 3.4.4, the numbers 0 and 1 do

not count as boolean values in MathML contexts in SBML.

The type of an operator referring to a FunctionDefinition is determined by the type of the top-level operator

of the expression in the math element of the FunctionDefinition instance, and can be boolean or numerical.

All other operators, values and symbols return numerical results.

The roots of the expression trees used in the following contexts must yield boolean values:

• the arguments of the MathML logical operators (and, or, xor, not);

• the second argument of a MathML piece operator;

• the trigger element of an SBML Event; and

• the math element of an SBML Constraint.

The roots of the expression trees used in the following contexts can optionally yield boolean values:

• the arguments to the eq and neq operators;

• the first arguments of MathML piece and otherwise operators; and

• the top level expression of a function definition.

The roots of expression trees in other contexts must yield numerical values.

The type of expressions should be used consistently. The set of expressions that make up the first arguments

of the piece and otherwise operators within the same piecewise operator should all return values of the

same type. The arguments of the eq and neq operators should return the same type.

3.4.11 Consistency of units in mathematical expressions and treatment of unspecified units

Strictly speaking, physical validity of mathematical formulas requires not only that physical quantities added

to or equated with each other have the same fundamental dimensions and units of measurement; it also

requires that the application of operators and functions to quantities produces sensible results. Yet, in

real-life models today, these conditions are often and sometimes legitimately disobeyed.

In a public vote held in late 2007, the SBML community decided to revoke the requirement (present up

through Level 2 Version 3) for strict unit consistency in SBML. As a result, Level 2 Version 5 follows this

decision; the units on quantities and the results of mathematical formulas in a model should be consistent,

but it is not a strict error if they are not. The following are thus formulated as recommendations that should

be followed except in special circumstances.

Recommendations for unit consistency of mathematical expressions

The consistency of units is defined in terms of dimensional analysis applied recursively to every operator and

function and every argument to them. The following conditions should hold true in a model (and software

developers may wish to consider having their software warn users if one or more of the following conditions

is not true):

28

1. All arguments to the following operators should have the same units (regardless of what those units

happen to be): plus, minus, eq, neq gt, lt, geq, leq.

2. The units of each argument in a call to a FunctionDefinition should match the units expected by the

lambda expression within the math expression of that FunctionDefinition instance.

3. All of the possible return values from piece and otherwise subelements of a piecewise expression

should have the same units, regardless of what those units are. (Otherwise, the piecewise expression

would return values having different units depending on which case evaluated to true.)

4. For the delay csymbol (Section 3.4.6) function, which has the form delay(x, d), the second argument

d should match the model’s unit of time (i.e., the “time” predefined unit).

5. The units of each argument to the following operators should be “dimensionless”: exp, ln, log,

factorial, sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin, arccos, arctan,

arcsec, arccsc, arccot, arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth.

6. The two arguments to power, which are of the form power(a, b) with the meaning ab, should be as

follows: (1) if the second argument is an integer, then the first argument can have any units; (2)

if the second argument b is a rational number n/m, it should be possible to derive the m-th root

of (a{units})n, where {units} signifies the units associated with a; otherwise, (3) the units of the

first argument should be “dimensionless”. The second argument (b) should always have units of

“dimensionless”.

7. The two arguments to root, which are of the form root(n, a) with the meaning n
√
a and where the

degree n is optional (defaulting to “2”), should be as follows: (1) if the optional degree qualifier n is

an integer, then it should be possible to derive the n-th root of a; (2) if the optional degree qualifier

n is a rational n/m then it should be possible to derive the n-th root of (a{units})m, where {units}

signifies the units associated with a; otherwise, (3) the units of a should be “dimensionless”.

8. Since the units of literal numbers cannot be specified directly in SBML (see below), it is possible for the

units of a FunctionDefinition object’s return value to be effectively different in different contexts where

it is called. If a FunctionDefinition’s mathematical formula contains literal constants (i.e., numbers

within MathML cn elements), the units of the constants should be identical in all contexts the function

is called.

The units of other operators such as abs, floor, and ceiling, can be anything.

The final bulleted item above, regarding FunctionDefinition, warrants additional elaboration. An example

may help illustrate the problem. Suppose the formula x+ 5 is defined as a function, where x is an argument.

The literal number 5 in SBML has unspecified units. If this function is called with an argument in moles,

the only possible consistent unit for the return value is mole. If in another context in the same model, the

function is called with an argument in seconds, the function return value can only be treated as being in

seconds. Now suppose that a modeler decides to change all uses of seconds to milliseconds in the model. To

make the function definition return the same quantity in terms of seconds, the 5 in the formula would need

to be changed, but doing so would change the result of the function everywhere it is called—with the wrong

consequences in the context where moles were intended. This illustrates the subtle danger of using numbers

with unspecified units in function definitions. There are at least two approaches for avoiding this: (1) define

separate functions for each case where the units of the constants are supposed to be different; or (2) declare

the necessary constants as Parameter objects in the model (with declared units!) and pass those parameters

as arguments to the function, avoiding the use of literal numbers in the function’s formula.

Treatment of unspecified units

There are only two ways to introduce numbers with unspecified units into mathematical formulas in SBML:

using literal numbers (i.e., numbers enclosed in MathML cn elements), and using Parameter objects defined

without unit declarations. All other quantities, in particular species and compartments, always have unit

declarations (whether explicit or the defaults).

29

If an expression contains literal numbers and/or Parameter objects without declared units, the consistency

or inconsistency of units may be impossible to determine. In the absence of a verifiable inconsistency, an

expression in SBML is accepted as-is; the writer of the model is assumed to have written what they intended.

Nevertheless, this is not equivalent to assuming the expression does have consistent units.

In some cases, it may be possible to determine that expressions containing unspecified units are inconsistent

regardless of what units would be attributed to the unspecified quantities. For example, the expression

dX

dt
=

[Y] · [Z]n

[Z]m + 1
· V

with X, Y and Z in units of substance, V in units of volume, and m 6= n, cannot ever be consistent, no

matter what units the literal 1 takes on. (This also illustrates the need not to stop verifying the units of an

expression immediately upon encountering an unspecified quantity—the rest of the expression may still be

profitably evaluated and checked for inconsistency.)

We advise modelers and software tools to declare the units of all quantities in a model, insofar as this is

possible, using the various mechanisms provided for this in SBML. Fully declared units can allow software

tools to perform dimensional analysis on the units of mathematical expressions, and such analysis can be

valuable in helping modelers produce correct models. In addition, it can allow model-wide operations such

as conversion or rescaling of units. The lack of declared units on quantities in a model does not render it

invalid SBML, but it reduces the types of consistency checks and useful operations (such as conversions and

translations) that software systems can perform.

3.4.12 SBML does not define implicit unit conversions

Implicit unit conversions do not exist in SBML. Consider the following example. Suppose that in some

model, a species S1 has been declared as having a mass of 1 kg, and a second species S2 has been declared

as having a mass of 500 g. What should be the result of evaluating an expression such as S1 > S2? If the

numbers alone are considered,

1 > 500

would evaluate to “false”, but if the units were implicitly converted by the software tool interpreting the

model,

1 kg > 500 g

would evaluate to “true”. This is a trivial example, but the problem for SBML is that implicit unit

conversions of this kind can lead to controversial situations where even humans do not agree on the answer.

Consequently, SBML only requires that mathematical expressions be evaluated numerically. It is up to

the model writer to ensure that the units on both sides of an expression match, by inserting explicit unit

conversion factors if necessary.

It is simple enough to avoid expressions with mixed units such as in the example above: a modeler or a

software tool can define a parameter that acts as a conversion factor, and then multiply one of the terms by

this parameter. Thus, a model could include a parameter “g per kg” with a value of 1000, and the expression

could be written as

1 ∗ g per kg > 500

which will then evaluate to “true”.

30

4 SBML components

In this section, we define each of the major components of SBML. We use the UML notation described in

Section 1.4.3 for defining classes of objects. We also illustrate the use of SBML components by giving partial

model definitions in XML. Section 7 provides many full examples of SBML in XML.

4.1 The SBML container

All well-formed SBML documents must begin with an XML declaration, which specifies both the version

of XML assumed and the document character encoding. The declaration begins with the characters <?xml

followed by the XML version and encoding attributes. SBML Level 2 uses XML version 1.0 and requires a

document encoding of UTF-8. Following this XML declaration, the outermost portion of a model expressed

in SBML Level 2 Version 5 consists of an object of class Sbml, defined in Figure 9. This class contains three

required attributes, for the XML namespace (xmlns) and the SBML level and version, and one required

subelement called model whose class is Model.

SBase

Sbml

xmlns: string { ”http://www.sbml.org/sbml/level2/version5” }
level: positiveInteger { use=”required” fixed=”2” }
version: positiveInteger { use=”required” fixed=”5” }

Model
model

Figure 9: The definition of Sbml for SBML Level 2 Version 5. The class Model is defined in Section 4.2. Note that both
Sbml and Model are subclasses of SBase, and therefore inherit the attributes of that abstract class.

The following is an abbreviated example of these XML elements for an SBML Level 2 Version 5 document:

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

...

</sbml>

The attribute xmlns declares the default XML namespace used within the sbml element. The URI for SBML

Level 2 Version 5 is http://www.sbml.org/sbml/level2/version5. All elements must be placed in this

namespace either by assigning the default namespace as shown above, or using a tag prefix on every element.

An SBML XML document must not contain elements or attributes in the SBML namespace that are not

defined in this SBML Level 2 Version 5 Release 1 specification. Documents containing unknown elements or

attributes placed in the SBML namespace do not conform to this SBML specification.

Readers may wonder why the SBML top-level XML element uses both a namespace URI identifying the

SBML level and version, as well as separate XML attributes giving the level and version. Why is the

information duplicated? There are several reasons. First, XML is only one possible serialization of SBML

(albeit an extremely popular one at this time). Though most of this document is written with XML in

mind, it is the intention behind the design of SBML that its object structure should be implementable in

other languages and software systems. Programmatic access is easier if the level and version information

are accessible directly as data rather than have to be extracted from a string. Second, generic high-level

XML parsers may not give their calling programs access to the value of the xmlns attribute. Providing

the information via separate attributes is a good backup measure. And finally, earlier in the history of

SBML, it was expected that only the level needed to be encoded as part of the namespace URI (e.g.,

http://www.sbml.org/sbml/level1) because it was hoped that changes within levels would not require

XML Schema changes. This has proven to be false, but SBML Level 1 (both versions) and the first version

of SBML Level 2 still subscribe to this principle. This means that for these variants of SBML, software tools

must look for a version attribute on the top-level element. For backwards compatibility with software that

expects this, it makes more sense to keep the version and level attributes.

31

4.2 Model

The definition of Model is shown in Figure 10 on the next page. Only one instance of a Model object is

allowed per instance of an SBML Level 2 Version 5 Release 1 document or data stream, and it must be

located inside the <sbml> ... </sbml> element as described in Section 4.1.

The Model object has an optional attribute, id, used to give the model an identifier. The identifier must

be a text string conforming to the syntax permitted by the SId data type described in Section 3.1.7. Model

also has an optional name attribute, of type string. The name and id attributes must be used as described

in Section 3.3.

Model serves as a container for components of classes FunctionDefinition, UnitDefinition, CompartmentType,

SpeciesType, Compartment, Species, Parameter, InitialAssignment, Rule, Constraint, Reaction and Event.

Instances of the classes are placed inside instances of classes ListOfFunctionDefinitions, ListOfUnitDefini-

tions, ListOfCompartmentTypes, ListOfSpeciesTypes, ListOfCompartments, ListOfSpecies, ListOfParameters,

ListOfInitialAssignments, ListOfRules, ListOfConstraints, ListOfReactions, and ListOfEvents. The “list” classes

are defined in Figure 10. All of the lists are optional, but if a given list container is present within the model,

the list must not be empty; that is, it must have length one or more. The resulting XML data object for a

full model containing every possible list would have the following form:

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

<model id="My Model">
<listOfFunctionDefinitions>

one or more <functionDefinition> ... </functionDefinition> elements

}
optional

</listOfFunctionDefinitions>
<listOfUnitDefinitions>

one or more <unitDefinition> ... </unitDefinition> elements

}
optional

</listOfUnitDefinitions>
<listOfCompartmentTypes>

one or more <compartmentType> ... </compartmentType> elements

}
optional

</listOfCompartmentTypes>
<listOfSpeciesTypes>

one or more <speciesType> ... </speciesType> elements

}
optional

</listOfSpeciesTypes>
<listOfCompartments>

one or more <compartment> ... </compartment> elements

}
optional

</listOfCompartments>
<listOfSpecies>

one or more <species> ... </species> elements

}
optional

</listOfSpecies>
<listOfParameters>

one or more <parameter> ... </parameter> elements

}
optional

</listOfParameters>
<listOfInitialAssignments>

one or more <initialAssignment> ... </initialAssignment> elements

}
optional

</listOfInitialAssignments>
<listOfRules>

one or more elements of subclasses of Rule

}
optional

</listOfRules>
<listOfConstraints>

one or more <constraint> ... </constraint> elements

}
optional

</listOfConstraints>
<listOfReactions>

one or more <reaction> ... </reaction> elements

}
optional

</listOfReactions>
<listOfEvents>

one or more <event> ... </event> elements

}
optional

</listOfEvents>
</model>

</sbml>

Although all the lists are optional, there are dependencies between SBML components such that defining some

components requires defining others. An example is that defining a species requires defining a compartment,

and defining a reaction requires defining a species. The dependencies are explained throughout the text.

32

ListOfFunctionDefinitions

functionDefinition

listOfFunctionDefinitions

FunctionDefinition1..*

ListOfUnitDefinitions

unitDefinition

listOfUnitDefinitions

UnitDefinition1..*

ListOfCompartmentTypes

compartmentType

listOfCompartmentTypes

CompartmentType1..*

ListOfSpeciesTypes

speciesType

listOfSpeciesTypes

SpeciesType1..*

ListOfCompartments

compartment

listOfCompartments

Compartment1..*

ListOfSpecies

species

listOfSpecies

Species1..*

ListOfParameters

parameter

listOfParameters

Parameter1..*

ListOfInitialAssignments

initialAssignment

listOfInitialAssignments

InitialAssignment1..*

ListOfRules
listOfRules

Rule
1..*

ListOfConstraints
listOfContraints

Constraint1..*

ListOfReactions
listOfReactions

Reaction1..*

ListOfEvents
listOfEvents

Event1..*

constraint

reaction

event

SBase

{ Order is significant. }

Model

id: SId { use="optional" }
name: string { use="optional" }

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

Figure 10: The definition of Model and the many helper classes ListOfFunctionDefinitions, ListOfUnitDefini-
tions, ListOfCompartmentTypes, ListOfSpeciesTypes, ListOfCompartments, ListOfSpecies, ListOfParameters,
ListOfInitialAssignments, ListOfRules, ListOfConstraints, ListOfReactions, and ListOfEvents.

33

4.2.1 The ListOf container classes

The various ListOf classes defined in Figure 10 are merely containers used for organizing the main

components of an SBML model. All are derived from the abstract class SBase (Section 3.2), and inherit

SBase’s various attributes and subelements such as metaid and annotation, although in SBML Level 2

Version 5 Release 1 there are no defined SBO terms for the sboTerm attribute. The ListOf classes do

not add any attributes of their own.

Readers may wonder about the motivations for using the ListOf containers. A simpler approach in XML

might be to place the components all directly at the top level. We chose instead to group them within XML

elements named after listOfClassNames, in part because we believe this helps organize the components and

makes visual reading of models in XML easier. More importantly, the fact that the container classes are

derived from SBase means that software tools can add information about the lists themselves into each list

container’s annotation, a feature that a number of today’s software tools exploit.

4.2.2 The sboTerm attribute

The Model object has an optional sboTerm attribute of type SBOTerm (see Sections 3.1.9 and 5). Values of

this attribute should be chosen from identifiers referring to an interaction defined in SBO (i.e., terms derived

from SBO:0000231, “interaction”). The SBO term chosen should be the most precise (narrow) term that

defines the overall process or phenomenon represented by the overall SBML model.

Prior to SBML Level 2 Version 4, the SBML specifications stipulated that the SBO branch for Model

had be the mathematical framework branch of SBO. This turned out to be confusing and problematic. A

realization also occurred in the SBML community that a model is, ultimately, always a representation of some

process or phenomenon involving different entities, making the SBO branch of SBO:0000231, “interaction”,

an appropriate one for the sboTerm value on an SBML Model.

4.3 Function definitions

The FunctionDefinition object associates an identifier with a function definition. This identifier can then be

used as the function called in subsequent MathML apply elements. FunctionDefinition is shown in Figure 11.

SBase

FunctionDefinition

id: SId
name: string { use=”optional” }

Lambda

xmlns: string { ”http://www.w3.org/1998/Math/MathML” }
{ MathML content restricted to one MathML lambda
or one semantics element containing a lambda. }

math

Figure 11: The definition of class FunctionDefinition. The contents of the Lambda class is a single MathML lambda
expression (or a lambda surrounded by a semantics element). A function definition must contain exactly one math
element defined by the Lambda class; note also that Lambda is not derived from SBase, which means that the attributes
defined on SBase are not available on the math element. A sequence of one or more instances of FunctionDefinition
objects can be located in an instance of ListOfFunctionDefinitions in Model, as shown in Figure 10.

Function definitions in SBML (also informally known as “user-defined functions”) have purposefully limited

capabilities. As is made more clear below, a function cannot reference parameters or other model quantities

outside of itself; values must be passed as parameters to the function. Moreover, recursive and mutually-

recursive functions are not permitted. The purpose of these limitations is to balance power against complexity

of implementation. With the restrictions as they are, function definitions could be implemented as textual

substitutions—they are simply macros. Software implementations therefore do not need the full function-

definition machinery typically associated with programming languages.

34

4.3.1 The id and name attributes

The id and name attributes have types SId and string, respectively, and operate in the manner described in

Section 3.3. MathML ci elements in an SBML model can refer to the function defined by a FunctionDefinition

using the value of its id attribute.

4.3.2 The math element

The math element is a container for MathML content that defines the function. The content of this element

can only be a MathML lambda element or a MathML semantics element containing a lambda element. The

lambda element must begin with zero or more bvar elements, followed by any other of the elements in the

MathML subset listed in Section 3.4.1 except lambda (i.e., a lambda element cannot contain another lambda

element). This is the only place in SBML where a lambda element can be used.

A further restriction on the content of math is that it cannot contain references to variables other than the

variables declared to the lambda itself. That is, the contents of MathML ci elements inside the body of the

lambda can only be the variables declared by its bvar elements, or the identifiers of other FunctionDefinitions

defined in the same model. This restriction also applies to the csymbol for time and to the csymbol for

delay . Functions must be written so that all variables or parameters used in the MathML content are passed

to them via their function parameters.

4.3.3 The sboTerm attribute

FunctionDefinition inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see

Sections 3.1.9 and 5). When a value is given to this attribute in a FunctionDefinition instance, it should be an

SBO identifier referring to a mathematical expression (i.e., terms derived from SBO:0000064, “mathematical

expression”). The relationship is of the form “the function definition is a X”, where X is the SBO term. The

term chosen should be the most precise (narrow) one that captures the role of the function in the model.

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore

sboTerm values. A model must be interpretable without the benefit of SBO labels.

4.3.4 Calling user-defined functions

Within MathML expressions in an SBML model, all calls to a function defined by a FunctionDefinition must

use the same number of arguments as specified in the function’s definition. The number of arguments is

equal to the number of bvar elements inside the lambda element of the function definition.

Note that FunctionDefinition does not have a separate attribute for defining the units of the value returned by

the function. The units associated with the function’s return value, when the function is called from within

MathML expressions elsewhere in SBML, are simply the overall units of the expression in FunctionDefinition’s

math when applied to the arguments supplied in the call to the function. Ascertaining these units requires

performing dimensional analysis on the expression. (Readers may wonder why there is no attribute. The

reason is that having a separate attribute for declaring the units would not only be redundant, but also lead

to the potential for having conflicting information. In the case of a conflict between the declared units and

those of the value actually returned by the function, the only logical resolution rule would be to assume that

the correct units are those of the expression anyway.)

4.3.5 Examples

The following abbreviated SBML example shows a FunctionDefinition object instance defining pow3 as the

identifier of a function computing the mathematical expression x3, and after that, the invocation of that

function in the mathematical formula of a rate law. Note how the invocation of the function uses its identifier.

<model>

...

<listOfFunctionDefinitions>

<functionDefinition id="pow3">

<math xmlns="http://www.w3.org/1998/Math/MathML">

35

<lambda>

<bvar><ci> x </ci></bvar>

<apply>

<power/>

<ci> x </ci>

<cn> 3 </cn>

</apply>

</lambda>

</math>

</functionDefinition>

</listOfFunctionDefinitions>

...

<listOfReactions>

<reaction id="reaction_1">

...

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<ci> pow3 </ci>

<ci> S1 </ci>

</apply>

</math>

</kineticLaw>

...

</reaction>

</listOfReactions>

...

</model>

4.4 Unit definitions

Units of measurement may be supplied in a number of contexts in an SBML model. The units of the

following mathematical entities can be specified explicitly: the size of a Compartment, the initial amount of

a Species, and the units of constant and variable Parameter values. The overall units of any mathematical

formula appearing in SBML are those that arise naturally from the components and mathematical expressions

comprising the formula, or in other words, the units obtained by doing dimensional analysis on the formula.

Rather than requiring a complete unit definition on every object, SBML provides a facility for defining

units that can be referenced throughout a model. In addition, every kind of SBML mathematical entity

has units assigned to it from a set of predefined defaults (see Section 4.4.3 below, and also Sections 4.7.5,

4.8.5 and 4.13.5). By redefining these predefined units, it is possible to change the units used throughout

a model in a simple and consistent manner. The SBML unit definition facility uses two classes of objects,

UnitDefinition and Unit. Their definitions are shown in Figure 12 and explained in more detail in Sections 4.4.1

and 4.4.2 below.

SBase

UnitDefinition

id: UnitSId {Excludes values from Table 1. }
name: string { use=”optional” }

ListOfUnits

Unit

kind: UnitSId {Restricted to values in Table 1. }
exponent: int { use=”optional” default=”1” }
scale: int { use=”optional” default=”0” }
multiplier: double { use=”optional” default=”1”}

listOfUnits unit
1..*

Figure 12: The definition of classes UnitDefinition and Unit. A sequence of one or more instances of UnitDefinition can
be located in an instance of ListOfUnitDefinitions in Model (Figure 10). ListOfUnits has no attributes (beyond those
it inherits from class SBase); it merely acts as a container for one or more instances of Unit objects. Note that the only
permitted values of kind on Unit are the reserved words in Table 1 on page 38, but these symbols are excluded from the
permitted values of UnitDefinition’s id because SBML’s unit system does not allow redefining the base units.

36

The approach to defining units in SBML is compositional; for example, meter second−2 is constructed by

combining a Unit object representing meter with another Unit object representing second−2. The combina-

tion is wrapped inside a UnitDefinition, which provides for assigning an identifier and optional name to the

combination. The identifier can then be referenced from elsewhere in a model.

The vast majority of modeling situations requiring new SBML unit definitions involve simple multiplicative

combinations of base units and factors. An example of this might be “moles per litre per second”. What

distinguishes these sorts of simpler unit definitions from more complex ones is that they may be expressed

without the use of an additive offset from a zero point. The use of offsets complicates all unit definition

systems, yet in the domain of SBML the real-life cases requiring offsets are few (and in fact, to the best

of our knowledge, only involve temperature). Consequently, the SBML unit system has been consciously

designed in a way that attempts to simplify implementation of unit support for the most common cases in

systems biology, at the cost of requiring units with offsets to be handled explicitly by the modeler.

4.4.1 UnitDefinition

A unit definition in SBML consists of an instance of a UnitDefinition object, shown in Figure 12.

The id and name attributes

The required attribute id and optional attribute name have data types UnitSId and string, respectively.

The id attribute is used to give the defined unit a unique identifier by which other parts of an SBML model

definition can refer to it. The name attribute is intended to be used for giving the unit definition an optional

human-readable name; see Section 3.3.2 for more guidelines about the use of names.

There are two important restrictions and guidelines about the use of unit definition id values:

1. The id of a UnitDefinition must not contain a value from Table 1, the list of reserved base unit names.

This constraint simply prevents the redefinition of base units.

2. There is a set of reserved identifiers for the predefined units in SBML; these identifiers are “substance”,

“volume”, “area”, “length”, and “time”. Using one of these values for id in a UnitDefinition has the

effect of redefining the model-wide default units for the corresponding quantities. We discuss this in

more detail in Section 4.4.3.

The list of Units

A UnitDefinition object must contain one or more Unit objects inside a ListOfUnits container. Section 4.4.2

explains the meaning and use of Unit.

Example

The following skeleton of a unit definition illustrates an example use of UnitDefinition:

<model>

<listOfUnitDefinitions>

<unitDefinition id="unit1">

<listOfUnits>

...

</listOfUnits>

</unitDefinition>

<unitDefinition id="unit2">

<listOfUnits>

...

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

...

</model>

37

4.4.2 Unit

A Unit object represents a (possibly transformed) reference to a base unit chosen from the list in Table 1.

The attribute kind indicates the chosen base unit, whereas the attributes exponent, scale, and multiplier

define how the base unit is being transformed. These various attributes are described in detail below.

In SBML Level 2 Version 1, Unit had an additional attribute called offset. This attribute has been removed

entirely in Level 2 Versions 2–5. Modelers and software authors are instead directed to use other methods

of encoding units requiring offsets. The reasons for this change, and some suggestions for how to achieve

equivalent effects of unit offsets, are discussed in more detail below. Another change in Version 3–5 is the

removal of the enumeration UnitKind and the redefinition of UnitSId to include the previous UnitKind values

as reserved symbols. This change has no net effect on permissible models or their representation.

The kind attribute

The Unit object class has one required attribute, kind, whose value must be taken from the list of reserved

words given in Table 1. These reserved symbols are in the value space of UnitSId (Section 3.1.8).

 ampere gram katal metre second watt

 becquerel gray kelvin mole siemens weber

 candela henry kilogram newton sievert

 coulomb hertz litre ohm steradian

 dimensionless item lumen pascal tesla

 farad joule lux radian volt

Table 1: Base units defined in SBML. These symbols are predefined values of type UnitSId (Section 3.1.8). All are
names of base or derived SI units (Bureau International des Poids et Mesures, 2000), except for “dimensionless” and
“item”, which are SBML additions important for handling certain common situations. “Dimensionless” is intended for
cases where a quantity is a ratio whose units cancel out, and “item” for expressing such things as “N items” (e.g., “100
molecules”). Also, note that the gram and litre are not strictly part of SI; however, they are frequently used in SBML’s
areas of application and therefore are included as predefined unit identifiers. (The standard SI unit of mass is in fact the
kilogram, and volume is defined in terms of cubic metres.) Comparisons of these values, like all values of type UnitSId,
must performed in a case-sensitive manner.

Note that the set of acceptable values for the attribute kind does not include units defined by UnitDefinition

object. This means that the units definition system in SBML is not hierarchical: user-defined units cannot

be built on top of other user-defined units, only on top of base units. SBML differs from CellML (Hedley

et al., 2001) in this respect; CellML allows the construction of hierarchical unit definitions.

The exponent, scale and multiplier attributes

The optional exponent attribute on Unit represents an exponent on the unit. Its default value is “1” (one).

A Unit object also has an optional scale attribute; its value must be an integer exponent for a power-of-

ten multiplier used to set the scale of the unit. For example, a unit having a kind value of “gram” and a

scale value of “-3” signifies 10−3 × gram, or milligrams. The default value of scale is “0” (zero), because

100 = 1. Lastly, the optional multiplier attribute can be used to multiply the kind unit by a real-numbered

factor; this enables the definition of units that are not power-of-ten multiples of SI units. For instance, a

multiplier of 0.3048 could be used to define “foot” as a measure of length in terms of a metre. The

multiplier attribute has a default value of “1” (one).

The unit system allows model quantities to be expressed in units other than the base units of Table 1. For

analyses and computations, the consumer of the model (be it a software tool or a human) will want to convert

all model quantities to base SI units for purposes such as verifying the consistency of units throughout the

model. Suppose we begin with a quantity having numerical value y when expressed in units {u}. The

relationship between y and a quantity yb expressed in base units {ub} is

yb {ub} = y {u}
(
w {ub}
{u}

)
(1)

38

The term in the parentheses on the right-hand side is a factor w for converting a quantity in units {u} to

another quantity in units {ub}. The ratio of units leads to canceling of {u} in the equation above and leaves

a quantity in units {ub}. It remains to define this factor. In terms of the SBML unit system, it is:

{u} = (multiplier · 10scale {ub})exponent (2)

where the dot (·) represents simple scalar multiplication. The variables multiplier, scale, and exponent in

the equation above correspond to the attributes with the same names in the Unit object defined in Figure 12.

The exponent in the equation above may make it more difficult to grasp the relationship immediately; so let

us suppose for the moment that exponent=“1”. Then, it is easy to see that

{u} = multiplier · 10scale {ub}

Dividing both sides by {u} produces the ratio in the parenthesized portion of Equation 1, which means that

w = multiplier ·10scale. To take a concrete example, one foot expressed in terms of the metre (a base unit)

requires multiplier=“0.3048”, exponent=“1”, and scale=“0”:

foot = 0.3048 · 100 ·metre

leading to a conversion between quantities of

yb metres = 0.3048 · y feet

Given a quantity of, say, y = 2, the conversion results in yb = 0.6096. To relate this to SBML terms more

concretely, the following fragment of SBML illustrates how this is represented using the Unit and UnitDefinition

constructs:

<listOfUnitDefinitions>

<unitDefinition id="foot">

<listOfUnits>

<unit kind="metre" multiplier="0.3048"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

The case above is the simplest possible situation, involving the transformation of quantities from a single

defined unit {u} into a quantity expressed in a single base unit {ub}. If, instead, multiple base units

{ub1}, {ub2}, . . . , {ubn} are involved, the following equation holds (where the mi terms are the multiplier

values, the si terms are the scale values, and the xi terms are the exponent values):

{u} = (m1 · 10s1{ub1})x1 · (m2 · 10s2{ub2})x2 · . . . · (mn · 10sn{ubn})xn

= mx1
1 ·m

x2
2 · . . . ·mxn

n · 10(s1x1+s2x2+...+snxn){ub1}x1{ub2}x2 . . . {ubn}xn (3)

Software developers should take care to track the exponents carefully because they can be negative integers.

The overall use of Equation 3 is analogous to that of Equation 2, and leads to the following final expression.

First, to simplify, let

m = mx1
1 ·m

x2
2 · . . . ·mxn

n

p = s1x1 + s2x2 + . . .+ snxn

then,

yb {ub1}x1{ub2}x2 . . . {ubn}xn = y {u}
(
m · 10p{ub1}x1{ub2}x2 . . . {ubn}xn

{u}

)
(4)

Some additional points are worth discussing about the unit scheme introduced so far. First, and most

importantly, the equations above are formulated with the assumption that the base units do not require

39

an additive offset as part of their definition. When temperature values in units other than kelvin are being

considered, then a different interpretation must be made, as discussed below.

A second point is that care is needed to avoid seemingly-obvious but incorrect translations of units described

in textbooks. The scheme above makes it easy to formulate statements such as “1 foot = 0.3048 metres”

in the most natural way. However, the most common expression of the relationship between temperature in

Fahrenheit and kelvin, “TFahrenheit = 1.8 · (Tkelvin − 273.15) + 32” might lead one to believe that defining

Fahrenheit degrees in terms of kelvin degrees involves using multiplier=“1.8”. Not so, when degree changes

are being considered and not temperature values. Converting temperature values is different from expressing

a relationship between degree measurements. The proper value for the multiplier in the latter case is 5/9,

i.e., multiplier=“0.555556” (where we picked an arbitrary decimal precision). If, on the other hand, the

actual temperature is relevant to a quantity (e.g., if a model uses a quantity that has particular values at

particular temperatures), then offsets are required in the unit calculations and a formula must be used as

discussed above.

Handling units requiring the use of offsets in SBML Level 2 Version 5

Unit definitions and conversions requiring offsets cannot be done using the simple approach above. The

most general case, involving offsets, multipliers and exponents, requires a completely different approach to

defining units than what has been presented up to this point.

In previous versions of SBML, not only was the general case incorrectly presented (i.e., in the same terms

described above, when in reality a different approach is required), but few if any developers even attempted

to support offset-based units in their software. In the development of SBML Level 2 Version 2, a consensus

among SBML developers emerged that a fully generalized unit scheme is so confusing and complicated that

it actually impedes interoperability. SBML Level 2 Versions 2–5 acknowledge this reality by reducing and

simplifying the unit system, specifically by removing the offset attribute on Unit and Celsius as a pre-

defined unit, and by describing approaches for handling Celsius and other temperature units. This is a

backwards-incompatible change relative to SBML Level 2 Version 1 and SBML Level 1 Version 2, but it is

believed to have limited real-life impact because so few tools and models appeared to have employed this

feature anyway. By simplifying the unit system to the point that it only involves multiplicative factors as

described above, we expect that more software tools will be able to support the SBML unit system from this

point forward, ultimately improving interoperability.

We first address the question of how to handle units that do require offsets:

• Handling Celsius. A model in which certain quantities are temperatures measured in degrees Celsius

can be converted straightforwardly to a model in which those temperatures are in kelvin. A software

tool could do this by performing a straightforward substitution using the following relationship:

Tkelvin = TCelsius + 273.15 (5)

In every mathematical formula of the model where a quantity (call it x) in degrees Celsius appears,

replace x with xk + 273.15 where xk is now in kelvin. An alternative approach would be to use a

FunctionDefinition to define a function encapsulating this relationship above and then using that in the

rest of the model as needed. Since Celsius is a commonly-used unit, software tools could help users by

providing users with the ability to express temperatures in Celsius in the tools’ interfaces, and making

substitutions automatically when writing out the SBML.

• Handling other units requiring offsets. The only other units requiring offsets in SBML’s domain of

common applications are other temperature units such as Fahrenheit. Few modern scientists employ

Fahrenheit degrees; therefore, this is an unusual situation. The complication inherent in converting

between degrees Fahrenheit and kelvin is that both a multiplier and an offset are required:

Tkelvin =
TF + 459.67

1.8
(6)

One approach to handling this is to use a FunctionDefinition to define a function encapsulating the

40

relationship above, then to substitute a call to this function wherever the original temperature in

Fahrenheit appears in the model’s mathematical formulas. Here is a candidate definition as an example:

<functionDefinition id="Fahrenheit_to_kelvin">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<lambda>

<bvar><ci> temp_in_fahrenheit </ci></bvar>

<apply>

<divide/>

<apply>

<plus/>

<ci> temp_in_fahrenheit </ci>

<cn> 459.67 </cn>

</apply>

<cn> 1.8 </cn>

</apply>

</lambda>

</math>

</functionDefinition>

An alternative approach not requiring the use of function definitions is to use an AssignmentRule for

each variable in Fahrenheit units. The AssignmentRule could compute the conversion from Fahrenheit

to (say) kelvin, assign its value to a variable (in Kelvin units), and then that variable could be used

elsewhere in the model. Still another approach is to rewrite the mathematical formulas of a model to

directly incorporate the conversion Equation 6 wherever the quantity appears.

All of these approaches provide general solutions to the problem of supporting any units requiring

offsets in the unit system of SBML Level 2 Versions 2–5. It can be used for other temperature units

requiring an offset (e.g., degrees Rankine, degrees Réaumur), although the likelihood of a real-life model

requiring such other temperature units seems exceedingly small.

In summary, the removal of offset does not impede the creation of models using alternative units. If conver-

sions are needed, then converting between temperature in degrees Celsius and thermodynamic temperature

can be handled rather easily by the simple substitution described above. For the rarer case of Fahrenheit

and other units requiring combinations of multipliers and offsets, users are encouraged to employ the power

of FunctionDefinition, AssignmentRule, or other constructs in SBML.

Examples

The following example illustrates the definition of an abbreviation “mmls” for the units mmol l−1 s−1:

<listOfUnitDefinitions>

<unitDefinition id="mmls">

<listOfUnits>

<unit kind="mole" scale="-3"/>

<unit kind="litre" exponent="-1"/>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

4.4.3 Predefined units

There are five special unit identifiers in SBML, listed in Table 2 on the following page, corresponding to the

five types of quantities that can play roles in SBML reactions: substance, volume, area, length and time. All

SBML mathematical entities apart from parameters have default units drawn from these predefined values.

Table 2 lists the default values; all of the defaults have multiplier=“1” and scale=“0”.

Redefinition of predefined units

Table 2 also lists alternative base units that are allowed as the basis of redefined values. For example, a

redefinition of the predefined unit of time must be based on units of seconds. Within certain limits, a model

41

 Identifier Possible Scalable Units Default Units

 substance mole, item, gram, kilogram, dimensionless mole
 volume litre, cubic metre, dimensionless litre
 area square metre, dimensionless square metre
 length metre, dimensionless metre
 time second, dimensionless second

Table 2: SBML’s predefined units. The identifiers in the left-most column are values of UnitSId (Section 3.1.8).

may change the predefined units by reassigning the keywords substance, length, area, time, and volume

in a UnitDefinition. The limitations on redefinitions of base units are the following:

1. The UnitDefinition involving a predefined unit can only contain a single Unit object within it.

2. The value of the kind attribute in a Unit instance must be drawn from one of the values in the second

column of the appropriate row of Table 2.

Certain choices of base units as values of the kind attribute require specific choices of the exponent attribute

in the unit definition. Specifically, if volume is involved and metre is chosen as the kind, the exponent must

be “3” to get cubic metres; if area is involved and metre is again used for kind, the exponent must be “2”.

Conversely, if dimensionless is used as the value of kind, then the exponent value can be any integer.

Examples

The following example illustrates how to change a model’s global default units of volume to be millilitres.

If this definition appeared in a model, the units of volume on all components that did not explicitly specify

different units would be changed to millilitres.

<model>

...

<listOfUnitDefinitions>

<unitDefinition id="volume">

<listOfUnits>

<unit kind="litre" scale="-3"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

...

</model>

4.4.4 References to units

An attribute that defines the units of a mathematical entity (e.g., the attribute units on Parameter) can

refer to a defined unit whose identifier is chosen from among the following:

• A new unit identifier defined by a UnitDefinition as described at the start of Section 4.4;

• The base units listed in Table 1 on page 38; and

• The predefined units defined in Section 4.4.3 and listed in Table 2. (These are “substance”, “volume”,

“area”, “length”, and “time”.)

Software developers are asked to pay special attention to the units used in an SBML model. Different

users and developers sometimes are accustomed to making different assumptions about units, and these

assumptions may not correspond to what is actually defined in SBML. The numerical values in a model

become meaningless if the corresponding units are not those being assumed. Sections 3.4.3, 4.8.5 and 4.13.5

have particularly important notes about the usage of units in SBML.

42

4.5 Compartment types

A compartment type in SBML is a grouping construct used to establish a relationship between multiple

compartments (Section 4.7). A compartment type is represented by the CompartmentType object class,

SBase

CompartmentType

id: SId
name: string { use=”optional” }

Figure 13: The definition of class
CompartmentType. A sequence of
one or more instances of Compart-
mentType objects can be located in
an instance of ListOfCompartment-
Types in Model, as shown in Fig-
ure 10.

defined in Figure 13.

In SBML Level 2 Version 3 and beyond, a compartment type only

has an identity, and this identity can only be used to indicate

that particular compartments belong to this type. This may be

useful for conveying a modeling intention, such as when a model

contains many similar compartments, either by their biological

function or the reactions they carry; without a compartment

type construct, it would be impossible in the language of SBML

to indicate that all of the compartments share an underlying con-

ceptual relationship because each SBML compartment must be

given a unique and separate identity. Compartment types have

no mathematical meaning in SBML Level 2 Version 5—they have

no effect on a model’s mathematical interpretation. Simulators

and other numerical analysis software may ignore Compartment-

Type objects and references to them in a model.

There is no mechanism in SBML for representing hierarchies of compartment types. One CompartmentType

object instance cannot be the subtype of another CompartmentType object; SBML provides no means of

defining such relationships.

4.5.1 The id and name attributes

As with other major class of objects in SBML, CompartmentType has a mandatory attribute, id, used to give

the compartment type an identifier. The identifier must be a text string conforming to the syntax permitted

by the SId data type described in Section 3.1.7. CompartmentType also has an optional name attribute, of

type string. The name and id attributes must be used as described in Section 3.3.

4.5.2 The sboTerm attribute

CompartmentType inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see

Sections 3.1.9 and 5). When a value is given to this attribute in a CompartmentType instance, the value

should be an SBO identifier referring to a material entity (i.e., terms derived from SBO:0000240, “material

entity”). The relationship is of the form “the compartment type is a X”, where X is the SBO term. The

term chosen should be the most precise (narrow) one that captures the role of the compartment type in the

model.

4.5.3 Examples

The following partial SBML example illustrates a compartment type used to relate together many individual

compartments in a hypothetical model.

<model>

...

<listOfCompartmentTypes>

<compartmentType id="mitochondria"/>

</listOfCompartmentTypes>

<listOfCompartments>

<compartment id="m1" size="0.013" compartmentType="mitochondria" outside="cell"/>

<compartment id="m2" size="0.013" compartmentType="mitochondria" outside="cell"/>

<compartment id="m3" size="0.013" compartmentType="mitochondria" outside="cell"/>

<compartment id="cell" size="190.0"/>

</listOfCompartments>

...

</model>

43

4.6 Species types

The term species type refers to reacting entities independent of location. These include simple ions (e.g.,

protons, calcium), simple molecules (e.g., glucose, ATP), large molecules (e.g., RNA, polysaccharides, and

SBase

SpeciesType

id: SId
name: string { use=”optional” }

Figure 14: The definition of class
SpeciesType. A sequence of one or
more instances of SpeciesType ob-
jects can be located in an instance
of ListOfSpeciesTypes in Model, as
shown in Figure 10.

proteins), and others. The SpeciesType object class is intended

to represent these entities. Its definition is shown in Figure 14.

SpeciesType objects are included in SBML to enable Species

(Section 4.8) of the same type to be related together. It is a

conceptual construct; the existence of SpeciesType objects in a

model has no effect on the model’s numerical interpretation.

Except for the requirement for uniqueness of species/species

type combinations located in compartments (described in Sec-

tion 4.8.2), simulators and other numerical analysis software

may ignore SpeciesType structures and references to them in a

model.

There is no mechanism in SBML for representing hierarchies of

species types. One SpeciesType object instance cannot be the

subtype of another SpeciesType; SBML provides no means of

defining such relationships.

4.6.1 The id and name attributes

As with other major object classes in SBML, SpeciesType has a mandatory attribute, id, used to give the

species type an identifier. The identifier must be a text string conforming to the syntax permitted by the

SId data type described in Section 3.1.7. SpeciesType also has an optional name attribute, of type string.

The name and id attributes must be used as described in Section 3.3.

4.6.2 The sboTerm attribute

SpeciesType inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sec-

tions 3.1.9 and 5). When a value is given to this attribute in a SpeciesType instance, the value should be an

SBO identifier referring to a material entity (i.e., terms derived from SBO:0000240, “material entity”). The

relationship is of the form “the species type is a X”, where X is the SBO term. The term chosen should be

the most precise (narrow) one that captures the role of the species type in the model.

4.6.3 Example

The following XML fragment is an example of two SpeciesType objects embedded in an SBML model.

<model>

...

<listOfSpeciesTypes>

<speciesType id="ATP"/>

</listOfSpeciesTypes>

<listOfCompartments>

<compartment id="cytosol"/>

<compartment id="mitochon"/>

</listOfCopartments>

<listOfSpecies>

<species id="ATPc" speciesType="ATP" compartment="cytosol" initialConcentration="1"/>

<species id="ATPm" speciesType="ATP" compartment="mitochon" initialConcentration="2"/>

</listOfSpecies>

...

</model>

44

4.7 Compartments

A compartment in SBML represents a bounded space in which species are located. Compartments do not

necessarily have to correspond to actual structures inside or outside of a biological cell, although models are

often designed that way. The definition of Compartment is shown in Figure 15.

SBase

Compartment

id: SId
name: string { use=”optional” }
compartmentType: SId { use=”optional” }
spatialDimensions: int { maxInclusive=”3” minInclusive=”0” use=”optional” default=”3” }
size: double { use=”optional” }
units: UnitSId { use=”optional” }
outside: SId { use=”optional” }
constant: boolean { use=”optional” default=”true” }

Figure 15: The definition of class Compartment. A sequence of one or more instances of Compartment objects can be
located in an instance of ListOfCompartments in Model, as shown in Figure 10.

It is important to note that although compartments are optional in the overall definition of Model (see

Section 4.2), every species in an SBML model must be located in a compartment. This in turn means that

if a model defines any species, the model must also define at least one compartment. The reason is simply

that species represent physical things, and therefore must exist somewhere. Compartments represent the

somewhere.

4.7.1 The id and name attributes

Compartment has one required attribute, id, of type SId, to give the compartment a unique identifier by

which other parts of an SBML model definition can refer to it. A compartment can also have an optional

name attribute of type string. Identifiers and names must be used according to the guidelines described in

Section 3.3.

4.7.2 The compartmentType attribute

Each compartment in a model may optionally be designated as belonging to a particular compartment type.

The optional attribute compartmentType of type SId is used identify the compartment type represented by

the Compartment object. The compartmentType attribute’s value must be the identifier of a CompartmentType

instance defined in the model. If the compartmentType attribute is not present on a particular compartment

definition, a unique virtual compartment type is assumed for that compartment, and no other compartment

can belong to that compartment type.

The values of compartmentType attributes on compartments have no effect on the numerical interpretation

of a model. Simulators and other numerical analysis software may ignore compartmentType attributes.

4.7.3 The spatialDimensions attribute

A Compartment object has an optional attribute spatialDimensions, whose value must be a positive integer

indicating the number of spatial dimensions possessed by the compartment. The maximum value is “3”,

meaning a three-dimensional structure (a volume). Other permissible values are “2” (for a two-dimensional

area), “1” (for a one-dimensional curve), and “0” (for a point). The default value is “3”. Note that the

number of spatial dimensions possessed by a compartment affects certain aspects of the compartment’s size

and units-of-size; see the following two subsections.

45

4.7.4 The size attribute

Each compartment has an optional floating-point attribute named size, representing the initial total size of

the compartment. The size may be a volume (if the compartment is a three-dimensional one), or it may be

an area (if the compartment is two-dimensional), or a length (if the compartment is one-dimensional).

It is important to note that in SBML Level 2, a missing size value does not imply that the compartment size

is 1. There is no default value of compartment size. (This is unlike the definition of compartment volume in

SBML Level 1.) When the spatialDimensions attribute does not have a value of “0”, a missing value for

size for a given compartment signifies that the value either is unknown, or to be obtained from an external

source, or determined by an initial assignment (Section 4.10) or a rule (Section 4.11) elsewhere in the model.

The size attribute must not be present if the spatialDimensions attribute has a value of “0”; otherwise, a

logical inconsistency would exist because a zero-dimensional object cannot have a physical size.

A compartment’s size is set by its size attribute exactly once. If the compartment’s constant attribute

value is “true” (the default), then the size is fixed and cannot be changed except by an InitialAssignment

in the model (and if spatialDimensions=“0”, it cannot be changed by any InitialAssignment either). These

methods of setting the size differ in that the size attribute can only be used to set the compartment size to

a literal scalar value, whereas InitialAssignment allows the value to be set using an arbitrary mathematical

expression. If the compartment’s constant attribute is “false”, the size value may be overridden by an

InitialAssignment or changed by an AssignmentRule or AlgebraicRule, and in addition, for simulation time

t > 0, it may also be changed by a RateRule or Events. (However, some constructs are mutually exclusive;

see Sections 4.11 and 4.14.) It is not an error to set the value of size on a compartment and also redefine the

value using an InitialAssignment, but the original size value in that case is ignored. Section 3.4.8 provides

additional information about the semantics of assignments, rules and values for simulation time t ≤ 0.

For the reasons given above, the size attribute on a compartment must be defined as optional; however, it

is extremely good practice to specify values for compartment sizes when such values are available. There are

three major technical reasons for this. First, if the model contains any species whose initial amounts are

given in terms of concentrations, and there is at least one reaction in the model referencing such a species,

then the model is numerically incomplete if it lacks a value for the size of the compartment in which the

species is located. The reason is simply that SBML Reactions are defined in units of substance/time (see

Section 4.13.5), not concentration per time, and thus the compartment size must at some point be used to

convert from species concentration to substance units. Second, models ideally should be instantiable in a

variety of simulation frameworks. A commonly-used one is the discrete stochastic framework (Gillespie, 1977;

Wilkinson, 2006) in which species are represented as item counts (e.g., molecule counts). If species’ initial

quantities are given in terms of concentrations or densities, it is impossible to convert the values to item

counts without knowing compartment sizes. Third, if a model contains multiple compartments whose sizes

are not all identical to each other, it is impossible to quantify the reaction rate expressions without knowing

the compartment volumes. The reason for the latter is again that reaction rates in SBML are defined in

terms of substance/time, and when species quantities are given in terms of concentrations or densities, the

compartment sizes become factors in the reaction rate expressions.

A final question to address is, what are the relationships between compartment sizes when compartment

positioning is expressed using the outside attribute (Section 4.7.7)? The answer is: none. The size of a

given compartment does not in any sense include the sizes of other compartments having it as the value of

their outside attributes. In other words, if a compartment B has the identifier of compartment A as its

outside attribute value, the size of A does not include the size of B. The compartment sizes are separate.

4.7.5 The units attribute

The units associated with the compartment’s size value may be set using the optional attribute units. The

default units, and the kinds of units allowed as values of the attribute units, interact with the number of

spatial dimensions of the compartment. The value of the units attribute of a Compartment object must

be one of the base units from Table 1, or the predefined unit identifiers “volume”, “area”, “length” or

“dimensionless”, or a new unit defined by a unit definition in the enclosing model, subject to the restrictions

detailed in Table 3.

46

 Value of attribute size units Default value
 spatialDimensions allowed? allowed? Allowable kinds of units of attribute units

 “3” yes yes units of volume, or dimensionless “volume”
 “2” yes yes units of area, or dimensionless “area”
 “1” yes yes units of length, or dimensionless “length”
 “0” no no (no units allowed)

Table 3: The units permitted for compartment sizes. If spatialDimensions=“0”, the compartment’s units attribute
must be left unset. Units of volume means litres, cubic metres, or units derived from them; units of area means square
metres or units derived from square metres; and units of length means metres or units derived from metres. (See also
Table 2 on page 42 and Table 1 on page 38.)

The units of the compartment size, as defined by the units attribute or (if units is not set) the default

value listed in Table 3, are used in the following ways when the compartment has a spatialDimensions

value greater than “0”:

• The value of the units attribute is used as the units of the compartment identifier when the identi-

fier appears as a numerical quantity in a mathematical formula expressed in MathML (discussed in

Section 3.4.3).

• The math element of an AssignmentRule or InitialAssignment referring to this compartment should have

identical units (see Sections 4.11.3 and 4.10).

• In RateRule objects that set the rate of change of the compartment’s size (Section 4.11.4), the units of

the rule’s math element should be identical to the compartment’s units attribute divided by the default

time units. (In other words, the units for the rate of change of compartment size are compartment

size/time units.)

• When a Species is to be treated in terms of concentrations or density, the units of the spatial size

portion of the concentration value (i.e., the denominator in the units formula substance/size) are those

indicated by the value of the units attribute on the compartment in which the species is located.

Compartments with spatialDimensions=“0” require special treatment in this framework. If a compartment

has no size or dimensional units, how should such a compartment’s identifier be interpreted when it appears in

mathematical formulas? The answer is that such a compartment’s identifier must not appear in mathematical

formulas in the first place—it has no value, and its value cannot change (Section 4.7.6). Note also that a

zero-dimensional compartment is a point, and species located at points can only be described in terms of

amounts, not spatially-dependent measures such as concentration. Since SBML KineticLaw formulas are

already in terms of substance/time and not (say) concentration/time, volume or other factors in principle

are not needed for species located in zero-dimensional compartments.

4.7.6 The constant attribute

A Compartment also has an optional boolean attribute called constant that indicates whether the com-

partment’s size stays constant or can vary during a simulation. A value of “false” indicates the com-

partment’s size can be changed by other constructs in SBML. A value of “true” indicates the compart-

ment’s size cannot be changed by any other construct except InitialAssignment. In the special case of

spatialDimensions=“0”, the value cannot be changed by InitialAssignment either. The default value for the

constant attribute is “true” because in the most common modeling scenarios at the time of this writing,

compartment sizes remain constant. The constant attribute must default to or be set to “true” if the value

of the spatialDimensions attribute is “0”, because a zero-dimensional compartment cannot ever have a size.

4.7.7 The outside attribute

The optional attribute outside of type SId can be used to express one type of positioning relationship between

compartments. If present, the value of outside for a given compartment must be the id attribute value of

another compartment defined in the model. Doing so means that the other compartment surrounds it or is

47

“outside” of it. This enables the representation of simple topological relationships between compartments,

for those simulation systems that can make use of the information (e.g., for drawing simple diagrams of

compartments).

There are two restrictions on the inside/outside relationships in SBML. First, because a compartment with

spatialDimensions of “0” has no size, such a compartment cannot act as the “outside” of any other com-

partment except compartments that also have spatialDimensions values of “0”. Second, the directed graph

formed by representing Compartment objects as vertexes and the outside attribute values as edges must be

acyclic. The latter condition is imposed to prevent a compartment from being located inside itself.

Although inside/outside relationships are partly taken into account by the compartmental localization of

reactants and products, it is not always possible to determine purely from the reaction equations whether

one compartment is meant to be located within another. In the absence of a value for outside, compartment

definitions in SBML Level 2 do not have any implied spatial relationships between each other. For many

modeling applications, the transfer of substances described by the reactions in a model sufficiently express the

relationships between the compartments. (As discussed in Section 8.1, SBML Level 3 is expected introduce

the ability to define geometries and spatial qualities.)

Finally, as mentioned in Section 4.7.4 above, the presence of outside attributes in compartment definitions

has no implications whatsoever about the sizes (or any other attributes) of the compartments involved.

The size of a compartment does not include the sizes of any other compartments having it as the value of

their outside attributes. The outside attribute only provides semantic information and has no impact on

mathematical analysis and simulation.

4.7.8 The sboTerm attribute

Compartment inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sec-

tions 3.1.9 and 5). When a value is given to this attribute in a Compartment instance, the value should be an

SBO identifier referring to a material entity (i.e., terms derived from SBO:0000240, “material entity”). The

relationship is of the form “the compartment is a X”, where X is the SBO term. The term chosen should

be the most precise (narrow) one that captures the role of the compartment in the model.

4.7.9 Examples

The following example illustrates two compartments in an abbreviated SBML example of a model definition:

<model>

...

<listOfCompartments>

<compartment id="cytosol" size="2.5"/>

<compartment id="mitochondria" size="0.3"/>

</listOfCompartments>

...

</model>

The following is an example of using outside to model a cell membrane. To express that a compartment

with identifier “B” has a membrane that is modeled as another compartment “M”, which in turn is located

within another compartment “A”, one would write:

<model>

...

<listOfCompartments>

<compartment id="A"/>

<compartment id="M" spatialDimensions="2" outside="A"/>

<compartment id="B" outside="M"/>

</listOfCompartments>

...

</model>

48

4.8 Species

A species refers to a pool of reacting entities of a specific species type that take part in reactions and are

located in a specific compartment. The Species object class is intended to represent these pools. Its definition

is shown in Figure 16. Although the exact definition of Species given here has changed from the definition

in the specification of SBML Level 2 Version 1 (i.e., through the introduction of SpeciesType), the concept

represented by Species remains the same.

SBase

Species

id: SId
name: string { use=”optional” }
speciesType: SId { use=”optional” }
compartment: SId
initialAmount: double { use=”optional” }
initialConcentration: double { use=”optional” }
substanceUnits: UnitSId { use=”optional” }
hasOnlySubstanceUnits: boolean { use=”optional” default=”false” }
boundaryCondition: boolean { use=”optional” default=”false” }
charge: int { use=”optional” } deprecated
constant: boolean { use=”optional” default=”false” }

Figure 16: The definition of class Species. A sequence of one or more instances of Species objects can be located in
an instance of ListOfSpecies in Model, as shown in Figure 10.

In previous versions of SBML Level 2, the class Species included an attribute called spatialSizeUnits,

which allowed explicitly setting the units of size for initial concentration. SBML Level 2 Version 3 removed

this attribute for two reasons. First, its semantics were confusing and introduced an implicit unit conversion.

Compartment has its own size-setting attribute, and a separate attribute on Species meant that a species’

initial concentration could involve spatial size units that are different from the units of the compartment

in which the species was located. Since (a) the spatialSizeUnits attribute determined the size units of

a species’ quantity when that species appeared in reaction rate formulas, and (b) the compartment may

have its own different spatial units, when both the species and the compartment appeared in reaction rate

formulas, one of the quantities would have had to be converted into the same spatial units as the other. In

other words, modelers and software tools would have had to insert explicit conversion factors into kinetic

rate formulas. Such conversions can be be difficult to achieve and prone to errors. Second, although the

spatialSizeUnits attribute provided some new functionality, it could also be argued to be redundant: a

compartment’s definition logically should be the entity controlling its own spatial size information, in the

same way that a species’ definition controls its quantity. For these reasons, and because few software packages

seemed to take account of the implicit unit conversion, it was deemed better to remove the spatialSizeUnits

attribute from Species.

4.8.1 The id and name attributes

As with other major objects in SBML, Species has a mandatory attribute, id, used to give the species an

identifier. The identifier must be a text string conforming to the syntax permitted by the SId data type

described in Section 3.1.7. Species also has an optional name attribute, of type string. The name and id

attributes must be used as described in Section 3.3.

4.8.2 The speciesType attribute

Each species in a model may optionally be designated as belonging to a particular species type. The optional

attribute speciesType of type SId is used to identify the species type of the chemical entities that make

up the pool represented by the Species object. The attribute’s value must be the identifier of an existing

SpeciesType object. If the speciesType attribute is not present on a particular species definition, it means

49

the pool contains chemical entities of a type unique to that pool; in effect, a virtual species type is assumed

for that species, and no other species can belong to that species type.

There can be only one species of a given species type in any given compartment of a model. More specifically,

for all Species objects having a value for the speciesType attribute, the pair

(speciesType attribute value, compartment attribute value)

must be unique across the set of all Species objects in a model.

The value of speciesType attributes on species have no effect on the numerical interpretation of a model.

Simulators and other numerical analysis software may ignore speciesType attributes.

4.8.3 The compartment attribute

The required attribute compartment, also of type SId, is used to identify the compartment in which the

species is located. The attribute’s value must be the identifier of an existing Compartment object. It is

important to note that there is no default value for the compartment attribute on Species; every species

in an SBML model must be assigned a compartment, and consequently, a model must define at least one

compartment if that model contains any species.

4.8.4 The initialAmount and initialConcentration attributes

The optional attributes initialAmount and initialConcentration, both having a data type of double,

are used to set the initial quantity of the species in the compartment where the species is located. These

attributes are mutually exclusive; i.e., only one can have a value on any given instance of a Species object.

Missing initialAmount and initialConcentration values implies that their values either are unknown, or

to be obtained from an external source, or determined by an initial assignment (Section 4.10) or rule (Sec-

tion 4.11) elsewhere in the model. In the case where a species’ compartment has a spatialDimensions value

of “0”, the species cannot have a value for initialConcentration because the concepts of “concentration”

and “density” break down when a container has zero dimensions.

A species’ initial quantity is set by the initialAmount or initialConcentration attributes exactly once.

If the constant attribute is “true”, then the value of the species’ quantity is fixed and cannot be changed

except by an InitialAssignment. These methods differ in that the initialAmount and initialConcentration

attributes can only be used to set the species quantity to a literal scalar value, whereas InitialAssignment

allows the value to be set using an arbitrary mathematical expression. If the species’ constant attribute

is “false”, the species’ quantity value may be overridden by an InitialAssignment or changed by Assign-

mentRule or AlgebraicRule, and in addition, for t > 0, it may also be changed by a RateRule or Events.

(However, some constructs are mutually exclusive; see Sections 4.11 and 4.14.) It is not an error to define

initialAmount or initialConcentration on a species and also redefine the value using an InitialAssignment,

but the initialAmount or initialConcentration setting in that case is ignored. Section 3.4.8 provides ad-

ditional information about the semantics of assignments, rules and values for simulation time t ≤ 0.

The units of the value in the initialAmount attribute are set by the substanceUnits attribute on Species.

The units of the value in the initialConcentration attribute are substance/size units. The units of sub-

stance are those defined in the substanceUnits, and the size units are those given in the definition of the

size of the Compartment in which the species is located.

4.8.5 The substanceUnits and hasOnlySubstanceUnits attributes

The units associated with a species’ quantity, referred to as the units of the species, are determined via the

optional attributes substanceUnits and hasOnlySubstanceUnits, in combination with the units of the size

defined for the compartment object in which the species are located.

The attribute hasOnlySubstanceUnits takes on boolean values and defaults to “false”. This attribute’s

role is to indicate whether the units of the species, when the species identifier appears in mathematical

formulas, are intended to be concentration or amount. Although it may seem as though this intention could

50

be determined based on whether initialConcentration or initialAmount is set, the fact that these two

attributes are optional means that a separate flag is needed. (Consider the situation where neither is set,

and instead the species’ quantity is established by an InitialAssignment or AssignmentRule.)

The possible values of units of the species are summarized in Table 4. The units of the species are of the form

substance/size units (i.e., concentration units, using a broad definition of concentration) if the compartment’s

spatialDimensions is non-zero and hasOnlySubstanceUnits has the value “false”. The units of the species

are of the form substance if hasOnlySubstanceUnits has the value “true” or spatialDimensions is zero.

(This dependence is due to the fact that a zero-dimensional compartment cannot support concentrations or

densities.) The units of substance are those defined by the substanceUnits attribute, and the size units are

those of the size of the compartment in which the species is located. This compartment is the one identified

by the species’ compartment attribute.

 value of units of the species when units of the species when
 hasOnlySubstanceUnits spatialDimensions is greater than 0 spatialDimensions is 0

 false (default) substance/size substance
 true substance substance

Table 4: How to interpret the value of the Species hasOnlySubstanceUnits attribute.

As an aside, we note that treating species in terms of substance units (i.e., discrete quantities such as

molecule counts) rather than concentrations is common when using discrete stochastic simulation frame-

works (Gillespie, 1977; Wilkinson, 2006). The appropriate way of accomplishing this in SBML is to set

hasOnlySubstanceUnits=“true” in the species’ definitions.

The value chosen for substanceUnits must be either a base unit from Table 1 on page 38, a predefined unit

from Table 2 on page 42, or a new unit defined by a unit definition in the enclosing model. The chosen units

for substanceUnits must be be dimensionless, mole, item, kilogram, gram, or units derived from these.

The substanceUnits attribute defaults to the the predefined unit “substance” shown in Table 2 on page 42.

The units of the species are used in the following ways:

• The species identifier has these units when the identifier appears as a numerical quantity in a mathe-

matical formula expressed in MathML (discussed in Section 3.4.3).

• The math element of an AssignmentRule or InitialAssignment referring to this species should have

identical units (see Sections 4.11.3 and 4.10).

• In RateRule objects that set the rate of change of the species’ quantity (Section 4.11.4), the units of the

rule’s math element should be identical to the units of the species divided by the model’s time units.

4.8.6 The constant and boundaryCondition attributes

The Species object has two optional boolean attributes named constant and boundaryCondition, used to

indicate whether and how the amount of that species can vary during a simulation. Table 5 shows how to

interpret the combined values of the boundaryCondition and constant attributes.

By default, when a species is a product or reactant of one or more reactions, its amount is determined

by those reactions. In SBML, it is possible to indicate that a given species’ quantity is not affected by

the set of reactions even when that species occurs as a product or reactant; i.e., the species is on the

boundary of the reaction system, and its quantity is not determined by the reactions. The boolean attribute

boundaryCondition can be used to indicate this. The value of the attribute defaults to “false”, indicating

the species is part of the reaction system.

The constant attribute indicates whether the species’ amount can be changed at all, regardless of whether

by reactions, rules, or constructs other than InitialAssignment. The default value is “false”, indicating that

the species’ amount can be changed, since the purpose of most simulations is precisely to calculate changes in

51

 Can have Can be
 constant boundaryCondition assignment reactant or What can change
 value value or rate rule? product? the species’ amount?

 true true no yes (never changes)
 false true yes yes rules and events
 true false no no (never changes)
 false false yes yes reactions or rules (but not both), and events

Table 5: How to interpret the values of the constant and boundaryCondition attributes on Species. Note that column
four is specifically about reactants and products and not also about species acting as modifiers; the latter are by definition
unchanged by reactions.

species quantities. Note that the initial quantity of a species can be set by an InitialAssignment irrespective

of the value of the constant attribute.

In practice, a boundaryCondition value of “true” means a differential equation derived from the reaction

definitions should not be generated for the species. However, the species’ quantity may still be changed by

AssignmentRule, RateRule, AlgebraicRule, Event, and InitialAssignment constructs if its constant attribute is

“false”. Conversely, if the species’ constant attribute is “true”, then its amount cannot be changed by

anything except InitialAssignment.

A species having boundaryCondition=“false” and constant=“false” can appear as a product and/or

reactant of one or more reactions in the model. If the species is a reactant or product of a reaction, it must

not also appear as the target of any AssignmentRule or RateRule object in the model. If instead the species

has boundaryCondition=“false” and constant=“true”, then it cannot appear as a reactant or product,

or as the target of any AssignmentRule, RateRule or EventAssignment object in the model.

The example model in section 7.6 contains all four possible combinations of the boundaryCondition and

constant attributes on species elements. Section 7.7 gives an example of how one can translate into ODEs

a model that uses boundaryCondition and constant attributes.

Finally, it is worth clarifying that while the constant and boundaryCondition attributes restrict whether

and how the species amount changes, the same is not true of a species’ concentration. In SBML, the

concentration of a species is a quantity that depends on the size of the compartment in which it is located.

A compartment’s size may change, and therefore, so can the concentration of a species even if the amount

of the species remains unchanged. A species’ concentration may therefore vary even if the Species object’s

constant attribute is set to “true” in a model.

4.8.7 The charge attribute

The optional attribute charge takes an integer indicating the charge on the species (in terms of electrons,

not the SI unit coulombs). This may be useful when the species is a charged ion such as calcium (Ca2+).

The charge attribute in SBML has been deprecated since Level 2 Version 2.

4.8.8 The sboTerm attribute

Species inherits an optional sboTerm attribute of type SBOTerm from its parent class SBase (see Sections 3.1.9

and 5). When a value is given to this attribute in a Species instance, the value should be an SBO identifier

referring to a material entity (i.e., terms derived from SBO:0000240, “material entity”). The relationship is

of the form “the species is a X”, where X is the SBO term. The term chosen should be the most precise

(narrow) one that captures the role of the species in the model.

4.8.9 Example

The following example shows two species definitions within an abbreviated SBML model definition. The

example shows that species are listed under the heading listOfSpecies in the model:

52

<model>

...

<listOfSpecies>

<species id="Glucose" compartment="cell" initialConcentration="4"/>

<species id="Glucose_6_P" compartment="cell" initialConcentration="0.75"/>

</listOfSpecies>

...

</model>

4.9 Parameters

A Parameter is used in SBML to define a symbol associated with a value; this symbol can then be used

in mathematical formulas in a model. By default, parameters have constant value for the duration of a

simulation, and for this reason are called “parameters” instead of “variables” in SBML, although in truth,

SBML parameters can be either. The definition of Parameter is shown in Figure 17.

SBase

Parameter

id: SId
name: string { use=”optional” }
value: double { use=”optional” }
units: UnitSId { use=”optional” }
constant: boolean { use=”optional” default=”true” }

Figure 17: The definition of class Parameter. A sequence of one or more instances of Parameter objects can be located
in an instance of ListOfParameters in Model, as shown in Figure 10.

Parameters can be defined in two places in SBML: in lists of parameters defined at the top level in a Model

instance, and within individual reaction definitions (as described in Section 4.13). Parameters defined at

the top level are global to the whole model; parameters that are defined within a reaction are local to the

particular reaction and (within that reaction) override any global parameters having the same identifiers

(See Section 3.3.1 for further details).

The use of the term parameter in SBML sometimes leads to confusion among readers who have a particular

notion of what something called “parameter” should be. It has been the source of heated debate, but

despite this, no one has yet found an adequate replacement term that does not have different connotations

to different people and hence leads to confusion among some subset of users. Perhaps it would have been

better to have two constructs, one called “constants” and the other called “variables”. The current approach

in SBML is simply more parsimonious, using a single Parameter construct with the boolean flag constant

indicating which flavor it is. In any case, readers are implored to look past their particular definition of

a “parameter” and simply view SBML’s Parameter as a single mechanism for defining both constants and

(additional) variables in a model. (We write additional because the species in a model are usually considered

to be the central variables.) After all, software tools are not required to expose to users the actual names

of particular SBML constructs, and thus tools can present to their users whatever terms their designers feel

best matches their target audience.

4.9.1 The id and name attributes

Parameter has one required attribute, id, of type SId, to give the parameter a unique identifier by which other

parts of an SBML model definition can refer to it. A parameter can also have an optional name attribute of

type string. Identifiers and names must be used according to the guidelines described in Section 3.3.

4.9.2 The value attribute

The optional attribute value determines the value (of type double) assigned to the identifier. A missing

value implies that the value either is unknown, or to be obtained from an external source, or determined

by an initial assignment (Section 4.10) or a rule (Section 4.11) elsewhere in the model.

53

A parameter’s value is set by its value attribute exactly once. If the parameter’s constant attribute has

the value “true” (the default), then the value is fixed and cannot be changed except by an InitialAssignment.

These two methods of setting the parameter’s value differ in that the value attribute can only be used to set it

to a literal scalar value, whereas InitialAssignment allows the value to be set using an arbitrary mathematical

expression. If the parameter’s constant attribute has the value “false”, the parameter’s value may be

overridden by an InitialAssignment or changed by AssignmentRule or AlgebraicRule, and in addition, for

simulation time t > 0, it may also be changed by a RateRule or Events. (However, some of these constructs

are mutually exclusive; see Sections 4.11 and 4.14.) It is not an error to define value on a parameter and also

redefine the value using an InitialAssignment, but the value in that case is ignored. Section 3.4.8 provides

additional information about the semantics of assignments, rules and values for simulation time t ≤ 0.

4.9.3 The units attribute

The units associated with the value of the parameter are specified by the attribute units. The value assigned

to the parameter’s units attribute must be chosen from one of the following possibilities: one of the base

unit identifiers from Table 1 on page 38; one of the predefined unit identifiers appearing in first column of

Table 2 on page 42; or the identifier of a new unit defined in the list of unit definitions in the enclosing Model

definition. There are no constraints on the units that can be chosen from these sets. There are no default

units for parameters.

The units of the parameter are used in the following ways:

• When the parameter identifier appears in mathematical formulas expressed in MathML in a model,

the units associated with the value are those declared by the parameter’s units attribute.

• The units of the math element of an AssignmentRule, InitialAssignment or EventAssignment setting the

value of the parameter should be identical to the units declared by the parameter’s units attribute.

• The units of the math element of a RateRule that references the parameter should be identical to

parameter units/time, where parameter units are the units declared for the parameter using the units

attribute and time is the model-wide time units.

The fact that parameter units are optional, and that no defaults are defined, means that models can define

parameters with undeclared units. If such parameters appear in mathematical expressions elsewhere in a

model, it may not be possible for a software tool to verify the consistency of units used in the expressions.

Modelers and software tools should therefore assign units to parameters whenever possible.

4.9.4 The constant attribute

The Parameter object has an optional boolean attribute named constant which indicates whether the pa-

rameter’s value can vary during a simulation. The attribute’s default value is “true”. A value of “false”

indicates the parameter’s value can be changed by rules (see Section 4.11) and that the value is actually

intended to be the initial value of the parameter.

Parameters local to a reaction (i.e., those defined within a Reaction’s KineticLaw object, as described in

Section 4.13.5) cannot be changed by rules and therefore are implicitly always constant; thus, parameter

definitions within Reaction objects must not have their constant attribute set to “false”.

What if a global parameter has its constant attribute set to “false”, but the model does not contain any

rules, events or other constructs that ever change its value over time? Although the model may be suspect,

this situation is not strictly an error. A value of “false” for constant only indicates that a parameter can

change value, not that it must.

4.9.5 The sboTerm attribute

The Parameter object inherits from SBase the optional sboTerm attribute of type SBOTerm (see Sections 3.1.9

and 5). When a value is given to this attribute in a parameter definition, the value should be an SBO identifier

referring to a quantitative parameter defined in SBO (i.e., terms derived from SBO:0000002, “quantitative

systems description parameter”). The relationship is of the form “the SBML parameter is a X”, where X

54

is the SBO term. The term chosen should be the most precise (narrow) one that captures the role of the

parameter in the model.

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore

sboTerm values. A model must be interpretable without the benefit of SBO labels.

4.9.6 Example

The following is an example of parameters defined at the Model level:

<model>

...

<listOfParameters>

<parameter id="tau2" value="3e-2" units="second"/>

<parameter id="Km1" value="10.7" units="moleperlitre"/>

</listOfParameters>

...

</model>

4.10 Initial assignments

SBML Level 2 Version 5 provides two ways of assigning initial values to entities in a model. The simplest

and most basic is to set the values of the appropriate attributes in the relevant components; for example,

the initial value of a model parameter (whether it is a constant or a variable) can be assigned by setting its

value attribute directly in the model definition (Section 4.9). However, this approach is not suitable when

the value must be calculated, because the initial value attributes on different components such as species,

compartments, and parameters are single values and not mathematical expressions. This is the reason for

the introduction of InitialAssignment: to permit the calculation of the value of a constant or the initial value

of a variable from the values of other quantities in a model. The definition of InitialAssignment is shown in

Figure 18.

SBase

InitialAssignment

symbol: SId

Math

xmlns: string { ”http://www.w3.org/1998/Math/MathML” }
{ MathML content. }

math

Figure 18: The definition of class InitialAssignment. The contents of the Math class can be any MathML permitted
in SBML; see Section 3.4.1. A sequence of one or more instances of InitialAssignment objects can be located in an
instance of ListOfInitialAssignments in Model, as shown in Figure 10.

As explained below, the provision of InitialAssignment does not mean that models necessarily must use this

construct when defining initial values of quantities. If a value can be set using the relevant attribute of a

component in a model, then that approach may be more efficient and more portable to other software tools.

InitialAssignment should be used when the other mechanism is insufficient for the needs of a particular model.

Initial assignments have some similarities to assignment rules (Section 4.11.3). The main differences are

(a) an InitialAssignment can set the value of a constant whereas an AssignmentRule cannot, and (b) unlike

AssignmentRule, an InitialAssignment definition only applies up to and including the beginning of simulation

time, i.e., t ≤ 0, while an AssignmentRule applies at all times.

4.10.1 The symbol attribute

InitialAssignment contains the attribute symbol, of type SId. The value of this attribute in an InitialAssignment

object can be the identifier (i.e., the value of the id attribute) of a Compartment, Species or global Parameter

elsewhere in the model. The purpose of the InitialAssignment is to define the initial value of the constant or

variable referred to by the symbol attribute. (The attribute’s name is symbol rather than variable because

it may assign values to constants as well as variables in a model; see Section 4.10.4 below.)

55

An initial assignment cannot be made to reaction identifiers, that is, the symbol attribute value of an

InitialAssignment cannot be an identifier that is the id attribute value of a Reaction object in the model.

This is identical to a restriction placed on rules (see Section 4.11.5).

4.10.2 The math element

The math element contains a MathML expression that is used to calculate the value of the constant or the

initial value of the variable. The units of the value computed by the formula in the math element should

be identical to be the units associated with the identifier given in the symbol attribute. (That is, the units

should be the units of the species, compartment, or parameter, as appropriate for the kind of object identified

by the value of symbol.)

4.10.3 The sboTerm attribute

InitialAssignment inherits from SBase an optional sboTerm attribute of type SBOTerm (see Sections 3.1.9

and 5). When a value is given to this attribute in an initial assignment definition, the value should be a valid

SBO identifier referring to a mathematical expression (i.e., terms derived from SBO:0000064, “mathematical

expression”). The InitialAssignment object should have a “is a” relationship with the SBO term, and the

term should be the most precise (narrow) term that captures the role of the InitialAssignment in the model.

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore

sboTerm values. A model must be interpretable without the benefit of SBO labels.

4.10.4 Semantics of initial assignments

The value calculated by an InitialAssignment object overrides the value assigned to the given symbol by the

object defining that symbol. For example, if a Compartment’s size is set in its definition, and the model also

contains an InitialAssignment having that compartment’s id as its symbol value, then the interpretation is

that the size assigned in the Compartment definition should be ignored and the value assigned based on the

computation defined in the InitialAssignment. Initial assignments can take place for Compartment, Species

and global Parameter objects regardless of the value of their constant attribute.

This does not mean that a definition of a symbol can be omitted if there is an InitialAssignment object for

that symbol; the symbols must always be defined even if they are assigned a value separately. For example,

there must be a Parameter definition for a given parameter if there is an InitialAssignment for that parameter.

The actions of all InitialAssignment objects are in general terms the same, but differ in the precise details

depending on the type of variable being set:

• In the case of a species, an InitialAssignment sets the referenced species’ initial quantity (concentration

or amount of substance) to the value determined by the formula in math. (See Section 4.8.5 for an

explanation of how the units of the species’ quantity are determined.)

• In the case of a compartment, an InitialAssignment sets the referenced compartment’s initial size to the

size determined by the formula in math. The overall units of the formula should be the same as the

units specified for the size of the compartment. (See Section 4.7.5 for an explanation of how the units

of the compartment’s size are determined.)

• In the case of a parameter, an InitialAssignment sets the referenced parameter’s initial value to that

determined by the formula in math. The overall units of the formula should be the same as the units

defined for the parameter. (See Section 4.9.3 for an explanation of how the units of the parameter are

determined.)

In the context of a simulation, initial assignments establish values that are in effect prior to and including

the start of simulation time, i.e., t ≤ 0. Section 3.4.8 provides information about the interpretation of

assignments, rules, and entity values for simulation time up to and including the start time t = 0; this is

important for establishing the initial conditions of a simulation if the model involves expressions containing

the delay csymbol (Section 3.4.6).

56

There cannot be two initial assignments for the same symbol in a model; that is, a model must not contain

two or more InitialAssignment objects that both have the same identifier as their symbol attribute value.

A model must also not define initial assignments and assignment rules for the same entity. That is, there

cannot be both an InitialAssignment and an AssignmentRule for the same symbol in a model, because both

kinds of constructs apply prior to and at the start of simulated time—allowing both to exist for a given

symbol would result in indeterminism). (See also Section 4.11.5.)

The ordering of InitialAssignment objects is not significant. The combined set of InitialAssignment, Assign-

mentRule and KineticLaw objects form a set of assignment statements that must be considered as a whole. The

combined set of assignment statements should not contain algebraic loops: a chain of dependency between

these statements should terminate. (More formally, consider the directed graph of assignment statements

where nodes are a model’s assignment statements and directed arcs exist for each occurrence of a symbol in

an assignment statement math attribute. The directed arcs in this graph start from the statement assigning

the symbol and end at the statement that contains the symbol in their math elements. Such a graph must

be acyclic.) Examples of valid and invalid set of assignment statements are given in Section 4.11.5.

Finally, it is worth being explicit about the expected behavior in the following situation. Suppose (1) a given

symbol has a value x assigned to it in its definition, and (2) there is an initial assignment having the identifier

as its symbol value and reassigning the value to y, and (3) the identifier is also used in the mathematical

formula of a second initial assignment. What value should the second initial assignment use? It is y, the

value assigned to the symbol by the first initial assignment, not whatever value was given in the symbol’s

definition. This follows directly from the behavior at the defined at the beginning of this section and in

Section 3.4.8: if an InitialAssignment object exists for a given symbol, then the symbol’s value is overridden

by that initial assignment.

4.10.5 Example

The following example shows how the species “x” can assigned the initial value 2 × y, where “y” is an

identifier defined elsewhere in the model:

<model>

...

<listOfSpecies>

<species id="x" initialConcentration="5"/>

</listOfSpecies>

...

<listOfInitialAssignments>

<initialAssignment symbol="x">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> y </ci>

<cn> 2 </cn>

</apply>

</math>

</initialAssignment>

</listOfInitialAssignments>

...

</model>

The next example illustrates the more complex behavior discussed above, when a symbol has a value assigned

in its definition but there also exists an InitialAssignment for it and another InitialAssignment uses its value

in its mathematical formula.

<model>

...

<listOfSpecies>

<species id="x" initialConcentration="5"/>

</listOfSpecies>

...

<listOfInitialAssignments>

<initialAssignment symbol="x">

57

<math xmlns="http://www.w3.org/1998/Math/MathML">

<cn> 2 </cn>

</math>

</initialAssignment>

<initialAssignment symbol="othersymbol">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> x </ci>

<cn> 2 </cn>

</apply>

</math>

</initialAssignment>

</listOfInitialAssignments>

...

</model>

The value of “othersymbol” in the SBML excerpt above will be “4”. The case illustrates the rule of thumb

that if there is an initial assignment for a symbol, the value assigned to the symbol in its definition must be

ignored and the value created by the initial assignment used instead.

4.11 Rules

In SBML, Rules provide additional ways to define the values of variables in a model, their relationships,

and the dynamical behaviors of those variables. Rules enable the encoding of relationships that cannot be

expressed using reactions alone (Section 4.13) nor by the assignment of an initial value to a variable in a

model (Section 4.10).

SBML separates rules into three subclasses for the benefit of model analysis software. The three subclasses

are based on the following three different possible functional forms (where x is a variable, f is some arbitrary

function returning a numerical result, V is a vector of variables that does not include x, and W is a vector

of variables that may include x):

 Algebraic left-hand side is zero: 0 = f(W)
 Assignment left-hand side is a scalar: x = f(V)
 Rate left-hand side is a rate-of-change: dx/dt = f(W)

In their general form given above, there is little to distinguish between assignment and algebraic rules. They

are treated as separate cases for the following reasons:

• Assignment rules can simply be evaluated to calculate intermediate values for use in numerical methods;

• SBML needs to place restrictions on assignment rules, for example the restriction that assignment rules

cannot contain algebraic loops (discussed further in Section 4.11.5);

• Some simulators do not contain numerical solvers capable of solving unconstrained algebraic equations,

and providing more direct forms such as assignment rules may enable those simulators to process models

they could not process if the same assignments were put in the form of general algebraic equations;

• Those simulators that can solve these algebraic equations make a distinction between the different

categories listed above; and

• Some specialized numerical analyses of models may only be applicable to models that do not contain

algebraic rules.

The approach taken to covering these cases in SBML is to define an abstract Rule object class containing an

element, math, to hold the right-hand side expression, then to derive subtypes of Rule that add attributes

to distinguish the cases of algebraic, assignment and rate rules. Figure 19 on the following page gives

the definitions of Rule and the subtypes derived from it. The figure shows there are three subtypes, Alge-

braicRule, AssignmentRule and RateRule derived directly from Rule. These correspond to the cases Algebraic,

Assignment, and Rate described above respectively.

58

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content. }

Rule

AssignmentRule

variable: SId

RateRule

variable: SId

AlgebraicRule

math

SBase

Figure 19: The definition of Rule and derived types AlgebraicRule, AssignmentRule and RateRule.

4.11.1 Common attributes in Rule

The classes derived from Rule inherit math and the attributes and elements from SBase, including sboTerm.

The math element

A Rule object has a required element called math, containing a MathML expression defining the mathematical

formula of the rule. This MathML formula must return a numerical value. The formula can be an arbitrary

expression referencing the variables and other entities in an SBML model. The interpretation of math and

the units of the formula are described in more detail in Sections 4.11.2, 4.11.3 and 4.11.4 below.

The sboTerm attribute

The Rule object class inherits from SBase the optional sboTerm attribute of type SBOTerm (see Sections 3.1.9

and 5). When a value is given to this attribute, it should be a valid SBO identifier referring to a mathe-

matical expression defined in SBO (i.e., terms derived from SBO:0000064, “mathematical expression”). The

AlgebraicRule, AssignmentRule, or RateRule object should have a “is a” relationship with the SBO term, and

the term should be the most precise (narrow) term that captures the role of that rule in the model.

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore

sboTerm values. A model must be interpretable without the benefit of SBO labels.

4.11.2 AlgebraicRule

The rule type AlgebraicRule is used to express equations that are neither assignments of model variables nor

rates of change. AlgebraicRule does not add any attributes to the basic Rule; its role is simply to distinguish

this case from the other cases. An example of the use of AlgebraicRule is given in Section 7.5.

In the context of a simulation, algebraic rules are in effect at all times, t ≥ 0. For purposes of evaluating

expressions that involve the delay csymbol (Section 3.4.6), algebraic rules are considered to apply also at

t ≤ 0. Section 3.4.8 provides additional information about the semantics of assignments, rules, and entity

values for simulation time t ≤ 0.

The ability to define arbitrary algebraic expressions in an SBML model introduces the possibility that a

model is mathematically overdetermined by the overall system of equations constructed from its rules and

reactions. An SBML model must not be overdetermined; this is discussed in Section 4.11.5 below.

59

4.11.3 AssignmentRule

The rule type AssignmentRule is used to express equations that set the values of variables. The left-hand

side (the variable attribute) of an assignment rule can refer to the identifier of a Species, Compartment,

or Parameter object in the model (but not a reaction). The entity identified must not have its constant

attribute set to “true”. The effects of an AssignmentRule are in general terms the same, but differ in the

precise details depending on the type of variable being set:

• In the case of a species, an AssignmentRule sets the referenced species’ quantity (concentration or

amount of substance) to the value determined by the formula in math. The units of the formula in

math should be the same as the units of the species (Section 4.8.5) for the species identified by the

variable attribute of the AssignmentRule.

Restrictions: There must not be both an AssignmentRule variable attribute and a SpeciesReference

species attribute having the same value, unless that species has its boundaryCondition attribute

set to “true”. In other words, an assignment rule cannot be defined for a species that is created or

destroyed in a reaction unless that species is defined as a boundary condition in the model.

• In the case of a compartment, an AssignmentRule sets the referenced compartment’s size to the value

determined by the formula in math. The overall units of the formula in math should be the same as the

units of the size of the compartment (Section 4.7.5).

• In the case of a parameter, an AssignmentRule sets the referenced parameter’s value to that determined

by the formula in math. The overall units of the formula in math should be the same as the units defined

for the parameter (Section 4.9.3).

In the context of a simulation, assignment rules are in effect at all times, t ≥ 0. For purposes of evaluating

expressions that involve the delay csymbol (Section 3.4.6), assignment rules are considered to apply also at

t ≤ 0. Section 3.4.8 provides additional information about the semantics of assignments, rules, and entity

values for simulation time t ≤ 0.

A model must not contain more than one AssignmentRule or RateRule object having the same value of

variable; in other words, in the set of all assignment rules and rate rules in an SBML model, each variable

appearing in the left-hand sides can only appear once. This simply follows from the fact that an indeterminate

system would result if a model contained more than one assignment rule for the same variable or both an

assignment rule and a rate rule for the same variable.

Similarly, a model must also not contain both an AssignmentRule and an InitialAssignment for the same

variable, because both kinds of constructs apply prior to and at the start of simulation time, i.e., t ≤ 0. If a

model contained both an initial assignment and an assignment rule for the same variable, an indeterminate

system would result. (See also Section 4.10.4.)

The value calculated by an AssignmentRule object overrides the value assigned to the given symbol by the

object defining that symbol. For example, if a Compartment’s size is set in its definition, and the model also

contains an AssignmentRule having that compartment’s id as its variable value, then the size assigned

in the Compartment definition is ignored and the value assigned based on the computation defined in the

AssignmentRule. This does not mean that a definition for a given symbol can be omitted if there is an

AssignmentRule object for it. For example, there must be a Parameter definition for a given parameter if

there is an AssignmentRule for that parameter.

4.11.4 RateRule

The rule type RateRule is used to express equations that determine the rates of change of variables. The

left-hand side (the variable attribute) can refer to the identifier of a species, compartment, or parameter

(but not a reaction). The entity identified must have its constant attribute set to “false”. The effects of a

RateRule are in general terms the same, but differ in the precise details depending on which variable is being

set:

• In the case of a species, a RateRule sets the rate of change of the species’ quantity (concentration or

amount of substance) to the value determined by the formula in math. The overall units of the formula

60

in math should be species quantity/time, where the time units are the predefined units of time described

in Section 4.4 and the species quantity units are the units of the species as defined in Section 4.8.5.

Restrictions: There must not be both a RateRule variable attribute and a SpeciesReference species

attribute having the same value, unless that species has its boundaryCondition attribute is set to

“true”. This means a rate rule cannot be defined for a species that is created or destroyed in a

reaction, unless that species is defined as a boundary condition in the model.

• In the case of a compartment, a RateRule sets the rate of change of the compartment’s size to the value

determined by the formula in math. The overall units of the formula should be size/time, where the

time units are the predefined units of time described in Section 4.4 and the size units are the units of

size on the compartment (Section 4.7.5).

• In the case of a parameter, a RateRule sets the rate of change of the parameter’s value to that determined

by the formula in math. The overall units of the formula should be x/time, where x are the units of

the parameter (Section 4.9.3).

In the context of a simulation, rate rules are in effect for simulation time t > 0. Other types of rules and

initial assignments are in effect at different times; Section 3.4.8 describes these conditions.

As mentioned in Section 4.11.3 for AssignmentRule, a model must not contain more than one RateRule or

AssignmentRule object having the same value of variable; in other words, in the set of all assignment rules

and rate rules in an SBML model, each variable appearing in the left-hand sides can only appear once. This

simply follows from the fact that an indeterminate system would result if a model contained more than one

assignment rule for the same variable or both an assignment rule and a rate rule for the same variable.

4.11.5 Additional restrictions on rules

An important design goal of SBML rule semantics is to ensure that a model’s simulation and analysis results

will not be dependent on when or how often rules are evaluated. To achieve this, SBML needs to place

two additional restrictions on rule use in addition to the conditions described above regarding the use of

AlgebraicRule, AssignmentRule and RateRule. The first concerns algebraic loops in the system of assignments

in a model, and the second concerns overdetermined systems.

The model must not contain algebraic loops

The combined set of InitialAssignment, AssignmentRule and KineticLaw objects constitute a set of assignment

statements that should be considered as a whole. (A KineticLaw object is counted as an assignment because

it assigns a value to the symbol contained in the id attribute of the Reaction object in which it is defined.)

This combined set of assignment statements must not contain algebraic loops—dependency chains between

these statements must terminate. To put this more formally, consider a directed graph in which nodes

are assignment statements and directed arcs exist for each occurrence of an SBML species, compartment

or parameter symbol in an assignment statement’s math element. Let the directed arcs point from the

statement assigning the symbol to the statements that contain the symbol in their math element expressions.

This graph must be acyclic.

SBML does not specify when or how often rules should be evaluated. Eliminating algebraic loops ensures

that assignment statements can be evaluated any number of times without the result of those evaluations

changing. As an example, consider the following equations:

x = x+ 1, y = z + 200, z = y + 100

If this set of equations were interpreted as a set of assignment statements, it would be invalid because the

rule for x refers to x (exhibiting one type of loop), and the rule for y refers to z while the rule for z refers

back to y (exhibiting another type of loop).

Conversely, the following set of equations would constitute a valid set of assignment statements:

x = 10, y = z + 200, z = x+ 100

61

The model must not be overdetermined

An SBML model must not be overdetermined; that is, a model must not define more equations than there

are unknowns in a model. An SBML model that does not contain AlgebraicRule objects cannot be overde-

termined.

Assessing whether a given continuous, deterministic, mathematical model is overdetermined does not require

dynamic analysis; it can be done by analyzing the system of equations created from the model. One approach

is to construct a bipartite graph in which one set of vertices represents the variables and the other the set of

vertices represents the equations. Place edges between vertices such that variables in the system are linked

to the equations that determine them. For algebraic equations, there will be edges between the equation and

each variable occurring in the equation. For ordinary differential equations (such as those defined by rate

rules or implied by the reaction rate definitions), there will be a single edge between the equation and the

variable determined by that differential equation. A mathematical model is overdetermined if the maximal

matchings (Chartrand, 1977) of the bipartite graph contain disconnected vertexes representing equations.

(If one maximal matching has this property, then all the maximal matchings will have this property; i.e., it

is only necessary to find one maximal matching.) Appendix D describes a method of applying this procedure

to specific SBML data objects.

The model must not change the value of a zero-dimensional Compartment

As described in Section 4.7.4, a zero-dimensional Compartment object (i.e. one with a spatialDimensions

attribute value of “0”) has no size. A Compartment identifier of this type may not appear as the variable

of a RateRule or an AssignmentRule, nor may it appear in the Math of an AlgebraicRule.

4.11.6 Example of rule use

This section contains an example set of rules. Consider the following set of equations:

k =
k3
k2
, s2 =

k · x
1 + k2

, A = 0.10 · x

This can be encoded by the following scalar rule set (where the definitions of x, s, k, k2, k3 and A are assumed

to be located elsewhere in the model and not shown in this abbreviated example):

<listOfRules>

<assignmentRule variable="k">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply> <divide/> <ci> k3 </ci> <ci> k2 </ci> </apply>

</math>

</assignmentRule>

<assignmentRule variable="s2">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<divide/>

<apply>

<times/> <ci> k </ci> <ci> x </ci>

</apply>

<apply>

<plus/> <cn> 1 </cn> <ci> k2 </ci>

</apply>

</apply>

</math>

</assignmentRule>

<assignmentRule variable="A">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/> <cn> 0.10 </cn> <ci> x </ci>

</apply>

</math>

</assignmentRule>

</listOfRules>

62

4.12 Constraints

The Constraint object is a mechanism for stating the assumptions under which a model is designed to operate.

The constraints are statements about permissible values of different quantities in a model. Figure 20 shows

the definition of the Constraint object class.

Constraint

math
SBase

0..1

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content evaluating to a boolean value. }

Message
xmlns: string { "http://www.w3.org/1999/xhtml" }
{ Almost any well-formed content permitted in XHTML,
subject to a few restrictions; see text. }

message

{ Order is significant. }

Figure 20: The definition of class Constraint. The contents of the Math class can be any MathML permitted in SBML,
but it must return a boolean value. As shown above, an instance of Constraint can also contain zero or one instances
of Message; this element is simply a wrapper (in the XML form, within <message> ... </message> tags) for XHTML
content. The same guidelines for XHTML content as explained in Section 3.2.3 for notes on SBase also apply to the
XHTML within messages in a Constraint. A sequence of one or more instances of Constraint objects can be located in
an instance of ListOfConstraints in Model, as shown in Figure 10.

The essential meaning of a constraint is this: if a dynamical analysis of a model (such as a simulation)

reaches a state in which a constraint is no longer satisfied, the results of the analysis are deemed invalid

beginning with that point in time. The exact behavior of a software tool, upon encountering a constraint

violation, is left up to the software; however, a software tool must somehow indicate to the user when a

model’s constraints are no longer satisfied. (Otherwise, a user may not realize that the analysis has reached

an invalid state and is potentially producing nonsense results.) If a software tool does not have support for

constraints, it should indicate this to the user when encountering a model containing constraints.

4.12.1 The math element

Constraint has one required subelement, math, containing a MathML formula defining the condition of the

constraint. This formula must return a boolean value of “true” when the model is in a valid state. The

formula can be an arbitrary expression referencing the variables and other entities in an SBML model. The

evaluation of math and behavior of constraints are described in more detail in Section 4.12.4 below.

4.12.2 The message element

A Constraint object has an optional element called message. This can contain a message in XHTML format

that may be displayed to the user when the condition of the constraint in math evaluates to a value of

“false”. Software tools are not required to display the message, but it is recommended that they do so as

a matter of best practice.

The XHTML content within a message element must follow the same restrictions as for the notes element

on SBase described in Section 3.2.3. For example, message must not contain an XML declaration or a

DOCTYPE declaration, and the permitted content can only take one of the following general forms: (1) a

complete XHTML document beginning with the element <html> and ending with </html>; (2) the “body”

portion of a document beginning with the element <body> and ending with </body>; or (3) XHTML content

that is permitted within a <body> ... </body> elements. Appendix F describes one approach to reading the

message content.

63

4.12.3 The sboTerm attribute

The Constraint object inherits from SBase the optional sboTerm attribute of type SBOTerm (see Sections 3.1.9

and 5). When a value is given to this attribute in a constraint definition, the value should be a valid

SBO identifier referring to a mathematical expression (i.e., terms derived from SBO:0000064, “mathematical

expression”). The Constraint should have an “is a” relationship with the SBO term, and the term should be

the most precise (narrow) term that captures the role of the Constraint in the model.

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore

sboTerm values. A model must be interpretable without the benefit of SBO labels.

4.12.4 Semantics of constraints

In the context of a simulation, a Constraint has effect at all times t ≥ 0. Each Constraint’s math element is

first evaluated after any InitialAssignment definitions in a model at t = 0 and can conceivably trigger at that

point. (In other words, a simulation could fail a constraint immediately.)

Constraint definitions cannot and should not be used to compute the dynamical behavior of a model as part

of, for example, simulation. Constraints may be used as input to non-dynamical analysis, for instance by

expressing flux constraints for flux balance analysis.

The results of a simulation of a model containing a constraint are invalid from any simulation time at and

after a point when the function given by the math returns a value of “false”. Invalid simulation results do

not make a prediction of the behavior of the biochemical reaction network represented by the model. The

precise behavior of simulation tools is left undefined with respect to constraints. If invalid results are detected

with respect to a given constraint, the message element (Section 4.12.2) may optionally be displayed to the

user. The simulation tool may also halt the simulation or clearly delimit in output data the simulation time

point at which the simulation results become invalid.

SBML does not impose restrictions on duplicate Constraint definitions or the order of evaluation of Constraint

objects in a model. It is possible for a model to define multiple constraints all with the same math element.

Since the failure of any constraint indicates that the model simulation has entered an invalid state, a system is

not required to attempt to detect whether other constraints in the model have failed once any one constraint

has failed.

4.12.5 Example

As an example, the following SBML fragment demonstrates the constraint that species S1 should only have

values between 1 and 100:

<model>

...

<listOfConstraints>

<constraint>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<and/>

<apply> <lt/> <cn> 1 </cn> <ci> S1 </ci> </apply>

<apply> <lt/> <ci> S1 </ci> <cn> 100 </cn> </apply>

</apply>

</math>

<message>

<p xmlns="http://www.w3.org/1999/xhtml"> Species S1 is out of range. </p>

</message>

</constraint>

</listOfConstraints>

...

</model>

64

4.13 Reactions

A reaction represents any transformation, transport or binding process, typically a chemical reaction, that

can change the quantity of one or more species. In SBML, a reaction is defined primarily in terms of the

participating reactants and products (and their corresponding stoichiometries), along with optional modifier

species, an optional rate at which the reaction takes place, and optional parameters. These various parts

of a reaction are recorded in the SBML Reaction object class and other supporting data classes, defined in

Figure 21.

Reaction

id: SId
name: string { use="optional" }
reversible: boolean { use="optional" default="true" }
fast: boolean { use="optional" default="false" }

KineticLaw

SBase

ListOfParameters

speciesReference

kineticLaw

math

listOfParameters

0..1

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content evaluating to a numerical value. }

1..*
Parameter

parameter

0..1

stoichiometryMath 0..1

ListOfSpeciesReferences

listOfReactants

listOfProducts

listOfModifiers

0..10..1

modifierSpeciesReference

1..*

0..1

1..*

ListOfModifierSpeciesReferences

{ Order is significant. }

StoichiometryMath

math

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content evaluating to a numerical value. }

ModifierSpeciesReferenceSpeciesReference

stoichiometry: double { use="optional" default="1" }

SimpleSpeciesReference

id: SId { use="optional" }
name: string { use="optional" }
species: SId

{ stoichiometry and
stoichiometryMath are
mutually exclusive. }

{ Order is significant. }

Figure 21: The definitions of classes Reaction, KineticLaw, SpeciesReference, ModifierSpeciesReference, as well
as the container classes ListOfReactions, ListOfReactions, ListOfReactions, and ListOfParameters. Note that Sim-
pleSpeciesReference is an abstract class used only to provide some common attributes to its derived classes. The class
Parameter is defined in Section 4.9.

65

4.13.1 Reaction

Each reaction in an SBML model is defined using an instance of a Reaction object. As shown in Figure 21

on the previous page, it contains several scalar attributes and several lists of objects.

The id and name attributes

As with most other main kinds of objects in SBML, the Reaction object class includes a mandatory attribute

called id, of type SId, and an optional attribute name, of type string. The id attribute is used to give the

reaction a unique identifier in the model. This identifier can be used in mathematical formulas elsewhere

in an SBML model to represent the rate of that reaction; this usage is explained in detail in Section 4.13.7

below. The name attribute can be used to give the reaction a more free-form, descriptive name. The name

and id attributes must be used as described in Section 3.3.

The lists of reactants, products and modifiers

The species participating as reactants, products, and/or modifiers in a reaction are declared using lists of

SpeciesReference and/or ModifierSpeciesReference instances stored in listOfReactants, listOfProducts

and listOfModifiers. SpeciesReference and ModifierSpeciesReference are described in more detail in Sec-

tions 4.13.3 and 4.13.4 below.

Certain restrictions are placed on the appearance of species in reaction definitions:

• The ability of a species to appear as a reactant or product of any reaction in a model is governed by

certain flags in that species’ definition; see Section 4.8.6 for more information.

• Any species appearing in the mathematical formula of the kineticLaw of a Reaction instance must be

declared in at least one of that Reaction’s lists of reactants, products, and/or modifiers. Put another

way, it is an error for a reaction’s kinetic law formula to refer to species that have not been declared

for that reaction.

• A reaction definition can contain an empty list of reactants or an empty list of products, but it must

have at least one reactant or product; in other words, a reaction without any reactant or product

species is not permitted. (This restriction does not apply to modifier species, which remain optional

in all cases.)

The kineticLaw element

A reaction can contain up to one KineticLaw object in the kineticLaw element of the Reaction. This “kinetic

law” defines the speed at which the process defined by the reaction takes place. A detailed description of

KineticLaw is left to Section 4.13.5 below.

Note that the inclusion of a KineticLaw object in an instance of a Reaction component is optional; however,

in general there is no useful default that can be substituted in place of a missing rate expression in a

reaction. Moreover, a reaction’s rate cannot be defined in any other way in SBML—InitialAssignment,

AssignmentRule, RateRule, AlgebraicRule, Event, and other constructs in SBML cannot be used to set the

reaction rate separately. Nevertheless, for some modeling applications, reactions without any defined rate

can be perfectly acceptable.

The reversible attribute

The optional boolean attribute reversible indicates whether the reaction is reversible. The default is

“true”.

To say that a reaction is reversible is to say it can proceed in either the forward or the reverse direction.

Although the reversibility of a reaction can sometimes be deduced by inspecting its rate expression, this is

not always the case, especially for complicated expressions. Having a separate attribute supports the ability

to perform some kinds of model analyses in the absence of performing a time-course simulation of the model.

Moreover, the need in SBML to allow rate expressions (i.e., KineticLaw) to be optional leads to the need for

66

a separate flag indicating reversibility. Information about reversibility in the absence of a KineticLaw in a

Reaction is useful in certain kinds of structural analyses such as elementary mode analysis.

Mathematically, the reversible attribute on Reaction has no impact on the construction of the equations

giving the overall rates of change of each species quantity in a model. A concrete explanation may help

illustrate this. Suppose a model consists of multiple reactions, of which two particular irreversible reactions

Rf and Rr are actually the forward and reverse processes of the same underlying reaction. The product

species of Rf necessarily will be the reactants of Rr, and the reactants of Rf will be the products of Rr.

Let ff (X) and fr(X) be the SBML kinetic rate formulas of Rf and Rr, respectively, with X representing

the species, parameters and compartments in the model. For the sake of this example, suppose we are using

a continuous differential equation framework to simulate the system of reactions. Then for each species, we

need to construct an expression representing the overall rate of change of that species’ amount in the model.

This overall expression will be a sum of the contributions of all the relevant rate formulas,

dS

dt
= . . .− n·ff (X) + n·fr(X) + . . .

where S is a reactant species of Rf and a product of Rr, n is the effective stoichiometry of S in Rf (which

by implication must be the same as its stoichiometry in Rr), and “. . . ” indicates other rate formulas in the

model involving the particular species S. Now, contrast this to the case of an identical second SBML model,

except that instead of having separate Reaction definitions for the forward and reverse reactions, this model

has a single Reaction Rc labeled as reversible and whose reactants and products are the same as those of

Rf in the first model. The rate of this reaction will be a formula fc = ff (X) − fr(X). In constructing an

expression representing the overall rate of change for the species S involved in that reaction, we will have

dS

dt
= . . .− n·fc(X) + . . .

= . . .− n·ff (X) + n·fr(X) + . . .

In other words, the result is the same final expression for the rate of change of a species. Although in

this simple example we used an expression for fc that had clearly separated terms, in the general case the

expression may have a more complicated form.

Note that labeling a reaction as irreversible is an assertion that the reaction always proceeds in the given

forward direction. (Why else would it be flagged as irreversible?) This implies the rate expression in the

KineticLaw always has a non-negative value during simulations. Software tools could provide a means of

optionally testing that this condition holds. The presence of reversibility information in two places (i.e., the

rate expression and the reversible flag) leaves open the possibility that a model could contain contradictory

information, but the creation of such a model would be an error on the part of the software generating it.

The fast attribute

The optional boolean attribute fast is another optional boolean attribute of Reaction. The attribute’s

default value is “false”.

Previous definitions of SBML indicated that software tools could ignore this attribute if they did not imple-

ment support for the corresponding concept; however, further research has revealed that this is incorrect and

fast cannot be ignored if it is set to “true”. SBML Level 2 Version 3 and Version 5 therefore stipulate that

if a model has any reactions with fast set to “true”, a software tool must be able to respect the attribute

or else indicate to the user that it does not have the capacity to do so. Analysis software cannot ignore the

value of the fast attribute because doing so may lead to different results as compared to a software system

that does make use of fast.

When a model contains a true value for fast on any of its reactions, it indicates that the creator of the model

is distinguishing different time scales of reactions in the system. The model’s reaction definitions are divided

into two sets by the values of the fast attributes. The set of reactions having fast=“true” (known as fast

reactions) should be assumed to be operating on a time scale significantly faster than the other reactions

(the slow reactions). Fast reactions are considered to be instantaneous relative to the slow reactions.

67

Software tools must use a pseudo steady-state approximation for the set of fast reactions when constructing

the system of equations for the model. More specifically, the set of reactions that have the fast attribute

set to “true” forms a subsystem that should be described by a pseudo steady-state approximation in rela-

tionship to all other reactions in the model. Under this description, relaxation from any initial condition or

perturbation from any intermediate state of this subsystem would be infinitely fast. Appendix E provides a

technical explanation of an approach to solving systems with fast reactions.

The correctness of the approximation requires a significant separation of time scales between the fast reactions

and other processes. This is not trivial to estimate a priori, and may even change over the course of a

simulation, but can reasonably be assessed a posteriori in most cases.

The sboTerm attribute on Reaction

The Reaction object class inherits from SBase the optional sboTerm attribute of type SBOTerm (see Sec-

tions 3.1.9 and 5). When a value is given to this attribute in a reaction definition, the value should be a valid

SBO identifier referring to an interaction (i.e., terms derived from SBO:0000231, “interaction”). The Reaction

object should have an “is a” relationship with the SBO term. The SBO term chosen should be the most pre-

cise (narrow) term that defines the interaction represented by the reaction as a whole. For example, a given

reaction in a model might represent non-covalent binding, which has a term in SBO (identifier SBO:0000177,

definition “Interaction between several biochemical entities that results in the formation of a non-covalent

complex ”). The corresponding Reaction instance in SBML would have sboTerm="SBO:0000177".

As mentioned elsewhere, SBO labels are optional information on a model. Applications are free to ignore

sboTerm values, and a model must be interpretable without the benefit of SBO labels. Section 5 gives more

information about this principle and the use of SBO.

4.13.2 The SimpleSpeciesReference abstract type

As mentioned above, every species that enters into a given reaction must appear in that reaction’s lists of

reactants, products and/or modifiers. In an SBML model, all species that may participate in any reaction

are listed in the listOfSpecies element of the top-level Model instance (see Section 4.2). Lists of products,

reactants and modifiers in Reaction objects do not introduce new species, but rather, they refer back to

those listed in the model’s top-level listOfSpecies. For reactants and products, the connection is made

using a SpeciesReference object; for modifiers, it is made using a ModifierSpeciesReference object. Simple-

SpeciesReference, defined in Figure 21 on page 65, is an abstract type that serves as the parent class of both

SpeciesReference and ModifierSpeciesReference. It is used simply to hold the attributes and elements that

are common to the latter two objects.

The id and name attributes

The optional identifier stored in the id attribute allows SpeciesReference and ModifierSpeciesReference

instances to be referenced from other object. No SBML object classes currently do this; however, such

classes are anticipated in future SBML Levels. The value of id must be a text string conforming to the syntax

permitted by the SId data type described in Section 3.1.7. The id value (whether it is in a SpeciesReference

or ModifierSpeciesReference object) exists in the global namespace of the model, as described in Section 3.3.

The id and name attributes must be used as described in Section 3.3.

The species attribute

The SimpleSpeciesReference object class has a required attribute, species, of type SId. As with the other

attributes, it is inherited by SpeciesReference and ModifierSpeciesReference. The value of species must

be the identifier of a species defined in the enclosing Model. The species is thereby declared as partici-

pating in the reaction being defined. The precise role of that species as a reactant, product, or modifier

in the reaction is determined by the subtype of SimpleSpeciesReference (i.e., either SpeciesReference or

ModifierSpeciesReference) in which the identifier appears.

68

The sboTerm attribute

The class SimpleSpeciesReference inherits from SBase the optional sboTerm attribute of type SBOTerm (see

Sections 3.1.9 and 5). This means that the object classes derived from SimpleSpeciesReference, namely

SpeciesReference and ModifierSpeciesReference, all have sboTerm attributes. When a value is given to this

attribute, it should be a valid SBO identifier referring to a participant role. The appropriate SBO term

depends on whether the object is a reactant, product or modifier. If a reactant, then it should be a term

in the SBO:0000010, “reactant” sub-branch; if a product, then it should be a term in the SBO:0000011,

“product” sub-branch; and if a modifier, then it should be a term in the SBO:0000019, “modifier” sub-

branch. The SpeciesReference and ModifierSpeciesReference instances should have an “is a” relationship to

the term identified by the SBO identifier.

The SBO terms chosen should be the most precise (narrow) one that defines the role of the species in the

reaction. An SBO reactant term can only be assigned to the sboTerm attribute of a SpeciesReference instance

when that instance is contained in the list of reactants in the containing Reaction instance. Similarly, an

SBO product term can only be assigned to the sboTerm attribute of a SpeciesReference instance when that

instance is contained in the list of products in the containing Reaction instance.

4.13.3 SpeciesReference

The Reaction object class provides a way to express which species act as reactants and which species act as

products in a reaction. In a given reaction, references to those species acting as reactants and/or products

are made using instances of SpeciesReference objects in Reaction’s lists of reactants and products. The

SpeciesReference structure inherits the mandatory attribute species and optional attributes id, name, and

sboTerm, from the parent type SimpleSpeciesReference; see Section 4.13.2 for their definitions. It also defines

attribute stoichiometry and element stoichiometryMath, described below.

The species attribute value must be the identifier of an existing species defined in the enclosing Model;

the species is thereby designated as a reactant or product in the reaction. Which one it is (i.e., reactant or

product) is indicated by whether the SpeciesReference appears in the Reaction’s reactant or product lists.

The stoichiometry attribute and stoichiometryMath element

Product and reactant stoichiometries can be specified using either stoichiometry or stoichiometryMath

in a SpeciesReference object. The stoichiometry attribute is of type double. The stoichiometryMath

element is implemented as an element containing a MathML expression. These two are mutually exclusive;

only one of stoichiometry or stoichiometryMath should be defined in a given SpeciesReference instance.

When neither the attribute nor the element is present, the value of stoichiometry in the SpeciesReference

instance defaults to “1”.

For maximum interoperability, SpeciesReference’s stoichiometry attribute should be used in preference to

stoichiometryMath when a species’ stoichiometry is a simple scalar number (integer or decimal). When the

stoichiometry is a rational number, or when it is a more complicated formula, stoichiometryMath must be

used. The MathML expression in stoichiometryMath may also refer to identifiers of entities in a model

(except reaction identifiers), as discussed in Section 3.4.3. However, the only species identifiers that can be

used in stoichiometryMath are those referenced in the Reaction list of reactants, products and modifiers.

The stoichiometry attribute and the stoichiometryMath element, when either is used, is each interpreted

as a factor applied to the reaction rate to give the rate of change of the species identified by the species

attribute. This is the normal interpretation of a stoichiometry, but in SBML, one additional consideration

has to be taken into account. The reaction rate, which is the result of the KineticLaw math element, is always

in the model’s substance per time units. However, the rate of change of the species will involve the species’

substance units (i.e., the units identified by the Species object’s substanceUnits attribute), and these units

may be different from the model’s default substance units. If the units are different, the stoichiometry

should incorporate a conversion factor for converting the model’s substance units to the species’ substance

units. The conversion factor is assumed to be included in the scalar value of the stoichiometry attribute

if stoichiometry is used. If instead stoichiometryMath is used, then the product of the model’s substance

69

units times the stoichiometryMath units should match the substance units of the species. Note that in

either case, if the species’ units and the model’s default substance units are the same, the stoichiometry ends

up being a dimensionless number and equivalent to the standard chemical stoichiometry found in textbooks.

Examples and more explanations of this are given in Section 4.13.6.

The following is a simple example of a species reference for species “X0”, with stoichiometry “2”, in a list of

reactants within a reaction having the identifier “J1”:

<model>

...

<listOfReactions>

<reaction id="J1">

<listOfReactants>

<speciesReference species="X0" stoichiometry="2">

</listOfReactants>

...

</reaction>

...

</listOfReactions>

</model>

The following is a more complex example of a species reference for species “X0”, with a stoichiometry formula

consisting of a rational number:

<model>

...

<listOfReactions>

<reaction id="J1">

<listOfReactants>

<speciesReference species="X0">

<stoichiometryMath>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<cn type="rational"> 3 <sep/> 2 </cn>

</math>

</stoichiometryMath>

</speciesReference>

</listOfReactants>

...

</reaction>

...

</listOfReactions>

</model>

A species can occur more than once in the lists of reactants and products of a given Reaction instance.

The effective stoichiometry for a species in a reaction is the sum of the stoichiometry values given in the

SpeciesReference objects in the list of products minus the sum of stoichiometry values given in the Species-

Reference objects in the list of reactants. A positive value indicates the species is effectively a product and

a negative value indicates the species is effectively a reactant. SBML places no restrictions on the effective

stoichiometry of a species in a reaction; for example, it can be zero. In the following SBML fragment, the

two reactions have the same effective stoichiometry for all their species:

<reaction id="x">

<listOfReactants>

<speciesReference species="a"/>

<speciesReference species="a"/>

<speciesReference species="b"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="c"/>

<speciesReference species="b"/>

</listOfProducts>

</reaction>

<reaction id="y">

<listOfReactants>

<speciesReference species="a" stoichiometry="2"/>

</listOfReactants>

70

<listOfProducts>

<speciesReference species="c"/>

</listOfProducts>

</reaction>

4.13.4 ModifierSpeciesReference

Sometimes a species appears in the kinetic rate formula of a reaction but is itself neither created nor destroyed

in that reaction (for example, because it acts as a catalyst or inhibitor). In SBML, all such species are simply

called modifiers without regard to the detailed role of those species in the model. The Reaction object class

provides a way to express which species act as modifiers in a given reaction. This is the purpose of the list

of modifiers available in Reaction. The list contains instances of ModifierSpeciesReference object.

As shown in Figure 21 on page 65, the ModifierSpeciesReference class inherits the mandatory attribute

species and optional attributes id and name from the parent class SimpleSpeciesReference; see Section 4.13.2

for their precise definitions.

The value of the species attribute must be the identifier of a species defined in the enclosing Model; this

species is designated as a modifier for the current reaction. A reaction may have any number of modifiers.

It is permissible for a modifier species to appear simultaneously in the list of reactants and products of the

same reaction where it is designated as a modifier, as well as to appear in the list of reactants, products and

modifiers of other reactions in the model.

4.13.5 KineticLaw

The KineticLaw object class is used to describe the rate at which the process defined by the Reaction takes

place. As shown in Figure 21 on page 65, KineticLaw has elements called math and listOfParameters, in

addition to the attributes and elements it inherits from SBase.

Previous definitions of SBML included two additional attributes called substanceUnits and timeUnits,

which allowed the substance/time units of the reaction rate expression to be defined on a per-reaction basis.

These attributes were removed in SBML Level 2 Version 2 for several reasons. First, the introduction

in SBML Level 2 Version 2 of mass and dimensionless units as possible units of substance, coupled with

the previous facility for defining the units of each reaction separately and the ability to use non-integer

stoichiometries, lead to the possibility of creating a valid model whose reactions nevertheless could not be

integrated into a system of equations without outside knowledge for converting the quantities used. (As

a simple example, consider if one reaction is defined to be in grams per second and another in moles per

second, and species are given in moles: converting from mass to moles would require knowing the molecular

mass of the species.) Second, the ability to change the units of a reaction provided the potential of creating

unintuitive and difficult-to-reconcile systems of equations, yet the feature added little functionality to SBML.

The absence of substanceUnits does not prevent the definition of any reactions; it only results in requiring

the generator of the model to be explicit about any necessary conversion factors. Third, few if any software

tools have ever correctly implemented support for substanceUnits, which made the use of this attribute in

a model an impediment to interoperability. Fourth, examination of real-life models revealed that a frequent

reason for using substanceUnits was to set the units of all reactions to the same set of substance units,

which is better achieved by setting the model-wide values of “substance”.

The math element

As shown in Figure 21 on page 65, KineticLaw has a element called math for holding a MathML formula

defining the rate of the reaction. The expression in math may refer to species identifiers, as discussed in

Section 3.4.3. The only Species identifiers that can be used in math are those declared in the lists of

reactants, products and modifiers in the Reaction object (see Sections 4.13.2, 4.13.3 and 4.13.4). Parameter

identifiers may be taken from the KineticLaw’s list of local parameters (see below) or the parameters defined

globally on the Model instance.

Section 4.13.6 provides important discussions about the meaning and interpretation of SBML “kinetic laws”.

71

The list of parameters

An instance of KineticLaw can contain a list of one or more Parameter objects (Section 4.9) which define

new parameters whose identifiers can be used in the math formula. As discussed in Section 3.3.1, reactions

introduce local namespaces for parameter identifiers, and within a KineticLaw object, a local parameter whose

identifier is identical to a global identifier defined in the model takes precedence over the value associated

with the global identifier. Note that this introduces the potential for a local parameter definition to shadow

a global identifier other than a parameter. In SBML’s simple symbol system, there is no separation of

symbols by class of object; consequently, inside the kinetic law mathematical formula, the value of a local

parameter having the same identifier as any other global model entity (Compartment, CompartmentType,

Event, FunctionDefinition, Model, ModifierSpeciesReference, Parameter, Reaction, Species, SpeciesReference,

or SpeciesType) will override the global value, or will provide a value for an identifier that otherwise had

no mathematical meaning. Modelers and software developers may wish to take precautions to avoid this

happening accidentally.

The type of object used to define a parameter inside KineticLaw is the same Parameter object class used to

define global parameters (Section 4.9). This simplifies the SBML language and reduces the number of unique

types of data objects. However, there is a difference between local and global parameters: in the case of

parameters defined locally to a KineticLaw, there is no means by which the parameter values can be changed.

Consequently, such parameters’ values are always constant, and the constant attribute in their definitions

must always have a value of “true” (either explicitly or left to its default value).

The sboTerm attribute

KineticLaw inherits from SBase the optional attribute called sboTerm of type SBOTerm (see Section 5). When

a value is given to this attribute, the value should be an SBO identifier referring to a term from the

SBO:0000001, “rate law” vocabulary defined in SBO. The relationship is of the form “the kinetic law is

a X”, where X is the SBO term. The SBO term chosen should be the most precise (narrow) term that

defines the type of reaction rate expression encoded by the KineticLaw instance.

Example

The following is an example of a Reaction object that defines a reaction with identifier J1, in which X0 → S1

at a rate given by k · [X0] · [S2], where S2 is a catalyst and k is a parameter, and the square brackets

symbolizes that the species quantities have units of concentration. The example demonstrates the use of

species references and KineticLaw objects. The units on the species here are the defaults of substance/volume

(see Section 4.8), and so the rate expression k · [X0] · [S2] needs to be multiplied by the compartment volume

(represented by its identifier, “c1”) to produce the final units of substance/time for the rate expression.

<model>

...

<listOfUnitDefinitions>

<unitDefinition id="per_concent_per_time">

<listOfUnits>

<unit kind="litre"/>

<unit kind="mole" exponent="-1"/>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

...

<listOfSpecies>

<species id="S1" compartment="c1" initialConcentration="2.0"/>

<species id="S2" compartment="c1" initialConcentration="0.5"/>

<species id="X0" compartment="c1" initialConcentration="1.0"/>

</listOfSpecies>

...

<listOfReactions>

<reaction id="J1">

<listOfReactants>

<speciesReference species="X0"/>

72

</listOfReactants>

<listOfProducts>

<speciesReference species="S1"/>

</listOfProducts>

<listOfModifiers>

<modifierSpeciesReference species="S2"/>

</listOfModifiers>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/> <ci> k </ci> <ci> S2 </ci> <ci> X0 </ci> <ci> c1 </ci>

</apply>

</math>

<listOfParameters>

<parameter id="k" value="0.1" units="per_concent_per_time"/>

</listOfParameters>

</kineticLaw>

</reaction>

</listOfReactions>

...

</model>

4.13.6 Traditional rate laws versus SBML “kinetic laws”

It is important to make clear that a “kinetic law” in SBML is not identical to a traditional rate law. The

reason is that SBML must support multicompartment models, and the units normally used in traditional

rate laws as well as some conventional single-compartment modeling packages are problematic when used

for defining reactions between multiple compartments.

When modeling species as continuous amounts (e.g., concentrations), the rate laws used are traditionally

expressed in terms of amount of substance concentration per time, embodying a tacit assumption that reac-

tants and products are all located in a single, constant volume. Attempting to describe reactions between

multiple volumes using concentration/time (which is to say, substance/volume/time) quickly leads to diffi-

culties. Here is an illustration of this. Suppose we have two species pools S1 and S2, with S1 located in

a compartment having volume V1, and S2 located in a compartment having volume V2. Let the volume

V2 = 3V1. Now consider a transport reaction S1 → S2 in which the species S1 is moved from the first com-

partment to the second. Assume the simplest type of chemical kinetics, in which the rate of the transport

reaction is controlled by the activity of S1 and this rate is equal to some constant k times the activity of S1.

For the sake of simplicity, assume S1 is in a diluted solution and thus that the activity of S1 can be taken

to be equal to its concentration [S1]. The rate expression will therefore be k · [S1], with the units of k being

1/time. Then:

d[S2]

dt
= −d[S1]

dt
= k · [S1]

So far, this looks normal—until we consider the number of molecules of S1 that disappear from the com-

partment of volume V1 and appear in the compartment of volume V2. The number of molecules of S1 (call

this nS1
) is given by [S1] · V1 and the number of molecules of S2 (call this nS2

) is given by [S2] · V2. Since

our volumes have the relationship V2/V1 = 3, the relationship above implies that nS1
= k · [S1] ·V1 molecules

disappear from the first compartment per unit of time and nS2
= 3 · k · [S1] · V1 molecules appear in the

second compartment. In other words, we have created matter out of nothing!

The problem lies in the use of concentrations as the measure of what is transfered by the reaction, be-

cause concentrations depend on volumes and the scenario involves multiple unequal volumes. The problem

is not limited to using concentrations or volumes; the same problem also exists when using density, i.e.,

mass/volume, and dependency on other spatial distributions (i.e., areas or lengths). What must be done

instead is to consider the number of “items” being acted upon by a reaction process irrespective of their

distribution in space (volume, area or length). An “item” in this context may be a molecule, particle, mass,

or other “thing”, as long as the substance measurement is independent of the size of the space in which the

items are located.

73

For the current example, the expressions in terms of nS1 and nS2 are straightforward:

dnS2

dt
= −dnS1

dt
= k · [S1] · V1

Given numbers of items, it is then easy to recover concentrations by dividing the item counts of each species

by the volume of the compartment in which the species is located: [S1] = nS1
/V1 and [S2] = nS2

/V2.

The need to support multicompartment models requires that the reaction rates in SBML to be expressed

in terms of substance/time, rather than the more typical substance/size/time. As a result, modelers and

software tools in general cannot insert textbook rate laws unmodified as the rate expression in the math

element of a KineticLaw. The unusual term “kinetic law” was chosen to alert users to this difference. We

explain the general principles of converting rate laws in the following paragraphs.

Basic cases

Let us expand the simple example above by adding a second reaction, to create the system

S1 → S2 → S3

with the left-hand reaction’s rate (call this r1) being given as k1 · [S1] and the rate of the right-hand reaction

(call it r2) as k2 · [S2]. Also assume each species is located in a different compartment:

 S1 located in compartment C1 with volume V1
 S2 located in compartment C2 with volume V2
 S3 located in compartment C3 with volume V3

As before, converting the rate of the first reaction (S1 → S2) to units of substance/time in this case is a

simple matter of multiplying by the volume of the compartment where the reactants are located, leading to

the following SBML rate formula:

R1 = r1 · V1 = k1 · [S1] · V1

The second rate expression becomes

R2 = r2 · V2 = k2 · [S2] · V2

The units of k1 and k2 are 1/time (often 1/sec, but not necessarily), as is typical for reactions that are first-

order in one reactant. The expressions R1 and R2 are what would be written in KineticLaw math definitions

for the two reactions in this system. The formulas give the speed of each reaction in terms of the substance

change over time. The reader of the SBML model needs to combine the individual contributions of each

reaction to construct equations for the overall rates of change of each species in the model using these

expressions. In terms of differential equations, these are:

dnS1

dt
=−R1 = −k1 · [S1] · V1

dnS2

dt
= +R1 −R2 = +k1 · [S1] · V1 − k2 · [S2] · V2

dnS3

dt
= +R2 = + k2 · [S2] · V2

To recover the concentration values, we add the following to the system of equations:

[S1] = nS1
/V1

[S2] = nS2
/V2

[S3] = nS3
/V3

Note that this formulation works properly even if the compartment sizes V1, V2 and V3 vary during simulation.

Extrapolating from this example, we can now provide a general approach to translating a system of reactions

involving species located in multiple compartments, for the restricted case where all reactants of any given

74

reaction are in the same compartment (but where the compartments involved may be different for each

reaction). For a species Si involved in m reactions whose rates are given (in “textbook” form, without

volume adjustments) as r1, r2, . . . , rm, where the reactants of rj are located in the compartment of size Vj ,

dnSi

dt
= sign1 · stoich1 · r1 · V1

+ sign2 · stoich2 · r2 · V2
+ . . .

+ signm · stoichm · rm · Vm

[Si] = nSi
/Vi

(7)

In Equation (7), each term signj is “−” if Si is a reactant in rj and “+” if it is a product, and each term

stoichj is the stoichiometry of Si in reaction rj . Letting Rj = rj ·Vj represent the form of the rate expressions

as they would be written in the KineticLaw math elements, then we can equivalently write

dnSi

dt
= sign1 · stoich1 ·R1

+ sign2 · stoich2 ·R2

+ . . .

+ signm · stoichm ·Rm

[Si] = nSi
/Vi

(8)

This approach preserves the use of concentration terms within the reaction rate expressions so that the core

of those rate expressions can be ordinary rate laws. This is important when modeling species as continuous

quantities, because most textbook rate expressions are measured in terms of concentrations, and most

rate constants have units involving concentration rather than item counts. For example, the second-order

rate constant in a mass-action rate law has units of 1/(M · s), which is to say, volume/(substance·time);

this constant is then multiplied by two concentration terms. Reaction definitions in SBML models can be

constructed by taking such expressions and multiplying them by the volume of the compartment in which

the reactants are located. By contrast, if we were to simply replace concentrations of species by item counts

in such rate laws, it would in most cases be incorrect. At the very least, the constants in the equations would

need to be converted in some way to make such expressions valid.

The preceding discussion of problems involving rate laws concerns modeling approaches that use continuous

quantities. There is an alternative approach to modeling that instead treats species as discrete popula-

tions (Wilkinson, 2006). In those cases, the rate expressions already use substance or item counts rather

than concentrations and there is no need to convert them.

A full SBML example of translating a complete multicompartmental model into ODEs is given in Section 7.7.

An example of translating a discrete model is given in Section 7.3.

Advanced cases

The explanation above applies to reactions where all of the reactants are in the same compartment. What

about cases where two or more reactant species are in separate compartments?

This is a more difficult situation, and the guidelines described above for Equation (7) cannot always be

applied because there will be more than one compartment size term by which the core rate expression needs

to be multiplied. Unfortunately, there is often no straightforward way to mechanically convert such models

without requiring a more significant change to the reaction rate expression. An example will help illustrate

the difficulty. Suppose we have a simple reaction system consisting of only

S1 + S2 → S3

where S1, S2 and S3 are each located in separate compartments with volumes V1, V2 and V3, and the rate

expression is given as k · [S1] · [S2]. (In reality, one would not use such a rate law in this case, but for the

75

sake of this example, let us ignore the fact that a mass-action rate law would actually involve an assumption

that all reactants are in a well-mixed solution.) A straightforward examination of the possibilities eventually

leads to the conclusion that in order to take account of the multiple volumes, the rate expressions in terms

of substance/time have to be written as

dnSi

dt
= −k′(V1, V2) ·

(
[S1] · V1

)
·
(
[S2] · V2

)

The crux of the problem is that the new factor k′(V1, V2) is not the original k; to make the overall units of

the expression work out, k′(V1, V2) must be a function of the volumes, and its value must change if V1 or V2

changes. It is no longer a standard rate constant. In an SBML model, it is easy to define an AssignmentRule

to compute the value of k′ based on k, V1, V2, and possibly other variables in the system as needed, but only

the modeler can determine the proper formula for their particular modeling situation. (For example, the

modeler may know that in their hypothesized physical system, the reaction actually takes place completely

in one or the other compartment and therefore the factor should be designed accordingly, or perhaps the

reaction takes place on a membrane between compartments and a scaling factor based on the area should

be used.)

Thus, although these models can be represented in SBML, constructing the correct rate expression in terms

of substance/time units depends on problem-specific knowledge, and we cannot provide a general recipe.

Mixed species units

The discussion so far has assumed that all of the species appearing in a given reaction’s rate expression

had the same units, whether they be concentration or amounts or other. However, Species objects can each

declare units separately. What happens then?

It is important to realize that implicit conversions in this situation are not defined in SBML. A species

identifier appearing in a mathematical expression has the units attributed to that species (see Section 4.8.5

for a definition of the the units of the species). If a reaction contains species each having different units, the

creator of the SBML model must explicitly incorporate the necessary conversions to make the units of the

rate expression consistent. The most appropriate way is to include the conversion factor as part of the value

of stoichiometry or stoichiometryMath in the SpeciesReference for that species.

An example may help illustrate this. Suppose we have a system of two biochemical reactions with mass-action

kinetics, written in the traditional form

A+ 2B
k1−→ C

C
k2−→ 3A

(9)

with the units of k1 being liter 2s 2mol−2 and k2’s units being s−1. Assume the reactions take place in a

single compartment of volume V , but now let us throw a wrench into the problem: suppose that the species

in the model are defined with mixed units as follows:

 A is in millimoles per litre
 B is in grams per litre
 C is in items per litre

When biochemical reaction equations of the form (9) above are written, the units of species’ quantities

usually are assumed to be the same, and therefore the stoichiometries in the reaction equations (9) represent

simple ratios between the quantities of the species in those units. (“One mole of this and two moles of that

react to produce one mole of that other.”) If instead the quantities of the species are given in mixed units,

as in the present example, the quantities not only need to be in proper stoichiometric relationships, the

units also have to be made consistent. In SBML, this is done by appropriately setting the stoichiometry

attribute value in the species references of the lists of reactants, products and modifiers in a Reaction. This

then permits a properly balanced system of equations to be constructed for each species’ rate of change of

quantity.

76

In the present example, the SBML “kinetic law” formulas for the reaction rates will be written as conventional

mass-action reaction rates adjusted for volume as described previously,

R1 = k1
′ · [A] · [B]2 · V

R2 = k2
′ · [C] · V

where k2
′ = k2 for this particular example but k1

′ will depend on other units as described in the paragraphs

below. When these formulas are combined into overall expressions for the rates of change of A, B, and C,

the result is

dA/dt = −a1 ·R1 + a2 ·R2

dB/dt = −b1 ·R1

dC/dt = +c1 ·R1 − c2 ·R2

where

 a1 is the SBML stoichiometry of A in reaction 1
 a2 is the SBML stoichiometry of A in reaction 2
 b1 is the SBML stoichiometry of B in reaction 1
 c1 is the SBML stoichiometry of C in reaction 1
 c2 is the SBML stoichiometry of C in reaction 2

We use the term SBML stoichiometries to highlight the fact that in this example involving mixed-units

species, the values may not be identical to the biochemical stoichiometries in the reaction equations (9).

And just what are the SBML stoichiometries? In the kind of mixed-units situation faced in this example,

they must encompass both the biochemical stoichiometries and any necessary unit conversions. Thus, letting

mB stand for the molecular mass of B:

 a1 = 1000 (in each reaction event, 1 mole of A is consumed, with A expressed in millimoles)
 a2 = 3000 (in each reaction event, 3 moles of A are produced, with A expressed in millimoles)
 b1 = 2 ·mB (in each reaction event, 2 moles of B are consumed, with B expressed in grams)
 c1 = 6.02 · 1023 (in each reaction event, 1 mole of C is produced, expressed as item counts)
 c2 = 6.02 · 1023 (in each reaction event, 1 mole of C is consumed, expressed as item counts)

and k1
′ = k1 · 10−3 · 1/mB

2.

What happens if the definition of the SBML predefined unit “substance” is changed in the model to be

millimoles? Then the stoichiometries must be changed to the following:

 a1 = 1 (in each reaction event, 1 millimole of A is consumed, expressed in millimoles)
 a2 = 3 (in each reaction event, 3 millimoles of A are produced, expressed in millimoles)
 b1 = 2 · 10−3 ·mB (in each reaction event, 2 millimoles of B are consumed, expressed in grams)
 c1 = 6.02 · 1020 (in each reaction event, 1 millimole of C is produced, expressed as item counts)
 c2 = 6.02 · 1020 (in each reaction event, 1 millimole of C is consumed, expressed as item counts)

and k1
′ = k1 · (103/mB)2.

What happens if instead the definition of the SBML predefined unit “substance” is changed in the model

to be “item”? Then the stoichiometries must be changed to the following:

 a1 = 1/(6.02 · 1020) (in each reaction event, 1 item of A is consumed, expressed in millimoles)
 a2 = 3/(6.02 · 1020) (in each reaction event, 3 items of A are produced, expressed in millimoles)
 b1 = 2 · 1/(6.02 · 1023) ·mB (in each reaction event, 2 items of B are consumed, expressed in grams)
 c1 = 1 (in each reaction event, 1 item of C is produced, expressed as item counts)
 c2 = 1 (in each reaction event, 1 item of C is consumed, expressed as item counts)

and k1
′ = k1 · 6.02 · 1020 ·

(
6.02 · 1023

mB

)2
.

77

And finally, what happens if the definition of the SBML predefined unit “substance” is changed in the model

to be “gram”? Then the stoichiometries must be changed again, to the following:

 a1 = 1000/mA (in each reaction event, 1 gram of A is consumed, expressed in millimoles)
 a2 = 3000/mA (in each reaction event, 3 grams of A are produced, expressed in millimoles)
 b1 = 2 (in each reaction event, 2 grams of B are consumed, expressed in grams)
 c1 = 6.02 · 1023 ·mC (in each reaction event, 1 gram of C is produced, expressed as item counts)
 c2 = 6.02 · 1023 ·mC (in each reaction event, 1 gram of C is consumed, expressed as item counts)

and k1
′ = k1·10−3·mA, where mA, mB , and mC are the molecular masses of species A, B, and C, respectively.

In all of these cases, one straightforward approach to computing the value of k1
′ is to use an InitialAssignment

construct for setting the value of k1
′ to the result of a formula such as one of those given in the examples

above. And finally, note that if the species units were the same throughout (and in most models they are),

the unit conversion aspects of the SBML stoichiometries would become unity, leaving only the expected

biochemical stoichiometry values. Isn’t that nice?

4.13.7 Use of reaction identifiers in mathematical expressions

The value of the id attribute of a Reaction can be used as the content of a ci element in MathML formulas

elsewhere in the model. Such a ci element or symbol represents the rate of the given reaction as given by

the reaction’s KineticLaw object. The symbol has the units of substance/time.

A KineticLaw object in effect forms an assignment statement assigning the evaluated value of the math

element to the symbol value contained in the Reaction id attribute. No other object can assign a value

to such a reaction symbol; i.e., the variable attributes of InitialAssignment, RateRule, AssignmentRule and

EventAssignment objects cannot contain the value of a Reaction id attribute.

The combined set of InitialAssignment, AssignmentRule and KineticLaw objects form a set of assignment

statements that should be considered as a whole. The combined set of assignment rules should not contain

algebraic loops: a chain of dependency between these statements should terminate. (More formally, consider

the directed graph of assignment statements where nodes are statements and directed arcs exist for each

occurrence of a symbol in a assignment statement math element. The directed arcs start from the statement

defining the symbol to the statements that contain the symbol in their math elements. Such a graph must

be acyclic.) Examples of valid and invalid set of assignment statements are given in Section 4.11.5.

4.14 Events

Model has an optional list of Event objects that describe the time and form of explicit instantaneous discon-

tinuous state changes in the model. For example, an event may describe that one species quantity is halved

when another species quantity exceeds a given threshold value.

An Event object defines when the event can occur, the variables that are affected by the event, and how the

variables are affected. The effect of the event can optionally be delayed after the occurrence of the condition

which invokes it. The operation of an event is divided into two phases (even when the event is not delayed):

one when the event is fired and the other when the event is executed. The Event type is defined in Figure 22

on the following page. The object classes Event, Trigger, Delay and EventAssignment are derived from SBase

(see Section 3.2). An example of a model which uses events is given below.

4.14.1 Event

An Event definition has two required parts: a trigger condition and at least one EventAssignment. In addition,

an event can include an optional delay. These features of Event are described below.

Previous definitions of Event in SBML Level 2 included an additional attribute called timeUnits, which

allowed the time units of the Delay to be set explicitly. This attribute was removed in SBML Level 2

Version 3 for several reasons. First, the ability to change the time units of the delay time of an Event to be

different from the units of time for the whole model meant that computing an Event’s time of triggering and

78

Trigger

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content evaluating to a nonnegative number. }

EventAssignment

variable: SId

math

eventAssignment
1..*

math

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content evaluating to a boolean value. }

math

SBase

trigger

listOfEventAssignments

delay 0..1

{ Order is significant. }

Event

id: SId { use="optional" }
name: string { use="optional" }
useValuesFromTriggerTime: boolean { use="optional" default="true" }

ListOfEventAssignments

Math
xmlns: string { "http://www.w3.org/1998/Math/MathML" }
{ MathML content. }

Delay

Figure 22: The definitions of Event, Trigger, Delay and EventAssignment, and the container class ListOfEventAs-
signment.

its delay might have to be done using two different sets of units—a potential source of overlooked errors.

Second, the ability to redefine the units of time for the delay of an Event became inconsistent with the lack

of such an attribute on other SBML Level 2 Version 5 components involving an element of time, such as

RateRule and KineticLaw. On balance, the timeUnits feature was judged to add needless complexity and

inconsistency for little gain in functionality.

The id and name attributes

As with most components in SBML, an Event has id and name attributes, but in the case of Event, both are

optional. These attributes operate in the manner described in Section 3.3.

The optional sboTerm attribute on Event

As with all SBML components derived from SBase, an Event has an optional attribute sboTerm of type

SBOTerm (see Sections 3.1.9 and 5). When a value is given to this attribute, it should be a valid term derived

79

from SBO:0000231, “interaction” in SBO. The Event should have an “is a” relationship with the SBO term,

and the term should be the most precise (narrow) term that captures the meaning of the event in the model.

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore

sboTerm values. A model must be interpretable without the benefit of SBO labels.

The optional useValuesFromTriggerTime attribute

The optional Delay on Event means there are two times to consider when computing the results of an event:

the time at which the event fires, and the time at which assignments are executed. It is also possible to

distinguish between the time at which the EventAssignment’s expression is calculated, and the time at which

the assignment is made: the expression could be evaluated at the same time the assignments are performed,

i.e., when the event is executed, but it could also be defined to be evaluated at the time the event fired.

In SBML Level 2 versions prior to Version 4, the semantics of Event time delays were defined such that the

expressions in the event’s assignments were always evaluated at the time the event was fired. This definition

made it difficult to define an event whose assignment formulas were meant to be evaluated at the time the

event was executed (i.e., after the time period defined by the value of the Delay element). As of SBML Level 2

Version 4, the useValuesFromTriggerTime attribute on Event allows a model to indicate the time at which

the event’s assignments are intended to be evaluated. The default value is “true”, which corresponds to the

interpretation of event assignments prior to SBML Level 2 Version 4: the values of the assignment formulas

are computed at the moment the event fired, not after the delay. If useValuesFromTriggerTime=“false”,

it means that the formulas in the event’s assignments are to be computed after the delay, at the time the

event is executed.

4.14.2 Trigger

As shown in Figure 22, the trigger element of an Event must contain exactly one object of class Trigger.

This object contains one math element containing a MathML expression. The expression must evaluate to

a value of type boolean. The exact moment at which the expression evaluates to “true” is the time point

when the Event is fired.

An event only fires when its Trigger expression makes the transition in value from “false” to “true”. The

event will also fire at any future time points when the trigger make this transition; in other words, an

event can fire multiple times during a simulation if its trigger condition makes the transition from “false”

to “true” more than once.

An important question is whether an event can fire prior to, or at, initial simulation time, i.e., t ≤ 0. The

answer is no: an event can only be triggered immediately after initial simulation time i.e., t > 0.

The optional sboTerm attribute on Trigger

As with all SBML components derived from SBase, Trigger inherits the optional attribute sboTerm of type

SBOTerm (see Sections 3.1.9 and 5). When a value is given to this attribute, it should be a valid term rep-

resenting a mathematical expression (i.e., a term chosen from the SBO:0000064, “mathematical expression”

hierarchy). The formula in the Trigger’s math expression should have an “is a” relationship with the SBO

term, and the term should capture most precise (narrow) meaning of the mathematical formula of the trigger.

4.14.3 Delay

As shown in Figure 22, an Event object can contain an optional delay element of class Delay. The Delay is

derived from SBase and contains a mathematical formula stored in math. The formula is used to compute the

length of time between when the event has fired and when the event’s assignments (see below) are actually

executed. If no delay is present on a given Event, a time delay of zero is assumed.

The expression in the Delay object’s math element must be evaluated at the time the event is fired. The

expression must always evaluate to a nonnegative number (otherwise, a nonsensical situation could arise

where an event is defined to fire before it is triggered!).

80

Units of delay expressions

The units of the numerical value computed by a Delay instance’s math expression should match the model’s

units of time (meaning the definition of the “time” units in the model; see Section 4.4.3). Note that, as

in other cases of MathML expressions in SBML, units are not predefined or assumed. As discussed in

Section 3.4.11, literal numbers (i.e., numbers enclosed in MathML cn elements) or expressions containing

only literal numbers and/or Parameter objects without declared units, are considered to have unspecified

units. In such cases, the correspondence between the needed units and the (unknown) units of the Delay

math expression cannot be proven, and while such expressions are not considered inconsistent, all that can

be assumed by model interpreters (whether software or human) is that the units may be consistent.

The following Event example fragment helps illustrate this:

<model>

...

<listOfEvents>

<event>

...

<delay>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<cn> 10 </cn>

</math>

</delay>

...

</event>

</listOfEvents>

...

</model>

Note the “<cn> 10 </cn>” within the mathematical formula has no specified units. The model is not invalid

because of this, but a recipient of the model may justifiably be concerned about what “10” really means.

(Ten seconds? What if the global units of time on the model were changed from seconds to milliseconds?

Would the modeler remember to change “10” to “10 000”?) As discussed elsewhere, leaving units unspecified

may prevent software tools from performing complete validation and other useful operations such as global

unit conversions. A better approach is to avoid literal numbers and instead use an approach such as defining

a parameter with declared units, as in the following modified version of the example fragment:

<model>

...

<listOfParameters>

<parameter id="transcriptionDelay" value="10" units="time"/>

</listOfParameters>

...

<listOfEvents>

<event>

...

<delay>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<ci> transcriptionDelay </ci>

</math>

</delay>

...

</event>

</listOfEvents>

...

</model>

The optional sboTerm attribute on Delay

As with all SBML components derived from SBase, Delay inherits an optional sboTerm attribute of type

SBOTerm (see Sections 3.1.9 and 5). When a value is given to this attribute, it should be a valid term derived

from the SBO:0000064, “mathematical expression” hierarchy in SBO. The Delay formula should have an “is

a” relationship with the chosen SBO term, and the term should be the most precise (narrow) term that

captures the meaning of the delay expression.

81

4.14.4 EventAssignment

Event contains a mandatory element called listOfEventAssignments, of class ListOfEventAssignment. In

every instance of an event definition in a model, the object’s listOfEventAssignments element must have

a non-empty list of one or more eventAssignment elements of class EventAssignment. The object class

EventAssignment has one required attribute, variable, and a required element, math. Being derived from

SBase, it also has all the usual attributes and elements of its parent class.

An “event assignment” has effect when the event is executed ; that is, at the end of any given delay period

(if given) following the moment that the Event is triggered. See Section 4.14.6 below for more information

about events and event assignments in SBML.

The variable attribute

The variable attribute is of type SId and can contain the identifier of a Compartment, Species or Parameter

instance defined in the model. When the event is executed, the value of the model component identified by

variable is changed by the EventAssignment to the value computed by the math element; that is, a species’

quantity, compartment’s size or parameter’s value are reset to the value computed by math.

Certain restrictions are placed on what can appear in variable:

• The object identified by the value of the variable attribute must not have its constant attribute set

to or default to “true”. (Constants cannot be affected by events.)

• The variable attribute must not contain the identifier of a reaction; only species, compartment and

parameter values may be set by an Event.

• The value of every variable attribute must be unique among the set of EventAssignment objects

within a given Event instance. In other words, a single event cannot have multiple EventAssignments

assigning the same variable. (All of them would be performed at the same time, when that particular

Event triggers, resulting in indeterminacy.) Separate Event instances can refer to the same variable.

• A variable cannot be assigned a value in an EventAssignment object instance and also be assigned a

value by an AssignmentRule, i.e., the value of the variable attribute in an EventAssignment instance

cannot be the same as the value of a variable attribute in a AssignmentRule instance. (Assignment

rules hold at all times, therefore it would be inconsistent to also define an event that reassigns the

value of the same variable.)

Note that the time of assignment of the object identified by the value of variable is always the time at

which the Event is executed, not when it is fired. The timing is controlled by the optional Delay in an

Event. The time of assignment is not affected by the useValuesFromTriggerTime attribute on Event—that

attribute affects the time at which the EventAssignment’s math expression is evaluated. In other words, SBML

allows decoupling the time at which the variable is assigned from the time at which its value expression is

calculated.

The optional sboTerm attribute on EventAssignment

EventAssignment has an optional sboTerm attribute of type SBOTerm (see Sections 3.1.9 and 5). When a value

is given to this attribute, it should be a valid SBO term identifier referring to a mathematical expression

(i.e., terms derived from SBO:0000064, “mathematical expression”). The EventAssignment should have an

“is a” relationship with the SBO term, and the term should be the most precise (narrow) term that captures

the form of the assignment formula in the model.

EventAssignment’s math

The math element contains a MathML expression that defines the new value of the object identified by the

variable.

The time at which this expression is evaluated is determined by Event’s useValuesFromTriggerTime attribute.

If the attribute value is “true” (the default), the expression must be evaluated when the event is fired ; more

82

precisely, the values of identifiers occurring in MathML ci attributes in the EventAssignment’s math expres-

sion are the values they have at the point when the event fired. If, instead, useValuesFromTriggerTime’s

value is “false”, it means the values at execution time should be used; that is, the values of identifiers

occurring in MathML ci attributes in the EventAssignment’s math expression are the values they have at

the point when the event executed.

Units of the math formula in EventAssignment

In all cases, as would be expected, the units of the formula contained in the math element of EventAssignment

should be consistent with the units of the object identified by the variable attribute. More precisely:

• In the case of a species, an EventAssignment sets the referenced species’ quantity (concentration or

amount of substance) to the value determined by the formula in math. The units of the math formula

should be identical to the units of the species as defined in Section 4.8.5.

• In the case of a compartment, an EventAssignment sets the referenced compartment’s size to the

size determined by the formula in math. The overall units of the formula should be identical to

the units specified for the size of the compartment identified by the value of the EventAssignment’s

variable attribute. (See Section 4.7.5 for an explanation of how the units of the compartment’s size

are determined.)

• In the case of a parameter, an EventAssignment sets the referenced parameter’s value to that determined

by the formula in math. The overall units of the formula should be identical to the units defined for

the parameter identified by the value of the EventAssignment’s variable attribute. (See Section 4.9.3

for an explanation of how the units of the parameter are determined.)

Note that the formula placed in the math element has no assumed units. The consistency of the units of the

formula, and the units of the entity which the assignment affects, should be explicitly established just as in

the case of the value of delay.

4.14.5 Example Event definitions

A example of an Event object follows. This structure makes the assignment k2 = 0 at the point when

P1 ≤ P2:

<event>

...

<listOfUnitDefinitions>

<unitDefinition id="per_second">

<listOfUnits>

<unit kind="second" exponent="-1" multiplier="1" offset="0"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

...

<listOfParameters>

...

<parameter id="k2" value="0.05" units="per_second"/>

<parameter id="k2reset" value="0.0" units="per_second"/>

...

</listOfParameters>

...

<listOfEvents>

<event>

<trigger>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<leq/>

<ci> P_1 </ci>

<ci> P_2 </ci>

</apply>

</math>

83

</trigger>

<listOfEventAssignments>

<eventAssignment variable="k2">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<ci> k2reset </ci>

</math>

</eventAssignment>

<listOfEventAssignments>

</event>

</listOfEvents>

...

</model>

A complete example of a model using events is given in Section 7.10.

4.14.6 Detailed semantics of events

The description of events above describes the action of events in isolation from each other. This section

describes how events interact.

Events whose trigger expression is true at the start of a simulation do not fire at the start of the simulation

(t = 0). Events fire only when the trigger becomes true, i.e., the trigger expression transitions from false to

true, which cannot happen at t = 0 but can happen at t > 0.

Any transition of a trigger expression from “false” to “true” will cause an event to fire. Consider an

event E with delay d where the trigger expression makes a transition from false to true at times t1 and t2.

The EventAssignment object will have effect at t1 + d and t2 + d irrespective of the relative times of t1 and

t2. For example events can “overlap” so that t1 < t2 < t1 + d still causes an event assignments to occur at

t1 + d and t2 + d.

It is possible for events to fire other events, i.e., an event assignment can cause an event to fire, therefore it

is possible for a model to be entirely encoded in Event objects.

It is entirely possible for two events to be executed simultaneously in simulated time. It is assumed that,

although the precise time at which these events are executed is not resolved beyond the given point in

simulated time, the order in which the events occur is resolved. This order can be significant in determining

the overall outcome of a given simulation. SBML Level 2 does not define the algorithm for determining this

order (the tie-breaking algorithm). As a result, the outcomes of simulations involving events may vary when

simultaneous events occur during simulation. All triggered simultaneous events must fire, and the order in

which they are executed is not defined. They may be executed randomly, alphabetically, arbitrarily, or in

any other order determined by the simulation software.

Despite the absence of a specific tie-breaking algorithm, SBML event simulation is constrained as follows.

When an event X fires another event Y and event Y has zero delay then event Y is added to the existing

set of simultaneous events that are pending execution. Events such as Y do not have a special priority or

ordering within the tie-breaking algorithm. Events X and Y form a cascade of events at the same point in

simulation time. All events in a model are open to being in a cascade. The position of an event in the event

list does not affect whether it can be in the cascade: Y can be triggered whether it is before or after X in the

list of events. A cascade of events can be infinite (never terminate). When this occurs a simulator should

indicate this has occurred; i.e., it is incorrect for the simulator to arbitrarily break the cascade and continue

the simulation without at least indicating the infinite cascade occurred. A variable can change more than

once when processing simultaneous events at simulation time t. The model behavior (output) for such a

variable is the value of the variable at the end of processing all the simultaneous events at time t.

84

5 The Systems Biology Ontology and the sboTerm attribute

The values of id attributes on SBML components allow the components to be cross-referenced within a model.

The values of name attributes on SBML components provide the opportunity to assign them meaningful labels

suitable for display to humans (Section 3.3). The specific identifiers and labels used in a model necessarily

must be unrestricted by SBML, so that software and users are free to pick whatever they need. However,

this freedom makes it more difficult for software tools to determine, without additional human intervention,

the semantics of models more precisely than the semantics provided by the SBML object classes defined in

other sections of this document. For example, there is nothing inherent in a parameter with identifier “k”

that would indicate to a software tool it is a first-order rate constant (if that’s what “k” happened to be

in some given model). However, one may need to convert a model between different representations (e.g.,

Henri-Michaelis-Menten vs. elementary steps), or to use it with different modelling approaches (discrete

or continuous). One may also need to relate the model components with other description formats, using

a deeper semantics, such as SBGN (http://www.sbgn.org/). Although an advanced software tool might

be able to deduce the semantics of some model components through detailed analysis of the kinetic rate

expressions and other parts of the model, this quickly becomes infeasible for any but the simplest of models.

An approach to solving this problem is to associate model components with terms from carefully curated

controlled vocabularies (CVs). This is the purpose of the optional sboTerm attribute provided on the SBML

class SBase. The sboTerm attribute always refers to terms belonging to the Systems Biology Ontology (SBO,

(Courtot et al., 2011)). In this section, we discuss the sboTerm attribute, SBO, the motivations and theory

behind their introduction, and guidelines for their use.

SBO is not part of SBML; it is being developed separately, to allow the modeling community to evolve the

ontology independently of SBML. However, the terms in the ontology are being designed keeping SBML

components in mind, and are classified into subsets that can be directly related with SBML components

such as reaction rate expressions, parameters, and a few others, see below. The use of sboTerm attributes

is optional, and the presence of sboTerm on an element does not change the way the model is interpreted.

Annotating SBML elements with SBO terms adds additional semantic information that may be used to

convert the model into another model, or another format. Although SBO support provides an important

source of information to understand the meaning of a model, software does not need to support sboTerm to

be considered SBML-compliant.

5.1 Principles

Labeling model components with terms from shared controlled vocabularies allows a software tool to identify

each component using identifiers that are not tool-specific. An example of where this is useful is the desire

by many software developers to provide users with meaningful names for reaction rate equations. Software

tools with editing interfaces frequently provide these names in menus or lists of choices for users. However,

without a standardized set of names or identifiers shared between developers, a given software package cannot

reliably interpret the names or identifiers of reactions used in models written by other tools.

The first solution that might come to mind is to stipulate that certain common reactions always have the

same name (e.g., “Michaelis-Menten”), but this is simply impossible to do: not only do humans often disagree

on the names themselves, but it would not allow for correction of errors or updates to the list of predefined

names except by issuing new releases of the SBML specification—to say nothing of many other limitations

with this approach. Moreover, the parameters and variables that appear in rate expressions also need to be

identified in a way that software tools can interpret mechanically, implying that the names of these entities

would also need to be regulated.

The Systems Biology Ontology provides terms for identifying most elements of SBML. The relationship

implied by an sboTerm on an SBML model component is “is a” between the characteristic of the component

meant to be described by SBO on this element and the SBO term identified by the value of the sboTerm. By

adding SBO term references on the components of a model, a software tool can provide additional details

using independent, shared vocabularies that can enable other software tools to recognize precisely what

the component is meant to be. Those tools can then act on that information. For example, if the SBO

85

http://www.sbgn.org/

identifier SBO:0000049 is assigned to the concept of “first-order irreversible mass-action kinetics, continuous

framework”, and a given KineticLaw object in a model has an sboTerm attribute with this value, then

regardless of the identifier and name given to the reaction itself, a software tool could use this to inform

users that the reaction is a first-order irreversible mass-action reaction. This kind of reverse engineering of

the meaning of reactions in a model would be difficult to do otherwise, especially for more complex reaction

types.

The presence of an SBO label on a compartment, species, or reaction, can help map SBML elements to

equivalent concepts in other standards, such as (but not limited to) BioPAX (http://www.biopax.org/), PSI-

MI (http://www.psidev.info/index.php?q=node/60), or the Systems Biology Graphical Notation (SBGN,

http://www.sbgn.org/). Such mappings can be used in conversion procedures, or to build interfaces, with

SBO becoming a kind of “glue” between standards of representation.

The presence of the label on a kinetic expression can also allow software tools to make more intelligent

decisions about reaction rate expressions. For example, an application could recognize certain types of

reaction formulas as being ones it knows how to solve with optimized procedures. The application could

then use internal, optimized code implementing the rate formula indexed by identifiers such as SBO:0000049

appearing in SBML models.

Finally, SBO labels may be a very valuable tool when it comes to model integration, by helping identify

interfaces, convert mathematical expressions and parameters etc.

Although the use of SBO can be beneficial, it is critical to keep in mind that the presence of an sboTerm

value on an object must not change the fundamental mathematical meaning of the model. An SBML model

must be defined such that it stands on its own and does not depend on additional information added by

SBO terms for a correct mathematical interpretation. SBO term definitions will not imply any alternative

mathematical semantics for any SBML object labeled with that term. Two important reasons motivate

this principle. First, it would be too limiting to require all software tools to be able to understand the

SBO vocabularies in addition to understanding SBML. Supporting SBO is not only additional work for

the software developer; for some kinds of applications, it may not make sense. If SBO terms on a model

are optional, it follows that the SBML model must remain unambiguous and fully interpretable without

them, because an application reading the model may ignore the terms. Second, we believe allowing the

use of sboTerm to alter the mathematical meaning of a model would allow too much leeway to shoehorn

inconsistent concepts into SBML objects, ultimately reducing the interoperability of the models.

5.2 Using SBO and sboTerm

The sboTerm attribute data type is always SBOTerm, defined in Section 3.1.9. When present in a given model

object instance, the attribute’s value must be an identifier that refers to a single SBO term that best defines

the entity encoded by the SBML object in question. An example of the type of relationship intended is: the

KineticLaw in reaction R1 is a first-order irreversible mass action rate law.

Note the careful use of the words “defines” and “entity encoded by the SBML object” in the paragraph

above. As mentioned, the relationship between the SBML object and the URI is:

The “thing” encoded by this SBML object has a characteristic that is an instance of the “thing”

represented by the referenced SBO term.

The characteristic relevant for each SBML object is described in the second column of Table 6.

5.2.1 The structure of the Systems Biology Ontology

The goal of SBO labeling for SBML is to clarify to the fullest extent possible the nature of each element in

a model. The approach taken in SBO begins with a hierarchically-structured set of controlled vocabularies

with seven main divisions: (1) physical entity representation, (2) participant role, (3) systems description

parameter, (4) modeling framework, (5) mathematical expression, (6) occurring entity representation, and

(7) metadata representation. Figure 23 on the next page illustrates the highest level of SBO.

86

http://www.biopax.org/
http://www.psidev.info/index.php?q=node/60
http://www.sbgn.org/

Each of the seven branches of Figure 23 have a hierarchy of terms underneath them. At this time, we

can only begin to list some initial concepts and terms in SBO; what follows is not meant to be complete,

comprehensive or even necessarily consistent with future versions of SBO. It reflects SBO as it existed in

October, 2014. The web site for SBO (http://www.ebi.ac.uk/sbo) should be consulted for the current

version of the ontology. Section 5.4.1 describes how the impact of SBO changes on software applications is

minimized.

SBO term

participant
role

systems description
parameter

modeling
framework

mathematical
expression

occuring entity
representation

physical entity
representation

metadata
representation

Figure 23: The seven controlled vocabularies (CVs) that make up the main branches of SBO. (Based on the October,
2014, version of SBO.)

Figure 24 shows the structure for the physical entity representation branch, which reflects the hierarchi-

cal groupings of the types of entities that can be represented by a compartmentType, a compartment, a

speciesType or a species. Note that the values taken by the sboTerm attribute on those elements should

refer to SBO terms belonging to the material entity branch, so as to distinguish whether the element repre-

sents a macromolecule, a simple chemical, etc. Indeed, this information remains valid for the whole model.

The term should not belong to the material entity branch, representing the function of the entity within a

certain functional context. If one wants to use this information, one should refer to the SBO terms using

a controlled RDF annotation instead (Section 6), carefully choosing the qualifiers (Section 6.5) to reflect

the fact that a given species, for instance, can fulfill different functions within a given model (e.g., EGF

receptor is a receptor and an enzyme).

physical entity representation

material entity functional entity

macromolecule simple
chemical

physical
compartment

unit of genetic
information

enzyme channel

gene messenger
RNA

information
macromolecule

ribonucleic acid

...

... ...

... ...

...

...

...

Figure 24: Partial expansion of some of the terms in the entity branch of SBO.

Figure 25 on the next page shows the structure for the participant role branch, also grouping the concepts in a

hierarchical manner. For example, in reaction rate expressions, there are a variety of possible modifiers. Some

classes of modifiers can be further subdivided and grouped. All of this is easy to capture in the ontology. As

more agreement is reached in the modeling community about how to define and name modifiers for different

cases, the ontology can grow to accommodate it.

The controlled vocabulary for quantitative parameters is illustrated in Figure 26 on the following page.

Note the separation of kinetic constant into separate terms for unimolecular, bimolecular, etc. reactions,

as well as for forward and reverse reactions. The need to have separate terms for forward and reverse

rate constants arises in reversible mass-action reactions. This distinction is not always necessary for all

quantitative parameters; for example, there is no comparable concept for the Michaelis constant. Another

distinction for some quantitative parameters is a decomposition into different versions based on the modeling

framework being assumed. For example, different terms for continuous and discrete formulations of kinetic

constants represent specializations of the constants for particular simulation frameworks. Not all quantitative

parameters will need to be distinguished along this dimension.

87

participant role

reactant product modifier

inhibitor stimulator

functional
compartment

interactor substrate

...

...

...side substrate

side product ...

Figure 25: Partial expansion of some of the terms in the participant role branch of SBO.

systems description parameter

systems description
constant

qualitative systems
description parameter

quantitative systems
description parameter

thermodynamic
parameter

biochemical
coefficient

biochemical
exponential
coefficient

biochemical
proportionality

coefficient

... ...

stoichiometric
coefficient

logical
parameter

...

... ...

Figure 26: Partial expansion of some of the terms in the quantitative parameter branch.

The terms of the SBO quantitative systems description parameter branch contain mathematical formulas

encoded using MathML 2.0 expressing the parameter using other SBO parameters. The main use of that

approach is to avoid listing all the variants of a mathematical expression, escaping a combinatorial explosion.

The modeling framework controlled vocabulary is needed to elucidate how to simulate a mathematical ex-

pression used in models. Figure 27 illustrates the structure of this branch, which is at this point fairly simple,

but we expect that more terms will evolve in the future.

modeling framework

continuous framework discrete frameworklogical framework

spatial
continuous framework

non-spatial
continuous framework

.........

Figure 27: Partial expansion of some of the terms in the modeling framework branch.

The mathematical expression vocabulary encompasses the various mathematical expressions that constitute

a model. Figure 28 on the following page illustrates a portion of the hierarchy. Rate law or conservation

law formulas are part of the mathematical expression hierarchy, and subdivided by successively more refined

distinctions until the leaf terms represent precise statements of common reaction or rule types. Other

types of mathematical expressions may be included in the future in order to be able to further characterize

mathematical components of a model, such as initial assignments, assignment rules, rate rules, algebraic

rules, constraints, and event triggers and assignments.

The leaf terms of the mathematical expression branch contain the mathematical formulas encoded using

MathML 2.0. There are many potential uses for this. One is to allow a software application to obtain the

formula corresponding to a term and insert it into a model. In effect, the formulas given in the CV act

as templates for what to put into an SBML construct such as KineticLaw or Rule. The MathML definition

88

mathematical expression

rate law

mass-action rate law
...

mass-action rate law for irreversible reactions
mass-action rate law for reversible reactions

mass-action rate law for
first-order irreversible reactions

mass-action rate law for
second-order irreversible reactions

...

...

mass-action rate law for
first-order irreversible reactions,

continuous scheme

mass-action rate law for
first-order irreversible reactions,

discrete scheme

...

... ...

Figure 28: Partial expansion of some of the terms in the mathematical expression branch.

also acts as a precise statement about the rate law in question. In particular, it carries information about

the modeling framework to use in order to interpret the formula. Some of the non-leaf terms also contain

formulas encoded using MathML 2.0. In that case, the formulas contained in the children terms are specific

versions of the formula contained in the parent term. Those formulas may be generic, containing MathML

constructs not yet supported by SBML, and need to be expanded into the MathML subset allowed in SBML

before they can be used in conjunction with SBML models.

To make this discussion concrete, here is an example definition of an entry in the SBO rate law hierarchy

at the time of this writing. This term represents second-order, irreversible, mass-action rate laws with one

reactant, formulated for use in a continuous modeling framework:

ID : SBO:0000052

Name: mass action rate law for second order irreversible reactions, one reactant, continuous

scheme.

Definition: Reaction scheme where the products are created from the reactants and the change

of a product quantity is proportional to the product of reactant activities. The reaction

scheme does not include any reverse process that creates the reactants from the products.

The change of a product quantity is proportional to the square of one reactant quantity. It

is to be used in a reaction modelled using a continuous framework.

Parent(s):

• SBO:0000050 second order irreversible mass action rate law, one reactant (is a).

• SBO:0000163 irreversible mass action rate law, continuous scheme (is a).

MathML:

<math xmlns="http://www.w3.org/1998/Math/MathML">

<semantics definitionURL="http://biomodels.net/SBO/#SBO:0000062">

<lambda>

<bvar><ci definitionURL="http://biomodels.net/SBO/#SBO:0000036">k</ci></bvar>

<bvar><ci definitionURL="http://biomodels.net/SBO/#SBO:0000509">R</ci></bvar>

<apply>

<times/>

<ci>k</ci>

<ci>R</ci>

<ci>R</ci>

</apply>

</lambda>

</semantics>

</math>

89

In the MathML definition of the term shown above, the bound variables in the lambda expression are tagged

with references to terms in the SBO systems description parameter branch (for k and R). This makes it

possible for software applications to interpret the intended meanings of the parameters in the expression.

It also allows conversion of an expression into another, by using the MathML 2.0 formula contained in the

SBO terms associated with the parameters.

The occurring entity representation branch of SBO defines types of biological processes, events or relationship

involving entities. It lists the types of biochemical reactions, such as binding, conformational transition, or

cleavage, and also the different controls that modify a biochemical reaction, such as inhibition, catalysis, etc.

occurring entity representation

process relationship

biochemical
or transport reaction

molecular or
genetic interaction

logical
combination

control

simulation inhibition...

...

...

...

conversiondegradation isomerization

addition of a
chemical group

cleavage

methylation ...phosphorylation

...

biochemical reaction transport reaction

...

Figure 29: Partial expansion of some of the terms in the occurring entity representation branch.

One of the goals of SBO is to permit a tool to traverse up and down the hierarchy in order to find equivalent

terms in different frameworks. The hope is that when a software tool encounters a given rate formula in

a model, the formula will be a specific form (say, “mass-action rate law, second order, one reactant, for

discrete simulation”), but by virtue of the consistent organization of the reaction rate CV into framework-

specific definitions, and the declaration of every parameters involved in each expression, the tool should in

principle be able to determine the definitions for other frameworks (say, “mass-action rate law, second order,

one reactant for continuous simulation”). If the software tool is designed for continuous simulation and it

encounters an SBML model with rate laws formulated for discrete simulation, it could in principle look up

the rate laws’ identifiers in the CV and search for alternative definitions intended for discrete simulation.

And of course, the converse is true, for when a tool designed for discrete simulation encounters a model with

rate laws formulated for continuous simulation.

annotation

embedded annotation reference annotation

denotement

port

database cross
reference

bibliographical cross
reference

controlled annotation uncontrolled annotation

controlled short label

Figure 30: Current expansion of the terms in the annotation branch of SBO.

90

The controlled vocabulary for annotations is illustrated in Figure 30 on the previous page, the single child

of the ’metadata representation’ branch of SBO. As this branch is for annotating annotations themselves,

its branches cannot usually be used for SBase-derived elements, as those generally depict basic model infor-

mation, and not annotations for that model. (The ’Annotations’ element itself does not derive from SBase,

and therefore does not have an SBO term.)

5.2.2 Relationships between individual SBML components and SBO terms

The sboTerm attribute is defined on the abstract class SBase and can be used in all derived elements. How-

ever, not all SBO terms should be used to annotate all SBML elements. Table 6 summarizes the relationships

between SBML components and the branches within SBO that apply to that component (There are cur-

rently no specific SBO term that correspond to the Sbml, UnitDefinition, Unit, and various ListOf list

classes.).

SBML Component SBO Branch Branch Identifier

Model occurring entity representation SBO:0000231

FunctionDefinition mathematical expression SBO:0000064

CompartmentType material entity SBO:0000240

SpeciesType material entity SBO:0000240

Compartment material entity SBO:0000240

Species material entity SBO:0000240

Reaction occurring entity representation SBO:0000231

Parameter quantitative systems description parameter SBO:0000002

SpeciesReference participant role SBO:0000003

ModifierSpeciesReference participant role SBO:0000003

KineticLaw rate law SBO:0000001

InitialAssignment mathematical expression SBO:0000064

AlgebraicRule mathematical expression SBO:0000064

AssignmentRule mathematical expression SBO:0000064

RateRule mathematical expression SBO:0000064

Constraint mathematical expression SBO:0000064

Event occurring entity representation SBO:0000231

Trigger mathematical expression SBO:0000064

Delay mathematical expression SBO:0000064

EventAssignment mathematical expression SBO:0000064

Table 6: SBML components and the main types of SBO terms that may be assigned to them. The identifiers of the highest-
level SBO terms in each branch are provided for guidance, but actual values used for sboTerm attributes should be more
specific child terms within these branches. Note that the important aspect here is the set of specific SBO identifiers, not
the SBO term names, because the names may change as SBO continues to evolve. See text for further explanations.

The parent identifiers shown in Table 6 are provided for reference. They are the highest-level terms in their

respective branch; however, these are not the terms that would be used to annotate an element in SBML,

because there are more specific terms underneath the parents shown here. A software tool should use the

most specific SBO term available for a given concept rather than using the top-level identifier acting as the

root of that particular vocabulary.

5.2.3 Tradeoffs in using SBO terms

The SBO-based approach to annotating SBML components with controlled terms has the following strengths:

1. The syntax is minimally intrusive and maximally simple, requiring only one string-valued attribute.

2. It supports a significant fraction of what SBML users have wanted to do with controlled vocabularies.

3. It does not interfere with any other scheme. The more general annotation-based approach described

in Section 6 can still be used simultaneously in the same model.

91

The scheme has the following weaknesses:

1. An object can only have one sboTerm attribute; therefore, it can only be related to a single term in

SBO. (This also impacts the design of SBO: it must be structured such that a class of SBML elements

can logically only be associated with one class of terms in the ontology.)

2. The only relationship that can be expressed by sboTerm is “is a”. It is not possible to represent different

relationships (known as verbs in ontology-speak). This limits what can be expressed using SBO.

The weaknesses are not shared by the annotation scheme described in Section 6.

5.3 Relationships to the SBML annotation element

Another means of providing this kind of information would be to place SBO terms inside the annotation

element defined on SBase (Sections 3.2 and 6). If an application’s needs cannot be met using SBO terms,

software developers might wish to examine the approach described in Section 6. However, in the interest

of making the use of SBO in SBML as interoperable as possible between software tools, the best-practice

recommendation is to place SBO references in the sboTerm attribute rather than inside the annotation

element of an object. If instead the approach of using annotation is taken, the qualifiers (Section 6.5)

linking the SBML element and SBO term should be chosen extremely carefully, since it will no longer be

possible to assume an “instance to class” relationship.

Although sboTerm is just another kind of optional annotation in SBML, SBO references are separated into

their own attribute on SBML components, both to simplify their use for software tools and because doing so

asserts a stronger and more focused connection in a more regimented fashion. SBO references are intended

to allow a modeler to make a statement of the form “this object is identical in meaning and intention to the

object defined in the term X of SBO”, and do so in a way that a software tool can interpret unambiguously.

Some software applications may have their own vocabulary of terms similar in purpose to SBO. For maximal

software interoperability, the best-practice recommendation in SBML is nonetheless to use SBO terms in

preference to using application-specific annotation schemes. Software applications should therefore attempt

to translate their private terms to and from SBO terms when writing and reading SBML, respectively.

5.4 Discussion

Here we discuss some additional points about the SBO-based approach.

5.4.1 Frequency of change in the ontology

The SBO development approach follows conventional ontology development approaches in bioinformatics.

One of the principles being followed is that identifiers and meanings of terms in the CVs never change

and the terms are never deleted. Where some terms are deemed obsolete, the introduction of new terms

refine or supersede existing terms, but the existing identifiers are left in the CV. Thus, references never

end up pointing to nonexistent entries. In the case where synonymous terms are merged after agreement

that multiple terms are identical, the term identifiers are again left in the CV and they still refer to the

same concept as before. Out-of-date terms cached or hard-coded by an application remain usable in all

cases. (Moreover, machine-readable CV encodings and appropriate software design should render possible

the development of API libraries that automatically map older terms to newer terms as the CVs evolve.)

Therefore, a model is never in danger of ending up with SBO identifiers that cannot be dereferenced. If an

application finds an old model with a term SBO:0000065, it can be assured that it will be able to find this

term in SBO, even if it has been superseded by other, more preferred terms.

5.4.2 Consistency of information

If you have a means of linking (say) a reaction rate formula to a term in a CV, it is possible to have an

inconsistency between the formula in the SBML model and the one defined for the CV term. However, this

92

is not a new problem; it arises in other situations involving SBML models already. The guideline for these

situations is that the model must be self-contained and stand on its own. Therefore, in cases where they

differ, the definitions in the SBML model take precedence over the definitions referenced by the CV. In other

words, the model (and its MathML) is authoritative.

5.4.3 Implications for network access

A software tool does not need to have the ability to access the network or read the CV every time it encounters

a model or otherwise works with SBML. Since the SBO will likely stabilize and change infrequently once a

core set of terms is defined, applications can cache the controlled vocabulary, and not make network accesses

to the master SBO copy unless something forces them to (e.g., detecting a reference in a model to an SBO

term that the application does not recognize). Applications could have user preference settings indicating

how often the CV definitions should be refreshed (similar to how modern applications provide a setting

dictating how often they should check for new versions of themselves). Simple applications may go further

and hard code references to terms in SBO that have reached stability and community consensus. SBO is

available for download under different formats (http://www.ebi.ac.uk/sbo). Web services are also available

to provide programmatic access to the ontology.

5.4.4 Implications for software tools

If a software tool does not pay attention to the SBO annotations described here, one is faced with exactly the

situation that exists today: the SBML model must be interpreted as-is, without benefit of the information

added by the SBO terms. The purpose of introducing an ontology scheme and guidelines for its use is to give

tools enough information that they could perform added processing, if they were designed to take advantage

of that information.

93

6 A standard format for the annotation element

This section describes the recommended non-proprietary format for the content of annotation elements in

SBML when (a) referring to controlled vocabulary terms and database identifiers which define and describe

biological and biochemical entities, and (b) describing the creator of a model and its modification history.

Such a structured format should facilitate the generation of models compliant with the MIRIAM guidelines

for model curation (Le Novère et al., 2005).

The format described in this section is intended to be the form of one of the top-level elements that could

reside in an annotation element attached to an SBML object derived from SBase. The element is named

rdf:RDF. The format described here is compliant with the constraints placed on the form of annotation

elements described in Section 3.2.4. We refer readers to Section 3.2.4 for important information on the

structure and organization of application-specific annotations; these are not described here.

6.1 Motivation

The SBML structures described elsewhere in this document do not have any biochemical or biological se-

mantics. The format described in this section provides a scheme for linking SBML structures to external

resources so that those structures can have such semantics. The motivation for the introduction of this

scheme is similar to that given for the introduction of sboTerm; however, this scheme is significantly more

flexible.

It is generally not recommended that this format be used to refer to SBO terms. In most cases, the SBO

terms should be referred to using the attribute sboTerm part of SBase (Section 5). However in certain

situations, for instance to be able to add further information about the functional role of a species, it is

necessary to add this additional information using the annotation format described here.

Annotations only add additional qualifying information and never change existing information. They can

be ignored without changing the (broader) meaning of the model. The same is true of nested annotations

(described below), which qualify their parent annotation but never change the meaning of that annotation.

6.2 XML namespaces in the standard annotation

This format uses a restricted form of Dublin Core (Dublin Core Metadata Initiative, 2005) and BioModels

qualifier elements (see http://sbml.org/miriam/qualifiers) embedded in RDF (W3C, 2004b). It uses

a number of external XML standards and associated XML namespaces. Table 7 lists these namespaces

and relevant documentation on those namespaces. The format constrains the order of elements in these

namespaces beyond the constraints defined in the standard definitions for those namespaces. For each

standard listed, the format only uses a subset of the possible syntax defined by the given standard. Thus it

is possible for an annotation element to include XML that is compliant with those external standards but

is not compliant with the format described here. Parsers wishing to support this format should be aware

that a valid annotation element may contain an rdf:RDF element which is not compliant with the format

described here. A parser should check that all aspects of the syntax defined here before assuming that the

contained data is encoded in the format.

 Namespace URI Definition Document

 rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# W3C (2004a)
 dcterms http://purl.org/dc/terms/ Kokkelink and Schwänzl (2002)
 DCMI Usage Board (2005)
 vcard http://www.w3.org/2001/vcard-rdf/3.0# Iannella (2001)
 bqbiol http://biomodels.net/biology-qualifiers/

 bqmodel http://biomodels.net/model-qualifiers/

Table 7: The XML standards used in the SBML standard format for annotation. The namespace prefix are shown to
indicate only the prefix used in the main text. Note: the use of the dc namespace, which was listed for Level 2 Version 4,
has been deprecated for Level 2 Version 5.

94

http://sbml.org/miriam/qualifiers

6.3 General syntax for the standard annotation

An outline of the format syntax is shown below.

<SBML_ELEMENT +++ metaid="SBML_META_ID" +++ >

+++

<annotation>

+++

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dcterms="http://purl.org/dc/terms/"

xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#"

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"

xmlns:bqmodel="http://biomodels.net/model-qualifiers/"

>

<rdf:Description rdf:about="#SBML_META_ID">

[MODEL_HISTORY]

<RELATION_ELEMENT>

<rdf:Bag>

<rdf:li rdf:resource="URI" />

...

[NESTED CONTENT]

</rdf:Bag>

</RELATION_ELEMENT>

...

</rdf:Description>

+++

</rdf:RDF>

+++

</annotation>

+++

</SBML_ELEMENT>

The above outline shows the order of the elements. The capitalized identifiers refer to generic strings

of a particular type: SBML ELEMENT refers to any SBML element name that can contain an annotation

element; SBML META ID is a XML ID string; RELATION ELEMENT refers to element names in either the namespace

http://biomodels.net/biology-qualifiers/ or http://biomodels.net/model-qualifiers/; and URI is a

URI. [MODEL HISTORY] refers to an optional section described in Section 6.6 which can only be present within

SBML model elements. The placeholder NESTED CONTENT refers to additional, nested RELATION ELEMENT

elements in a manner described in the next paragraph. ‘+++’ is a placeholder for either no content or valid

XML syntax that is not defined by the standard annotation scheme but is consistent with the relevant

standards for the enclosing elements. ‘...’ is a placeholder for zero or more elements of the same form

as the immediately preceding element. The precise form of whitespace and the XML namespace prefix

definitions is not constrained; however, the elements and attributes must be in the namespaces shown. The

rest of this section describes the format formally in English.

The placeholder NESTED CONTENT in the syntax summary above refers to additional nested annotations. The

format of each element comprising NESTED CONTENT is identical to the syntax of RELATION ELEMENT; in other

words, NESTED CONTENT consists of one or more of the following written sequentially:

<RELATION_ELEMENT>

<rdf:Bag>

<rdf:li rdf:resource="URI" />

...

[NESTED CONTENT]

</rdf:Bag>

</RELATION_ELEMENT>

This can be used to clarify or elaborate the RELATION ELEMENT in which the annotation appears; for example,

it could be used to describe protein modifications on species, or to add evidence codes for an annotation.

The NESTED CONTENT content relates to its containing RELATION ELEMENT, not the other way around, and it

qualifies but does not change the meaning of the containing relation. Ignoring NESTED CONTENT does not

affect the information in the RELATION ELEMENT. The NESTED CONTENT may be nested to arbitrary depth,

with each successive layer describing or clarifying the annotation within which it is embedded.

95

In this format, the annotation of an element is located in a single rdf:RDF element contained within an

SBML annotation element. The annotation element can contain other elements in any order as described

in Section 3.2.4. The format described in this section only defines the form of the rdf:RDF element. The

containing SBML SBase element must have a metaid attribute value. (As this attribute is of the type ID its

value must unique to the entire SBML document.)

The first element of the rdf:RDF element must be an rdf:Description element with an rdf:about attribute.

The value of the rdf:about attribute must be of the form #<string> where the string component is equal

to the value of the metaid attribute of the containing SBML element. This format doesn’t define the form

of subsequent subelements of the rdf:RDF element. In particular, the unique rdf:RDF element contained in

the annotation can contain other rdf:Description, which content can be any valid RDF.

The rdf:Description element can contain only an optional model history section (see Section 6.6) followed

by a sequence of zero or more BioModels relation elements. The optional model history section can only be

present within an SBML Model element. The specific type of the relation elements will vary depending on

the relationship between the SBML component and referenced information or resource.

Although Section 6.5 describes the detailed semantics of each of the relation element types, the content of

these elements follows the same form. The BioModels qualifiers relation elements must only contain a single

rdf:Bag element which in turn must only contain one or more rdf:li elements, and may contain nested

content providing additional annotations about the contents of the rdf:Bag. The rdf:li elements must only

have a rdf:resource attribute containing a URI referring to an information resource (See Section 6.4).

Note that the various namespaces (xmlns:rdf, xmlns:dcterms, etc.) may be declared in any order, and that

only the namespaces that are actually used need be declared. If no vcard terms are used in a particular

annotation, for example, the line xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#" is optional.

Annotations in this format can be located at different depths within a model component.

6.4 Use of URIs

The format represents a set of relationships between the SBML element and the resources referred to by the

contained rdf:resource attribute values. The BioModels relation elements simply define the type of the

relationship.

For example, a Species element representing a protein could be annotated with a reference to the database

UniProt by the http://identifiers.org/uniprot/P12999 resource identifier, identifying exactly the protein

described by the Species element. This identifier maps to a unique entry in UniProt which is never deleted

from the database. In the case of UniProt, this is the “accession” of the entry. When the entry is merged

with another one, both “accession” are conserved. Similarly in a controlled vocabulary resource, each term

is associated with a perennial identifier. The UniProt entry also possess an “entry name” (the Swiss-Prot

“identifier”), a “protein name”, “synonyms” etc. Only the “accession” is perennial and should be used.

The value of a rdf:resource attribute is a URI that both uniquely identifies the resource, and the data in

the resource. The value of the rdf:resource attribute is a URI, not a URL; as such, a URI does not have to

reference a physical web object but simply identifies a controlled vocabulary term or database object (a URI is

a label). For instance, a true URL for an Internet resource such as http://www.uniprot.org/entry/P12999

might correspond to the URI http://identifiers.org/uniprot/P12999.

SBML does not specify how a parser is to interpret a URI. In the case of a transformation into a physical

URL, there could be several solutions. For example, the URI http://identifiers.org/go/GO:0007268 can

be translated into any one of the following:

http://www.ebi.ac.uk/ego/DisplayGoTerm?selected=GO:0007268

http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&query=GO:0007268

http://www.informatics.jax.org/searches/GO.cgi?id=GO:0007268

To enable interoperability, the community has agreed on an initial set of standardized valid URI syntax rules

which may be used within the standard annotation format. This set of rules is not part of the SBML standard

96

but will grow independently from specific SBML Levels and Versions. As the set changes, a given URI syntax

rule will not be modified, although the physical resources associated with the rule may change. These URIs

will always be composed as resource:id. MIRIAM Resources, located at http://sbml.org/miriam, lists

URI syntaxes and possible physical links to controlled vocabularies and databases. Each entry contains a

list of SBML and relation elements in which the given URI can be appropriately embedded. To enable

consistent and thus useful links to external resources, the URI syntax rule set must have a consistent view

of the concepts represented by the different SBML elements for the purposes of this format. For example,

as the rule set is designed to link SBML biological and biochemical resources the rule set assumes that a

Species element represents the concept of a biochemical entity type rather than mathematical symbol. The

URI rule list will evolve with the evolution of databases and resources. The annotation format described in

this section does not require a simple parser of this format to access this list.

6.5 Relation elements

To enable the format to encode different types of relationships between SBML elements and resources,

qualifier elements are used to enclose a set of rdf:li elements. The relation elements imply a specific

relationship between the enclosing SBML element and the resources referenced by the rdf:li elements.

The detailed semantics (i.e. from the perspective of automatic parser) of the relation elements is defined by

the URI list at http://sbml.org/miriam, and thus is outside the scope of SBML. The URI list generally

assumes that the biological entity represented by the element is the concept linked to the reference resource.

Several relation elements with a given tag, enclosed in the same SBML element, each represent an alternative

annotation to the SBML element. For example two bqbiol:hasPart elements within a Species SBML element

represent two different sets of references to the parts making up the the chemical entity represented by the

species. (The species is not made up of all the entities represented by all the references combined).

The complete list of the qualifier elements in the BioModels qualifier namespaces is documented at http:

//sbml.org/miriam/qualifiers. The list is divided into two namespaces one for biological qualifiers

http://biomodels.net/biology-qualifiers/ (prefix used here bqbiol) and the other for model quali-

fiers http://biomodels.net/model-qualifiers/) (prefix used here bqmodel). This list will only grow i.e no

element will be removed from the list. The following is the list of elements at the time of writing:

• bqmodel:is The modeling object encoded by the SBML component is the subject of the referenced

resource. For instance, this qualifier might be used to link the model to a model database.

• bqmodel:isDerivedFrom The modeling object represented by the component of the encoded model is

derived from the modeling object represented by the referenced resource. For instance, they can be

the fruit of a refinement or their adaptation for use in a different context.

• bqmodel:isDescribedBy The modeling object encoded by the SBML component is described by the

referenced resource. This relation might be used to link SBML components to the literature that

describes this model or this kinetic law.

• bqbiol:is The biological entity represented by the SBML component is the subject of the referenced

resource. This relation might be used to link a reaction to its exact counterpart in (e.g.) CHEBI or

Reactome.

• bqbiol:hasPart The biological entity represented by the SBML component includes the subject of the

referenced resource, either physically or logically. This relation might be used to link a complex to the

description of its components.

• bqbiol:hasProperty The subject of the referenced resource is a property of the biological entity

represented by the model component. This relation might be used when a biological entity has a given

activity or exerts a specific function.

• bqbiol:isPartOf The biological entity represented by the SBML component is a physical or logical

part of the subject of the referenced resource. This relation might be used to link a component to the

description of the complex it belongs to.

97

http://sbml.org/miriam
http://sbml.org/miriam
http://sbml.org/miriam/qualifiers
http://sbml.org/miriam/qualifiers
http://sbml.org/miriam/qualifiers

• bqbiol:isPropertyOf The biological entity represented by the SBML component is a property of the

referenced resource.

• bqbiol:isVersionOf The biological entity represented by the SBML component is a version or an

instance of the subject of the referenced resource.

• bqbiol:hasVersion The subject of the referenced resource is a version or an instance of the biological

entity represented by the SBML component.

• bqbiol:isHomologTo The biological entity represented by the SBML component is homolog, to the

subject of the referenced resource, i.e. they share a common ancestor.

• bqbiol:isDescribedBy The biological entity represented by the SBML component is described by the

referenced resource. This relation should be used, for example, to link a species or a parameter to the

literature that describes the quantity of the species or the value of the parameter.

• bqbiol:isEncodedBy The biological entity represented by the SBML component is encoded, either

directly or by virtue of transitivity, by the subject of the referenced resource.

• bqbiol:encodes The biological entity represented by the SBML component encodes, either directly or

by virtue of transitivity, the subject of the referenced resource.

• bqbiol:occursIn The biological entity represented by the SBML component takes place in the subject

of the reference resource.

• bqbiol:hasTaxon The biological entity represented by the SBML element is taxonomically restricted,

where the restriction is the subject of the referenced resource (biological entity B). This relation may

be used to ascribe a species restriction to a biochemical reaction.

6.6 Model history

When enclosed in an SBML Model element, the format described in previous sections can include additional

elements to describe the history of the model. This history data must occur immediately before the first

BioModels relation elements. These additional elements encode information on the model creator and a

sequence of dates recording changes to the model. The syntax for this section is outlined below.

<dcterms:creator>

<rdf:Bag>

<rdf:li rdf:parseType="Resource">

[[

+++

<vCard:N rdf:parseType="Resource">

<vCard:Family>FAMILY_NAME</vCard:Family>

<vCard:Given>GIVEN_NAME</vCard:Given>

</vCard:N>

+++

[<vCard:EMAIL>EMAIL_ADDRESS</vCard:EMAIL>]

+++

[<vCard:ORG rdf:parseType="Resource" >

<vCard:Orgname>ORGANIZATION_NAME</vCard:Orgname>

</vCard:ORG>]

+++

]]

</rdf:li>

...

</rdf:Bag>

</dcterms:creator>

<dcterms:created rdf:parseType="Resource">

<dcterms:W3CDTF>DATE</dcterms:W3CDTF>

</dcterms:created>

<dcterms:modified rdf:parseType="Resource">

<dcterms:W3CDTF>DATE</dcterms:W3CDTF>

</dcterms:modified>

...

98

The order of elements is as shown above except that elements of the format contained between [[and]]

can occur in any order (vCard:N, vCard:EMAIL, and vCard:ORG). The capitalized identifiers refer to generic

strings of a particular type: FAMILY NAME is the family name of a person who created the model; GIVEN NAME

is the first name of the same person who created the model; EMAIL ADDRESS is the email address of the

same person who created the model; and ORGANIZATION NAME is the name of the organization with which the

same person who created the model is affiliated DATE is a date in W3C date format (Wolf and Wicksteed,

1998). W3CDTF, N, ORG and EMAIL are literal strings. The elements of the format contained between [and]

(vCard:EMAIL and vCard:ORG) are optional, but everything else is required. ‘+++’ is a placeholder for either

no content or valid XML syntax that is not defined by the standard annotation scheme but is consistent with

the relevant standards for the enclosing elements. ‘...’ is a placeholder for zero or more elements of the

same form as the immediately preceding element. The precise form of whitespace and the XML namespace

prefix definitions is not constrained. The remaining text in this section describes the syntax formally in

English.

The additional elements of the model history sub-format consist in sequence of a dcterms:creator element,

a dcterms:created element and zero or more dcterms:modified elements. The last two elements must have

the attribute rdf:parseType set to Resource.

The dcterms:creator element describes the person who created the SBML encoding of the model and

contains a single rdf:Bag element. The rdf:Bag element can contain any number of elements; however, the

first element must be a rdf:li element. The rdf:li element can contain any number of elements in any

order. The set of elements contained with the rdf:li element can include the following informative elements:

vCard:N, vCard:EMAIL and vCard:ORG. The vCard:N contains the name of the creator and must consist of a

sequence of two elements: vCard:Family and the vCard:Given whose content is the family (surname) and

given (first) names of the creator respectively. The vCard:N must have the attribute rdf:parseType set to

Resource. The content of the vCard:EMAIL element must be the email address of the creator. The content

of the vCard:ORG element must contain a single vCard:Orgname element. The vCard:Orgname element must

contain the name of an organization to which the creator is affiliated.

The dcterms:created and dcterms:modified elements must each contain a single dcterms:W3CDTF element

whose content is a date in W3C date format (Wolf and Wicksteed, 1998) which is a a profile of (restricted

form of) ISO 8601.

Note that dcterms:creator has been added to the http://purl.org/dc/terms/ namespace relatively re-

cently, but the same term (with the same meaning) once existed in the http://purl.org/dc/elements/1.1/

namespace. It is legal to continue using the old namespace (called “dc” in previous versions of the SBML

Level 2 specifications). However, because all the terms once defined in http://purl.org/dc/elements/1.1/

are now also defined in http://purl.org/dc/terms/, we recommended developers simply use the latter.

6.7 Examples

The following shows the annotation of a model with model creation data and links to external resources:

<model metaid="_180340" id="GMO" name="Goldbeter1991_MinMitOscil">

<annotation>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dcterms="http://purl.org/dc/terms/"

xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#"

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"

xmlns:bqmodel="http://biomodels.net/model-qualifiers/"

>

<rdf:Description rdf:about="#_180340">

<dcterms:creator>

<rdf:Bag>

<rdf:li rdf:parseType="Resource">

<vCard:N rdf:parseType="Resource">

<vCard:Family>Shapiro</vCard:Family>

<vCard:Given>Bruce</vCard:Given>

</vCard:N>

99

<vCard:EMAIL>bshapiro@jpl.nasa.gov</vCard:EMAIL>

<vCard:ORG rdf:parseType="Resource">

<vCard:Orgname>NASA Jet Propulsion Laboratory</vCard:Orgname>

</vCard:ORG>

</rdf:li>

</rdf:Bag>

</dcterms:creator>

<dcterms:created rdf:parseType="Resource">

<dcterms:W3CDTF>2005-02-06T23:39:40+00:00</dcterms:W3CDTF>

</dcterms:created>

<dcterms:modified rdf:parseType="Resource">

<dcterms:W3CDTF>2005-09-13T13:24:56+00:00</dcterms:W3CDTF>

</dcterms:modified>

<bqmodel:is>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/biomodels.db/BIOMD0000000003"/>

</rdf:Bag>

</bqmodel:is>

<bqmodel:isDescribedBy>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/pubmed/1833774"/>

</rdf:Bag>

</bqmodel:isDescribedBy>

<bqbiol:isVersionOf>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/kegg.pathway/hsa04110"/>

<rdf:li rdf:resource="http://identifiers.org/reactome/REACT_152"/>

</rdf:Bag>

</bqbiol:isVersionOf>

</rdf:Description>

</rdf:RDF>

</annotation>

The following example shows a Reaction structure annotated with a reference to its exact Reactome coun-

terpart.

<reaction id="cdc2Phospho" metaid="jb007">

<annotation>

<rdf:RDF

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

<rdf:Description rdf:about="#jb007">

<bqbiol:is>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/reactome/REACT_6327"/>

</rdf:Bag>

</bqbiol:is>

</rdf:Description>

</rdf:RDF>

</annotation>

<listOfReactants>

<speciesReference species="cdc2"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="cdc2-Y15P"/>

</listOfProducts>

<listOfModifiers>

<modifierSpeciesReference species="wee1"/>

</listOfModifiers>

</reaction>

The following example describes a species that represents a complex between the protein calmodulin and

calcium ions:

<species id="Ca_calmodulin" metaid="cacam">

<annotation>

<rdf:RDF

100

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"

>

<rdf:Description rdf:about="#cacam">

<bqbiol:hasPart>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/uniprot/P62158"/>

<rdf:li rdf:resource="http://identifiers.org/chebi/CHEBI:29108"/>

</rdf:Bag>

</bqbiol:hasPart>

</rdf:Description>

</rdf:RDF>

</annotation>

</species>

The following example describes a species that represents either “Calcium/calmodulin-dependent protein

kinase type II alpha chain” or “Calcium/calmodulin-dependent protein kinase type II beta chain”. This

is the case, for example, in the somatic cytoplasm of striatal medium-size spiny neurons, where both are

present but they cannot be functionally differentiated.

<species id="calcium_calmodulin" metaid="cacam">

<annotation>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"

>

<rdf:Description rdf:about="#cacam">

<bqbiol:hasVersion>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/uniprot/Q9UQM7"/>

<rdf:li rdf:resource="http://identifiers.org/uniprot/Q13554"/>

</rdf:Bag>

</bqbiol:hasVersion>

</rdf:Description>

</rdf:RDF>

</annotation>

</species>

The above approach should not be used to describe “any Calcium/calmodulin-dependent protein kinase type

II chain”, because such an annotation requires referencing the products of other genes such as gamma or delta.

All the known proteins could be enumerated, but such an approach would almost surely lead to inaccuracies

because biological knowledge continues to evolve. Instead, the annotation should refer to generic information

such as Ensembl family ENSF00000000194 “CALCIUM/CALMODULIN DEPENDENT KINASE TYPE II

CHAIN” or PIR superfamily PIRSF000594 “Calcium/calmodulin-dependent protein kinase type II”.

The following two examples show how to use the qualifier isVersionOf. The first example is the relationship

between a reaction and an EC code. An EC code describes an enzymatic activity and an enzymatic reaction

involving a particular enzyme can be seen as an instance of this activity. For example, the following reaction

represents the phosphorylation of a glutamate receptor by a complex calcium/calmodulin kinase II.

<reaction id="NMDAR_phosphorylation" metaid="thx1138">

<annotation>

<rdf:RDF

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

<rdf:Description rdf:about="#thx1138">

<bqbiol:isVersionOf>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/ec-code/2.7.1.17"/>

</rdf:Bag>

</bqbiol:isVersionOf>

</rdf:Description>

</rdf:RDF>

</annotation>

<listOfReactants>

101

<speciesReference species="NMDAR"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="P-NMDAR"/>

</listOfProducts>

<listOfModifiers>

<modifierSpeciesReference species="CaMKII"/>

</listOfModifiers>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>CaMKII</ci>

<ci>kcat</ci>

<apply>

<divide/>

<ci>NMDAR</ci>

<apply>

</times>

<ci>NMDAR</ci>

<ci>Km</ci>

</apply>

</apply>

</apply>

</math>

<listOfParameters>

<parameter id="kcat" value="1"/>

<parameter id="Km" value="5e-10"/>

</listOfParameters>

</kineticLaw>

</reaction>

The second example of the use of isVersionOf is the complex between Calcium/calmodulin-dependent

protein kinase type II alpha chain and Calcium/calmodulin, that is only one of the “calcium- and calmodulin-

dependent protein kinase complexes” described by the Gene Ontology term GO:0005954.

<species id="CaCaMKII" metaid="C8H10N4O2">

<annotation>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"

>

<rdf:Description rdf:about="#C8H10N4O2">

<bqbiol:isVersionOf>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/go/GO:0005954"/>

</rdf:Bag>

</bqbiol:isVersionOf>

</rdf:Description>

</rdf:RDF>

</annotation>

</species>

The previous case is different form the following one, although they could seem similar at first sight.

The “Calcium/calmodulin-dependent protein kinase type II alpha chain” is a part of the above mentioned

“calcium- and calmodulin-dependent protein kinase complex”.

<species id="CaMKIIalpha" metaid="C10H14N2">

<annotation>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"

>

<rdf:Description rdf:about="#C10H14N2">

<bqbiol:isPartOf>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/go/GO:0005954"/>

</rdf:Bag>

102

</bqbiol:isPartOf>

</rdf:Description>

</rdf:RDF>

</annotation>

</species>

It is possible describe a component with several alternative sets of qualified annotations. For example, the

following species represents a pool of GMP, GDP and GTP. We annotate it with the three corresponding

KEGG compound identifiers but also with the three corresponding ChEBI identifiers. The two alternative

annotations are encoded in separate hasVersion qualifier elements.

<species id="GXP" metaid="GXP">

<annotation>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"

>

<rdf:Description rdf:about="#GXP">

<bqbiol:hasVersion>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/chebi/CHEBI:17345"/>

<rdf:li rdf:resource="http://identifiers.org/chebi/CHEBI:17552"/>

<rdf:li rdf:resource="http://identifiers.org/chebi/CHEBI:17627"/>

</rdf:Bag>

</bqbiol:hasVersion>

<bqbiol:hasVersion>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/kegg.compound/C00035"/>

<rdf:li rdf:resource="http://identifiers.org/kegg.compound/C00044"/>

<rdf:li rdf:resource="http://identifiers.org/kegg.compound/C00144"/>

</rdf:Bag>

</bqbiol:hasVersion>

</rdf:Description>

</rdf:RDF>

</annotation>

</species>

The following example presents a reaction being actually the combination of three different elementary

molecular reactions. We annotate it with the three corresponding KEGG reactions, but also with the three

corresponding enzymatic activities. Again the two hasPart elements represent two alternative annotations.

The process represented by the Reaction structure is composed of three parts, and not six parts.

<reaction id="adenineProd" metaid="adeprod">

<annotation>

<rdf:RDF

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

<rdf:Description rdf:about="#adeprod">

<bqbiol:hasPart>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/ec-code/2.5.1.22"/>

<rdf:li rdf:resource="http://identifiers.org/ec-code/3.2.2.16"/>

<rdf:li rdf:resource="http://identifiers.org/ec-code/4.1.1.50"/>

</rdf:Bag>

</bqbiol:hasPart>

<bqbiol:hasPart>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/kegg.reaction/R00178"/>

<rdf:li rdf:resource="http://identifiers.org/kegg.reaction/R01401"/>

<rdf:li rdf:resource="http://identifiers.org/kegg.reaction/R02869"/>

</rdf:Bag>

</bqbiol:hasPart>

</rdf:Description>

</rdf:RDF>

</annotation>

</reaction>

103

It is possible to mix different URIs in a given set. The following example presents two alternative annotations

of the human hemoglobin, the first with ChEBI heme and the second with KEGG heme.

<species id="heme" metaid="heme">

<annotation>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"

>

<rdf:Description rdf:about="#heme">

<bqbiol:hasPart>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/uniprot/P69905"/>

<rdf:li rdf:resource="http://identifiers.org/uniprot/P68871"/>

<rdf:li rdf:resource="http://identifiers.org/chebi/CHEBI:17627"/>

</rdf:Bag>

</bqbiol:hasPart>

<bqbiol:hasPart>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/uniprot/P69905"/>

<rdf:li rdf:resource="http://identifiers.org/uniprot/P68871"/>

<rdf:li rdf:resource="http://identifiers.org/kegg.compound/C00032"/>

</rdf:Bag>

</bqbiol:hasPart>

</rdf:Description>

</rdf:RDF>

</annotation>

</species>

As formally defined above it is possible to use different qualifiers in the same annotation element. The

following phosphorylation is annotated by its exact KEGG counterpart and by the generic GO term “phos-

phorylation”.

<reaction id="phosphorylation" metaid="phosphorylation">

<annotation>

<rdf:RDF

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

<rdf:Description rdf:about="#phosphorylation">

<bqbiol:is>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/kegg.reaction/R03313"/>

</rdf:Bag>

</bqbiol:is>

<bqbiol:isVersionOf>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/go/GO:0016310"/>

</rdf:Bag>

</bqbiol:isVersionOf>

</rdf:Description>

</rdf:RDF>

</annotation>

</reaction>

The following example demonstrates the use of nested terms to describe not only that a species is in a

particular compartment, but why this is believed to be true:

<species id="S1" metaid="_000004" compartment="lysosome"

hasOnlySubstanceUnits="false" boundaryCondition="false"

constant="false">

<annotation>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/">

<rdf:Description rdf:about="#_000004">

<bqbiol:occursIn>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/go/GO:0005764"/>

104

<bqbiol:isDescribedBy>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/pubmed/1111111"/>

</rdf:Bag>

</bqbiol:isDescribedBy>

<bqbiol:isDescribedBy>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/eco/ECO:0000004"/>

</rdf:Bag>

</bqbiol:isDescribedBy>

</rdf:Bag>

</bqbiol:occursIn>

</rdf:Description>

</rdf:RDF>

</annotation>

</species>

In descriptive terms, the SBML species “S1” (with metaid “ 000004”) occurs in “go/GO:0005764” (the

lysosome). This is described by the publication “pubmed/1111111”, and is believed to be true because of the

evidence “eco/ECO:0000004” (cell fractionation evidence).

The following example demonstrates the use of nested terms to describe that the annotated species represents

a phosphorylated form of a particular protein:

<species id="S1" metaid="_000004" compartment="cell"

hasOnlySubstanceUnits="false" boundaryCondition="false"

constant="false">

<annotation>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/">

<rdf:Description rdf:about="#_000004" >

<bqbiol:isVersionOf>

<rdf:Bag>

<rdf:li rdf:resource="urn:miriam:uniprot:P04551"/>

<bqbiol:isVersionOf>

<rdf:Bag>

<rdf:li rdf:resource="urn:miriam:obo.mod:MOD%3A00047"/>

</rdf:Bag>

</bqbiol:isVersionOf>

</rdf:Bag>

</bqbiol:isVersionOf>

</rdf:Description>

</rdf:RDF>

</annotation>

</species>

105

7 Example models expressed in XML using SBML

In this section, we present several examples of complete models encoded in XML using SBML Level 2.

7.1 A simple example application of SBML

Consider the following representation of an enzymatic reaction:

E + S
kon−⇀↽−
koff

ES
kcat−→ E + P

The following is the minimal SBML document encoding the model shown above:

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

<model name="EnzymaticReaction">

<listOfUnitDefinitions>

<unitDefinition id="per_second">

<listOfUnits>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="litre_per_mole_per_second">

<listOfUnits>

<unit kind="mole" exponent="-1"/>

<unit kind="litre" exponent="1"/>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

<listOfCompartments>

<compartment id="cytosol" size="1e-14"/>

</listOfCompartments>

<listOfSpecies>

<species compartment="cytosol" id="ES" initialAmount="0" name="ES"/>

<species compartment="cytosol" id="P" initialAmount="0" name="P"/>

<species compartment="cytosol" id="S" initialAmount="1e-20" name="S"/>

<species compartment="cytosol" id="E" initialAmount="5e-21" name="E"/>

</listOfSpecies>

<listOfReactions>

<reaction id="veq">

<listOfReactants>

<speciesReference species="E"/>

<speciesReference species="S"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="ES"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>cytosol</ci>

<apply>

<minus/>

<apply>

<times/>

<ci>kon</ci>

<ci>E</ci>

<ci>S</ci>

</apply>

<apply>

<times/>

<ci>koff</ci>

<ci>ES</ci>

</apply>

</apply>

</apply>

</math>

106

<listOfParameters>

<parameter id="kon" value="1000000" units="litre_per_mole_per_second"/>

<parameter id="koff" value="0.2" units="per_second"/>

</listOfParameters>

</kineticLaw>

</reaction>

<reaction id="vcat" reversible="false">

<listOfReactants>

<speciesReference species="ES"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="E"/>

<speciesReference species="P"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>cytosol</ci>

<ci>kcat</ci>

<ci>ES</ci>

</apply>

</math>

<listOfParameters>

<parameter id="kcat" value="0.1" units="per_second"/>

</listOfParameters>

</kineticLaw>

</reaction>

</listOfReactions>

</model>

</sbml>

In this example, the model has the identifier “EnzymaticReaction”. The model contains one compartment

(with identifier “cytosol”), four species (with identifiers “ES”, “P”, “S”, and “E”), and two reactions (“veq”

and “vcat”). The elements in the listOfReactants and listOfProducts in each reaction refer to the names

of elements listed in the listOfSpecies. The correspondences between the various elements is explicitly

stated by the speciesReference elements.

The model also features local parameter definitions in each reaction. In this case, the three parameters

(“kon”, “koff”, “kcat”) all have unique identifiers and they could also have just as easily been declared

global parameters in the model. Local parameters frequently become more useful in larger models, where it

may become tedious to assign unique identifiers for all the different parameters.

7.2 Example involving units

The following model uses the units features of SBML Level 2. In this model, the default value of substance

is changed to be mole units with a scale factor of −3, or millimoles. This sets the default substance units in

the model. The volume and time built-in units are left to their defaults, meaning volume is in litres and time

is in seconds. The result is that, in this model, kinetic law formulas define rates in millimoles per second

and the species identifiers in them represent concentration values in millimoles per litres. All the species

elements set the initial amount of every given species to 1 millimole. The parameters “vm” and “km” are

defined to be in millimoles per litres per second, and millimoles per litres, respectively.

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

xmlns:xhtml="http://www.w3.org/1999/xhtml">

<model>

<listOfUnitDefinitions>

<unitDefinition id="substance">

<listOfUnits>

<unit kind="mole" scale="-3"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="mmls">

<listOfUnits>

107

<unit kind="mole" scale="-3"/>

<unit kind="litre" exponent="-1"/>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="mml">

<listOfUnits>

<unit kind="mole" scale="-3"/>

<unit kind="litre" exponent="-1"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

<listOfCompartments>

<compartment id="cell" size="1"/>

</listOfCompartments>

<listOfSpecies>

<species id="x0" compartment="cell" initialConcentration="1"/>

<species id="x1" compartment="cell" initialConcentration="1"/>

<species id="s1" compartment="cell" initialConcentration="1"/>

<species id="s2" compartment="cell" initialConcentration="1"/>

</listOfSpecies>

<listOfParameters>

<parameter id="vm" value="2" units="mmls"/>

<parameter id="km" value="2" units="mml"/>

</listOfParameters>

<listOfReactions>

<reaction id="v1">

<listOfReactants>

<speciesReference species="x0"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="s1"/>

</listOfProducts>

<kineticLaw>

<notes>

<xhtml:p>((vm * s1)/(km + s1))*cell</xhtml:p>

</notes>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<apply>

<divide/>

<apply>

<times/>

<ci> vm </ci>

<ci> s1 </ci>

</apply>

<apply>

<plus/>

<ci> km </ci>

<ci> s1 </ci>

</apply>

</apply>

<ci> cell </ci>

</apply>

</math>

</kineticLaw>

</reaction>

<reaction id="v2">

<listOfReactants>

<speciesReference species="s1"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="s2"/>

</listOfProducts>

<kineticLaw>

<notes>

<xhtml:p>((vm * s2)/(km + s2))*cell</xhtml:p>

</notes>

108

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<apply>

<divide/>

<apply>

<times/>

<ci> vm </ci>

<ci> s2 </ci>

</apply>

<apply>

<plus/>

<ci> km </ci>

<ci> s2 </ci>

</apply>

</apply>

<ci> cell </ci>

</apply>

</math>

</kineticLaw>

</reaction>

<reaction id="v3">

<listOfReactants>

<speciesReference species="s2"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="x1"/>

</listOfProducts>

<kineticLaw>

<notes>

<xhtml:p>((vm * x1)/(km + x1))*cell</xhtml:p>

</notes>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<apply>

<divide/>

<apply>

<times/>

<ci> vm </ci>

<ci> x1 </ci>

</apply>

<apply>

<plus/>

<ci> km </ci>

<ci> x1 </ci>

</apply>

</apply>

<ci> cell </ci>

</apply>

</math>

</kineticLaw>

</reaction>

</listOfReactions>

</model>

</sbml>

7.3 Example of a discrete version of a simple dimerization reaction

This example illustrates subtle differences between models formulated for use in a continuous simulation

framework (e.g., using differential equations) and those intended for a discrete simulation framework. The

model shown here is suitable for use with a discrete stochastic simulation algorithm of the sort developed

by Gillespie (1977). In such an approach, species are described in terms of molecular counts and simulation

proceeds by computing the probability of the time and identity of the next reaction, then updating the

species amounts appropriately.

109

The model involves a simple dimerization reaction for a protein named “P”:

2P ↔ P2

The SBML representation is shown below. There are several important points to note. First, the species “P”

and “P2” declare they are always in discrete amounts by using the flag hasOnlySubstanceUnits=“true”.

This indicates that when the species identifiers appear in mathematical formulas, the units are substance, not

the default of substance/size. A second point is that, as a result, the corresponding “kinetic law” formulas

do not need volume corrections. In Gillespie’s approach, the constants in the rate expressions (here, “c1”

and “c2”) contain a contribution from the kinetic constants of the reaction and the size of the compartment

in which the reactions take place. Finally, it is worth noting the rate expression for the forward reaction is a

second-order mass-action reaction, but it is the discrete formulation of such a reaction rate (Gillespie, 1977).

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

<model id="dimerization">

<listOfUnitDefinitions>

<unitDefinition id="substance">

<listOfUnits>

<unit kind="item" multiplier="1"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="per_second">

<listOfUnits>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

<listOfCompartments>

<compartment id="Cell" size="1e-15"/>

</listOfCompartments>

<listOfSpecies>

<species id="P" compartment="Cell" initialAmount="301"

hasOnlySubstanceUnits="true"/>

<species id="P2" compartment="Cell" initialAmount="0"

hasOnlySubstanceUnits="true"/>

</listOfSpecies>

<listOfReactions>

<reaction id="Dimerization" reversible="false">

<listOfReactants>

<speciesReference species="P" stoichiometry="2"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="P2"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<divide/>

<apply>

<times/>

<ci> c1 </ci>

<ci> P </ci>

<apply>

<minus/>

<ci> P </ci>

<cn type="integer"> 1 </cn>

</apply>

</apply>

<cn type="integer"> 2 </cn>

</apply>

</math>

<listOfParameters>

<parameter id="c1" value="0.00166" units="per_second"/>

</listOfParameters>

</kineticLaw>

</reaction>

110

<reaction id="Dissociation" reversible="false">

<listOfReactants>

<speciesReference species="P2"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="P" stoichiometry="2"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> c2 </ci>

<ci> P </ci>

</apply>

</math>

<listOfParameters>

<parameter id="c2" value="0.2" units="per_second"/>

</listOfParameters>

</kineticLaw>

</reaction>

</listOfReactions>

</model>

</sbml>

This example also illustrates the need to provide additional information in a model so that software tools

using different mathematical frameworks can properly interpret it. In this case, a simulation tool designed

for continuous ODE-based simulation would likely misinterpret the model (in particular the reaction rate

formulas), unless it deduced that a discrete stochastic simulation was intended. One of the purposes of SBO

annotations (Section 5) is to enable such interpretation without the need for deduction.

7.4 Example involving assignment rules

This section contains a model that simulates a system containing a fast reaction. This model uses rules to

express the mathematics of the fast reaction explicitly rather than using the fast attribute on a reaction

element. The system modeled is

X0
k1X0−−−→ S1

S1
kfS1−krS2
−−−−−−−−→ S2

S2
k2S2−−−→ X1

k1 = 0.1, k2 = 0.15, kf = Keq10000, kr = 10000, Keq = 2.5.

where X0, S1, S1, and S2 are species in concentration units, and k1, k2, kf , kr, and Keq are parameters.

This system of reactions can be approximated with the following new system:

X0
k1X0−−−→ T

T
k2S2−−−→ X1

S1 =
T

1 +Keq

S2 = KeqS1

where T is a new species. The following example SBML model encodes the second system.

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

xmlns:math="http://www.w3.org/1998/Math/MathML">

<model>

111

<listOfUnitDefinitions>

<unitDefinition id="per_second">

<listOfUnits>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

<listOfCompartments>

<compartment id="cell" size="1"/>

</listOfCompartments>

<listOfSpecies>

<species id="X0" compartment="cell" initialConcentration="1"/>

<species id="X1" compartment="cell" initialConcentration="0"/>

<species id="T" compartment="cell" initialConcentration="0"/>

<species id="S1" compartment="cell" initialConcentration="0"/>

<species id="S2" compartment="cell" initialConcentration="0"/>

</listOfSpecies>

<listOfParameters>

<parameter id="Keq" value="2.5" units="dimensionless"/>

</listOfParameters>

<listOfRules>

<assignmentRule variable="S1">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<divide/>

<ci> T </ci>

<apply>

<plus/>

<cn> 1 </cn>

<ci> Keq </ci>

</apply>

</apply>

</math>

</assignmentRule>

<assignmentRule variable="S2">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> Keq </ci>

<ci> S1 </ci>

</apply>

</math>

</assignmentRule>

</listOfRules>

<listOfReactions>

<reaction id="in" reversible="false">

<listOfReactants>

<speciesReference species="X0"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="T"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> k1 </ci>

<ci> X0 </ci>

<ci> cell </ci>

</apply>

</math>

<listOfParameters>

<parameter id="k1" value="0.1" units="per_second"/>

</listOfParameters>

</kineticLaw>

</reaction>

<reaction id="out" reversible="false">

<listOfReactants>

<speciesReference species="T"/>

112

</listOfReactants>

<listOfProducts>

<speciesReference species="X1"/>

</listOfProducts>

<listOfModifiers>

<modifierSpeciesReference species="S2"/>

</listOfModifiers>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> k2 </ci>

<ci> S2 </ci>

<ci> cell </ci>

</apply>

</math>

<listOfParameters>

<parameter id="k2" value="0.15" units="per_second"/>

</listOfParameters>

</kineticLaw>

</reaction>

</listOfReactions>

</model>

</sbml>

7.5 Example involving algebraic rules

This section contains an example model that contains an AlgebraicRule object. The model contains a

different formulation of the fast reaction described in Section 7.4. The system described in Section 7.4 can

be approximated with the following system:

X0
k1X0−−−→ T

T
k2S1−−−→ X1

S2 = KeqS1

with the constraint:

S1 + S2 − T = 0

The following example SBML model encodes this approximate form.

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

<model>

<listOfUnitDefinitions>

<unitDefinition id="per_second">

<listOfUnits>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

<listOfCompartments>

<compartment id="cell" size="1"/>

</listOfCompartments>

<listOfSpecies>

<species id="X0" compartment="cell" initialConcentration="1"/>

<species id="X1" compartment="cell" initialConcentration="0"/>

<species id="T" compartment="cell" initialConcentration="0"/>

<species id="S1" compartment="cell" initialConcentration="0"/>

<species id="S2" compartment="cell" initialConcentration="0"/>

</listOfSpecies>

<listOfParameters>

<parameter id="Keq" value="2.5" units="dimensionless"/>

</listOfParameters>

113

<listOfRules>

<assignmentRule variable="S2">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> Keq </ci>

<ci> S1 </ci>

</apply>

</math>

</assignmentRule>

<algebraicRule>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<minus/>

<apply>

<plus/>

<ci> S2 </ci>

<ci> S1 </ci>

</apply>

<ci> T </ci>

</apply>

</math>

</algebraicRule>

</listOfRules>

<listOfReactions>

<reaction id="in" reversible="false">

<listOfReactants>

<speciesReference species="X0"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="T"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> k1 </ci>

<ci> X0 </ci>

<ci> cell </ci>

</apply>

</math>

<listOfParameters>

<parameter id="k1" value="0.1" units="per_second"/>

</listOfParameters>

</kineticLaw>

</reaction>

<reaction id="out" reversible="false">

<listOfReactants>

<speciesReference species="T"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="X1"/>

</listOfProducts>

<listOfModifiers>

<modifierSpeciesReference species="S2"/>

</listOfModifiers>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> k2 </ci>

<ci> S2 </ci>

<ci> cell </ci>

</apply>

</math>

<listOfParameters>

<parameter id="k2" value="0.15" units="per_second"/>

</listOfParameters>

</kineticLaw>

114

</reaction>

</listOfReactions>

</model>

</sbml>

7.6 Example with combinations of boundaryCondition and constant values on Species with

RateRule objects

In this section, we discuss a model that includes four species, each with a different combination of values for

their boundaryCondition and constant attributes. The model represents a hypothetical system containing

one reaction,

S1 + S2
k1S1S2S3−−−−−−−→ S4

where S3 is a species that catalyzes the conversion of species S1 and S2 into S4. S1 and S2 are on the

boundary of the system (i.e., S1 and S2 are reactants but their values are not determined by a kinetic law).

The value of S1 in the system is determined over time by the rate rule:

dS1

dt
= k2

The values of constant parameters in the system are:

S2 = 1, S3 = 2, k1 = 0.5, k2 = 0.1

and the initial values of species are:

S1 = 0, S4 = 0

The value of S1 varies over time so in SBML S1 has a constant attribute with a default value of “false”.

The values of S2 and S3 are fixed so in SBML they have a constant attribute values of “true”. S3 only

occurs as a modifier so the value of its boundaryCondition attribute can default to “false”. S4 is a product

whose value is determined by a kinetic law and therefore in the SBML representation has “false” (the

default) for both its boundaryCondition and constant attributes.

The following is the SBML rendition of the model shown above:

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

<model id="BoundaryCondExampleModel">

<listOfUnitDefinitions>

<unitDefinition id="mole_per_litre_per_second">

<listOfUnits>

<unit kind="mole" />

<unit kind="litre" exponent="-1"/>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="litre_sq_per_mole_sq_per_second">

<listOfUnits>

<unit kind="mole" exponent="-2"/>

<unit kind="litre" exponent="2"/>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

<listOfCompartments>

<compartment id="compartmentOne" size="1"/>

</listOfCompartments>

<listOfSpecies>

<species id="S1" initialConcentration="0" compartment="compartmentOne"

boundaryCondition="true"/>

<species id="S2" initialConcentration="1" compartment="compartmentOne"

boundaryCondition="true" constant="true"/>

<species id="S3" initialConcentration="3" compartment="compartmentOne"

115

constant="true"/>

<species id="S4" initialConcentration="0" compartment="compartmentOne"/>

</listOfSpecies>

<listOfParameters>

<parameter id="k1" value="0.5" units="litre_sq_per_mole_sq_per_second"/>

<parameter id="k2" value="0.1" units="mole_per_litre_per_second"/>

</listOfParameters>

<listOfRules>

<rateRule variable="S1">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<ci> k2 </ci>

</math>

</rateRule>

</listOfRules>

<listOfReactions>

<reaction id="reaction_1" reversible="false">

<listOfReactants>

<speciesReference species="S1"/>

<speciesReference species="S2"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="S4"/>

</listOfProducts>

<listOfModifiers>

<modifierSpeciesReference species="S3"/>

</listOfModifiers>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> k1 </ci>

<ci> S1 </ci>

<ci> S2 </ci>

<ci> S3 </ci>

<ci> compartmentOne </ci>

</apply>

</math>

</kineticLaw>

</reaction>

</listOfReactions>

</model>

</sbml>

7.7 Example of translation from a multi-compartmental model to ODEs

This section contains a model with 2 compartments and 4 reactions. The model is derived from Lotka-

Volterra, with the addition of a reversible transport step. When observed in a time-course simulation, three

of this model’s species display damped oscillations.

cytosol
nucleus

X + Y1n
k1−→ 2Y1n

KT−⇀↽− 2Y1c + 2Y2
k2−→ 4Y2

k3−→ ∅

Figure 31: A example multi-compartmental model.

Figure 31 illustrates the arrangement of compartments and reactions in the model LotkaVolterra tranport.

The text of the SBML representation of the model is shown below, and it is followed by its complete

translation into ordinary differential equations. In this SBML model, the reaction equations are in substance

per time units. The reactions have also been simplified to reduce common stoichiometric factors. The species

variables are in concentration units; their initial quantities are declared using the attribute initialAmount on

the species definitions, but since the attribute hasOnlySubstanceUnits is not set to true, the identifiers of

116

the species represent their concentrations when those identifiers appear in mathematical expressions elsewhere

in the model. Note that the species whose identifier is “X” is a boundary condition, as indicated by the

attribute boundaryCondition=“true” in its definition. The attribute speciesType=“Y” in the definitions

of “Y1n” and “Y1c” indicates that these species are pools of the same participant, but located in different

compartments.

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

<model name="LotkaVolterra_tranport">

<listOfUnitDefinitions>

<unitDefinition id="per_second">

<listOfUnits>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="litre_per_mole_per_second">

<listOfUnits>

<unit kind="mole" exponent="-1"/>

<unit kind="litre" exponent="1"/>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

<listOfSpeciesTypes>

<speciesType id="Y1"/>

</listOfSpeciesTypes>

<listOfCompartments>

<compartment id="cytoplasm" size="5"/>

<compartment id="nucleus" outside="cytoplasm" size="1"/>

</listOfCompartments>

<listOfSpecies>

<species id="X" compartment="nucleus" initialAmount="1" constant="true"

boundaryCondition="true"/>

<species id="Y1n" compartment="nucleus" speciesType="Y1" initialAmount="1"/>

<species id="Y1c" compartment="cytoplasm" speciesType="Y1" initialAmount="0"/>

<species id="Y2" compartment="cytoplasm" initialAmount="1"/>

</listOfSpecies>

<listOfParameters>

<parameter id="k1" value="2500" units="litre_per_mole_per_second"/>

<parameter id="k2" value="2500" units="litre_per_mole_per_second"/>

<parameter id="KT" value="25000" units="per_second"/>

<parameter id="k3" value="2500" units="per_second"/>

</listOfParameters>

<listOfReactions>

<reaction id="production" reversible="false">

<listOfReactants>

<speciesReference species="X"/>

<speciesReference species="Y1n"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="Y1n"/>

<speciesReference species="Y1n"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>nucleus</ci>

<ci>k1</ci>

<ci>X</ci>

<ci>Y1n</ci>

</apply>

</math>

</kineticLaw>

</reaction>

<reaction id="transport" reversible="true">

<listOfReactants>

<speciesReference species="Y1n"/>

117

</listOfReactants>

<listOfProducts>

<speciesReference species="Y1c"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>cytoplasm</ci>

<ci>KT</ci>

<apply>

<minus/>

<ci>Y1n</ci>

<ci>Y1c</ci>

</apply>

</apply>

</math>

</kineticLaw>

</reaction>

<reaction id="transformation" reversible="false">

<listOfReactants>

<speciesReference species="Y1c"/>

<speciesReference species="Y2"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="Y2" stoichiometry="2"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>cytoplasm</ci>

<ci>k2</ci>

<ci>Y1c</ci>

<ci>Y2</ci>

</apply>

</math>

</kineticLaw>

</reaction>

<reaction id="degradation" reversible="false">

<listOfReactants>

<speciesReference species="Y2"/>

</listOfReactants>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>cytoplasm</ci>

<ci>k3</ci>

<ci>Y2</ci>

</apply>

</math>

</kineticLaw>

</reaction>

</listOfReactions>

</model>

</sbml>

The ODE translation of this model is as follows. First, we give the values of the constant parameters:

k1 = 2500, k2 = 2500, K3 = 25000, KT = 2500

Now on to the initial conditions of the variables. In the following, the symbols representing species (X, Y1n,

Y1c, and Y2) have values in terms of concentrations. (Readers may wonder why, when their values in the

SBML model are given as initial amounts. The reason goes back to the Species defaults and the meaning of

the hasOnlySubstanceUnits attribute: if the attribute is not set and the compartment in which the species

is located has more than 0 spatial dimensions, a species’ symbol in a model is interpreted as a concentration

118

or density regardless of whether its initial value is set using initialAmount or initialConcentration.) We

use Vn to represent the size of compartment “nucleus” and Vc the size of compartment “cytoplasm”:

Vn = 1, Vc = 5, X = 1, Y1n = 1, Y1c = 0, Y2 = 1/5

And finally, here are the differential equations:

dX

dt
= 0

Vn
dY1n
dt

= k1 ·X · Y1n · Vn −KT · (Y1n − Y1c) · Vc reactions production and transport

Vc
dY1c
dt

= KT · (Y1n − Y1c) · Vc − k2 · Y1c · Y2 · Vc reactions transport and transformation

Vc
dY2
dt

= k2 · Y1c · Y2 · Vc − k3 · Y2 · Vc reactions transformation and degradation

As formulated here, this example assumes constant volumes. If the sizes of the compartments “cytoplasm”

or “nucleus” could change during simulation, then it would be preferable to use a different approach to

constructing the differential equations. In this alternative approach, the ODEs would compute substance

change rather than concentration change, and the concentration values would be computed using separate

equations. This approach is used in Section 4.13.6.

7.8 Example involving function definitions

This section contains a model that uses the function definition feature of SBML. Consider the following

hypothetical system:

S1
f(S1)−−−→ S2

where

f(x) = 2× x

The following is the XML document that encodes the model shown above:

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

<model id="Example">

<listOfFunctionDefinitions>

<functionDefinition id="f">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<lambda>

<bvar>

<ci> x </ci>

</bvar>

<apply>

<times/>

<ci> x </ci>

<cn> 2 </cn>

</apply>

</lambda>

</math>

</functionDefinition>

</listOfFunctionDefinitions>

<listOfCompartments>

<compartment id="compartmentOne" size="1"/>

</listOfCompartments>

<listOfSpecies>

<species id="S1" initialConcentration="1" compartment="compartmentOne"/>

<species id="S2" initialConcentration="0" compartment="compartmentOne"/>

</listOfSpecies>

119

<listOfParameters>

<parameter id="t" value = "1" units="second"/>

</listOfParameters>

<listOfReactions>

<reaction id="reaction_1" reversible="false">

<listOfReactants>

<speciesReference species="S1"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="S2"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<divide/>

<apply>

<times/>

<apply>

<ci> f </ci>

<ci> S1 </ci>

</apply>

<ci> compartmentOne </ci>

</apply>

<ci> t</ci>

</apply>

</math>

</kineticLaw>

</reaction>

</listOfReactions>

</model>

</sbml>

7.9 Example involving delay functions

The following is a simple model illustrating the use of delay to represent a gene that suppresses its own

expression. The model can be expressed in a single rule:

dP

dt
=

1

1 +m(Pdelayed)q
− P

τ

where

Pdelayed is delay(P,∆t) or P at t−∆t

P is protein concentration
τ is the response time
m is a multiplier or equilibrium constant
q is the Hill coefficient

and the species quantities are in concentration units. The text of an SBML encoding of this model is given

below:

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

<model>

<listOfCompartments>

<compartment id="cell" size="1"/>

</listOfCompartments>

<listOfSpecies>

<species id="P" compartment="cell" initialConcentration="0"/>

</listOfSpecies>

<listOfParameters>

<parameter id="tau" value="1" units="second"/>

<parameter id="m" value="0.5" units="dimensionless"/>

<parameter id="q" value="1" units="dimensionless"/>

<parameter id="delta_t" value="1" units="second"/>

</listOfParameters>

120

<listOfRules>

<rateRule variable="P">

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<divide/>

<apply>

<minus/>

<apply>

<divide/>

<cn> 1 </cn>

<apply>

<plus/>

<cn> 1 </cn>

<apply>

<times/>

<ci> m </ci>

<apply>

<power/>

<apply>

<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/symbols/delay">

delay

</csymbol>

<ci> P </ci>

<ci> delta_t </ci>

</apply>

<ci> q </ci>

</apply>

</apply>

</apply>

</apply>

<ci> P </ci>

</apply>

<ci> tau </ci>

</apply>

</math>

</rateRule>

</listOfRules>

</model>

</sbml>

7.10 Example involving events

This section presents a simple model system that demonstrates the use of events in SBML. Consider a

system with two genes, G1 and G2. G1 is initially on and G2 is initially off. When turned on, the two genes

lead to the production of two products, P1 and P2, respectively, at a fixed rate. When P1 reaches a given

concentration, G2 switches on. This system can be represented mathematically as follows:

dP1

dt
= k1(G1 − P1)

dP2

dt
= k2(G2 − P2)

G2 =

{
0 when P1 ≤ τ ,
1 when P1 > τ.

The initial values are:

G1 = 1, G2 = 0, τ = 0.25, P1 = 0, P2 = 0, k1 = k2 = 1.

The SBML Level 2 representation of this as follows:

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

121

xmlns:math="http://www.w3.org/1998/Math/MathML">

<model>

<listOfUnitDefinitions>

<unitDefinition id="per_second">

<listOfUnits>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="concentration">

<listOfUnits>

<unit kind="mole"/>

<unit kind="litre" exponent="-1"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

<listOfCompartments>

<compartment id="cell" size="1"/>

</listOfCompartments>

<listOfSpecies>

<species id="P1" compartment="cell" initialConcentration="0"/>

<species id="P2" compartment="cell" initialConcentration="0"/>

</listOfSpecies>

<listOfParameters>

<parameter id="k1" value="1" units="per_second"/>

<parameter id="k2" value="1" units="per_second" />

<parameter id="tau" value="0.25" units="concentration"/>

<parameter id="G1" value="1" units="concentration" constant="false"/>

<parameter id="G2" value="0" units="concentration" constant="false"/>

</listOfParameters>

<listOfRules>

<rateRule variable="P1">

<math:math>

<math:apply>

<math:times/>

<math:ci> k1 </math:ci>

<math:apply>

<math:minus/>

<math:ci> G1 </math:ci>

<math:ci> P1 </math:ci>

</math:apply>

</math:apply>

</math:math>

</rateRule>

<rateRule variable="P2">

<math:math>

<math:apply>

<math:times/>

<math:ci> k2 </math:ci>

<math:apply>

<math:minus/>

<math:ci> G2 </math:ci>

<math:ci> P2 </math:ci>

</math:apply>

</math:apply>

</math:math>

</rateRule>

</listOfRules>

<listOfEvents>

<event>

<trigger>

<math:math>

<math:apply>

<math:gt/>

<math:ci> P1 </math:ci>

<math:ci> tau </math:ci>

</math:apply>

</math:math>

</trigger>

<listOfEventAssignments>

122

<eventAssignment variable="G2">

<math:math>

<math:cn> 1 </math:cn>

</math:math>

</eventAssignment>

</listOfEventAssignments>

</event>

<event>

<trigger>

<math:math>

<math:apply>

<math:leq/>

<math:ci> P1 </math:ci>

<math:ci> tau </math:ci>

</math:apply>

</math:math>

</trigger>

<listOfEventAssignments>

<eventAssignment variable="G2">

<math:math>

<math:cn> 0 </math:cn>

</math:math>

</eventAssignment>

</listOfEventAssignments>

</event>

</listOfEvents>

</model>

</sbml>

7.11 Example involving two-dimensional compartments

The following example is a model that uses a two-dimensional compartment. It is a fragment of a larger model

of calcium regulation across the plasma membrane of a cell. The model includes a calcium influx channel,

“Ca channel”, and a calcium-extruding PMCA pump, “Ca Pump”. It also includes two cytosolic proteins

that buffer calcium via the “CalciumCalbindin gt BoundCytosol” and “CalciumBuffer gt BoundCytosol”

reactions. Finally, the rate expressions in this model do not include explicit factors of the compartment

volumes; instead, the various rate constants are assume to include any necessary corrections for volume.

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

<model id="facilitated_ca_diffusion">

<listOfUnitDefinitions>

<unitDefinition id="substance">

<listOfUnits>

<unit kind="mole" scale="-6"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="area">

<listOfUnits>

<unit kind="metre" scale="-6" exponent="2"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="per_second">

<listOfUnits>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="litre_per_mole_per_second">

<listOfUnits>

<unit kind="mole" exponent="-1" scale="-6"/>

<unit kind="litre" exponent="1"/>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

<unitDefinition id="subs_per_vol">

<listOfUnits>

<unit kind="mole" exponent="1" scale="-6"/>

123

<unit kind="litre" exponent="-1"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

<listOfCompartments>

<compartment id="Extracellular"

spatialDimensions="3" size="1"/>

<compartment id="PlasmaMembrane"

outside="Extracellular" spatialDimensions="2" size="1"/>

<compartment id="Cytosol"

outside="PlasmaMembrane" spatialDimensions="3" size="1"/>

</listOfCompartments>

<listOfSpecies>

<species id="CaBPB_C"

compartment="Cytosol" initialConcentration="47.17"/>

<species id="B_C"

compartment="Cytosol" initialConcentration="396.04"/>

<species id="CaB_C"

compartment="Cytosol" initialConcentration="3.96"/>

<species id="Ca_C"

name="Ca" compartment="Cytosol" initialConcentration="0.1"/>

<species id="Ca_EC"

name="Ca" compartment="Extracellular" initialConcentration="1000"/>

<species id="CaCh_PM"

compartment="PlasmaMembrane" initialConcentration="1"/>

<species id="CaPump_PM"

compartment="PlasmaMembrane" initialConcentration="1"/>

<species id="CaBP_C"

compartment="Cytosol" initialConcentration="202.83"/>

</listOfSpecies>

<listOfReactions>

<reaction id="CalciumCalbindin_gt_BoundCytosol" fast="true">

<listOfReactants>

<speciesReference species="CaBP_C"/>

<speciesReference species="Ca_C"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="CaBPB_C"/>

</listOfProducts>

<kineticLaw>

<notes>

<p xmlns="http://www.w3.org/1999/xhtml">

(((Kf_CalciumCalbindin_BoundCytosol * CaBP_C) * Ca_C) -

(Kr_CalciumCalbindin_BoundCytosol * CaBPB_C))

</p>

</notes>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> Cytosol </ci>

<apply>

<minus/>

<apply>

<times/>

<ci> Kf_CalciumCalbindin_BoundCytosol </ci>

<ci> CaBP_C </ci>

<ci> Ca_C </ci>

</apply>

<apply>

<times/>

<ci> Kr_CalciumCalbindin_BoundCytosol </ci>

<ci> CaBPB_C </ci>

</apply>

</apply>

</apply>

</math>

<listOfParameters>

<parameter id="Kf_CalciumCalbindin_BoundCytosol" value="20.0"

units="litre_per_mole_per_second"/>

124

<parameter id="Kr_CalciumCalbindin_BoundCytosol" value="8.6"

units="per_second"/>

</listOfParameters>

</kineticLaw>

</reaction>

<reaction id="CalciumBuffer_gt_BoundCytosol" fast="true">

<listOfReactants>

<speciesReference species="Ca_C"/>

<speciesReference species="B_C"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="CaB_C"/>

</listOfProducts>

<kineticLaw>

<notes>

<p xmlns="http://www.w3.org/1999/xhtml">

(((Kf_CalciumBuffer_BoundCytosol * Ca_C) * B_C) -

(Kr_CalciumBuffer_BoundCytosol * CaB_C))

</p>

</notes>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> Cytosol</ci>

<apply>

<minus/>

<apply>

<times/>

<ci> Kf_CalciumBuffer_BoundCytosol </ci>

<ci> Ca_C </ci>

<ci> B_C </ci>

</apply>

<apply>

<times/>

<ci> Kr_CalciumBuffer_BoundCytosol </ci>

<ci> CaB_C </ci>

</apply>

</apply>

</apply>

</math>

<listOfParameters>

<parameter id="Kf_CalciumBuffer_BoundCytosol" value="0.1"

units="litre_per_mole_per_second"/>

<parameter id="Kr_CalciumBuffer_BoundCytosol" value="1.0"

units="per_second"/>

</listOfParameters>

</kineticLaw>

</reaction>

<reaction id="Ca_Pump">

<listOfReactants>

<speciesReference species="Ca_C"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="Ca_EC"/>

</listOfProducts>

<listOfModifiers>

<modifierSpeciesReference species="CaPump_PM"/>

</listOfModifiers>

<kineticLaw>

<notes>

<p xmlns="http://www.w3.org/1999/xhtml">

((Vmax * kP * ((Ca_C - Ca_Rest) / (Ca_C + kP)) /

(Ca_Rest + kP)) * CaPump_PM)

</p>

</notes>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> PlasmaMembrane</ci>

125

<apply>

<divide/>

<apply>

<times/>

<ci> Vmax </ci>

<ci> kP </ci>

<ci> CaPump_PM </ci>

<apply>

<minus/>

<ci> Ca_C </ci>

<ci> Ca_Rest </ci>

</apply>

</apply>

<apply>

<times/>

<apply>

<plus/>

<ci> Ca_C </ci>

<ci> kP </ci>

</apply>

<apply>

<plus/>

<ci> Ca_Rest </ci>

<ci> kP </ci>

</apply>

</apply>

</apply>

</apply>

</math>

<listOfParameters>

<parameter id="Vmax" value="4000" units="per_second"/>

<parameter id="kP" value="0.25" units="subs_per_vol"/>

<parameter id="Ca_Rest" value="0.1" units="subs_per_vol"/>

</listOfParameters>

</kineticLaw>

</reaction>

<reaction id="Ca_channel">

<listOfReactants>

<speciesReference species="Ca_EC"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="Ca_C"/>

</listOfProducts>

<listOfModifiers>

<modifierSpeciesReference species="CaCh_PM"/>

</listOfModifiers>

<kineticLaw>

<notes>

<p xmlns="http://www.w3.org/1999/xhtml">

(J0 * Kc * (Ca_EC - Ca_C) / (Kc + Ca_C) * CaCh_PM)

</p>

</notes>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> PlasmaMembrane </ci>

<apply>

<divide/>

<apply>

<times/>

<ci> CaCh_PM </ci>

<ci> J0 </ci>

<ci> Kc </ci>

<apply>

<minus/>

<ci> Ca_EC </ci>

<ci> Ca_C </ci>

</apply>

</apply>

126

<apply>

<plus/>

<ci> Kc </ci>

<ci> Ca_C </ci>

</apply>

</apply>

</apply>

</math>

<listOfParameters>

<parameter id="J0" value="0.014" units="litre_per_mole_per_second"/>

<parameter id="Kc" value="0.5" units="subs_per_vol"/>

</listOfParameters>

</kineticLaw>

</reaction>

</listOfReactions>

</model>

</sbml>

127

8 Discussion

The volume of data now emerging from molecular biotechnology leave little doubt that extensive computer-

based modeling, simulation and analysis will be critical to understanding and interpreting the data (Abbott,

1999; Gilman, 2000; Popel and Winslow, 1998; Smaglik, 2000). This has lead to an explosion in the develop-

ment of computer tools by many research groups across the world. The explosive rate of progress is exciting,

but the rapid growth of the field is accompanied by problems and pressing needs.

One problem is that simulation models and results often cannot be directly compared, shared or re-used,

because the tools developed by different groups often are not compatible with each other. As the field

of systems biology matures, researchers increasingly need to communicate their results as computational

models rather than box-and-arrow diagrams. They also need to reuse published and curated models as

library components in order to succeed with large-scale efforts (e.g., the Alliance for Cellular Signaling;

Gilman, 2000; Smaglik, 2000). These needs require that models implemented in one software package be

portable to other software packages, to maximize public understanding and to allow building up libraries of

curated computational models.

We offer SBML to the systems biology community as a suggested format for exchanging models between

simulation/analysis tools. SBML is an open model representation language oriented specifically towards

representing systems of biochemical reactions.

Our vision for SBML is to create an open standard that will enable different software tools to exchange

computational models. SBML is not static; we continue to develop and experiment with it, and we interact

with other groups who seek to develop similar markup languages. We plan on continuing to evolve SBML

with the help of the systems biology community to make SBML increasingly more powerful, flexible and

useful.

8.1 Future enhancements: SBML Level 3 and beyond

Many people have expressed a desire to see additional capabilities added to SBML. The following summarizes

additional features that are under consideration to be included in SBML Level 3; additional information is

available in the wiki on the SBML project website (http://sbml.org).

• Arrays. This will enable the creation of arrays of components (species, reactions, compartments and

submodels).

• Connections. This will be a mechanism for describing the connections between items in an array.

• Geometry. This will enable the encoding of the spatial characteristics of models including the ge-

ometry of compartments, the diffusion properties of species and the specification of different species

concentrations across different regions of a cell.

• Model Composition. This will enable a large model to be built up out of instances of other models. It

will also allow the reuse of model components and the creation of several instances of the same model.

• Multistate and Complex Species. This will allow the straight-forward construction of models involving

species with a large number of states or species composed of subcomponents. The representation

scheme would be designed to contain the combinatorial explosion of objects that often results from

these types of models.

• Diagrams. This feature will allow components to be annotated with data to enable the display of the

model in a diagram.

• Dynamic Structure. This will enable model structure to vary during simulation. One aspect of this

allowing rules and reactions to have their effect conditional on the state of the model system. For

example in SBML Level 2 it is possible to create a rule with the effect:

ds

dt
=

{
0 if s > 0
y otherwise

128

http://sbml.org

Dynamic restructuring would enable the expression of the following example:

if s > 0
ds

dt
= y

where s is not determined by the rule when s ≤ 0.

• Tie-breaking algorithm. This will include a controlled vocabulary and associated attributes on models

to indicate the simultaneous event tie-breaking algorithm required to correctly simulate the model.

• Distributions. This will provide a means of specifying random variables and statistical distribution of

values.

129

Acknowledgments

The development of SBML was originally funded entirely by the Japan Science and Technology Agency

(JST) under the ERATO Kitano Symbiotic Systems Project during the years 2000–2003. From 2003 to

today, general support for development of SBML and associated software such as libSBML and the SBML

Test Suite has been provided by the National Institute of General Medical Sciences (USA) via grant numbers

GM070923 and GM077671.

We gratefully acknowledge additional sponsorship from the following funding agencies: the National Insti-

tutes of Health (USA); the International Joint Research Program of NEDO (Japan); the JST ERATO-

SORST Program (Japan); the Japanese Ministry of Agriculture; the Japanese Ministry of Education,

Culture, Sports, Science and Technology; the BBSRC e-Science Initiative (UK); the DARPA IPTO Bio-

Computation Program (USA); the Army Research Office’s Institute for Collaborative Biotechnologies (USA);

the Air Force Office of Scientific Research (USA); the California Institute of Technology (USA); the Univer-

sity of Hertfordshire (UK); the Molecular Sciences Institute (USA); the Systems Biology Institute (Japan);

and Keio University (Japan).

Additional support has been or continues to be provided by the following institutions: the California Institute

of Technology (USA), EML Research gGmbH (Germany), the European Molecular Biology Laboratory’s Eu-

ropean Bioinformatics Institute (UK), the Molecular Sciences Institute (USA), the University of Heidelberg

(Germany), the University of Hertfordshire (UK), the University of Newcastle (UK), the Systems Biology

Institute (Japan), and the Virginia Bioinformatics Institute (USA).

SBML was first conceived at the JST/ERATO-sponsored First Workshop on Software Platforms for Systems

Biology, held in April, 2000, at the California Institute of Technology in Pasadena, California, USA. The

participants collectively decided to begin developing a common XML-based declarative language for repre-

senting models. A draft version of the Systems Biology Markup Language was developed by the Caltech

ERATO team and delivered to all collaborators in August, 2000. This draft version underwent extensive

discussion over mailing lists and then again during the Second Workshop on Software Platforms for Systems

Biology held in Tokyo, Japan, November 2000. A revised version of SBML was issued by the Caltech ERATO

team in December, 2000, and after further discussions over mailing lists and in meetings, we produced a

specification for SBML Level 1 (Hucka et al., 2001).

SBML Level 2 was conceived at the 5th Workshop on Software Platforms for Systems Biology, held in July

2002, at the University of Hertfordshire, UK. The participants collectively decided to revise the form of

SBML in SBML Level 2. The first draft of the Level 2 Version 1 document was released in August 2002. The

final set of features in SBML Level 2 Version 1 was finalized in May 2003 at the 7th Workshop on Software

Platforms for Systems Biology in Ft. Lauderdale, Florida.

SBML Level 2 Version 2 was largely finalized after the 2005 SBML Forum meeting in Boston and a final

document was issued in September 2006. SBML Level 2 Version 3 was finalized after the 2006 SBML Forum

meeting in Yokohama, Japan, and the 2007 SBML Hackathon in Newcastle, UK. SBML Level 2 Version 4

was finalized after the 2008 SBML Forum in Göteborg, Sweden. They were developed with contributions

from so many people constituting the worldwide SBML Forum that we regret it has become infeasible to list

individuals by name. For discussions and help developing SBML, and for feedback about this specification,

we are grateful to everyone on the sbml-discuss@caltech.edu and sbml-interoperability@caltech.edu

mailing lists, and many other groups and developers at large, notably the creators of CellML (Hedley et al.,

2001), the members of the DARPA Bio-SPICE project, and the authors of all of the software systems that

support SBML.

A guide to software known to support SBML is provided on the SBML.org website at the following URL:

http://sbml.org/SBML Software Guide.

130

http://sbml.org/Forums
http://sbml.org/Forums
http://sbml.org/SBML_Software_Guide

A XML Schema for SBML

The following is an XML Schema definition for SBML Level 2 Version 5, using the W3C Recommendation

for XML Schema version 1.0 of 2 May 2001 (Biron and Malhotra, 2000; Fallside, 2000; Thompson et al.,

2000). This Schema does not define all aspects of SBML Level 2: an SBML document validated by this

schema is not necessarily a valid SBML Level 2 document. Appendix B contains a schema for the SBML

MathML subset. Appendix C contains a list of the remaining checks required to validate a model in addition

to making it consistent with these two schemas.

Note to implementors: the following schema is self-contained and makes reference to the official XML Schema

for MathML hosted at the W3. However, for use in software systems, it is more efficient to store the MathML

subset Schema of Appendix B in a file on a user’s local disk, and change the schemaLocation value (text line

25 below) to refer to this local copy of the MathML subset Schema. Doing so will avoid requiring a network

access every time this SBML Schema is used.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://www.sbml.org/sbml/level2/version5"

xmlns="http://www.sbml.org/sbml/level2/version5"

xmlns:mml="http://www.w3.org/1998/Math/MathML"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

version="$ Id: sbml.xsd 22408 2015-08-04 00:00:36Z mhucka $">

<xsd:import namespace="http://www.w3.org/1998/Math/MathML"

schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd"/>

<xsd:annotation>

<xsd:documentation>

* Filename : sbml.xsd

* Description: XML Schema for SBML Level 2 Version 5.

* Author(s) : Michael Hucka, Sarah Keating

* Revision : $ Id: sbml.xsd 22408 2015-08-04 00:00:36Z mhucka $

*

* Copyright 2007-2015 California Institute of Technology.

* Copyright 2003-2006 California Institute of Technology, the Japan Science

* and Technology Corporation, and the University of Hertfordshire.

*

* This software is licensed according to the terms described in the file

* named "LICENSE.txt" included with this distribution and available

* online at http://sbml.org/xml-schemas/LICENSE.txt

</xsd:documentation>

</xsd:annotation>

<!--The definition of new primitive types follows.-->

<xsd:simpleType name="SId">

<xsd:annotation>

<xsd:documentation>The type SId is used throughout SBML as the

type of the ’id’ attributes on model elements.</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:string">

<xsd:pattern value="(_|[a-z]|[A-Z])(_|[a-z]|[A-Z]|[0-9])*"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="UnitSId">

<xsd:annotation>

<xsd:documentation>The type UnitSId is used to refer to units.</xsd:documentation>

</xsd:annotation>

<xsd:union>

<xsd:simpleType>

<xsd:restriction base="SId"/>

</xsd:simpleType>

<xsd:simpleType>

<xsd:restriction base="SId">

<xsd:enumeration value="ampere"/>

<xsd:enumeration value="becquerel"/>

<xsd:enumeration value="candela"/>

<xsd:enumeration value="coulomb"/>

<xsd:enumeration value="dimensionless"/>

<xsd:enumeration value="farad"/>

<xsd:enumeration value="gram"/>

<xsd:enumeration value="gray"/>

<xsd:enumeration value="henry"/>

<xsd:enumeration value="hertz"/>

<xsd:enumeration value="item"/>

131

<xsd:enumeration value="joule"/>

<xsd:enumeration value="katal"/>

<xsd:enumeration value="kelvin"/>

<xsd:enumeration value="kilogram"/>

<xsd:enumeration value="litre"/>

<xsd:enumeration value="lumen"/>

<xsd:enumeration value="lux"/>

<xsd:enumeration value="metre"/>

<xsd:enumeration value="mole"/>

<xsd:enumeration value="newton"/>

<xsd:enumeration value="ohm"/>

<xsd:enumeration value="pascal"/>

<xsd:enumeration value="radian"/>

<xsd:enumeration value="second"/>

<xsd:enumeration value="siemens"/>

<xsd:enumeration value="sievert"/>

<xsd:enumeration value="steradian"/>

<xsd:enumeration value="tesla"/>

<xsd:enumeration value="volt"/>

<xsd:enumeration value="watt"/>

<xsd:enumeration value="weber"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType>

<xsd:restriction base="SId">

<xsd:enumeration value="substance"/>

<xsd:enumeration value="volume"/>

<xsd:enumeration value="area"/>

<xsd:enumeration value="length"/>

<xsd:enumeration value="time"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:union>

</xsd:simpleType>

<xsd:simpleType name="SBOTerm">

<xsd:annotation>

<xsd:documentation>The data type for sboTerm attribute values.</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:string">

<xsd:pattern value="(SBO:)([0-9]7)"/>

</xsd:restriction>

</xsd:simpleType>

<!--The definition of SBase follows.-->

<xsd:complexType name="SBase" abstract="true">

<xsd:annotation>

<xsd:documentation>The SBase type is the base type of all main

components in SBML. It supports attaching metadata, notes and

annotations to components.</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="notes" minOccurs="0">

<xsd:complexType>

<xsd:sequence>

<xsd:any namespace="http://www.w3.org/1999/xhtml" processContents="skip"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="annotation" minOccurs="0">

<xsd:complexType>

<xsd:sequence>

<xsd:any processContents="skip" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="metaid" type="xsd:ID" use="optional"/>

<xsd:attribute name="sboTerm" type="SBOTerm" use="optional"/>

</xsd:complexType>

<!--The definition of main SBML classes follows.-->

<xsd:complexType name="FunctionDefinition">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element ref="mml:math"/>

</xsd:sequence>

<xsd:attribute name="id" type="SId" use="required"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

</xsd:extension>

</xsd:complexContent>

132

</xsd:complexType>

<xsd:complexType name="Unit">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:attribute name="kind" type="UnitSId" use="required"/>

<xsd:attribute name="exponent" type="xsd:int" default="1"/>

<xsd:attribute name="scale" type="xsd:int" default="0"/>

<xsd:attribute name="multiplier" type="xsd:double" default="1"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ListOfUnits">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="unit" type="Unit" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="UnitDefinition">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="listOfUnits" type="ListOfUnits"/>

</xsd:sequence>

<xsd:attribute name="id" type="UnitSId" use="required"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="CompartmentType">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:attribute name="id" type="SId" use="required"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="SpeciesType">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:attribute name="id" type="SId" use="required"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Compartment">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:attribute name="id" type="SId" use="required"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

<xsd:attribute name="compartmentType" type="SId" use="optional"/>

<xsd:attribute name="spatialDimensions" use="optional" default="3">

<xsd:simpleType>

<xsd:restriction base="xsd:int">

<xsd:minInclusive value="0"/>

<xsd:maxInclusive value="3"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name="size" type="xsd:double" use="optional"/>

<xsd:attribute name="units" type="UnitSId" use="optional"/>

<xsd:attribute name="outside" type="SId" use="optional"/>

<xsd:attribute name="constant" type="xsd:boolean" use="optional" default="true"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Species">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:attribute name="id" type="SId" use="required"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

<xsd:attribute name="speciesType" type="SId" use="optional"/>

<xsd:attribute name="compartment" type="SId" use="required"/>

<xsd:attribute name="initialAmount" type="xsd:double" use="optional"/>

<xsd:attribute name="initialConcentration" type="xsd:double" use="optional"/>

<xsd:attribute name="substanceUnits" type="UnitSId" use="optional"/>

<xsd:attribute name="hasOnlySubstanceUnits" type="xsd:boolean" use="optional"

default="false"/>

133

<xsd:attribute name="boundaryCondition" type="xsd:boolean" use="optional"

default="false"/>

<xsd:attribute name="charge" type="xsd:int" use="optional"/>

<xsd:attribute name="constant" type="xsd:boolean" use="optional" default="false"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Parameter">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:attribute name="id" type="SId" use="required"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

<xsd:attribute name="value" type="xsd:double" use="optional"/>

<xsd:attribute name="units" type="UnitSId" use="optional"/>

<xsd:attribute name="constant" type="xsd:boolean" use="optional" default="true"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ListOfParameters">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="parameter" type="Parameter" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="InitialAssignment">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element ref="mml:math"/>

</xsd:sequence>

<xsd:attribute name="symbol" type="SId" use="required"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Rule" abstract="true">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element ref="mml:math"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="AlgebraicRule">

<xsd:complexContent>

<xsd:extension base="Rule"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="AssignmentRule">

<xsd:complexContent>

<xsd:extension base="Rule">

<xsd:attribute name="variable" type="SId" use="required"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="RateRule">

<xsd:complexContent>

<xsd:extension base="Rule">

<xsd:attribute name="variable" type="SId" use="required"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Constraint">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element ref="mml:math"/>

<xsd:element name="message" minOccurs="0">

<xsd:complexType>

<xsd:sequence>

<xsd:any namespace="http://www.w3.org/1999/xhtml"

processContents="skip" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:extension>

134

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="KineticLaw">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element ref="mml:math"/>

<xsd:element name="listOfParameters" type="ListOfParameters" minOccurs="0"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="SimpleSpeciesReference" abstract="true">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:attribute name="id" type="SId" use="optional"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

<xsd:attribute name="species" type="SId" use="required"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ModifierSpeciesReference">

<xsd:complexContent>

<xsd:extension base="SimpleSpeciesReference"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ListOfModifierSpeciesReferences">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="modifierSpeciesReference" type="ModifierSpeciesReference"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="StoichiometryMath">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element ref="mml:math"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="SpeciesReference">

<xsd:complexContent>

<xsd:extension base="SimpleSpeciesReference">

<xsd:sequence>

<xsd:element name="stoichiometryMath" type="StoichiometryMath" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="stoichiometry" type="xsd:double" use="optional" default="1"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ListOfSpeciesReferences">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="speciesReference" type="SpeciesReference"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Reaction">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="listOfReactants" type="ListOfSpeciesReferences" minOccurs="0"/>

<xsd:element name="listOfProducts" type="ListOfSpeciesReferences" minOccurs="0"/>

<xsd:element name="listOfModifiers" type="ListOfModifierSpeciesReferences"

minOccurs="0"/>

<xsd:element name="kineticLaw" type="KineticLaw" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="id" type="SId" use="required"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

<xsd:attribute name="reversible" type="xsd:boolean" use="optional" default="true"/>

<xsd:attribute name="fast" type="xsd:boolean" use="optional" default="false"/>

</xsd:extension>

135

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="EventAssignment">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element ref="mml:math"/>

</xsd:sequence>

<xsd:attribute name="variable" type="SId" use="required"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ListOfEventAssignments">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="eventAssignment" type="EventAssignment" maxOccurs="unbounded"

/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Trigger">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element ref="mml:math"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Delay">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element ref="mml:math"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Event">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="trigger" type="Trigger"/>

<xsd:element name="delay" type="Delay" minOccurs="0"/>

<xsd:element name="listOfEventAssignments" type="ListOfEventAssignments"/>

</xsd:sequence>

<xsd:attribute name="id" type="SId" use="optional"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

<xsd:attribute name="useValuesFromTriggerTime" type="xsd:boolean" use="optional"

default="true"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Model">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="listOfFunctionDefinitions" minOccurs="0">

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="functionDefinition"

type="FunctionDefinition" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="listOfUnitDefinitions" minOccurs="0">

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="unitDefinition" type="UnitDefinition"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

136

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="listOfCompartmentTypes" minOccurs="0">

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="compartmentType" type="CompartmentType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="listOfSpeciesTypes" minOccurs="0">

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="speciesType" type="SpeciesType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="listOfCompartments" minOccurs="0">

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="compartment" type="Compartment"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="listOfSpecies" minOccurs="0">

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="species" type="Species"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="listOfParameters" type="ListOfParameters" minOccurs="0"/>

<xsd:element name="listOfInitialAssignments" minOccurs="0">

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="initialAssignment"

type="InitialAssignment" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="listOfRules" minOccurs="0">

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:choice maxOccurs="unbounded">

<xsd:element name="algebraicRule" type="AlgebraicRule"

minOccurs="0"/>

<xsd:element name="assignmentRule" type="AssignmentRule"

minOccurs="0"/>

<xsd:element name="rateRule" type="RateRule" minOccurs="0"/>

</xsd:choice>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="listOfConstraints" minOccurs="0">

137

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="constraint" type="Constraint"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="listOfReactions" minOccurs="0">

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="reaction" type="Reaction"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="listOfEvents" minOccurs="0">

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="event" type="Event" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="id" type="SId" use="optional"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<!-- The following is the type definition for the top-level element in an SBML document.-->

<xsd:complexType name="Sbml">

<xsd:complexContent>

<xsd:extension base="SBase">

<xsd:sequence>

<xsd:element name="model" type="Model"/>

</xsd:sequence>

<xsd:attribute name="level" type="xsd:positiveInteger" use="required" fixed="2"/>

<xsd:attribute name="version" type="xsd:positiveInteger" use="required" fixed="5"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<!--The following is the (only) top-level element allowed in an SBML document.-->

<xsd:element name="sbml" type="Sbml"/>

<!--The end.-->

</xsd:schema>

138

B XML Schema for MathML subset

The following XML schema defines the syntax of the MathML syntax that is used in SBML Level 2.

<?xml version="1.0" encoding="UTF-8"?>

<!--

* Filename : sbml-mathml.xsd

* Description : Schema for the MathML subset used by SBML L2V5.

* Author(s) : Andrew Finney, Michael Hucka, Sarah Keating

* Organization: SBML Team <sbml-team@caltech.edu>

* Revision : $Id: sbmlmathml.xsd 22409 2015-08-04 00:07:48Z mhucka $

*

* Copyright 2003-2015 California Institute of Technology, the Japan Science

* and Technology Corporation, and the University of Hertfordshire.

*

* This software is licensed according to the terms described in the file

* named "LICENSE.txt" included with this distribution and available

* online at http://sbml.org/xml-schemas/LICENSE.txt

*

* Summary:

*

* This is a reduced version of the XML Schema for MathML 2.0. It

* corresponds to the subset of MathML 2.0 used in SBML Level 2

* Version 5, and should be used by validating XML parsers instead

* of the actual MathML XML Schema when validating SBML files. To

* accomplish that, changed the value of the attribute ’schemaLocation’

* in the SBML XML Schema file (sbml.xsd) to refer to a copy of

* this Schema file on your computer’s local hard disk.

-->

<xs:schema xmlns="http://www.w3.org/1998/Math/MathML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.w3.org/1998/Math/MathML"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:attributeGroup name="MathAttributes">

<xs:attribute name="class" type="xs:NMTOKENS" use="optional"/>

<xs:attribute name="style" type="xs:string" use="optional"/>

<xs:attribute name="id" type="xs:ID" use="optional"/>

</xs:attributeGroup>

<xs:complexType name="MathBase">

<xs:attributeGroup ref="MathAttributes"/>

</xs:complexType>

<xs:attributeGroup name="CnAttributes">

<xs:attribute name="type">

<xs:simpleType>

<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="e-notation"/>

<xs:enumeration value="integer"/>

<xs:enumeration value="rational"/>

<xs:enumeration value="real"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attributeGroup ref="MathAttributes"/>

</xs:attributeGroup>

<xs:complexType name="SepType"/>

<xs:complexType name="Cn" mixed="true">

<xs:choice minOccurs="0">

<xs:element name="sep" type="SepType"/>

</xs:choice>

<xs:attributeGroup ref="CnAttributes"/>

</xs:complexType>

<xs:complexType name="Ci">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attributeGroup ref="MathAttributes"/>

<xs:attribute name="definitionURL" type="xs:string"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:simpleType name="CsymbolURI">

<xs:restriction base="xs:string">

<xs:enumeration value="http://www.sbml.org/sbml/symbols/time"/>

<xs:enumeration value="http://www.sbml.org/sbml/symbols/delay"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="Csymbol">

<xs:simpleContent>

139

<xs:extension base="xs:string">

<xs:attribute name="encoding" use="required" fixed="text"/>

<xs:attribute name="definitionURL" type="CsymbolURI" use="required"/>

<xs:attributeGroup ref="MathAttributes"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="NodeContainer">

<xs:complexContent>

<xs:extension base="MathBase">

<xs:group ref="Node"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Apply">

<xs:complexContent>

<xs:extension base="MathBase">

<xs:sequence>

<xs:choice>

<xs:element name="ci" type="Ci"/>

<xs:element name="csymbol" type="Csymbol"/>

<xs:element name="eq" type="MathBase"/>

<xs:element name="neq" type="MathBase"/>

<xs:element name="gt" type="MathBase"/>

<xs:element name="lt" type="MathBase"/>

<xs:element name="geq" type="MathBase"/>

<xs:element name="leq" type="MathBase"/>

<xs:element name="plus" type="MathBase"/>

<xs:element name="minus" type="MathBase"/>

<xs:element name="times" type="MathBase"/>

<xs:element name="divide" type="MathBase"/>

<xs:element name="power" type="MathBase"/>

<xs:sequence>

<xs:element name="root" type="MathBase"/>

<xs:element name="degree" type="NodeContainer" minOccurs="0"/>

</xs:sequence>

<xs:element name="abs" type="MathBase"/>

<xs:element name="exp" type="MathBase"/>

<xs:element name="ln" type="MathBase"/>

<xs:sequence>

<xs:element name="log" type="MathBase"/>

<xs:element name="logbase" type="NodeContainer" minOccurs="0"/>

</xs:sequence>

<xs:element name="floor" type="MathBase"/>

<xs:element name="ceiling" type="MathBase"/>

<xs:element name="factorial" type="MathBase"/>

<xs:element name="and" type="MathBase"/>

<xs:element name="or" type="MathBase"/>

<xs:element name="xor" type="MathBase"/>

<xs:element name="not" type="MathBase"/>

<xs:element name="sin" type="MathBase"/>

<xs:element name="cos" type="MathBase"/>

<xs:element name="tan" type="MathBase"/>

<xs:element name="sec" type="MathBase"/>

<xs:element name="csc" type="MathBase"/>

<xs:element name="cot" type="MathBase"/>

<xs:element name="sinh" type="MathBase"/>

<xs:element name="cosh" type="MathBase"/>

<xs:element name="tanh" type="MathBase"/>

<xs:element name="sech" type="MathBase"/>

<xs:element name="csch" type="MathBase"/>

<xs:element name="coth" type="MathBase"/>

<xs:element name="arcsin" type="MathBase"/>

<xs:element name="arccos" type="MathBase"/>

<xs:element name="arctan" type="MathBase"/>

<xs:element name="arcsec" type="MathBase"/>

<xs:element name="arccsc" type="MathBase"/>

<xs:element name="arccot" type="MathBase"/>

<xs:element name="arcsinh" type="MathBase"/>

<xs:element name="arccosh" type="MathBase"/>

<xs:element name="arctanh" type="MathBase"/>

<xs:element name="arcsech" type="MathBase"/>

<xs:element name="arccsch" type="MathBase"/>

<xs:element name="arccoth" type="MathBase"/>

</xs:choice>

<xs:group ref="Node" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

140

<xs:complexType name="Piece">

<xs:complexContent>

<xs:extension base="MathBase">

<xs:group ref="Node" minOccurs="2" maxOccurs="2"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Otherwise">

<xs:complexContent>

<xs:extension base="MathBase">

<xs:group ref="Node"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Piecewise">

<xs:complexContent>

<xs:extension base="MathBase">

<xs:sequence>

<xs:element name="piece" type="Piece" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="otherwise" type="Otherwise" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:attributeGroup name="AnnotationAttributes">

<xs:attributeGroup ref="MathAttributes"/>

<xs:attribute name="encoding" type="xs:string" use="required"/>

</xs:attributeGroup>

<xs:complexType name="Annotation">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attributeGroup ref="AnnotationAttributes"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="Annotation-xml">

<xs:sequence maxOccurs="unbounded">

<xs:any processContents="skip"/>

</xs:sequence>

<xs:attributeGroup ref="AnnotationAttributes"/>

</xs:complexType>

<xs:complexType name="Semantics">

<xs:complexContent>

<xs:extension base="MathBase">

<xs:sequence>

<xs:choice>

<xs:group ref="Node"/>

<xs:element name="lambda" type="Lambda"/>

</xs:choice>

<xs:sequence maxOccurs="unbounded">

<xs:choice>

<xs:element name="annotation" type="Annotation"/>

<xs:element name="annotation-xml" type="Annotation-xml"/>

</xs:choice>

</xs:sequence>

</xs:sequence>

<xs:attribute name="definitionURL" type="xs:anyURI" use="optional"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:group name="Node">

<xs:choice>

<xs:element name="apply" type="Apply"/>

<xs:element name="cn" type="Cn"/>

<xs:element name="ci" type="Ci"/>

<xs:element name="csymbol" type="Csymbol"/>

<xs:element name="true" type="MathBase"/>

<xs:element name="false" type="MathBase"/>

<xs:element name="notanumber" type="MathBase"/>

<xs:element name="pi" type="MathBase"/>

<xs:element name="infinity" type="MathBase"/>

<xs:element name="exponentiale" type="MathBase"/>

<xs:element name="semantics" type="Semantics"/>

<xs:element name="piecewise" type="Piecewise"/>

</xs:choice>

</xs:group>

<xs:complexType name="Bvar">

<xs:complexContent>

<xs:extension base="MathBase">

<xs:sequence>

141

<xs:element name="ci" type="Ci"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Lambda">

<xs:complexContent>

<xs:extension base="MathBase">

<xs:sequence>

<xs:element name="bvar" type="Bvar"

minOccurs="0" maxOccurs="unbounded"/>

<xs:group ref="Node"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Math">

<xs:complexContent>

<xs:extension base="MathBase">

<xs:choice>

<xs:group ref="Node"/>

<xs:element name="lambda" type="Lambda"/>

</xs:choice>

</xs:extension>

</xs:complexContent>

<!-- Most <math> elements in SBML can have a variety of constructs, but in

the definitions of user-defined functions, <math> elements must contain a

single <lambda>. The way this is handled in this schema is through the use

of a group element that permits either a lambda or a more general MathML

content tree. The latter is expressed in this schema using a complex type

called "Node". It is called a node because it is a node of a tree

structure. -->

</xs:complexType>

<xs:element name="math" type="Math">

<!--This is the top-level element for a ’math’ container in SBML.-->

</xs:element>

</xs:schema>

142

C Validation rules for SBML

This section contains a summary of all the conditions that should be true of a model, in addition to consis-

tency with the XML Schemas given in Appendixes A and B, for that model to considered valid SBML.

General XML validation

10101. An SBML XML file must use UTF-8 as the character encoding. More precisely, the encoding

attribute of the XML declaration at the beginning of the XML data stream cannot have a value

other than “UTF-8”. An example valid declaration is <?xml version="1.0" encoding="UTF-8"?>.

(References: L2V2 Section 4.1; L2V3 Section 4.1; L2V4 Section 4.1; L2V5 Section 4.1.)

10102. An SBML XML document must not contain undefined elements or attributes in the SBML names-

pace. Documents containing unknown elements or attributes placed in the SBML namespace do not

conform to the SBML Level 2 specification. (References: L2V2 Section 4.1; L2V3 Section 4.1; L2V4

Section 4.1; L2V5 Section 4.1.)

10103. An SBML XML document must conform to the XML Schema for the corresponding SBML Level,

Version and Release. The XML Schema for SBML defines the basic SBML object structure, the data

types used by those objects, and the order in which the objects may appear in an SBML document.

(References: SBML L2V2 Section 4.1; L2V3 Section 4.1; L2V4 Section 4.1; L2V5 Section 4.1.)

General MathML validation

10201. All MathML content in SBML must appear within a math element, and the math element must

be either explicitly or implicitly in the XML namespace “http://www.w3.org/1998/Math/MathML”.

(References: L2V2 Section 3.5; L2V3 Section 3.4; L2V4 Section 3.4; L2V5 Section 3.4.)

10202. The only permitted MathML 2.0 elements in SBML Level 2 are the following: cn, ci, csymbol, sep,

apply, piecewise, piece, otherwise, eq, neq, gt, lt, geq, leq, plus, minus, times, divide, power,

root, abs, exp, ln, log, floor, ceiling, factorial, and, or, xor, not, degree, bvar, logbase,

sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin, arccos, arctan, arcsec,

arccsc, arccot, arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth, true, false, notanumber,

pi, infinity, exponentiale, semantics, annotation, and annotation-xml. (References: L2V2

Section 3.5.1; L2V3 Section 3.4.1; L2V4 Section 3.4.1; L2V5 Section 3.4.1.)

10203. In the SBML subset of MathML 2.0, the MathML attribute encoding is only permitted on csymbol,

annotation and annotation-xml. No other MathML elements may have the encoding attribute.

(References: L2V2 Section 3.5.1; L2V3 Section 3.4.1; L2V4 Section 3.4.1; L2V5 Section 3.4.1.)

10204. In the SBML subset of MathML 2.0, the MathML attribute definitionURL is only permitted on

ci, csymbol, and semantics. No other MathML elements may have a definitionURL attribute.

(References: L2V2 Section 3.5.1; L2V3 Section 3.4.1; L2V4 Section 3.4.1; L2V5 Section 3.4.1.)

10205. In SBML Level 2, the only values permitted for the definitionURL attribute on a csymbol element are

“http://www.sbml.org/sbml/symbols/time” and “http://www.sbml.org/sbml/symbols/delay”.

(References: L2V2 Section 3.5.5; L2V3 Section 3.4.6; L2V4 Section 3.4.6; L2V5 Section 3.4.6.)

10206. In the SBML subset of MathML 2.0, the MathML attribute type is only permitted on the cn

construct. No other MathML elements may have a type attribute. (References: L2V2 Section 3.5.1;

L2V3 Section 3.4.1; L2V4 Section 3.4.1; L2V5 Section 3.4.1.)

10207. The only permitted values for the type attribute on MathML cn elements are “e-notation”, “real”,

“integer”, and “rational”. (References: L2V2 Section 3.5.2; L2V3 Section 3.4.2; L2V4 Sec-

tion 3.4.2; L2V5 Section 3.4.2.)

10208. MathML lambda elements are only permitted as the first element inside the math element of a Func-

tionDefinition or as the first element of a semantics element immediately inside the math element of

143

a FunctionDefinition; they may not be used elsewhere in an SBML model. (References: L2V2 Sec-

tions 3.5.1 and 4.3; L2V3 Sections 3.4.1 and 4.3.2; L2V4 Section 3.4.1 and 4.3.2; L2V5 Sections 3.4.1

and 4.3.2.)

10209. The arguments of the MathML logical operators and, or, xor, and not must have boolean values.

(References: L2V2 Section 3.5.8; L2v3 Section 3.4.9; L2V4 Section 3.4.9; L2V5 Section 3.4.10.)

10210. The arguments to the following MathML constructs must evaluate to be numbers (i.e., MathML

real, integer, rational, or “e-notation” numbers, or the time or delay csymbol): plus, minus, times,

divide, power, root, abs, exp, ln, log, floor, ceiling, factorial, sin, cos, tan, sec, csc, cot,

sinh, cosh, tanh, sech, csch, coth, arcsin, arccos, arctan, arcsec, arccsc, arccot, arcsinh,

arccosh, arctanh, arcsech, arccsch, arccoth. (References: L2V2 Section 3.5.8; L2V3 Section 3.4.9;

L2V4 Section 3.4.9; L2V5 Section 3.4.10.)

10211. The values of all arguments to eq and neq operators must have the same type (either all boolean

or all numerical). (References: L2V2 Section 3.5.8; L2V3 section 3.4.9; L2V4 Section 3.4.9; L2V5

Section 3.4.10.)

10212. The types of values within piecewise operators must all be consistent: the set of expressions that

make up the first arguments of the piece and otherwise operators within the same piecewise

operator must all return values of the same type. (References: L2V2 Section 3.5.8; L2V3 Section 3.4.9;

L2V4 Section 3.4.9; L2V5 Section 3.4.10.)

10213. The second argument of a MathML piece operator must have a boolean value. (References: L2V2

Section 3.5.8; L2V3 Section 3.4.9; L2V4 Section 3.4.9; L2V5 Section 3.4.10.)

10214. Outside of a FunctionDefinition, if a ci element is the first element within a MathML apply, then

the ci’s value can only be chosen from the set of identifiers of FunctionDefinition instances defined

in the enclosing SBML Model instance. (References: L2V2 Section 4.3.2; L2V3 Section 4.3.2; L2V4

Section 4.3.2; L2V5 Section 4.3.2.)

10215. Outside of a FunctionDefinition, if a ci element is not the first element within a MathML apply, then

the ci’s value can only be chosen from the set of identifiers of Species, Compartment, Parameter or

Reaction objects defined in the SBML model. (References: L2V2 Section 4.3.2; L2V3 Section 3.4.3;

L2V4 Section 3.4.3; L2V5 Section 3.4.3.)

10216. The id value of a Parameter defined within a KineticLaw can only be used in ci elements within the

MathML content of that same KineticLaw; the identifier is not visible to other parts of the model.

(References: L2V2 Sections 3.4.1, 3.5.3 and 4.13.5; L2V3 Sections 3.3.1, 3.4.3 and 4.13.5; L2V4

Sections 3.3.1, 3.4.3, and 4.13.5; L2V5 Sections 3.3.1, 3.4.3 and 4.13.5.)

10217. The MathML formulas in the following elements must yield numerical values (that is, MathML

real, integer or “e-notation” numbers, or the time or delay csymbol): math in KineticLaw, stoichi-

ometryMath in SpeciesReference, math in InitialAssignment, math in AssignmentRule, math in RateRule,

math in AlgebraicRule, math in Event Delay, and math in EventAssignment. (References: L2V2 Sec-

tions 4.10, 4.11, 4.13 and 4.14; L3V3 Sections 4.10, 4.11, 4.13 and 4.14; L2V4 Sections 4.10, 4.11,

4.13, and 4.14; L2V5 Sections 4.10, 4.11, 4.13 and 4.14.)

10218. A MathML operator must be supplied the number of arguments appropriate for that operator.

(References: L2V2 Section 3.5.1; L2V3 Section 3.4.1; L2V4 Section 3.4.1; L2V5 Section 3.4.1.)

10219. The number of arguments used in a call to a function defined by a FunctionDefinition must equal the

number of arguments accepted by that function, or in other words, the number of bvar elements inside

the lambda element of the function definition. (References: L2V4 Section 4.3.4; L2V5 Section 4.3.4.)

10222. The value of a ci element may not be the identifier of a Compartment with a spatialDimensions

value of “0”. (References: L2V5 Section 4.7.)

144

General identifier validation

10301. The value of the id attribute on every instance of the following classes of objects in a model must

be unique across the set of all id values in a model: Model, FunctionDefinition, CompartmentType,

SpeciesType, Compartment, Species, Reaction, SpeciesReference, ModifierSpeciesReference, Event,

and model-wide Parameters. Exception: the identifiers of instances of UnitDefinition, and parameters

defined inside a reaction, are treated separately. (References: L2V1 Section 3.5; L2V2 Section 3.4.1;

L2V3 Section 3.3; L2V4 Section 3.3; L2V5 Section 3.3.)

10302. The value of the id attribute of every UnitDefinition must be unique across the set of all UnitDefinitions

in the entire model. (References: L2V1 Section 3.5 and 4.4; L2V2 Sections 3.4.1 and 4.4; L2V3

Sections 3.3 and 4.4; L2V4 Section 3.3 and 4.4; L2V5 Sections 3.3 and 4.4.)

10303. The value of the id attribute of each parameter defined locally within a KineticLaw must be unique

across the set of all such parameter definitions in that KineticLaw. (References: L2V1 Sections 3.4.1

and 4.13.9; L2V2 Sections 3.4.1 and 4.13.5; L2V3 Sections 3.3.1 and 4.13.5; L2V4 Section 3.3.1

and 4.13.5; L2V5 Sections 3.3.1 and 4.13.5.)

10304. The value of the variable attribute in all AssignmentRule and RateRule definitions must be unique

across the set of all such rule definitions in a model. (References: L2V1 Section 4.8.4; L2V2 Sec-

tion 4.11; L2V3 Section 4.11.3; L2V4 Section 4.11.3; L2V5 Section 4.11.3.)

10305. In each Event, the value of the variable attribute within every EventAssignment definition must

be unique across the set of all EventAssignments within that Event. In other words, a single Event

cannot make more than one assignment to a given identifier. (References: L2V1 erratum 17; L2V2

Section 4.14.2; L2v3 Section 4.14.4; L2V4 Section 4.14.4; L2V5 Section 4.14.4.)

10306. An identifier used as the value of variable in an EventAssignment cannot also appear as the value

of variable in an AssignmentRule. (References: L2V1 Section 4.10.5; L2V2 Section 4.14.2; L2V2

Section 4.14.4; L2V4 Section 4.14.4; L2V5 Section 4.14.4.)

10307. Every metaid attribute value must be unique across the set of all metaid values in a model. (Refer-

ences: L2V2 Sections 3.1.6 and 3.3.1; L2V3 Sections 3.1.6 and 3.2.1; L2V4 Section 3.2.1 and 3.1.6;

L2V5 Sections 3.2.1 and 3.1.6.)

10308. The value of a sboTerm attribute must have the data type SBOTerm, which is a string consisting of

the characters ‘S’, ‘B’, ‘O’, ’:’, followed by exactly seven digits. (References: L2V2 Section 3.1.9;

L2V3 Section 3.1.9; L2V4 Section 3.1.9; L2V5 Section 3.1.9.)

10309. The syntax of metaid attribute values must conform to the syntax of the XML type ID. (References:

L2V2 Sections 3.1.6 and 3.3.1; L2V3 Sections 3.2.1 and 3.1.6; L2V4 Section 3.2.1 and 3.1.6; L2V5

Sections 3.2.1 and 3.1.6.)

10310. The syntax of id attribute values must conform to the syntax of the SBML type SId. (References:

L2V2 Section 3.1.7; L2V3 Section 3.1.7; L2V4 Section 3.1.7; L2V5 Section 3.1.7.)

10311. The syntax of unit identifiers (i.e., the values of the id attribute on UnitDefinition, the units attribute

on Compartment, the units attribute on Parameter, and the substanceUnits attribute on Species)

must conform to the syntax of the SBML type UnitSId. (References: L2V3 Section 3.1.8; L2V4

Section 3.1.8; L2V5 Section 3.1.8.)

10313. Unit identifier references (that is, the units attribute on Compartment, the units attribute on

Parameter, and the substanceUnits attribute on Species) must be the identifier of a UnitDefini-

tion in the Model, or the identifier of a predefined unit in SBML, that is, any of the following

base units: “ampere”, “becquerel”, “candela”, “coulomb”, “dimensionless”, “farad”, “gram”,

“gray”, “henry”, “hertz”, “item”, “joule”, “katal”, “kelvin”, “kilogram”, “litre”, “lumen”,

“lux”, “metre”, “mole”, “newton”, “ohm”, “pascal”, “radian”, “second”, “siemens”, “sievert”,

“steradian”, “tesla”, “volt”, “watt”, or “weber”. (References: L2V4 Section 4.4.2; L2V5 Sec-

tion 4.4.2.)

145

General annotation validation

10401. Every top-level element within an annotation element must have a namespace declared. (References:

L2V2 Section 3.3.3; L2V3 Section 3.2.4; L2V4 Section 3.2.4; L2V5 Section 3.2.4.)

10402. There cannot be more than one top-level element using a given namespace inside a given annotation

element. (References: L2V2 Section 3.3.3; L2V3 Section 3.2.4; L2V4 Section 3.2.4; L2V5 Sec-

tion 3.2.4.)

10403. Top-level elements within an annotation element cannot use any SBML namespace, whether ex-

plicitly (by declaring the namespace to be one of the URIs “http://www.sbml.org/sbml/level1”,

“http://www.sbml.org/sbml/level2”, “http://www.sbml.org/sbml/level2/version2”,

“http://www.sbml.org/sbml/level2/version3”, “http://www.sbml.org/sbml/level2/version4”,

or “http://www.sbml.org/sbml/level2/version5”), or implicitly (by failing to declare any names-

pace). (References: L2V2 Section 3.3.3; L2V3 Section 3.2.4; L2V4 Section 3.2.4; L2V5 Section 3.2.4.)

General unit validation (Warnings only)

10501. The units of the expressions used as arguments to a function call should match the units expected for

the arguments of that function. (References: L2V2 Section 3.5; L2V3 Section 3.4; L2V4 Section 3.4;

L2V5 Section 3.4.)

10511. When the variable in an AssignmentRule refers to a Compartment, the units of the rule’s right-hand

side should be consistent with the units of that compartment’s size. (References: L2V2 Section 4.11.3;

L2V3 Section 4.11.3; L2V4 Section 4.11.3; L2V5 Section 4.11.3.)

10512. When the variable in an AssignmentRule refers to a Species, the units of the rule’s right-hand side

should be consistent with the units of the species’ quantity. (References: L2V2 Section 4.11.3; L2V3

Section 4.11.3; L2V4 Section 4.11.3; L2V5 Section 4.11.3.)

10513. When the variable in an AssignmentRule refers to a Parameter, the units of the rule’s right-hand side

should be consistent with the units declared for that parameter. (References: L2V2 Section 4.11.3;

L2V3 Section 4.11.3; L2V4 Section 4.11.3; L2V5 Section 4.11.3.)

10521. When the variable in an InitialAssignment refers to a Compartment, the units of the InitialAssign-

ment’s math expression should be consistent with the units of that compartment’s size. (References:

L2V2 Section 4.10.4; L2V3 Section 4.10; L2V4 Section 4.10; L2V5 Section 4.10.)

10522. When the variable in an InitialAssignment refers to a Species, the units of the InitialAssignment’s

math expression should be consistent with the units of that species’ quantity. (References: L2V2

Section 4.10.4; L2V3 Section 4.11.3; L2V4 Section 4.11.3; L2V5 Section 4.11.3.)

10523. When the variable in an InitialAssignment refers to a Parameter, the units of the InitialAssignment’s

math expression should be consistent with the units declared for that parameter. (References: L2V2

Section 4.10.4; L2V3 Section 4.11.3; L2V4 Section 4.11.3; L2V5 Section 4.11.3.)

10531. When the variable in a RateRule definition refers to a Compartment, the units of the rule’s right-hand

side should be of the form x per time, where x is either the units in that Compartment definition,

or (in the absence of explicit units declared for the compartment size) the default units for that

compartment, and time refers to the units of time for the model. (References: L2V2 Section 4.11.4;

L2V3 Section 4.11.4; L2V4 Section 4.11.4; L2V5 Section 4.11.4.)

10532. When the variable in a RateRule definition refers to a Species, the units of the rule’s right-hand

side should be of the form x per time, where x is the units of that species’ quantity, and time refers

to the units of time for the model. (References: L2V2 Section 4.11.4; L2V3 Section 4.11.4; L2V4

Section 4.11.4; L2V5 Section 4.11.4.)

146

10533. When the variable in a RateRule definition refers to a Parameter, the units of the rule’s right-hand

side should be of the form x per time, where x is the units in that Parameter definition, and time

refers to the units of time for the model. (References: L2V2 Section 4.11.4; L2V3 Section 4.11.4;

L2V4 Section 4.11.4; L2V5 Section 4.11.4.)

10541. The units of the math formula in a KineticLaw definition should be the equivalent of substance per time.

(References: L2V2 Section 4.13.5; L2V3 Section 4.13.5; L2V4 Section 4.13.5; L2V5 Section 4.13.5.)

10551. The units of the mathematical formula in the delay of an Event should correspond to the model’s

overall units of time. (L2V3 Section 4.14.3; L2V4 Section 4.14.3; L2V5 Section 4.14.3.)

10561. When the variable attribute of an EventAssignment contains the identifier of a Compartment in the

model, the units of the mathematical expression in the EventAssignment’s math expression should

be consistent with the units of that compartment’s size. (References: L2V2 Section 4.14.2; L2V3

Section 4.14.4; L2V4 Section 4.14.4; L2V5 Section 4.14.4.)

10562. When the variable attribute of an EventAssignment contains the identifier of a Species in the

model, the units of the mathematical expression in the EventAssignment’s math expression should

be consistent with the units of that species’ quantity. (References: L2V2 Section 4.14.2; L2V3

Section 4.14.4; L2V4 Section 4.14.4; L2V5 Section 4.14.4.)

10563. When the variable attribute of an EventAssignment contains the identifier of a Parameter in the

model, the units of the mathematical expression in the EventAssignment’s math expression should

be consistent with the units declared for that parameter. (References: L2V2 Section 4.14.2; L2V3

Section 4.14.4; L2V4 Section 4.14.4; L2V5 Section 4.14.4.)

General model validation

10601. A system of equations created from an SBML model must not be overdetermined. (References: L2V2

Section 4.11.5; L2V3 Section 4.11.5; L2V4 Section 4.11.5; L2V5 Section 4.11.5.)

General SBO validation (Warnings only)

10701. The value of the sboTerm attribute on a Model should be an SBO identifier referring to an interaction

framework defined in SBO. That is, the value should be a term derived from SBO:0000231, “occurring

entity representation”. (References: L2V2 Section 4.2.1; L2V3 Section 4.2.2; L2V4 Section 4.2.2;

L2V5 Section 4.2.2.)

10702. The value of the sboTerm attribute on a FunctionDefinition should be an SBO identifier referring

to a mathematical expression. That is, the value should be a term derived from SBO:0000064,

“mathematical expression”. (References: L2V2 Section 4.3.3; L2V3 Section 4.3.3; L2V4 Section 4.3.3;

L2V5 Section 4.3.3.)

10703. The value of the sboTerm attribute on a Parameter should be an SBO identifier referring to a quantita-

tive parameter. That is, the value should be a term derived from SBO:0000002, “quantitative systems

description parameter”. (References: L2V2 Section 4.9.5; L2V3 Section 4.9.5; L2V4 Section 4.9.5;

L2V5 Section 4.9.5.)

10704. The value of the sboTerm attribute on an InitialAssignment should be an SBO identifier referring to

a mathematical expression. That is, the value should be a term derived from SBO:0000064, “math-

ematical expression”. (References: L2V2 Section 4.10.3; L2V3 Section 4.10.3; L2V4 Section 4.10.3;

L2V5 Section 4.10.3.)

10705. The value of the sboTerm attribute on a AlgebraicRule, RateRule or AssignmentRule should be an SBO

identifier referring to a mathematical expression. That is, the value should be a term derived from

SBO:0000064, “mathematical expression”. (References: L2V2 Section 4.11.1; L2V3 Section 4.11.1;

L2V4 Section 4.11.1; L2V5 Section 4.11.1.)

147

10706. The value of the sboTerm attribute on a Constraint should be an SBO identifier referring to a math-

ematical expression. That is, the value should be a term derived from SBO:0000064, “mathematical

expression”. (References: L2V2 Section 4.12.3; L2V3 Section 4.12.3; L2V4 Section 4.12.3; L2V5

Section 4.12.3.)

10707. The value of the sboTerm attribute on a Reaction should be an SBO identifier referring to an inter-

action framework. That is, the value should be a term derived from SBO:0000231, “occurring entity

representation”. (References: L2V2 Section 4.13.1; L2V3 Section 4.13.1; L2V4 Section 4.13.1; L2V5

Section 4.13.1.)

10708. The value of the sboTerm attribute on a SpeciesReference or a ModifierSpeciesReference should

be an SBO identifier referring to a participant role. That is, the value should be a term derived

from SBO:0000003, “participant role”. The appropriate term depends on whether the entity is a

reactant, product or modifier. (References: L2V2 Section 4.13.2; L2V3 Sections 4.13.1 and 5; L2V4

Section 4.13.1 and 5; L2V5 Sections 4.13.1 and 5.)

10709. The value of the sboTerm attribute on a KineticLaw should be an SBO identifier referring to a rate

law. That is, the value should be a term derived from SBO:0000001, “rate law”. (References: L2V2

Section 4.13.5; L2V3 Section 4.13.1; L2V4 Section 4.13.1; L2V5 Section 4.13.1.)

10710. The value of the sboTerm attribute on an Event should be an SBO identifier referring to a interac-

tion framework. That is, the value should be a term derived from SBO:0000231, “occurring entity

representation”. (References: L2V2 Section 4.14.1; L2V3 Section 4.14.1; L2V4 Section 4.14.1; L2V5

Section 4.14.1.)

10711. The value of the sboTerm attribute on an EventAssignment should be an SBO identifier referring to

a mathematical expression. That is, the value should be a term derived from SBO:0000064, “math-

ematical expression”. (References: L2V2 Section 4.14.2; L2V3 Section 4.14.1; L2V4 Section 4.14.4;

L2V5 Section 4.14.4.)

10712. The value of the sboTerm attribute on a Compartment should be an SBO identifier referring to a

material entity. That is, the value should be a term derived from SBO:0000240, “material entity”.

(References: L2V3 Section 5; L2V4 Section 5; L2V5 Section 5.)

10713. The value of the sboTerm attribute on a Species should be an SBO identifier referring to a material

entity. That is, the value should be a term derived from SBO:0000240, “material entity”. (References:

L2V3 Section 5; L2V4 Section 5; L2V5 Section 5.)

10714. The value of the sboTerm attribute on a CompartmentType should be an SBO identifier referring to

a material entity. That is, the value should be a term derived from SBO:0000240, “material entity”.

(References: L2V3 Section 5; L2V4 Section 5; L2V5 Section 5.)

10715. The value of the sboTerm attribute on a SpeciesType should be an SBO identifier referring to a

material entity. That is, the value should be a term derived from SBO:0000240, “material entity”.

(References: L2V3 Section 5; L2V4 Section 5; L2V5 Section 5.)

10716. The value of the sboTerm attribute on a Trigger should be an SBO identifier referring to a mathe-

matical expression. That is, the value should be a term derived from SBO:0000064, “mathematical

expression”. (References: L2V3 Section 5; L2V4 Section 5; L2V5 Section 5.)

10717. The value of the sboTerm attribute on a Delay should be an SBO identifier referring to a mathe-

matical expression. That is, the value should be a term derived from SBO:0000064, “mathematical

expression”. (References: L2V3 Section 5; L2V4 Section 5; L2V5 Section 5.)

148

General notes validation

10801. The contents of the notes element must be explicitly placed in the XHTML XML namespace. (Ref-

erences: L2V3 Section 3.2.3; L2V4 Section 3.2.3; L2V5 Section 3.2.3.)

10802. The contents of the notes element must not contain an XML declaration (i.e., a string of the form

“<?xml version="1.0" encoding="UTF-8"?>” or similar). (References: L2V2 Section 3.3.2; L2V3

Section 3.2.3; L2V4 Section 3.2.3; L2V5 Section 3.2.3.)

10803. The contents of the notes element must not contain an XML DOCTYPE declaration (i.e., a string

beginning with the characters “<!DOCTYPE”. (References: L2V2 Section 3.3.2; L2V3 Section 3.2.3;

L2V4 Section 3.2.3; L2V5 Section 3.2.3.)

10804. The XHTML content inside a notes element can only take one of the following general forms: (1)

a complete XHTML document beginning with the element <html> and ending with </html>; (2)

the “body” portion of a document beginning with the element <body> and ending with </body>; or

(3) XHTML content that is permitted within a <body> ... </body> elements. (References: L2V2

Section 3.3.2; L2V3 Section 3.2.3; L2V4 Section 3.2.3; L2V5 Section 3.2.3.)

SBML container validation

20101. The sbml container element must declare the XML Namespace for SBML, and this declaration must

be consistent with the values of the level and version attributes on the sbml element. (References:

L2V2 Section 4.1; L2V3 Section 4.1; L2V4 Section 4.1; L2V5 Section 4.1.)

20102. The sbml container element must declare the SBML Level using the attribute level, and this dec-

laration must be consistent with the XML Namespace declared for the sbml element. (References:

L2V2 Section 4.1; L2V3 Section 4.1; L2V4 Section 4.1; L2V5 Section 4.1.)

20103. The sbml container element must declare the SBML Version using the attribute version, and this

declaration must be consistent with the XML Namespace declared for the sbml element. (References:

L2V2 Section 4.1; L2V3 Section 4.1; L2V4 Section 4.1; L2V5 Section 4.1.)

Model validation

20201. An SBML document must contain a Model definition. (References: L2V1, L2V2, L2V3, L2V4 and

L2V5 Section 4.1).

20202. The order of subelements within a Model object instance must be the following, with each ele-

ment optional: listOfFunctionDefinitions, listOfUnitDefinitions, listOfCompartmentTypes,

listOfSpeciesTypes, listOfCompartments, listOfSpecies, listOfParameters,

listOfInitialAssignments, listOfRules, listOfConstraints, listOfReactions, listOfEvents.

(References: L2V2 Section 4.2; L2V3 Section 4.2; L2V4 Section 4.2; L2V5 Section 4.2.)

20203. The listOf container elements in a Model instance are optional, but if present, the elements must

not be empty. Specifically, if any of the following are present in a Model, they must not be empty:

listOfFunctionDefinitions, listOfUnitDefinitions, listOfCompartmentTypes, listOfSpecies-

Types, listOfCompartments, listOfSpecies, listOfParameters, listOfInitialAssignments,

listOfRules, listOfConstraints, listOfReactions and listOfEvents. (References: This is re-

quirement stemming from the XML Schema used for SBML; L2V3 Section 4.2; L2V4 Section 4.2;

L2V5 Section 4.2.)

20204. If a model defines any Species, then the model must also define at least one Compartment. This is

an implication of the fact that the compartment attribute on Species is not optional. (References:

L2V1 Section 4.5; L2V2 Section 4.8.3; L2V3 Section 4.8.3; L2V4 Section 4.8.3; L2V5 Section 4.8.3.)

149

FunctionDefinition validation

20301. The top-level element within math in a FunctionDefinition must be one and only one MathML lambda

element or a MathML semantics element containing one and only one lambda element. (References:

L2V1 Section 4.3.2; L2V2 Section 4.3.2; L2V3 Section 4.3.2; L2V4 Section 4.3.2; L2V5 Section 4.3.2.)

20302. (Rule does not apply in SBML Level 2 Version 5.)

20303. Inside the lambda of a FunctionDefinition, the identifier of that FunctionDefinition cannot appear as

the value of a ci element. SBML functions are not permitted to be recursive or mutually recursive.

(References: L2V2 Section 3.5.3 and 4.3.2; L2V3 Sections 3.4.3 and 4.3.2; L2V4 Sections 3.4.3

and 4.3.2; L2V5 Sections 3.4.3 and 4.3.2.)

20304. Inside the lambda of a FunctionDefinition, if a ci element is not the first element within a MathML

apply, then the ci’s value can only be an identifier provided as the value of a bvar element declared

in that lambda. This restriction also applies to the csymbol for time and delay . In other words, all

model quantities and variables referenced inside a function definition must be passed as arguments

to that function. (References: L2V2 Section 3.5.3 and 4.3.2; L2V3 Section 3.5.3 and 4.3.2; L2V4

Section 3.4.3 and 4.3.2; L2V5 Sections 3.4.3 and 4.3.2.)

20305. The value type returned by a FunctionDefinition’s lambda must be either boolean or numerical. (Ref-

erences: L2V2 Section 3.5.8; L2V3 Section 3.4.9; L2V4 Section 3.4.9; L2V5 Section 3.4.10.)

Unit and UnitDefinition validation

20401. The value of the id attribute in a UnitDefinition must be of type UnitSId and not be identical to

any unit predefined in SBML. That is, the identifier must not be the same as any of the following

predefined units: “ampere”, “gram”, “katal”, “metre”, “second”, “watt”, “becquerel”, “gray”,

“kelvin”, “mole”, “siemens”, “weber”, “candela”, “henry”, “kilogram”, “newton”, “sievert”,

“coulomb”, “hertz”, “litre”, “ohm”, “steradian”, “dimensionless”, “item”, “lumen”, “pascal”,

“tesla”, “farad”, “joule”, “lux”, “radian”, or “volt”. (References: L2V1 erratum 14; L2V2

Section 4.4.2; L2V3 Section 4.4.2; L2V4 Section 4.4.2; L2V5 Section 4.4.2.)

20402. Redefinitions of the predefined SBML unit substance must be based on the unit mole, item, gram,

kilogram, or dimensionless. More formally, a UnitDefinition for substance must simplify to a single

Unit in which either (a) the kind attribute has a value of “mole”, “item”, “gram”, or “kilogram”, and

the exponent attribute has a value of “1”, or (b) the kind attribute has a value of “dimensionless”

with any exponent attribute value. (References: L2V1 Section 4.4.3; L2V2 Section 4.4.3; L2V3

Section 4.4.3; L2V4 Section 4.4.3; L2V5 Section 4.4.3.)

20403. Redefinitions of the predefined SBML unit lengthmust be based on the unit metre or dimensionless.

More formally, a UnitDefinition for length must simplify to a single Unit in which either (a) the kind

attribute has a value of “metre” and the exponent attribute has a value of “1”, or (b) the kind

attribute has a value of “dimensionless” with any exponent value. (References: L2V1 Section

4.4.3; L2V2 Section 4.4.3; L2V3 Section 4.4.3; L2V4 Section 4.4.3; L2V5 Section 4.4.3.)

20404. Redefinitions of the predefined SBML unit area must be based on squared metres or dimensionless.

More formally, a UnitDefinition for area must simplify to a single Unit in which either (a) the kind

attribute has a value of “metre” and the exponent attribute has a value of “2”, or (b) the kind

attribute has a value of “dimensionless” with any exponent value. (References: L2V1 Section

4.4.3; L2V2 Section 4.4.3; L2V3 Section 4.4.3; L2V4 Section 4.4.3; L2V5 Section 4.4.3.)

20405. Redefinitions of the predefined SBML unit time must be based on the unit second. More formally, a

UnitDefinition for time must simplify to a single Unit in which either (a) the kind attribute has a value

of “second” and the exponent attribute has a value of “1”, or (b) the kind attribute has a value of

“dimensionless” with any exponent value. (References: L2V1 Section 4.4.3; L2V2 Section 4.4.3;

L2V3 Section 4.4.3; L2V4 Section 4.4.3; L2V5 Section 4.4.3.)

150

20406. Redefinitions of the predefined SBML unit volume must be based on litre, metre or dimensionless.

More formally, a UnitDefinition for volume must simplify to a single Unit in which either (a) the kind

attribute has a value of “metre” and the exponent attribute has a value of “3”; (b) the kind attribute

has a value of “litre” and the exponent attribute has a value of “1”; or (c) the kind attribute

has a value of “dimensionless” with any exponent value. (References: L2V1 Section 4.4.3; L2V2

Section 4.4.3; L2V3 Section 4.4.3; L2V4 Section 4.4.3; L2V5 Section 4.4.3.)

20407. (Beginning in SBML Level 2 Version 4, this rule has been incorporated into 20406, to make validation

rules 20402–20406 parallel and consistent.)

20408. (Beginning in SBML Level 2 Version 4, this rule has been incorporated into 20406, to make validation

rules 20402–20406 parallel and consistent.)

20409. The listOfUnits container in a UnitDefinition cannot be empty. (References: L2V2 Section 4.4;

L2V3 Section 4.4; L2V4 Section 4.4; L2V5 Section 4.4.)

20410. The value of the kind attribute of a Unit can only be one of the base units in SBML; that is, the SBML

unit system is not hierarchical and user-defined units cannot be defined using other user-defined units.

(References: L2V2 Section 4.4.1; L2V3 Section 4.4.2; L2V4 Section 4.4.2; L2V5 Section 4.4.2.)

20411. (Rule does not apply in SBML Level 2 Version 5.)

20412. (Rule does not apply in SBML Level 2 Version 5.)

Compartment validation

20501. The size of a Compartment must not be set if the compartment’s spatialDimensions attribute has

value 0. (References: L2V1 Section 4.5.3; L2V2 Section 4.7.4; L2V3 Section 4.7.5; L2V4 Section 4.7.5;

L2V5 Section 4.7.5.)

20502. If a Compartment definition has a spatialDimensions value of “0”, then its units attribute must not

be set. If the compartment has no dimensions, then no units can be associated with a non-existent

size. (References: L2V1 Section 4.5.4; L2V2 Section 4.7.5; L2V3 Section 4.7.5; L2V4 Section 4.7.5;

L2V5 Section 4.7.5.)

20503. If a Compartment definition has a spatialDimensions value of “0”, then its constant attribute value

must either default to or be set to “true”. If the compartment has no dimensions, then its size

can never change. (References: L2V1 Section 4.5.5; L2V2 Section 4.7.4; L2V3 Section 4.7.6; L2V4

Section 4.7.6; L2V5 Section 4.7.6.)

20504. The outside attribute value of a Compartment must be the identifier of another Compartment defined

in the model. (References: L2V1 Section 4.5.6; L2V2 Section 4.7.7; L2V3 Section 4.7.7; L2V4

Section 4.7.7; L2V5 Section 4.7.7.)

20505. A Compartment may not enclose itself through a chain of references involving the outside attribute.

This means that a compartment cannot have its own identifier as the value of outside, nor can it point

to another compartment whose outside attribute points directly or indirectly to the compartment.

(References: L2V1 erratum 11; L2V2 Section 4.7.7; L2V3 Section 4.7.7; L2V4 Section 4.7.7; L2V5

Section 4.7.7.)

20506. The outside attribute value of a given Compartment instance cannot be a compartment having a

spatialDimensions value of “0”, unless both compartments have spatialDimensions=“0”. Simply

put, a zero-dimensional compartment cannot enclose compartments that have anything other than

zero dimensions themselves. (References: L2V2 Section 4.7.7; L2V3 Section 4.7.7; L2V4 Section 4.7.7;

L2V5 Section 4.7.7.)

20507. The value of the units attribute on a Compartment having spatialDimensions of “1” must be either

“length”, “metre”, “dimensionless”, or the identifier of a UnitDefinition based on either metre (with

exponent equal to “1”) or dimensionless. (References: L2V1 Section 4.5.4; L2V2 Section 4.7.5;

L2V3 Section 4.7.5; L2V4 Section 4.7.5; L2V5 Section 4.7.5.)

151

20508. The value of the units attribute on a Compartment having spatialDimensions of “2” must be

either “area”, “dimensionless”, or the identifier of a UnitDefinition based on either metre (with

exponent equal to “2”) or dimensionless. (References: L2V1 Section 4.5.4; L2V2 Section 4.7.5;

L2V3 Section 4.7.5; L2V4 Section 4.7.5; L2V5 Section 4.7.5.)

20509. The value of the units attribute on a Compartment having spatialDimensions of “3” must be

either “volume”, “litre”, or the identifier of a UnitDefinition based on either litre, metre (with

exponent equal to “3”), or dimensionless. (References: L2V1 Section 4.5.4; L2V2 Section 4.7.5;

L2V3 Section 4.7.5; L2V4 Section 4.7.5; L2V5 Section 4.7.5.)

20510. If the compartmentType attribute is given a value in a Compartment definition, it must contain the

identifier of an existing CompartmentType defined in the model. (References: L2V2 Section 4.7.2;

L2V3 Section 4.7.2; L2V4 Section 4.7.2; L2V5 Section 4.7.2.)

Species validation

20601. The value of compartment in a Species definition must be the identifier of an existing Compartment

defined in the model. (References: L2V1 Section 4.6.2; L2V2 Section 4.8.3; L2V3 Section 4.8.3; L2V4

Section 4.8.3; L2V5 Section 4.8.3.)

20602. (Rule does not apply in SBML Level 2 Version 5.)

20603. (Rule does not apply in SBML Level 2 Version 5.)

20604. If a Species located in a Compartment whose spatialDimensions is set to “0”, then that Species

definition cannot set initialConcentration. (References: L2V1 Section 4.6.3; L2V2 Section 4.8.4;

L2V3 Section 4.8.4; L2V4 Section 4.8.4; L2V5 Section 4.8.4.)

20605. (Rule does not apply in SBML Level 2 Version 5.)

20606. (Rule does not apply in SBML Level 2 Version 5.)

20607. (Rule does not apply in SBML Level 2 Version 5.)

20608. The value of a Species’s substanceUnits attribute can only be one of the following: “substance”,

“mole”, “item”, “gram”, “kilogram”, “dimensionless”, or the identifier of a UnitDefinition de-

rived from “mole” (with an exponent of “1”), “item” (with an exponent of “1”), “gram” (with an

exponent of “1”), “kilogram” (with an exponent of “1”), or “dimensionless”. (References: L2V1

Section 4.6.4; L2V2 Section 4.8.5; L2V3 Section 4.8.5; L2V4 Section 4.8.5; L2V5 Section 4.8.5.)

20609. A Species cannot set values for both initialConcentration and initialAmount because they are

mutually exclusive. (References: L2V1 Section 4.6.3; L2V2 Section 4.8.4; L2V3 Section 4.8.4; L2V4

Section 4.8.4; L2V5 Section 4.8.4.)

20610. A Species’ quantity cannot be determined simultaneously by both reactions and rules. More formally,

if the identifier of a Species definition having boundaryCondition=“false” and constant=“false”

is referenced by a SpeciesReference anywhere in a model, then this identifier cannot also appear as

the value of a variable in an AssignmentRule or a RateRule. (References: L2V1 Section 4.6.5; L2V2

Section 4.8.6; L2V3 Section 4.8.6; L2V4 Section 4.8.6; L2V5 Section 4.8.6.)

20611. A Species having boundaryCondition=“false” cannot appear as a reactant or product in any reac-

tion if that Species also has constant=“true”. (References: L2V1 Section 4.6.5; L2V2 Section 4.8.6;

L2V3 Section 4.8.6; L2V4 Section 4.8.6; L2V5 Section 4.8.6.)

20612. The value of speciesType in a Species definition must be the identifier of an existing SpeciesType.

(References: L2V2 Section 4.8.2; L2V3 Section 4.8.2; L2V4 Section 4.8.2; L2V5 Section 4.8.2.)

152

20613. There cannot be more than one species of a given SpeciesType in the same compartment of a model.

More formally, for any given compartment, there cannot be more than one Species definition in

which both of the following hold simultaneously: (i) the Species’ compartment value is set to that

compartment’s identifier and (ii) the Species’ speciesType is set the same value as the speciesType

of another Species that also sets its compartment to that compartment identifier. (References: L2V2

Section 4.8.2; L2V3 Section 4.8.2; L2V4 Section 4.8.2; L2V5 Section 4.8.2.)

20614. The compartment attribute in a Species is mandatory. A species definition in a model must include

a value for this attribute. (References: L2V2 Section 4.8.3; L2V3 Section 4.8.3; L2V4 Section 4.8.3;

L2V5 Section 4.8.3.)

Parameter validation

20701. The units in a Parameter definition must be a value chosen from among the following: a predefined

unit (e.g., “substance”, “time”, etc.), the identifier of a UnitDefinition in the model, or one of the

base units in SBML (e.g., “litre”, “mole”, “metre”, etc.). (References: L2V1 Section 4.7.3; L2V2

Section 4.9.3; L2V3 Section 4.9.3; L2V4 Section 4.9.3; L2V5 Section 4.9.3.)

InitialAssignment validation

20801. The value of symbol in an InitialAssignment definition must be the identifier of an existing Com-

partment, Species, or Parameter defined in the model. (References: L2V2 Section 4.10.1; L2V3

Section 4.10; L2V4 Section 4.10; L2V5 Section 4.10.)

20802. A given identifier cannot appear as the value of more than one InitialAssignment’s symbol attribute

across the set of all InitialAssignments in a model. (References: L2V2 Section 4.10; L2V3 Section 4.10;

L2V4 Section 4.10; L2V5 Section 4.10.)

20803. The identifier given as the value of a symbol attribute in any InitialAssignment definition cannot

also appear as the value of the variable attribute in an AssignmentRule. In other words, a model

cannot simultaneously define both an initial assignment and an assignment rule for the same species,

compartment or parameter in a model. (References: L2V2 Section 4.10.4; L2V3 Section 4.10; L2V4

Section 4.10; L2V5 Section 4.10.)

20806. The identifier given as the value of a symbol attribute in any InitialAssignment definition cannot be the

identifier of a Compartment with a spatialDimensions value of “0”. (References: L2V5 Section 4.7.)

AssignmentRule and RateRule validation

20901. The value of an AssignmentRule’s variable must be the identifier of an existing Compartment,

Species, or globally-defined Parameter. (References: L2V1 Section 4.8.2; L2V2 Section 4.11.3; L2V3

Section 4.11.3; L2V4 Section 4.11.3; L2V5 Section 4.11.3.)

20902. The value of a RateRule’s variable must be the identifier of an existing Compartment, Species,

or globally-defined Parameter. (References: L2V1 Section 4.8.3; L2V2 Section 4.11.4; L2V3 Sec-

tion 4.11.4; L2V4 Section 4.11.4; L2V5 Section 4.11.4.)

20903. Any Compartment, Species or Parameter whose identifier is the value of a variable attribute in an

AssignmentRule, must have a value of “false” for constant. (References: L2V1 Section 4.8.4; L2V2

Section 4.11.3; L2V3 Section 4.11.3; L2V4 Section 4.11.3; L2V5 Section 4.11.3.)

20904. Any Compartment, Species or Parameter whose identifier is the value of a variable attribute in

a RateRule, must have a value of “false” for constant. (References: L2V1 Section 4.8.4; L2V2

Section 4.11.4; L2V3 Section 4.11.4; L2V4 Section 4.11.4; L2V5 Section 4.11.4.)

20905. (Rule removed because it was effectively a duplicate of 10304.)

153

20906. There must not be circular dependencies in the combined set of InitialAssignment, AssignmentRule

and KineticLaw definitions in a model. Each of these constructs has the effect of assigning a value

to an identifier (i.e., the identifier given in the attribute symbol in InitialAssignment, the attribute

variable in AssignmentRule, and the attribute id on the KineticLaw’s enclosing Reaction). Each of

these constructs computes the value using a mathematical formula. The formula for a given identifier

cannot make reference to a second identifier whose own definition depends directly or indirectly on

the first identifier. (References: L2V2 Section 4.11.5; L2V3 Section 4.11.5; L2V4 Section 4.11.5;

L2V5 Section 4.11.5.)

20911. The value of a RateRule or AssignmentRule’s variable attribute must not be the identifier of a

Compartment with a spatialDimensions value of “0”. (References: L2V5 Section 4.11.5.)

Constraint validation

21001. A Constraint math expression must evaluate to a value of type boolean. (References: L2V2 Sec-

tion 4.12.1; L2V3 Section 4.12; L2V4 Section 4.12; L2V5 Section 4.12.)

21002. The order of subelements within Constraint must be the following: math, message. The message

element is optional, but if present, must follow the math element. (References: L2V2 Section 4.12;

L2V3 Section 4.12; L2V4 Section 4.12; L2V5 Section 4.12.)

21003. The contents of the message element in a Constraint must be explicitly placed in the XHTML XML

namespace. (References: L2V3 Section 4.12.2; L2V4 Section 4.12.2; L2V5 Section 4.12.2.)

21004. The contents of the message element must not contain an XML declaration (i.e., a string of the form

“<?xml version="1.0" encoding="UTF-8"?>” or similar). (References: L2V3 Section 4.12.2; L2V4

Section 4.12.2; L2V5 Section 4.12.2.)

21005. The contents of the message element must not contain an XML DOCTYPE declaration (i.e., a string

beginning with the characters “<!DOCTYPE”. (References: L2V3 Section 4.12.2; L2V4 Section 4.12.2;

L2V5 Section 4.12.2.)

21006. The XHTML content inside a Constraint’s message element can only take one of the following general

forms: (1) a complete XHTML document beginning with the element <html> and ending with

</xhtml>; (2) the “body” portion of a document beginning with the element <body> and ending

with </body>; or (3) XHTML content that is permitted within a <body> ... </body> elements.

(References: L2V3 Section 4.12.2; L2V4 Section 4.12.2; L2V5 Section 4.12.2.)

Reaction validation

21101. A Reaction definition must contain at least one SpeciesReference, either in its listOfReactants or its

listOfProducts. A reaction without any reactant or product species is not permitted, regardless of

whether the reaction has any modifier species. (References: L2V2 Section 4.13.1; L2V3 Section 4.13.3;

L2V4 Section 4.13.3; L2V5 Section 4.13.3.)

21102. The order of subelements within Reaction must be the following (where every one is optional):

listOfReactants, listOfProducts, listOfModifiers, kineticLaw. (References: L2V2 Section 4.13;

L2V3 Section 4.13; L2V4 Section 4.13; L2V5 Section 4.13.)

21103. The following containers are all optional in a Reaction, but if any is present, it must not be empty:

listOfReactants, listOfProducts, listOfModifiers, kineticLaw. (References: L2V2 Section 4.13;

L2V3 Section 4.13; L2V4 Section 4.13; L2V5 Section 4.13.)

21104. The list of reactants (listOfReactants) and list of products (listOfProducts) in a Reaction can

only contain speciesReference elements. (References: L2V1 Section 4.9; L2V2 Section 4.13; L2V3

Section 4.13; L2V4 Section 4.13; L2V5 Section 4.13.)

154

21105. The list of modifiers (listOfModifiers) in a Reaction can only contain modifierSpeciesReference

elements. (References: L2V1 Section 4.9; L2V2 Section 4.13; L2V3 Section 4.13; L2V4 Section 4.13;

L2V5 Section 4.13.)

SpeciesReference and ModifierSpeciesReference validation

21111. The value of a SpeciesReference species attribute must be the identifier of an existing Species

in the model. (References: L2V1 Section 4.9.5; L2V2 Section 4.13.2; L2V3 Section 4.13.3; L2V4

Section 4.13.3; L2V5 Section 4.13.3.)

21112. (Rule removed because it was effectively a duplicate of 20611.)

21113. A SpeciesReference must not have a value for both stoichiometry and stoichiometryMath; they

are mutually exclusive. (References: L2V1 Section 4.9.5; L2V2 Section 4.13.3; L2V3 Section 4.13.3;

L2V4 Section 4.13.3; L2V5 Section 4.13.3.)

KineticLaw validation

21121. All species referenced in the KineticLaw formula of a given reaction must first be declared using

SpeciesReference or ModifierSpeciesReference. More formally, if a Species identifier appears in a

ci element of a Reaction’s KineticLaw formula, that same identifier must also appear in at least

one SpeciesReference or ModifierSpeciesReference in the Reaction definition. (References: L2V2

Section 4.13.5; L2V3 Section 4.13.5; L2V4 Section 4.13.5; L2V5 Section 4.13.5.)

21122. The order of subelements within KineticLaw must be the following: math, listOfParameters. The

listOfParameters is optional, but if present, must follow math. (References: L2V2 Section 4.13.5;

L2V3 Section 4.13.5; L2V4 Section 4.13.5; L2V5 Section 4.13.5.)

21123. If present, the listOfParameters in a KineticLaw must not be an empty list. (References: L2V2

Section 4.13.5; L2V3 Section 4.13; L2V4 Section 4.13; L2V5 Section 4.13.)

21124. The constant attribute on a Parameter local to a KineticLaw cannot have a value other than “true”.

The values of parameters local to KineticLaw definitions cannot be changed, and therefore they are

always constant. (References: L2V2 Section 4.9.4; L2V3 Section 4.9.4; L2V4 Section 4.9.4; L2V5

Section 4.9.4.)

21125. (Rule does not apply in SBML Level 2 Version 5.)

21126. (Rule does not apply in SBML Level 2 Version 5.)

StoichiometryMath validation

21131. All species referenced in the StoichiometryMath formula of a given reaction must first be declared

using SpeciesReference or ModifierSpeciesReference. More formally, if a Species identifier appears

in a ci element of a Reaction’s StoichiometryMath formula, that same identifier must also appear in

at least one SpeciesReference or ModifierSpeciesReference in the Reaction definition. (References:

L2V2 Sections 4.13.2 and 4.13.4; L2V3 Sections 4.13.2 and 4.13.4; L2V4 Sections 4.13.2 and 4.13.4;

L2V5 Sections 4.13.2 and 4.13.4.)

Event validation

21201. An Event object must have a trigger. (References: L2V1 Section 4.10.2; L2V2 Section 4.14.1; L2V3

Section 4.14.2; L2V4 Section 4.14.2; L2V5 Section 4.14.2.)

21202. An Event trigger expression must evaluate to a value of type boolean. (References: L2V1 Section

4.10.2; L2V2 Section 4.14.1; L2V3 Section 4.14.2; L2V4 Section 4.14.2; L2V5 Section 4.14.2.)

155

21203. An Event object must have at least one EventAssignment object in its listOfEventAssignments.

(References: L2V1 Section 4.10.5; L2V2 Section 4.14; L2V3 Section 4.14; L2V4 Section 4.14; L2V5

Section 4.14.)

21204. (Rule does not apply in SBML Level 2 Version 5.)

21205. The order of subelements within an Event object instance must be the following: trigger, delay,

listOfEventAssignments. The delay element is optional, but if present, must follow trigger.

(References: L2V2 Section 4.14; L2V3 Section 4.14; L2V4 Section 4.14; L2V5 Section 4.14.)

21206. If an Event’s useValuesFromTriggerTime attribute has the value “false”, then the Event must

contain a Delay element. The implication of useValuesFromTriggerTime=“false” is that there is

a delay between the time of trigger and the time of value assignments performed by the Event.

(References: L2V4 Section 4.14; L2V5 Section 4.14.)

EventAssignment validation

21211. The value of variable in an EventAssignment can only be the identifier of a Compartment, Species,

or model-wide Parameter definition. (References: L2V1 Section 4.10.5; L2V2 Section 4.14.2; L2V3

Section 4.14.4; L2V4 Section 4.14.4; L2V5 Section 4.14.4.)

21212. Any Compartment, Species or Parameter definition whose identifier is used as the value of variable

in an EventAssignment must have a value of “false” for its constant attribute. (References: L2V1

Section 4.10.5; L2V2 Section 4.14.2; L2V3 Section 4.14.4; L2V4 Section 4.14.4; L2V5 Section 4.14.4.)

156

D A method for assessing whether an SBML model is overdetermined

As explained in Section 4.11.5, an SBML model must not be overdetermined. It is possible to use purely static

analysis to assess this condition for the system of equations implied by a model, by constructing a bipartite

graph of the model’s variables and equations and then searching for a maximal matching (Chartrand, 1977).

An efficient algorithm for finding a maximal matching is described by Hopcroft and Karp (1973). In this

appendix, we provide a concrete application to SBML of the general approach described in Section 4.11.5.

The approach is defined in terms of the ordinary differential equations (ODEs) implied by an SBML model;

despite our use of a differential equation framework for this explanation, it should be understood that this

use of ODEs has no implication about the framework actually used to simulate the model.

Definition of the method

First, we assume that an ODE is constructed for each species determined by one or more Reaction’s KineticLaw

math expressions. We also assume that the model has already been determined to be valid in all other

respects (e.g., there are no undefined variables in the equations), and what remains is to evaluate whether

it is overdetermined.

We construct the bipartite graph for a given SBML model as follows:

1. For each of the following in the model, create one vertex representing an equation:

(a) Every Species object having boundaryCondition=“false”, constant=“false”, and which is ref-

erenced as a reactant or product in one or more Reaction objects containing KineticLaw objects

(b) Every AssignmentRule object

(c) Every RateRule object

(d) Every AlgebraicRule object

(e) Every KineticLaw object

2. For each of the following in the model, create one vertex representing a variable:

(a) Every Species object having constant=“false”

(b) Every Compartment object having constant=“false”

(c) Every global Parameter having constant=“false”

(d) Every Reaction object

3. For each of the following, create one edge:

(a) Every vertex created in step 2(a) to that species’ equation vertex created in step 1(a)

(b) Every vertex created in step 1(b) to the particular vertex created in steps 2(a)–2(d) that represents

the variable referenced by the variable attribute of the rule

(c) Every vertex created in step 1(c) to the particular vertex created in steps 2(a)–2(d) that represents

the variable referenced by the variable attribute of the rule

(d) Every vertex created in step 1(e) to the particular vertex created in step 2(d) that is the Reaction

object containing that particular KineticLaw object

(e) Every vertex created in steps 2(a)–2(d) representing an identifier appearing as the content of a

MathML ci element within an expression of an AlgebraicRule, to the vertex for that particular

AlgebraicRule created in step 1(d)

Example application of the method

What follows is an example of applying the method above to the SBML model shown below:

157

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version5" level="2" version="5">

<model id="example">

<listOfUnitDefinitions>

<unitDefinition id="per_second">

<listOfUnits>

<unit kind="second" exponent="-1"/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

<listOfCompartments>

<compartment id="C" size="1" constant="true"/>

</listOfCompartments>

<listOfSpecies>

<species id="S1" compartment="C" initialConcentration="1"/>

<species id="S2" compartment="C" initialConcentration="0"/>

</listOfSpecies>

<listOfRules>

<algebraicRule>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<plus/>

<ci> S1 </ci>

<ci> S2 </ci>

</apply>

</math>

</algebraicRule>

</listOfRules>

<listOfReactions>

<reaction id="R">

<listOfReactants>

<speciesReference species="S1"/>

</listOfReactants>

<listOfProducts>

<speciesReference species="S2"/>

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci> C </ci>

<ci> k1 </ci>

<ci> S1 </ci>

</apply>

</math>

<listOfParameters>

<parameter id="k1" value="0.1" units="per_second"/>

</listOfParameters>

</kineticLaw>

</reaction>

</listOfReactions>

</model>

</sbml>

For the model above, we create equation vertices as follows:

1. [Corresponding to step 1(a) in Section D.] Every Species object having boundaryCondition=“false”,

constant=“false”, and which is referenced as a reactant or product in one or more Reaction objects

containing KineticLaw objects. This generates two vertices, for “S1” and “S2”.

2. [Corresponding to step 1(b) in Section D.] Every AlgebraicRule object. This generates one vertex, for

the model’s lone algebraic rule (call it “rule”).

3. [Corresponding to step 1(e) in Section D.] Every KineticLaw object. This generates one vertex, for the

lone kinetic law in the model (call it “law”).

158

We create variable vertices for the following:

1. [Corresponding to step 2(a) in Section D.] Every Species object having constant=“false”. This

generates two vertices, for “S1” and “S2”.

2. [Corresponding to step 2(d) in Section D.] Every Reaction object. This generates one vertex, for “R”.

Note that it is not necessary to include parameters declared within KineticLaw objects because they are local

to a particular reaction and cannot be affected by rules. With the steps above, we have the following set of

graph nodes:

Vertices for equations

S1 S2 rule law

S1 S2 R

Vertices for variables

Next, we create edges following the procedure described above. Doing so results in the following graph:

Vertices for equations

S1 S2 rule law

S1 S2 R

Vertices for variables

The algorithm of Hopcroft and Karp (1973) can now be applied to search for a maximal matching of the

bipartite graph. A maximal matching is a graph in which each vertex is connected to at most one other

vertex and the maximum possible number of connections have been made. Doing so here results in the

following:

Vertices for equations

S1 S2 rule law

S1 S2 R

Vertices for variables

If the maximal matching of the bipartite graph leaves any equation vertex unconnected, then the model is

considered overdetermined. That is the case for the example shown here, because the equation vertex for

“rule” is unconnected in the maximal matching.

159

E Mathematical consequences of the fast attribute on Reaction

Section 4.13.1 described the fast flag available on Reaction. In this appendix, we discuss the principles

involved in interpreting this attribute in the context of a simple biochemical reaction model. The derivation

presented here is not fully rigorous and this section is not considered normative; achieving a higher level of

rigor would require considerably more background exposition and a much longer appendix. Nevertheless, we

hope this section is sufficient to answer unambiguously the question “How should a system of reactions be

treated if some of the reactions have fast=true?”

Identification of “fast” reactions

First, it is worth noting that the identification of so-called fast reactions is actually a modeling issue, not an

SBML representation issue. The notion of fast reactions is the following. A system may be decomposable

into two sets of reactions, where one set may have characteristic times that are much faster than the other

time scales in the system. An approximation that is sometimes useful is to assume that the fast reactions

have kinetics that settle infinitely fast compared to the other reactions in the system. In other words, the

fast reactions are assumed to be always in equilibrium. This is called a pseudo-steady state approximation

(PSSA), and is also known as a quasi-steady state approximation (QSSA). Given a case where the time-scale

separation between fast and other reactions in the system is large, an accurate and efficient approach for

computing the time-course of the system behavior is to treat the fast reactions as being always in equilibrium.

The key to successful application of a PSSA is that there should be a significant separation of time scales

between these fast reactions and other reactions in the system. The determination of which reactions qualify

as fast is up to the creator of the model, because there is currently no known general algorithm for doing so.

Simple one-compartment biochemical system model

To explain how to solve a system containing fast reactions, we use a simple model of a biochemical reaction

network located in a single compartment. Let x∗ represent a vector of all the species in the system, v∗ a

vector of the reaction rates, and A∗ the stoichiometry matrix, with the vector dimension being n∗. Then

the system can be described using the following matrix equation:

dx∗

dt
= A∗ v∗(x∗)

This system can be optionally reduced by noting that mass conservation usually implies there are linear

combinations of species quantities in the system and the value of these combinations do not change over time.

Identifying these combinations is the topic of structural analysis and is described in the literature (Reder,

1988; Sauro and Ingalls, 2003). Briefly, let N be defined as the left null space of A∗:

NA∗ = 0

Now, premultiply the previous equation by N to get

N
dx∗

dt
= NA∗v∗(x∗) = 0

Thus, N captures the space of solutions to the equation

mT

(
dx∗

dt

)
= 0

where m is a vector representing the coefficients in a mass conservation relationship, that is, combinations

of species that are time-invariant. Now, let

r = rank(A∗)

n = dim(x∗)

160

Then the system has n− r mass conservation relationships, each of which is a linear equation. We can use

these n − r linear equations to solve for n − r dependent variables in terms of r independent variables and

the initial masses of all species. Doing that allows us to decompose x∗ into n − r dependent variables xd

and r independent variables xi where L is an (n − r) × r matrix that is derived from N and represents xd

in terms of xi, I is the r × r identity matrix, and T is an n× r matrix:

x∗ ≡
[
xi

xd

]
=

[
I
L

]
xi = Txi

Using this equation, we can define a new vector of reaction velocities v in terms of xi only:

v(xi) ≡ v∗(Txi)

With this v, we can now write a reduced system by substituting terms. First we define A as the r independent

rows of A∗corresponding to xi. Then:

dxi

dt
= Av(xi)

This is a set of r independent differential equations in r unknowns (i.e., an r-dimensional system). To

simplify the notation slightly, let

x ≡ xi

and, thus,

dx

dt
= Av(x)

Application of a PSSA to biochemical systems

Assume that we have eliminated redundant variables and equations using the mass conservation analysis

above. Further assume that we have some external means of classifying some reactions in a given system

as being fast as discussed earlier. We now need to apply this to the system under study. We begin by

decomposing the vector of reaction velocities v according to fast and slow reactions:

dx

dt
= A1vf (x) + A2vs(x)

In the expression above, A1 represents the stoichiometry of the set of reactions operating on the fast time

scale, and A2 the stoichiometry of the set of reactions operating on a slower time scale. We find the left null

space of A1 (i.e., the space of solutions to mT [dx/dt] = 0 on a fast time scale), and call this matrix B:

BA1 = 0

The matrix B represents the linear combination of species that do not change on a fast time scale, i.e., the

slow species in the system. Now, we premultiply the equation for dx/dt by B:

B
dx

dt
= BA1vf (x) + BA2vs(x)

= BA2vs(x)

where the second line follows from the fact that BA1 = 0. The above is an ordinary differential equation in

terms of only the slow dynamics. The remaining fast dynamics are handled by applying the pseudo-steady

state approximation, with fast transients assumed to have settled with respect to the slow time scale. This

produces a system of nonlinear algebraic equations:

A1vf = 0

The last two equations form the system of equations resulting from the application of the PSSA. If r1 =

rank(A1) and r = rank(A), then there will be r1 degrees of freedom that will be determined by solving an

algebraic system (the equation A1vf = 0 above), and there will be r − r1 degrees of freedom that will be

determined by ordinary differential equations (the equation for B dx/dt).

161

F Processing and validating SBase notes and Constraint message content

In Section 3.2.3 and Section 4.12.2, we discussed the notes element on SBase and the message element on

Constraint, respectively. These elements can contain a number of possible forms of XHTML content. In

this appendix, we describe a general procedure for how application software can process such content. We

concentrate on the common case of an SBML-reading application that needs to take the contents and pass

it to an XHTML display and/or editing function obtained from a third-party API library. The content of

the notes and message may not be a complete XHTML document, so the application will have to perform

some processing before handing it to the XHTML editor or validator. How should this be done?

Based on the three forms of SBase notes content described in Section 3.2.3 and the identical forms for

Constraint message described in Section 4.12.2, there are only three cases possible. Here we give an example

approach for handling them, although the actual implementation details will differ depending on various

factors such as the requirements of the software libraries being used. This example approach would be

performed for each notes and message to be viewed or edited:

Step 1. If the XHTML viewing/editing function requires a fully compliant XML document, the SBML

application could create a temporary data object containing an appropriate XML declaration and a

DOCTYPE declaration; otherwise, the XML data object can be initially blank.

Step 2. The application should look at the first element inside the notes or message (or rather, the first

element that is not an XML comment), and take action based on the following three possibilities:

• If the first element begins with <html xmlns="http://www.w3.org/1999/xhtml">, the application

could assume that the content is a complete XHTML document and insert this into the temporary

data object.

• Else, if the first element is <body>, the application should insert the following into the temporary

data object,

<html xmlns="http://www.w3.org/1999/xhtml">

<head><title></title></head>

then insert the content of the notes or message, and finally insert a closing </html>.

• Else, if the content begins with neither of the above elements, the application should insert the

following into the temporary data object,

<html xmlns="http://www.w3.org/1999/xhtml">

<head><title></title></head>

<body>

then insert the content of the notes or message, and finally insert </body></html> to close the

XHTML document.

The result of the above would be a temporary XML data object that the application could then pass to the

XHTML viewing/editing API function.

162

G Major changes between versions of SBML Level 2 and implications for back-

ward compatibility

In this section, we list the cumulative changes introduced in SBML Level 2 since Version 1.

G.1 Between Version 2 and Version 1

The following features were removed between SBML Level 2 Version 1 and Version 2:

• The offset attribute on UnitDefinition. (See Section 4.4.2.) The definition of offsets in SBML Level 2

Version 1 was in fact incorrect; moreover, a proper implementation would have required a complete

change in the SBML unit scheme. Few models appeared to use offsets on unit definitions, so the impact

of this change on models is expected to be small.

• The “Celsius” predefined unit. (See Section 4.4.2.) The removal of offsets on unit definitions meant an

inconsistency existed if the Celsius predefined unit was left in the system. Removing Celsius removes

the inconsistency. Alternative ways of using Celsius are discussed in Section 4.4.2.

• The substanceUnit and timeUnits attributes on KineticLaw. (See Section 4.13.5.) The ability to

redefine the substance units on each reaction separately, coupled with other features in SBML Level 2

Version 1, created the opportunity for defining a valid system of reactions which potentially could not

be combined into a consistent system of equations without external knowledge.

The following features were deprecated between SBML Level 2 Version 1 and Version 2:

• The charge attribute on Species. (See Section 4.8.7.) This attribute does not appear to be supported

by any existing software, and moreover, since its value cannot be accessed from mathematical formulas

in SBML, the impact of this change is expected to be small.

The following additional changes were made between SBML Level 2 Version 1 and Version 3:

• SBML Level 2 Version 1 did not clearly specify the value space of integer and floating-point numbers

permitted in the MathML expressions in SBML; moreover, it used the XML Schema type “integer”

instead of SBML Level 2 Version 2’s “int”. Although extremely unlikely, some previously valid SBML

Level 2 Version 1 documents may not be valid in Version 2 and Version 3 as a result of these changes.

See Sections 3.1.3, 3.1.5 and 3.4.2 for more information.

• SBML Level 2 Version 1 did not define a default value for the attribute fast on Reaction. SBML

Level 2 Version 2 introduced a default value, and the value is “false”. Further, SBML now requires

that software tools must respect the value or indicate to the user that they do not have the capacity

to do so. See Section 4.13.1.

• As of SBML Level 2 Version 2, SBML is somewhat stricter about how the content of annotation

elements must be organized and written. Previously valid SBML Level 2 Version 1 documents may

need changes to their annotation elements to comply with the specification beginning with Version 2

and Version 3. See Section 3.2.4 for more details.

• As of SBML Level 2 Version 2, SBML is slightly stricter about how the content of notes elements must

be organized. Previously valid SBML Level 2 Version 1 documents may need changes to their notes

elements to comply with the specification beginning with Version 2 and Version 3. See Section 3.2.3

for more details.

• SBML Level 2 Version 2 corrected numerous errata and ambiguities discovered in SBML Level 2

Version 1. These errata are listed on the project web site at http://sbml.org. As a result of changes

to SBML Level 2 implied by these errata, some existing SBML Level 2 Version 1 models, even when

modified as explained above, may still not be compliant with Version 2 or Version 3. The ultimate

impact of the changes depends on the specific features used by a given model and the assumptions

under which the model was created.

163

http://sbml.org

G.2 Between Version 3 and Version 2

The following features were removed between SBML Level 2 Version 2 and Version 3:

• The spatialSizeUnits attribute on Species. (See Section 4.8.5.) This attribute introduced an implicit

unit conversion between the spatial units used in defining the quantity of a species and the size of

the compartment in which the species was located. Moreover, the semantics of spatialSizeUnits

were confusing and required complicated unit conversions to be written explicitly into reaction rate

expressions by either the modeler or the software. Although the conversions could be worked out

unambiguously, the potential for error was judged to exceed by far the utility of this feature.

• The timeUnits attribute Event. (See Section 4.14.) This attribute was judged to add needless com-

plexity and inconsistency. For instance, the ability to change the time units of the delay of an Event

to be different from the units of time for the whole model meant that computing an Event’s time of

triggering and its delay might have to be done using two different sets of units. The ability to redefine

the units of time for the delay of an Event was also inconsistent with the lack of such an attribute on

other SBML components involving an element of time; for example, RateRule, and now KineticLaw,

have no such attributes.

The following additional changes were made between SBML Level 2 Version 2 and Version 3:

• The definition of the XML type ID was incorrectly given in the SBML Level 2 Version 2 specification.

This type is used as the type of the attribute metaid on SBase. The error in the definition of ID

was such that the type did not include the colon (:) character and all Unicode characters actually

permitted in XML ID. This change is therefore entirely backward compatible: all models with valid

metaid values valid prior to SBML Level 2 Version 3 are still valid under the new definition.

• The SBML specifications prior to SBML Level 2 Version 3 did not indicate what units are as-

sumed for literal numbers appearing in MathML expressions (i.e., numbers inside MathML’s cn el-

ements). SBML Level 2 Version 3 stipulates that there are no units associated with numbers (not even

“dimensionless”), and provides suggestions for how to associate units with numbers (Section 3.4.2).

• The SBML specifications prior to SBML Level 2 Version 3 did not make clear what units are required

by the arguments to various MathML operators and other constructs. SBML Level 2 Version 3 clarifies

this (Section 3.4.11).

• The UnitKind enumeration previously defined in the context of Unit and UnitDefinition has been elim-

inated in favor of simply defining the symbols as reserved words in the value space of UnitSId. This

has no effect on written models and is completely backward compatible. It was done to resolve the

problem that, previously, the values in UnitKind were technically inaccessible from attributes whose

data type was UnitSId.

• The SBML specification did not point out that the value space of the data type boolean is differ-

ent in MathML 2.0 and XML Schema 1.0. This means that the permitted values of attributes on

SBML objects is different from the values permitted in MathML formulas. (Section 3.1.2 explains the

difference.)

• The SBML specifications were inconsistent about the permitted number of items inside listOf

lists: the text portion of the specifications claimed the lists could have zero length, but the XML Schema

definition for SBML required one or more items. As of SBML Level 2 Version 3, the specification is

consistent on requiring one or more items inside these lists.

• The SBO term hierarchy (Section 5) has grown in the time intervening between SBML Level 2 Version 2

and Version 3, and the mapping of terms between SBO and SBML components was revised as a result

of community discussions during the 2006 SBML Forum meeting.

164

• The sboTerm attribute, introduced on many components in SBML Level 2 Version 2, has been moved

to SBase as an optional attribute and removed from the individual components. The result is that

all model components may now have SBO terms associated with them. This change is completely

backward compatible.

• A number of validation rules in Appendix C have been introduced; some were missing from previous

specifications, and some were added to cover changes introduced in SBML Level 2 Version 3 (for

example, for validation of SBO terms assigned to various SBML model components).

• The SBML specifications prior to SBML Level 2 Version 3 did not adequately explain the assumptions

regarding XML namespace declarations within the annotation element on SBML components. SBML

Level 2 Version 3 makes these assumptions more explicit, including the assumption that applications

may not preserve another applications annotations unless those annotations are self-contained with the

XML Namespace declaration. See Section 3.2.4 for more details.

G.3 Between Version 4 and Version 3

The following significant changes exist between SBML Level 2 Version 3 and Version 4:

• The result of an SBML community vote taken late in 2007 indicated that users and developers preferred

SBML not to require consistency of units of measurement on quantities and mathematical expressions

in a model. Consequently, the language and validation rules involving units in SBML Level 2 Version 4

have been changed to use the wording “should” instead of “must”—units should be consistent, but

models that do not exhibit strict unit consistency are not invalid.

• Discussions held on the sbml-discuss@caltech.edu mailing list in 2007–2008 as well as the SBML

Forum Meeting in 2008 (Göteborg, Sweden) made clear two points about Event: (1) many developers

misunderstood the specification with regards to the time at which the mathematical formula in an

EventAssignment was to be evaluated, and implemented the computation such that it was performed

at the time the event was executed instead of (as the specification actually stipulated) the time at

which the event was fired ; and (2) once informed, most developers found the actual definition in the

SBML specification counterintuitive. We believed it would have been too confusing and error-prone to

change the sense of the assignments between versions of an SBML Level, so in order to address popular

demand, Version 4 includes a new attribute (useValuesFromTriggerTime) on Event allowing a model to

indicate which sense is intended. The default value of the useValuesFromTriggerTime attribute results

in the same interpretation of an Event’s EventAssignments that SBML Level 2 Version 3 specifies. There

is also a new validation rule (21206) related to the new attribute, and the SBML schema presented in

Appendix A includes the new useValuesFromTriggerTime attribute in the definition of Event.

• SBML Level 2 Version 3 had small syntactic errors in the RDF described in Section 6. Version 4

includes corrected RDF.

• Version 3 never made explicit the requirement that the number of arguments in a call to a user-defined

function must match the number of arguments defined in the instance of the FunctionDefinition. SBML

Level 2 Version 4 contains a new subsection (4.3.4) and a new validation rule (10219) to capture this

requirement.

• The description of Compartment’s outside attribute mistakenly stated that the compartment referenced

by the attribute value must be one that is already defined in the model, meaning that compartments

had to be defined before being referenced. There was no validation rule to that effect, and moreover,

this requirement was at odds with the general trend in later versions of SBML Level 2 to remove

requirements for element ordering. In Version 4, Section 4.7.7 no longer implies a requirement for

ordering.

• Prior to SBML Level 2 Version 4, it was never made clear what, if any, relationship existed between

the sizes of compartments when compartments defined inside/outside relationships using the outside

attribute. A new paragraph in Section 4.7.4 of the Version 4 specification makes clear there is no

165

http://sbml.org/Forums

implication on compartment sizes—the size of the outside compartment does not include the size(s)

of the inside compartment(s). Moreover, additional clarifications have been added to explain that

outside does not necessarily imply a containment relationship between compartments.

• Since the time that SBML Level 2 Version 3 Release 2 was issued, three new MIRIAM qualifiers have

been defined by the MIRIAM project: bqbiol:isEncodedBy, bqbiol:encodes, and bqbiol:occursIn.

Section 6 now includes these qualifiers.

• Since the time that SBML Level 2 Version 3 Release 2 was issued, the Systems Biology Ontology

(SBO) underwent reorganization and improvement. This required numerous changes to Section 5 to

be consistent with SBO now. Chief among the changes that impact SBML models are that (1) the

SBO branches for Model, CompartmentType, SpeciesType, Compartment and Species have all changed

slightly, and (2) the SBML Level 2 Version 4 specification does not require specific choices for sboTerm

attribute values, only recommends them.

• There were some cut-and-paste errors in the text of the descriptions of the sboTerm attribute on several

SBML components such as Species, SpeciesType, and others. The text of the Version 4 specification

includes corrections for this.

• Prior Versions of SBML Level 2 used three validation rules, 20406, 20407, and 20408, to encode

requirements about the predefined unit volume. This was inconsistent and not parallel with the way

validation rules for the other predefined units such as substance were defined. In Version 4, the rules

20407 and 20408 are no longer defined and their content has been moved into rule 20406.

• In Section 4.1, SBML Level 3 specifications stated that “well-formed XML documents must begin

with an XML declaration”. In fact, this is false; the requirement is stipulated in XML 1.1, not in

XML 1.0—the version of XML that SBML actually uses. However, as a concession to helping greater

software portability, SBML Level 4 nonetheless requires the XML declaration to be present.

• Since elsewhere in SBML, the requirements on ordering of elements have been eliminated, the SBML

Editors decided there was no point in maintaining the ordering requirement on function definitions.

Therefore, in SBML Level 2 Version 4, forward references to other user-defined functions are permitted.

(However, recursive or mutually recursive functions are still prohibited.) This also causes the removal

of validation rule number 20302.

• Validation rules 10211, 10212, and 10708 used vague language about requirements; these have been

corrected to be specific.

G.4 Between Version 5 and Version 4

Most of the changes between Version 5 and Version 4 are minor corrections to small errors and improve the

clarify of some explanations. The following are the more significant changes exist between Version 4 and

Version 5:

• A long-standing problem present in all previous versions of SBML Level 2 is that the RDF subset

defined does not allow annotations of annotations. In Version 5, this is remedied by allowing nested

RDF content. (Section 6.3.)

• The Version 4 specification fails to stipulate whether the delay csymbol can be used within a Func-

tionDefinition object, yet it explicitly disallows the time csymbol. In the interest of consistency and

simplicity, the csymbol for delay is also disallowed in Level 2 Version 5. A validation rule for this

requirement is also now part of the specification.

• The set of MIRIAM Qualifiers mentioned in the specification has been updated to include new terms

such as hasTaxon. (We remind readers, however, that the intention was always for users to consult the

current list of MIRIAM Qualifiers online rather than rely on the non-normative and possibly outdated

set discussed in the SBML specifications.)

166

• The links to MIRIAM Identifiers and MIRIAM Qualifiers have changed since the time of the Version 4

specification. To future-proof what is printed in the SBML specification documents, SBML.org now

maintains perennial URLs, http://sbml.org/miriam/qualifiers and http://sbml.org/miriam, that

will always point to the correct URL even if the future URL for MIRIAM Resources changes. The

Version 5 specification refers to these URLs. Finally, where appropriate, the Version 5 specification

uses identifiers.org URIs.

• In Section 4.1, the explanation of the <sbml> element in the Version 4 specification mentioned only

that the attributes level and version were required, when in fact the attribute xmlns is also required.

• In Figure 5 of the Version 4 specification, the symbol NCNameChar is used, but in fact it should be

NameChar, per the XML 1.0 Third Edition. There is no other change in the definition or implications;

the wrong name appears in the Version 4 specification, but the correct definition for NameChar was

given. The Version 5 specification corrects this.

• The Dublin Core Metadata Initiative updated the namespace http://purl.org/dc/terms/ to include

the terms in http://purl.org/dc/elements/1.1/. Therefore, SBML does not need to declare the

second namespace, contrary to the examples in Section 6 of the Version 4 specification. The use of the

http://purl.org/dc/elements/1.1/ namespace is deprecated in SBML Level 2 Version 5.

• The names of many terms in the Systems Biology Ontology (SBO) changed since the time the specifi-

cation for Version 4 was issued, and some subtrees in the ontology changed structure. The Version 5

specification reflects the current SBO terms and structure.

• The Version 4 specification included a statement that stoichiometry values “should be greater than

zero”. There was no matching validation rule for this principle. The statement has been removed.

• The value of 0-dimensional compartments cannot be changed, but the Version 4 specification does not

state this explicitly. Also, the identifiers of 0-dimensional compartments cannot appear in mathematical

formulas. Both of these points are made explicit in the Version 5 specification.

• The validation rule forbidding recursive FunctionDefinition objects (rule 20303) has been extended to

explicitly mention that indirect recursion is also not allowed.

• The Version 4 specification did not define a data type for the useValuesFromTriggerTime attribute on

Event. The type is Boolean and the Version 5 specification defines it.

• The Version 4 specification in Section 4.9.4 stated that local parameters in Reaction objects should

not have the value “false” for their attribute constant. The statement should read must : local

parameters must not set the constant attribute to “false”.

• Throughout the Version 4 specification, sometimes SBase is spelled SBase and sometimes it is spelled

Sbase. The inconsistency is simply a typographical error perpetuated via a LATEX macro used in the

document. The preferred spelling is SBase. This is also the spelling used in the XML Schema for

SBML.

• A new section (Section 3.4.9) exists in the Version 5 specification explaining how underdetermined

models should be treated.

167

http://sbml.org/miriam/qualifiers
http://sbml.org/miriam
identifiers.org

References

Abbott, A. (1999). Alliance of US labs plans to build map of cell signalling pathways. Nature, 402:219–200.

Abramowitz, M. and Stegun, I. A., editors (1977). Mathematical Functions: With Formulas, Graphs, and

Mathematical Tables. Dover Publications Inc.

Ausbrooks, R., Buswell, S., Carlisle, D., Dalmas, S., Devitt, S., Diaz, A., Froumentin, M., Hunter, R., Ion,

P., Kohlhase, M., Miner, R., Poppelier, N., Smith, B., Soiffer, N., Sutor, R., and Watt, S. (2003). Math-

ematical Markup Language (MathML) Version 2.0 (second edition): W3C Recommendation 21 October

2003. Available via the World Wide Web at http://www.w3.org/TR/2003/REC-MathML2-20031021/.

Biron, P. V. and Malhotra, A. (2000). XML Schema part 2: Datatypes (W3C candidate recommendation

24 October 2000). Available via the World Wide Web at http://www.w3.org/TR/xmlschema-2/.

Bosak, J. and Bray, T. (1999). XML and the second-generation Web. Scientific American, 280(5):89–93.

Bray, T., D. Hollander, D., and Layman, A. (1999). Namespaces in XML. W3C 14-January-1999. Available

via the World Wide Web at http://www.w3.org/TR/1999/REC-xml-names-19990114/.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., and Maler, E. (2000). Extensible markup language (XML)

1.0 (second edition), W3C recommendation 6-October-2000. Available via the World Wide Web at http:

//www.w3.org/TR/1998/REC-xml-19980210.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F. (2004). Extensible markup

language (XML) 1.0 (third edition), W3C recommendation 4-February-2004. Available via the World

Wide Web at http://www.w3.org/TR/2004/REC-xml-20040204.

Bureau International des Poids et Mesures (2000). The International System of Units (SI) supplement

2000: addenda and corrigenda to the 7th edition (1998). Available via the World Wide Web at http:

//www.bipm.fr/pdf/si-supplement2000.pdf.

Chartrand, G. (1977). Introductory Graph Theory. Dover Publishing, Inc., New York.

Courtot, M., Juty, N., Knpfer, C., Waltemath, D., Zhukova, A., Drger, A., Dumontier, M., Finney, A.,

Golebiewski, M., Hastings, J., Hoops, S., Keating, S., Kell, D. B., Kerrien, S., Lawson, J., Lister, A., Lu,

J., Machne, R., Mendes, P., Pocock, M., Rodriguez, N., Villeger, A., Wilkinson, D. J., Wimalaratne, S.,

Laibe, C., Hucka, M., and Le Novre, N. (2011). Controlled vocabularies and semantics in systems biology.

Mol Syst Biol, 7:543.

DCMI Usage Board (2005). DCMI Metadata Terms. Available online via the World Wide Web at the

address http://www.dublincore.org/documents/dcmi-terms/.

Dublin Core Metadata Initiative (2005). Dublin Core metadata initiative. Available via the World Wide

Web at http://dublincore.org/.

Eriksson, H.-E. and Penker, M. (1998). UML Toolkit. John Wiley & Sons, New York.

Fallside, D. C. (2000). XML Schema part 0: Primer (W3C candidate recommendation 24 October 2000).

Available via the World Wide Web at http://www.w3.org/TR/xmlschema-0/.

Gillespie, D. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81:2340–

2361.

Gilman, A. (2000). A letter to the signaling community. Alliance for Cellular Signaling, The University

of Texas Southwestern Medical Center. Available via the World Wide Web at http://afcs.swmed.edu/

afcs/Letter_to_community.htm.

Harold, E. R. and Means, E. S. (2001). XML in a Nutshell. O’Reilly & Associates.

168

http://www.w3.org/TR/2003/REC-MathML2-20031021/.
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.bipm.fr/pdf/si-supplement2000.pdf
http://www.bipm.fr/pdf/si-supplement2000.pdf
http://www.bipm.fr/pdf/si-supplement2000.pdf
http://www.dublincore.org/documents/dcmi-terms/
http://dublincore.org/
http://www.w3.org/TR/xmlschema-0/
http://afcs.swmed.edu/afcs/Letter_to_community.htm
http://afcs.swmed.edu/afcs/Letter_to_community.htm
http://afcs.swmed.edu/afcs/Letter_to_community.htm

Hedley, W. J., Nelson, M. R., Bullivant, D., Cuellar, A., Ge, Y., Grehlinger, M., Jim, K., Lett, S., Nickerson,

D., Nielsen, P., and Yu, H. (2001). CellML specification. Available online via the World Wide Web at

http://www.cellml.org/specification.

Hopcroft, J. E. and Karp, R. M. (1973). An n5/2 algorithm for maximum matchings in bipartite graphs.

SIAM Journal on Computing, 2(4):225–231.

Hucka, M., Finney, A., Sauro, H. M., and Bolouri, H. (2001). Systems Biology Markup Language (SBML)

Level 1: Structures and facilities for basic model definitions. Available via the World Wide Web at

http://www.sbml.org/Documents/Specifications.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J.,

Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I.,

Hedley, W. J., Hodgman, T. C., Hofmeyr, J.-H., Hunter, P. J., Juty, N. S., Kasberger, J. L., Kremling, A.,

Kummer, U., Le Novère, N., Loew, L. M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E. D., Nakayama,

Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence,

H. D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., and Wang, J. (2003). The Systems Biology

Markup Language (SBML): A medium for representation and exchange of biochemical network models.

Bioinformatics, 19(4):524–531.

Iannella, R. (2001). Representing vCard objects in RDF/XML. Available via the World Wide Web at

http://www.w3.org/TR/vcard-rdf.

Jacobs, I. (2004). World Wide Web Consortium process document. Available via the World Wide Web at

http://www.w3.org/2004/02/Process-20040205/.

Kokkelink, S. and Schwänzl, R. (2002). Expressing qualified Dublin Core in RDF/XML. Available via the

World Wide Web at http://dublincore.org/documents/dcq-rdf-xml/index.shtml.

Lassila, O. and Swick, R. (1999). Resource description framework (RDF) model and syntax specification.

Available via the World Wide Web at http://www.w3.org/TR/REC-rdf-syntax/.

Le Novère, N., Finney, A., Hucka, M., Bhalla, U., Campagne, F., Collado-Vides, J., Crampin, E. J., Halstead,

M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B., Snoep, J. L., Spence, H. D., and Wanner,

B. L. (2005). Minimum information requested in the annotation of biochemical models (MIRIAM). Nature

Biotechnology, 23:1509–1515.

Oestereich, B. (1999). Developing Software with UML: Object-Oriented Analysis and Design in Practice.

Addison-Wesley Publishing Company.

Pemberton, S., Austin, D., Axelsson, J., Celik, T., Dominiak, D., Elenbaas, H., Epperson, B., Ishikawa, M.,

Matsui, S., McCarron, S., Navarro, Peruvemba, S., Relyea, R., Schnitzenbaumer, S., and Stark, P. (2002).

XHTML
TM

1.0 the Extensible HyperText Markup Language (second edition): W3C Recommendation 26

January 2000, revised 1 August 2002. Available via the World Wide Web at http://www.w3.org/TR/

xhtml1/.

Popel, A. and Winslow, R. L. (1998). A letter from the directors. . . . Center for Computational Medicine

& Biology, Johns Hopkins School of Medicine, Johns Hopkins University. Available via the World Wide

Web at http://www.bme.jhu.edu/ccmb/ccmbletter.html.

Reder, C. (1988). Metabolic Control Theory: a structural approach. Journal of Theoretical Biology, 135:175–

201.

Sauro, H. M. and Ingalls, B. (2003). Conservation analysis in biochemical networks: Computational issues

for software writers. Available at http://www.math.uwaterloo.ca/˜bingalls/Pubs/conservation.pdf.

Smaglik, P. (2000). For my next trick. . . . Nature, 407:828–829.

169

http://www.cellml.org/specification
http://www.sbml.org/Documents/Specifications
http://www.w3.org/TR/vcard-rdf
http://www.w3.org/2004/02/Process-20040205/
http://dublincore.org/documents/dcq-rdf-xml/index.shtml
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.bme.jhu.edu/ccmb/ccmbletter.html
http://www.math.uwaterloo.ca/~bingalls/Pubs/conservation.pdf

Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N. (2000). XML Schema part 1: Structures

(W3C candidate recommendation 24 October 2000). Available online via the World Wide Web at the

address http://www.w3.org/TR/xmlschema-1/.

Unicode Consortium (1996). The Unicode Standard, Version 2.0. Addison-Wesley Developers Press, Reading,

Massachusetts.

W3C (2000a). Naming and addressing: URIs, URLs, Available online via the World Wide Web at

http://www.w3.org/Addressing/.

W3C (2000b). W3C’s math home page. Available via the World Wide Web at http://www.w3.org/Math/.

W3C (2004a). RDF/XML syntax specification (revised). Available online via the World Wide Web at

http://www.w3.org/TR/rdf-syntax-grammar/.

W3C (2004b). Resource description framework (RDF). Available online via the World Wide Web at the

address http://www.w3.org/RDF/.

Wilkinson, D. J. (2006). Stochastic Modelling for Systems Biology. Chapman & Hall/CRC.

Wolf, M. and Wicksteed, C. (1998). Date and time formats. Available online via the World Wide Web at

http://www.w3.org/TR/NOTE-datetime.

Zwillinger, D., editor (1996). Standard Mathematical Tables and Formulae. CRC Press LLC, 30th edition.

170

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/Addressing/
http://www.w3.org/Math/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/RDF/
http://www.w3.org/TR/NOTE-datetime

	1 Introduction
	1.1 Developments, discussions, and notifications of updates
	1.2 SBML Levels, Versions, and Releases
	1.3 Language features and backward compatibility
	1.4 Document conventions

	2 Overview of SBML
	3 Preliminary definitions and principles
	3.1 Primitive data types
	3.2 Type SBase
	3.3 The id and name attributes on SBML components
	3.4 Mathematical formulas in SBML Level 2

	4 SBML components
	4.1 The SBML container
	4.2 Model
	4.3 Function definitions
	4.4 Unit definitions
	4.5 Compartment types
	4.6 Species types
	4.7 Compartments
	4.8 Species
	4.9 Parameters
	4.10 Initial assignments
	4.11 Rules
	4.12 Constraints
	4.13 Reactions
	4.14 Events

	5 The Systems Biology Ontology and the sboTerm attribute
	5.1 Principles
	5.2 Using SBO and sboTerm
	5.3 Relationships to the SBML annotation element
	5.4 Discussion

	6 A standard format for the annotation element
	6.1 Motivation
	6.2 XML namespaces in the standard annotation
	6.3 General syntax for the standard annotation
	6.4 Use of URIs
	6.5 Relation elements
	6.6 Model history
	6.7 Examples

	7 Example models expressed in XML using SBML
	7.1 A simple example application of SBML
	7.2 Example involving units
	7.3 Example of a discrete version of a simple dimerization reaction
	7.4 Example involving assignment rules
	7.5 Example involving algebraic rules
	7.6 Example with combinations of boundaryCondition and constant values on Species with RateRule objects
	7.7 Example of translation from a multi-compartmental model to ODEs
	7.8 Example involving function definitions
	7.9 Example involving delay functions
	7.10 Example involving events
	7.11 Example involving two-dimensional compartments

	8 Discussion
	8.1 Future enhancements: SBML Level 3 and beyond

	Acknowledgments
	A XML Schema for SBML
	B XML Schema for MathML subset
	C Validation rules for SBML
	D A method for assessing whether an SBML model is overdetermined
	E Mathematical consequences of the fast attribute on Reaction
	F Processing and validating SBase notes and Constraint message content
	G Major changes between versions of SBML Level 2 and implications for backward compatibility
	G.1 Between Version 2 and Version 1
	G.2 Between Version 3 and Version 2
	G.3 Between Version 4 and Version 3
	G.4 Between Version 5 and Version 4

	References

