{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "QFkpR5-IVEGr" }, "source": [ "# Installing Comet\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "bjfA7OqbUvc4" }, "outputs": [], "source": [ "%pip install -U \"comet_ml>=3.44.0\"" ] }, { "cell_type": "markdown", "metadata": { "id": "jS7jwZNSVH9_" }, "source": [ "# Login to Comet" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "-frLwX-YUzDn" }, "outputs": [], "source": [ "import comet_ml\n", "\n", "comet_ml.login()" ] }, { "cell_type": "markdown", "metadata": { "id": "s4mKxi1QVPjN" }, "source": [ "# Log a Training Run" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Jw9kxe09Vf6C" }, "outputs": [], "source": [ "experiment = comet_ml.start(project_name=\"comet-in-notebooks\")\n", "\n", "for idx, value in enumerate(range(0, 100, 10)):\n", " experiment.log_metric(\"accuracy\", value / 100, step=idx)" ] }, { "cell_type": "markdown", "metadata": { "id": "U8qHx2kUV3Ju" }, "source": [ "# Displaying an Experiment" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "fcj_fe3dV5jN" }, "outputs": [], "source": [ "experiment.display(tab=\"charts\")" ] }, { "cell_type": "markdown", "metadata": { "id": "oHcBKGxfVuPy" }, "source": [ "# Ending an Experiment" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "kfSiNZEZVz4Y" }, "outputs": [], "source": [ "experiment.end()" ] }, { "cell_type": "markdown", "metadata": { "id": "BjLqW2O1Wh_C" }, "source": [ "# Viewing Cell Execution Order" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "tBbLw06mWfal" }, "outputs": [], "source": [ "experiment.display(tab=\"code\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "drpje33JXHXN" }, "outputs": [], "source": [] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }